微分方程的几个简单实例
3.1微分方程模型-微分方程的几个简单实例
![3.1微分方程模型-微分方程的几个简单实例](https://img.taocdn.com/s3/m/79e2c5174431b90d6c85c7fa.png)
微分方程模型浙江大学数学建模实践基地§3.1 微分方程的几个简单实例在许多实际问题中,当直接导出变量之间的函数关系较为困难,但导出包含未知函数的导数或微分的关系式较为容易时,可用建立微分方程模型的方法来研究该问题,本节将通过一些最简单的实例来说明微分方程建模的一般方法。
在连续变量问题的研究中,微分方程是十分常用的数学工具之一。
例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。
从图3-1中不难看出,小球所受的合力为mgsin θ,根据牛顿第二定律可得:sin ml mg θθ=- 从而得出两阶微分方程:0sin 0(0)0,(0)g l θθθθθ+==⎪=⎧⎪⎨⎩ (3.1)这是理想单摆应满足的运动方程(3.1)是一个两阶非线性方程,不易求解。
当θ很小时,sin θ≈θ,此时,可考察(3.1)的近似线性方程:00(0)0,(0)g l θθθθθ+==⎧=⎪⎨⎪⎩ (3.2)由此即可得出2g T l π=(3.2)的解为: θ(t )=θ0cosωtg l ω=其中当时,θ(t )=04T t =42g T l π=故有M Q P mgθl 图3-1(3.1)的近似方程例2我方巡逻艇发现敌方潜水艇。
与此同时敌方潜水艇也发现了我方巡逻艇,并迅速下潜逃逸。
设两艇间距离为60哩,潜水艇最大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜水艇。
这一问题属于对策问题,较为复杂。
讨论以下简单情形:敌潜艇发现自己目标已暴露后,立即下潜,并沿着直线方向全速逃逸,逃逸方向我方不知。
设巡逻艇在A 处发现位于B 处的潜水艇,取极坐标,以B 为极点,BA 为极轴,设巡逻艇追赶路径在此极坐标下的方程为r =r (θ),见图3-2。
B AA1dr ds dθθ图3-2由题意,,故ds =2dr 2ds dr dt dt =图3-2可看出,222()()()ds dr rd θ=+故有:2223()()dr r d θ=即:3rdr d θ=(3.3)解为:3r Ae θ=(3.4)先使自己到极点的距离等于潜艇到极点的距离然后按(3.4)对数螺线航行,即可追上潜艇。
高考数学中的微分方程应用及实例题解析
![高考数学中的微分方程应用及实例题解析](https://img.taocdn.com/s3/m/44c7075449d7c1c708a1284ac850ad02de800784.png)
高考数学中的微分方程应用及实例题解析一、微分方程的应用微分方程在数学中有着广泛的应用,而在高考数学中尤为重要。
微分方程可以用来描述各种物理和工程问题中的连续变化。
在高考数学中,微分方程的应用主要包括解决物理和工程问题,并用微分方程模型求解。
下面,我们将以几个实例来解释微分方程的应用。
二、实例题解析1. 一个水箱有一个进水口和一个排水口,进水口的水速是10升/分钟,排水口排水的速度是6升/分钟。
在水箱的初态下,水箱的水量是7升。
求15分钟之后水箱的水量是多少?解答:由于水箱的进水口和排水口都是连续变化的,因此可以用微分方程来模拟。
不妨设水箱的初始状态下的水量为y,当t时间后,进水和排水的水量都为10-6=4升/分钟,因此有:y'(t)=4根据微分方程得:y(t)=4t+C由于初态下,水量为7升,因此C=7。
当t=15时,有:y(15)=4*15+7=67因此,15分钟后水箱的水量是67升。
2. 某商品的回报率为r,市场容量有限,其市场占有率y变化满足dy/dt=ry(1-y),y初始为0.2,求当市场占有率达到60%时所需的时间。
解答:由于市场占有率随时间的变化是连续变化的,因此可以用微分方程来模拟。
设市场占有率为y,时间为t,有:dy/dt=ry(1-y)将该微分方程分离变量得:1/(y(1-y))dy=rdt两边积分得:ln|y/(1-y)|=rt+C由于当y=0.2时,t=0,因此C=ln(1/4)。
当y=0.6时,有:ln|0.6/(1-0.6)|=0.4r+C代入C得:ln(3/2)=0.4r+ln(1/4)解得r=ln3/16,因此所需的时间为:t=[ln(3/2)-ln(1/4)]/0.4ln3/16≈8.25因此,市场占有率达到60%时所需的时间为8.25。
三、总结微分方程在高考数学中的应用极为广泛,需要考生有扎实的微积分和数学建模的基础。
通过多做微分方程的实例题目,可以帮助考生更好地掌握微分方程的应用方法和技巧。
高考数学中的微分方程分析及应用实例
![高考数学中的微分方程分析及应用实例](https://img.taocdn.com/s3/m/8848f52e6ad97f192279168884868762caaebb26.png)
高考数学中的微分方程分析及应用实例微分方程是数学的一个分支,可以用来描述物理世界中的许多现象和规律。
在高中数学中,微分方程也是一个非常重要的知识点,尤其是在高考数学中,微分方程的考查频率也很高。
本文将从微分方程的定义、解法以及应用实例三个方面进行阐述,帮助大家更好地理解和应用微分方程。
一、微分方程的定义微分方程是描述一个未知函数及其导数之间关系的数学方程。
简而言之,微分方程就是“导数方程”。
形式化地表述,设$ y=f(x)$ ,则微分方程一般可以写成如下形式:$$F(x,y,y',y'',\cdots,y^{(n)})=0$$其中,$ y^{(i)} $表示$ y $的$i$阶导数,$ F $是关于$ x,y,y',y'',\cdots,y^{(n)} $的函数。
二、微分方程的解法微分方程的解法主要有三种方法:分离变量法、齐次方程和一阶线性微分方程。
1. 分离变量法所谓“分离变量”,就是把方程中的$ x $和$ y $分别独立出来。
具体来说,就是在微分方程两边同时乘上$ dx $,然后把所有包含$ y $的项移到等号右边,所有包含$ x $的项移到等号左边,形如:$$F(y)dy=G(x)dx$$然后两边同时积分即可求得$ y $的解。
需要注意的是,这个方法只适用于能够分离变量的微分方程。
2. 齐次方程所谓“齐次方程”,就是系数和次数都相同的微分方程。
对于这类方程,我们可以进行一些变换,将其转化为可分离变量的形式。
具体方法是令$ y=vx $,然后把微分方程中的$ y $用$ v $和$ x $表示出来,形如:$$ y'=v+xv'$$将其代入微分方程中,消去$ v $得到一个可分离变量的方程。
3. 一阶线性微分方程所谓“一阶线性微分方程”,就是可以写成如下形式的微分方程:$$\frac{dy}{dx}+P(x)y=Q(x)$$其中,$ P(x) $和$ Q(x) $都是已知函数。
微分方程型建模实例题
![微分方程型建模实例题](https://img.taocdn.com/s3/m/ab5e91c88bd63186bcebbcac.png)
一个数学问题都可以用不同的方法来求解的,不同的方法做出来效果不同,效率也不同。
下面就微分方程模型建模展开建模。
下面给出些微分方程建立模型的实例,供大家参考。
1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。
设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间?2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变)(2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少?3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间?4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。
5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度?6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐?7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。
8.1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。
9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常数,()10.实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为0.005。
微分生活实例
![微分生活实例](https://img.taocdn.com/s3/m/ab4fe2da77a20029bd64783e0912a21614797f86.png)
微分生活实例
例子一:火力发电厂的冷却塔的外形要做成弯曲的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于无法承受(地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。
把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,冷却塔就能做的很大。
例子二:计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。
Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。
计算机是计算是基于加法的,运用微积分的级数理论,可以把对数函数转换为一系列乘法和加法运算。
微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。
常微分方程中的一些简单例子和方法
![常微分方程中的一些简单例子和方法](https://img.taocdn.com/s3/m/411064bea1116c175f0e7cd184254b35eefd1aaf.png)
常微分方程中的一些简单例子和方法常微分方程是数学中的一个重要分支,它涉及到很多实际问题的数学模型解析和数值求解。
常微分方程可以用于描述很多自然现象,比如物理、生物、经济和工程学等领域。
它是应用数学中的一部分,也是数学中比较重要的一部分,今天我们就来介绍一下常微分方程中的一些简单例子和方法。
一、一阶常微分方程一阶常微分方程形如: $\frac{dy}{dx}=f(x,y)$,其中y是未知函数,x是自变量,f(x,y)是已知函数。
这种方程的解就是y(x)。
下面我们来看几个例子。
1. 求解方程$y'=3x^2$。
对方程两边求积分,得到$y=\int3x^2dx=x^3+C$。
其中C是常数,可以通过初始条件来确定。
比如,如果y(x)在x=0处等于2,则$y(0)=2$,代入求解得到$C=2$,所以完整的解为$y=x^3+2$。
2. 求解方程$y'=2xy$。
对方程两边分离变量,得到$\frac{dy}{y}=2xdx$,对两边求积分,得到$\ln|y|=x^2+C$。
移项得到$y=Ce^{x^2}$,其中C是常数。
3. 求解方程$y'+2xy=x$。
这是一个非齐次线性微分方程,首先求解它的齐次方程$y'+2xy=0$,这个方程的解是$y=Ce^{-x^2}$。
然后我们要找到一个特殊解,这个特殊解满足非齐次方程。
我们可以猜测特殊解为$y=A+Bx$,代入非齐次方程得到$B=1$,$A=-\frac{1}{2}$,因此特殊解为$y=-\frac{1}{2}+x$。
因为非齐次方程的通解等于它的齐次解加上特殊解,所以得到通解为$y=Ce^{-x^2}-\frac{1}{2}+x$。
二、二阶常微分方程二阶常微分方程形如:$y''+p(x)y'+q(x)y=f(x)$。
其中y是未知函数,x是自变量,f(x)、p(x)和q(x)都是已知函数。
这种方程的解是y(x)。
微分方程例题范文
![微分方程例题范文](https://img.taocdn.com/s3/m/2d6982f0a0c7aa00b52acfc789eb172ded639907.png)
微分方程例题范文微分方程是描述物理学、化学、经济学、生物学等领域中变化规律的重要数学工具。
下面我将给出几个微分方程的例题,解析其求解过程。
例题1:一般线性微分方程已知其中一种细菌种群的个体数量N(t)随时间t的变化符合以下微分方程:dN(t)/dt = k*N(t)其中k为常数。
求解该微分方程,并给出其通解。
解析:思路:这是一个一阶线性微分方程,可以使用分离变量法进行求解。
将方程进行分离变量:dN(t)/N(t) = k*dt两边同时积分:∫ (1/N(t)) dN(t) = ∫ k dt得到:ln,N(t), = kt + C1其中C1为常数。
对上式两边取指数:N(t), = e^(kt+C1) = e^C1 * e^kt = C * e^kt其中C=e^C1为常数。
由于细菌数量N(t)永远为正数,所以可以去掉绝对值符号,得到通解:N(t) = C * e^kt其中C为常数。
例题2:二阶常系数齐次线性微分方程已知其中一振动系统满足以下微分方程:d²x(t)/dt² + 4dx(t)/dt + 5x(t) = 0求解该微分方程,并给出其通解。
解析:思路:这是一个二阶常系数齐次线性微分方程,可以使用特征根法进行求解。
将方程转化为特征方程:λ²+4λ+5=0求解特征方程的解,得到特征根:λ₁=(-4+√(-4²-4*5))/2=-2+iλ₂=(-4-√(-4²-4*5))/2=-2-i特征根为复数,分别为共轭复数对。
根据特征根的性质,解的形式为:x(t) = e^(-2t) (C₁cos(t) + C₂sin(t))其中C₁、C₂为常数。
例题3:二阶常系数非齐次线性微分方程已知其中一电路中的电流I(t)满足以下微分方程:d²I(t)/dt² + 3dI(t)/dt + 2I(t) = 6e²求解该微分方程,并给出其通解。
微分方程的常用数值解法
![微分方程的常用数值解法](https://img.taocdn.com/s3/m/425870246d175f0e7cd184254b35eefdc9d3155a.png)
微分方程的常用数值解法摘要:微分方程是数学中的一种重要的方程类型,它能描述自然现象和工程问题中的许多变化规律。
但是大多数微分方程解法是无法用解析的方式求解的,因此需要借助数值解法来近似求解。
本文将介绍微分方程的常用数值解法。
关键词:欧拉方法;龙格-库塔方法;微分方程;常用数值解法一、微分方程数值解方法微分方程数值解法是数学中的重要部分。
欧拉方法、龙格-库塔方法和二阶龙格-库塔方法是常用的微分方程数值解法,下面就分别介绍这三种方法。
(一)欧拉方法欧拉方法是解初值问题的一种简单方法,它是欧拉用的第一种数值方法,也叫向前欧拉法。
欧拉方法是利用微分方程的定义式y’=f(x, y),将它带入微分方程初值问题y(x_0)=y_0中,以y_0为初始解,在每一步上通过沿着切线的方法进行估计并推进新的解y_{i+1}:y_i+1=y_i+hf(x_i,y_i)其中,x_i和y_i是我们知道的初始条件,h是求解过程中的步长,f是微分方程右端项。
它是一种时间迭代的算法,易于实现,但存在着精度不高的缺点。
(二)龙格-库塔方法龙格-库塔方法是一种经典迭代方法,也是近代微分方程数值解法发展的里程碑之一。
龙格-库塔方法的主要思想是利用规定的阶码及阶向量,通过递推求解微分方程数值解的近似值。
龙格-库塔方法的方式不同,其步骤如下:第一步:根据微分方程,计算出在x_i和y_i的值。
第二步:在x_i处对斜率进行估计,并利用这个斜率来求解下一步所需的y_i+1值。
第三步:使用x_i和y_i+1的值来重新估计斜率。
第四步:使用这个新的斜率来更新y_i+1的值。
(三)二阶龙格-库塔方法二阶龙格-库塔方法是龙格-库塔方法的一种变体,它根据龙格-库塔方法的思想,使用更好的步长来提高数值解的精度。
二阶龙格-库塔方法的基本思路是,在第一次迭代时使用一个阶段小一半的y_i+1,然后使用这个估算值来计算接下来的斜率。
通过这种方法,可以提高解的精度。
二阶龙格-库塔方法的步骤如下:第一步:计算出初始阶段的y_i+1值。
一阶线性微分方程的解与应用
![一阶线性微分方程的解与应用](https://img.taocdn.com/s3/m/9c98e6c99f3143323968011ca300a6c30d22f178.png)
一阶线性微分方程的解与应用一阶线性微分方程是微积分学中的重要内容,广泛应用于各个科学领域,特别是物理学和工程学。
它们的解法相对简单,且具有丰富的实际应用价值。
本文将介绍一阶线性微分方程的解法以及其在实际问题中的应用。
一、一阶线性微分方程的解法一阶线性微分方程的一般形式为:dy/dx + P(x)y = Q(x),其中P(x)和Q(x)都是已知函数。
我们的目标是找到其解y(x)。
首先,我们可以将这个方程变形为dy/dx = -P(x)y + Q(x)。
接下来,我们使用一个重要的积分技巧——乘积法则。
将方程两边同时乘以一个称为积分因子的函数μ(x),得到μ(x)dy/dx + μ(x)P(x)y = μ(x)Q(x)。
为了使得左边能够变成一个恰当微分,我们需要选择一个适当的积分因子μ(x)。
一种常见的选择是μ(x) = exp[∫P(x)dx],即取积分因子为P(x)的指数函数形式。
这样,原方程变为d[μ(x)y]/dx = μ(x)Q(x)。
对上述方程两边同时积分,我们得到μ(x)y = ∫μ(x)Q(x)dx + C,其中C是常量。
最后,我们将μ(x)代回方程中,得到y(x) = exp[-∫P(x)dx] [∫μ(x)Q(x)dx + C]。
至此,我们已经得到了一阶线性微分方程的解的通解形式。
通过选取不同的积分因子和积分常数C,我们可以得到不同的特解,满足具体条件的问题。
二、一阶线性微分方程的应用一阶线性微分方程在各个领域都有广泛的应用。
以下是一些具体的应用实例:1.增长与衰减问题:对于一些与时间有关的增长或衰减过程,可以建立一阶线性微分方程描述其变化规律。
比如,放射性元素的衰变过程、细胞的增殖过程等。
2.电路问题:电路中的电流、电压的变化可以用一阶线性微分方程来描述。
对电路中的各个元件进行建模时,可以利用该方程求解电流或电压的变化。
3.人口动态问题:人口学中的人口增长与迁移等问题,可以通过建立一阶线性微分方程来研究。
(完整版)微分方程例题选解
![(完整版)微分方程例题选解](https://img.taocdn.com/s3/m/6794fa50b0717fd5370cdc59.png)
微分方程例题选解3 1. 求解微分方程 x ln xdy ( y ln x)dx 0 , y |x e。
2解:原方程化为dy1 y1dx,xln xx1 dx 1 e 1dxy eC ] 通解为x ln x[ xln xdxx1 [ ln xdx C ]1 [ 1ln 2 x C ]ln xxln x 2由 xe , y3 ,得 C1 ,所求特解为y11ln x 。
2ln x 22. 求解微分方程 x 2 y ' xy y20 。
解:令 y ux , y uxu ,原方程化为 uxuu u 2 ,分离变量得du 1dx ,1 u 2x积分得ln x C,ux原方程的通解为y。
ln x C3. 求解微分方程 ( x 3 xy 2 ) dx ( x 2 y y 3 )dy 。
解:此题为全微分方程。
下面利用“凑微分”的方法求解。
原方程化为 x 3dx xy 2 dx x 2 ydy y 3 dy 由x 3 dx xy 2 dx x 2 ydy y 3dy 1dx41( y 2 dx 2x 2 dy 2 )421d (x 4 2x 2 y 2 y 4 ) ,4 得d (x 4 2x 2 y 2y 4 ) 0 ,原方程的通解为x 42 x 2 y 2 y 4 C 。
注:此题也为齐次方程。
0 ,1 dy 444. 求解微分方程 y '' 1 ( y ') 2 。
解:设 py ,则 y dp,原方程化为 dp1 p2 ,dp dxdx分离变量得dx ,积分得 arctan px C 1 ,1 p2于是 yp tan(x C 1 ) , 积分得通解为yln cos(x C 1 ) C 2 。
5. 求解微分方程 解:特征方程为通解为 y e x (C 1y '' 2y ' 2 y 0 。
r 2 2r 2 0 ,特征根为 r1 i ,cos C 2 sin x) 。
微分方程总结归纳
![微分方程总结归纳](https://img.taocdn.com/s3/m/e43d61574531b90d6c85ec3a87c24028915f853f.png)
微分方程总结归纳微分方程是数学中重要的概念之一,它描述了自然界中许多现象的变化规律。
本文将以人类的视角,通过几个具体的实例来总结归纳微分方程的应用。
第一部分:生物学中的微分方程在生物学中,微分方程经常被用来描述生物体的生长、变化和适应过程。
比如,我们知道细胞的增长速度与其当前的大小有关。
假设细胞的大小为x,细胞的增长速率为dx/dt,那么可以用微分方程来表示细胞的增长规律:dx/dt = kx其中,k是一个常数,表示细胞的增长速率。
这个微分方程告诉我们,细胞的增长速率与其当前的大小成正比。
这个简单的微分方程可以帮助我们理解细胞的生长规律,为生物学研究提供重要的理论基础。
第二部分:物理学中的微分方程在物理学中,微分方程被广泛应用于描述物体的运动和力学性质。
比如,牛顿第二定律可以用微分方程的形式来表示:F = m(d^2x/dt^2)其中,F是物体所受的力,m是物体的质量,x是物体的位移。
这个微分方程告诉我们,物体所受的力与其质量和加速度成正比。
通过求解这个微分方程,我们可以计算出物体的运动轨迹和速度变化,从而更好地理解物体的运动规律。
第三部分:经济学中的微分方程在经济学中,微分方程被用来描述经济系统中的变化和发展。
比如,我们知道市场需求和供给的变化会影响商品的价格。
假设商品的价格为p,需求量为x,供给量为y,那么可以用微分方程来描述价格的变化规律:dp/dt = k(x-y)其中,k是一个常数,表示价格的变化速率。
这个微分方程告诉我们,价格的变化速率与需求量和供给量的差异成正比。
通过求解这个微分方程,我们可以预测价格的走势,为经济决策提供重要参考。
结论微分方程是数学中重要的工具,它可以帮助我们理解和描述许多自然界和人类社会中的现象和规律。
本文通过生物学、物理学和经济学三个领域的实例,总结归纳了微分方程的应用。
希望读者通过本文的介绍,对微分方程有更深入的理解,并能在实际问题中灵活运用。
常见微分方程的通解
![常见微分方程的通解](https://img.taocdn.com/s3/m/f478e2937d1cfad6195f312b3169a4517723e5a7.png)
常见微分方程的通解一、可分离变量的微分方程。
1. 形式。
这种微分方程长这个样子:(dy)/(dx)=f(x)g(y)。
就好像是把x和y的关系拆成了两部分,一部分只跟x有关,另一部分只跟y有关。
2. 解法。
咱就把它变成(dy)/(g(y)) = f(x)dx。
这就像是把x和y各自放在等式的两边。
然后两边分别积分,∫(dy)/(g(y))=∫ f(x)dx。
最后得到的表达式就是通解啦。
比如说方程(dy)/(dx)=xy,我们就可以写成(dy)/(y)=xdx,积分之后得到ln|y|=(1)/(2)x^2+C,再进一步写成y = Ce^(1)/(2)x^{2},这里的C就是任意常数哦。
二、一阶线性微分方程。
1. 形式。
一般形式是(dy)/(dx)+P(x)y = Q(x)。
你可以把它想象成一个关于y和y'的一次方程,不过这里面的系数P(x)和Q(x)是关于x的函数。
2. 解法。
我们先找一个叫做积分因子的东西,它是e^∫ P(x)dx。
然后把原方程两边都乘以这个积分因子,就得到e^∫ P(x)dx(dy)/(dx)+P(x)e^∫ P(x)dxy = Q(x)e^∫ P(x)dx。
这个时候呢,左边就正好是(ye^∫ P(x)dx)'。
于是我们就可以两边积分,得到ye^∫ P(x)dx=∫Q(x)e^∫ P(x)dxdx + C,最后解出y = e^-∫ P(x)dx(∫ Q(x)e^∫ P(x)dxdx + C)。
比如说方程(dy)/(dx)+y = x,这里P(x) = 1,Q(x)=x。
积分因子就是e^∫ 1dx=e^x。
按照步骤做下去就可以求出通解啦。
三、二阶常系数齐次线性微分方程。
1. 形式。
y'' + py' + qy = 0,这里面的p和q都是常数。
2. 解法。
我们先假设解是y = e^rx这种形式的,把它代入方程里面,就得到r^2e^rx+pre^rx+qe^rx=0,因为e^rx永远不会等于零,所以就有特征方程r^2+pr + q = 0。
第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题
![第八章微分方程本章主要通过几个具体的例子,说明微分方程的应用问题](https://img.taocdn.com/s3/m/0daedc37abea998fcc22bcd126fff705cc175cd6.png)
221第八章 微 分 方 程本章主要通过几个具体的例子,说明微分方程的应用问题,并介绍一些基本概念及几种常用的微分方程的解法.第一节 微分方程的基本概念例1 自由落体运动 自由落体运动是指物体在仅受到地球引力的作用下,初速度为零的运动.根据牛顿第二定律:ma F =,它的运动路程)(t s s =大小的变化规律可表示为:m g dtsd m =22. 且还满足0)0(,0)0(='=s s ,即⎪⎩⎪⎨⎧='==(2) 0)0(,0)0((1) 22s s g dt sd对(1)两边积分,得 1C gt dtds+=, (3) 对(3)两边积分,得21221C t C gt s ++=, (4) 这里21,C C 都是任意常数.将(2)代入(4),得0,012==C C . 故自由落体运动路程的规律为221gt s =. (5) 这是微分方程应用的最早一个例子.例2 Malthus 人口模型 英国人口学家马尔萨斯(Malthus T R 1766-1834)根据百余年的人口统计资料,于18世纪末提出著名的人口模型.该模型假设人口的净相对增长率(出生率减去死亡率)是常数,即单位时间内人口的增长量与当时的人口数成正比.设时刻t 的人口为)(t x ,净相对增长率为r ,我们将)(t x 当作连续变量考虑,开始时(0=t )的人口数量为0x ,即0)0(x x =.按照Malthus 理论,于是)(t x 满足如下方程为:⎪⎩⎪⎨⎧==(7).)0((6), 0x x rx dt dx其中r 为常数.(6)称为Malthus 人口模型. 对(6)整理,得r d t xdx=. (8) 对(8)两边积分,得rt Ce t x =)(, (9)222将(7)代入(9),得0x C =,故人口增长规律为rt e x t x 0)(=. (10)如果0>r ,(10)表明人口将以指数规律无限增长.特别地,当∞→t 时,+∞→)(t x ,这似乎不可能. 这个模型可以与19世纪以前欧洲一些地区的人口统计数据很好地吻合,但是当后来人们用它与19世纪的人口资料比较时,误差较大.例3 Logistic 模型 荷兰生物数学家V erhulst 引入常数m x 表示自然资源和环境条件所能容许的最大人口,并假定净相对增长率等于⎪⎪⎭⎫⎝⎛-m x t x r )(1,即净相对增长率随着)(t x 增加而减少.因为随着人口的增加,自然资源,环境条件等因素对人口继续增长的阻滞作用越来越显著.如果人口较少时(相对于资源而言)人口增长率还可以看作常数.当人口增加到一定数量后,增长率就会随着人口的继续增加而逐渐减少.这正是对Malthus 人口模型中人口的固定净相对增长率的修正.这样,Malthus 人口模型(6)变为:⎪⎩⎪⎨⎧=⎪⎪⎭⎫⎝⎛-=(12). )0((11), )()(10x x t x x t x r dt dx m该模型的解为()rtm me x x x t x -⎪⎪⎭⎫ ⎝⎛-+=110, (13)易看出,当+∞→t 时,m x t x →)(.这个模型称为Logistic 模型,其结果经计算与实际情况比较吻合.此模型在很多领域有着较广泛的应用.例4 广告模型 在当今这个信息社会中,广告在商品推销中起着极其重要的作用.当生产者生产出一批产品后,便会考虑到广告的大众性和快捷性,利用广告促销作用更快更多地卖出产品.那么,广告与促销到底有何关系?广告在不同时期的效果如何?下面建立独家销售的广告模型来研究.该模型假设:商品的销售速度会因做广告而增加,但当商品在市场趋于饱和时,销售速度将趋于极限值,这时,销售速度将开始下降;自然衰减是销售速度的一种性质,商品销售速度的变化率随商品的销售率的增加而减少.设)(t s 为t 时刻商品的销售速度,M 表示销售速度的上限;0>λ为衰减因子常数,即广告作用随时间增加,而自然衰减的速度;)(t A 为t 时刻的广告水平(以费用表示).建立方程为:⎪⎩⎪⎨⎧=-⎪⎭⎫⎝⎛-⋅⋅=(15) )0((14) )()(1)(0s s t s M t s t A p dtds λ 其中p 为响应函数,即)(t A 对)(t s 的影响力,p 为常数.223由假设知,当销售进行到某个时刻时,无论怎样作广告,都无法阻止销售速度的下降,故选择如下广告策略:⎩⎨⎧>≤≤=ττt t A t A 00)(, 其中A 为常数.在[]τ,0时间内,设用于广告的花费为a ,则τaA =,代入(14),有ττλa p s a M p dt ds ⋅=⎪⎭⎫ ⎝⎛⋅++, 令τλa M p b ⋅+=; τpac =. 则有c bs dtds=+. (16) 解(16),得bcke t s bt+=-)( , (17) 其中k 为任意常数.将(15)代入(17),得()bt bt e s e bct s --+-=01)(, (18) 当τ>t 时,由)(t A 的表达式,则(14)为s dtdsλ-=. (19) 其解为()t e t s t s -=τλ)()(. (20) 这样,联合(18)与(20),得到()()⎪⎩⎪⎨⎧>≤≤+-=---τττττλt e s t e s e bct s btbt )(01)(0. (21)其图形如图8-1.224图8-1上述四个例子中的关系式(1)、(6)、(11)和(14)都含有未知函数的导数,它们都是微分方程.一般地,凡是含有自变量、自变量的未知函数以及未知函数的导数(或微分)的方程,都叫做微分方程.如果微分方程中,自变量的个数只有一个,则称之为常微分方程;自变量的个数为两个或两个以上,则称之为偏微分方程.本章只讨论常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶.例如方程(6)、(11)和(14)是一阶微分方程;方程(1)是二阶微分方程. 一般地,n 阶微分方程的形式是,,(y x F )(,,n y y ')=0 (22)其中2+n F 是个变量的函数.这里必须指出,在方程(22)中,)(n y 必须出现的,而)1(,,,,-'n y y y x 等变量则可以不出现.例如n 阶微分方程01)(=+n y中,除)(n y 外,其他变量都没有出现.如果能从方程(22)中解出最高阶导数,得微分方程),,,,()1()(-'=n n y y y x f y (23)以后我们讨论的微分方程都是这种已解出最高阶导数的方程或能解出最高阶导数的方程,且(23)式右端的函数在所讨论的范围内连续.由前面的例子我们看到,在研究某些实际问题时,首先要建立微分方程,然后找出满足微分方程的函数(解微分方程),就是说,找出这样的函数,把这函数代入微分方程能使该方程成为恒等式.这个函数就叫做该微分方程的解.确切地说,设函数)(x y ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,0)](,),(),(,[)(≡'x x x x F n ϕϕϕ那么函数)(x y ϕ=就叫做微分方程(22)在区间I 的解.由前面的例子,可知函数(4)和(5)都是微分方程(1)的解;函数(9)和(10)都是微分方程(6)的解;函数(13)是微分方程(11)的解;函数(21)是微分方程(14)的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.例如,函数(9)是微分方程(6)的解,它含有一个任意常数,而方程(6)是一阶的,所以函数(9)是微分方程(6)的通解;函数(4)是方程(1)的解,它含有两个任意常数,而方程(1)是二阶的,所以函数(4)是方程(1)的通解.在利用微分方程求解实际问题时,所得到的含有任意常数的通解因其具有不确定性而不能满足需要,通常还要根据问题的实际背景,加上某些特定的条件,确定通解中的任意常数.用来确定通解中任意常数值的条件叫做初始条件.例1中的条件(2),例2中的条件(7)等,便是初始条件.一般地,设微分方程中的未知函数为)(x y y =,如果微分方程是一阶的,通常用来确定任意常数的初始条件是,00y y x x ==时,或写成 00y yx x ==.225其中0x 、0y 都是给定的值;如果微分方程是二阶的,通常用来确定任意常数的初始条件是:,00y y x x ==时,0y y '=', 或写成 00y yx x ==,0y y x x '='=. 其中00,y x 和0y '都是给定的值. 由初始条件确定了通解中的任意常数的解,就叫做微分方程的特解.例如(5)式是方程(1)满足条件(2)的特解;(10)式是方程(6)满足条件(7)的特解. 微分方程的解所对应的几何图形叫做微分方程的积分曲线.通解的几何图形是一族积分曲线,特解所对应的几何图形是一族积分曲线中的一条.第二节 变量分离方程从本节开始,我们将在微分方程基本概念的基础上,从求解最简单的微分方程—可分离变量的微分方程入手,从易到难地介绍一些微分方程的解法.形如)()(y x f dxdyϕ= (1) 的方程,称为变量分离方程.其中)(x f 和)(y ϕ分别是x 和y 的连续函数.下面说明方程(1)的求解方法.如果0)(≠y ϕ,我们可将方程(1)改写成dx x f y dy)()(=ϕ 这样,变量就“分离”开来了,两边积分,得到方程(1)的通解C dx x f y dy+=⎰⎰)()(ϕ (2) 这里我们把积分常数C 明确写出来,而把)(y dy ϕ⎰,dx x f )(⎰分别理解为)(1y ϕ,)(x f 的某一个原函数. 如果存在0y ,使0)(0=y ϕ,直接代入方程(1),可知0y y =也是(1)的解.如果它不包含在方程的通解(2)中.必须予以补上.例1 求微分方程xy dxdy2= (3) 的通解.226解 方程(3)是变量分离方程,变量分离后得xdx ydy2=, 两端积分⎰⎰=xdx y dy2,得 12ln C x y +=, 从而 2112x C C x e e e y ±=±=+,因1Ce ±仍是任意常数,把它记作C ,得到2x Ce y =. (4)此外,0=y 显然也是方程(3)的解,如果在(4)中允许0=C ,则0=y 也就包含在(4)中,因此,(3)的通解便是方程(4),其中C 是任意常数.例2 解方程0)1(=++dy x xydx . (5) 解 变量分离,得 dx x xy dy 1+-=, 两边积分,得dx x xy dy 1+-=⎰⎰, ⎰⎰⎪⎭⎫ ⎝⎛+--=+-+-=dx x dx x x y 111111ln , 1ln 1ln ln C x x y +-=+-, 1ln 1lnC x x y+-=+, x Ce x y-=+1(1C C ±=), 故所求方程的通解为x e x C y -+=)1(. (6)此外,0=y 显然也是方程(5)的解,而0=y 包含在(6)中,因此,方程(6)是(5)的通解,其中C 是任意常数.例3 解Malthus 人口模型:227rx dtdx=, 0)0(x x =. 解 变量分离,得rdt xdx=, 两边积分,得C rt x ln ln +=,rt Ce t x =)(,因初始条件()00x x =,所以0x c =,故满足初始条件的解为rt e x t x 0)(= .第三节 齐次方程形如)(xydx dy ϕ= (1) 的方程,称为齐次方程.这里)(u ϕ是u 的连续函数.例如:0)2()(22=---dy xy x dx y xy ,是齐次方程,因为)(21)(2222xy x yxy xyx y xy dx dy --=--=. 下面说明方程(1)的求解方法. 作变量变换,令xyu =, (2) 即ux y =,于是dxdu x u dx dy +=, (3) 将(2)和(3)代入方程(1),则原方程变为)(u dxduxu ϕ=+, 即 u u dxdux -=)(ϕ. 变量分离,得xdxu u du =-)(ϕ,两边积分,得228⎰⎰=-x dxu u du )(ϕ.求出积分后,再用xy代替u ,便得所给齐次方程的通解. 例1 解方程dxdyxydx dy x y =+22. 解 原方程可写成1)(222-=-=xy x y xxy y dx dy , 因此是齐次方程.令,u xy=则 dxdu x u dx dy ux y +==,, 于是原方程变为12-=+u u dx du x u ,即 1-=u u dx du x . 变量分离,得xdx du u =-)11(,两端积分,得x C u u ln ln =+-,或写为 C u xu +=ln . 以xy代入上式中的u ,便得所给方程的通解为 C xyy +=ln . 例2 求解方程y xy dxdyx=+2 )0(<x . 解 将方程改写为xy x y dx dy +=2 )0(<x ,这是齐次方程. 以u xy =及u dx duu dx dy +=代入,则原方程变为 u dxdux 2=, (4) 分离变量,得到xdxudu =2,229两边积分,得到(4)的通解C x u +-=)l n (,即()[]2ln C x u +-=. )0)(l n (>+-C x 这里C 是任意常数. (5)此外,方程(4)还有解 0=u ,注意,此解并不包括在通解(5)中.代回原来的变量,即得原方程的通解[]2)l n (C x x y +-= )0)(l n (>+-C x 及解0=y .第四节 一阶线性微分方程一、一阶线性微分方程形如)()(x Q y x P dxdy=+ (1) 的方程,叫做一阶线性微分方程,因为它对于未知函数y 及其导数是一次方程.如果0)(≡x Q 则方程(1)称为齐次的;如果)(x Q 不恒等于零,则方程(1)称为非齐次的.当0)(≡x Q 时,(1)可写成0)(=+y x P dxdy(2) 方程(2)叫做对应于非齐次线性方程(1)的齐次线性方程.(2)是变量分离方程,变量分离后得dx x P ydy)(-=, 两边积分,得⎰+-=1ln )(ln C dx x P y ,由此得)(,1)(C C Ce y dxx P ±=⎰=- (3)式(3)是所求的齐次线性方程(2)的通解.这里C 是任意常数.下面我们来讨论求非齐次线性方程(1)的通解的方法.不难看出,(2)是(3)的特殊情形,两者既有联系又有差异.因此可以设想它们的解也应该有一定的联系.我们试图利用方程(2)的通解(3)的形式去求出方程(1)的通解.显然,如果(3)中C 恒保持常数,它必不可能是(1)的解.我们设想:在(2)中,将常数C 换成x 的待定函数)(x u ,使它满足方程(1),从而求出)(x u .该方法称为常数变易法.为此,令⎰=-dx x P ue y )( , (4) 于是 ⎰-⎰'=--dx x P dx x P e x uP e u dxdy)()()(. (5)将(4)和(5)代入方程(1)得230)()()()()()(x Q ue x P e x uP e u dx x P dx x P dx x P =⎰+⎰-⎰'---,即 )()(x Q e u dx x P =⎰'-,⎰='dxx P e x Q u )()(. 两边积分,得 ⎰+⎰=C dx e x Q u dxx P )()(.把上式代入(4),便得非齐次线性方程(1)的通解⎪⎭⎫⎝⎛+⎰⎰=⎰-C dx e x Q e y dxx P dx x P )()()(. (6)将(6)式改写成两项之和⎰⎰⎰+⎰=--dx e x Q e Ce y dx x P dx x P dx x P )()()()(. 上式右端第一项是对应的齐次线性方程(2)的通解,第二项是非齐次线性方程(1)的一个特解.由此可知,一阶非齐次线性方程通解等于对应的齐次方程的通解与非齐次方程的一个特解之和.例 1 求方程25)1(12+=+-x x y dx dy 的通解.解 这是一个一阶非齐次线性方程.先求对应的齐次方程的通解.012=+-y x dx dy , 变量分离,得12+=x dxy dy , 两边积分,得 1ln 1ln 2ln C x y ++=,即 2)1(+=x C y (1C C ±=).用常数变易法,把()x u C 换成,即令2)1(+=x u y , (7)那么 )1(2)1(2+++'=x u x u dxdy, 代入所给非齐次方程,得21)1(+='x u .两边积分,得 C x u ++=231(32). 在把上式代入(7)式,即得所求方程的通解为⎥⎦⎤⎢⎣⎡+++=C x x y 232)1(32)1(.231例2 求方程1)1()1(++=-+n x x e ny dxdyx 的通解,这里n 为常数. 解: 将方程改写为 n x x e y x ndx dy )1(1+=+-, (8)首先,求齐线性方程 01=+-y x ndx dy 的通解,从dx x n y dy 1+=得到齐线性方程的通解为 n x C y )1(+=.其次,应用常数变易法求非齐线性方程的通解.为此,在上式中把C 看成为x 的待定函数)(x u ,即n x x u y )1)((+=, (9)微分之,得到)()1()1()(1x u n n x dxx du dx dy n n -+++=. (10) 以(9)及(10)代入(8),得到x e dx x du =)(, 积分之,求得 C e x u x ~)(+=,因此,以所求的)(x C 代入(9),即得原方程的通解)~()1(C e x y x n ++=. 这里C ~是任意常数 二 、 伯努利方程形如n y x Q y x P dxdy)()(=+ )1,0(≠n (11) 的方程叫做伯努利方程.当0=n 或1=n 时,这是线性微分方程.当1,0≠≠n n 时,这方程不是线性的,但是通过变量的代换,便可把它化为线性的.事实上,以n y 除方程(10)的两边,得)()(1x Q y x P dxdyyn n=+--. (12) 容易看出,上式左端第一项与)(1ny dxd -只差一个常数因子n -1,因此,我们令 n y z -=1,那么dxdy y n dx dz n --=)1(. 用)1(n -乘方程(12)的两端,再通过上述变换便得线性方程)()1()()1(x Q n z x P n dxdz-=-+.232求出这方程的通解后,以z y n 代-1,便可得到伯努利方程(11)的通解.此外,当0>n 时,方程还有解0=y .例3 求方程2)(ln y x a xydx dy =+, 的通解.解 以2y 除方程的两边,得x a y xdx dy y ln 112=+--. 即 x a y xdx y d ln 1)(11=+---.令1-=y z ,则上述方程成为x a z xdx dz ln 1-=-, 这是一个线性方程,它的通解为⎥⎦⎤⎢⎣⎡-=2)(ln 2x a C x z .以1-y 代z ,故得所求方程的通解为1)(ln 22=⎥⎦⎤⎢⎣⎡-x a C yx .此外,方程还有解0=y .在上节中,对于齐次方程⎪⎭⎫⎝⎛='x y y ϕ,我们通过变量变换xu y =,把它化为变量可分离的方程,然后分离变量,经积分求得通解.在本节中,对于一阶非齐次线性方程)()(x Q y x P y =+',我们通过解对应的齐次线性方程找到变量变换⎰=-dxx P ue y )(,利用这一代换,把非齐次线性方程化为变量可分离的方程,然后经积分求得通解.对于伯努利方程n y x Q y x P y )()(=+',我们通过变量变换z yn=-1,把它化为线性方程,然后按线性方程的解法求得通解,可见,以上方程都是通过变量变换化为可求解方程来求解的,该方法适合很多特殊方程求解.233第五节 可降阶的高阶微分方程从这一节起,我们讨论二阶及二阶以上的微分方程,即所谓的高阶微分方程,对于有些高阶微分方程,我们可以通过变量变换将它化成较低阶的方程来求解.下面以二阶微分方程为例来介绍:二阶微分方程的一般形式为0),,,(='''y y y x F或者),,(y y x f y '=''一般来说,二阶微分方程要比一阶微分方程的求解复杂一些.但是对于某些二阶微分方程来说,如果我们能设法作变量代换把它从二阶降至一阶,那么就有可能应用前面几节中所讲的方法来求出它的解了.下面介绍三种容易降阶的二阶微分方程的求解方法. 一、()x f y =''型的微分方程形如)(x f y ='' (1)的方程,右端仅含有自变量x .两端同时积分一次,就化为一阶方程1)(C dx x f y +='⎰再积分一次,得到通解21])([C dx C dx x f y ++=⎰⎰一般地对())(x f y n =求解,只需对方程两端积分n 次. 例1 求解方程x e x y -+=''2s i n .解 对所给的方程连续积分两次,得12cos 21C e x y x +--='-, 212sin 41C x C e x y x +++-=-所求的通解为212s i n 41C x C e x y x +++-=-. 例2 求微分方程x ey xc o s 2-='''.的通解.解 对所给方程连续积分三次,得C x e y x+-=''sin 212, 22cos 41C Cx x e y x+++=',23432212sin 81C x C x C x e y x ++++= ⎪⎭⎫ ⎝⎛=21C C .所求的通解为32212sin 81C x C x C x e y x ++++=.二、),(y x f y '=''型的微分方程形如),(y x f y '='' (2)的方程,右端不显含未知函数y .这时,只要令,p y ='那么p dxdpy '=='' 而方程(2)就化为),(p x f p ='.这是一个关于变量p x 、的一阶微分方程,再按一阶方程求解.设其通解为),(1C x p ϕ=.但是dxdyp =,因此又得到一个一阶微分方程 ),(1C x dxdyϕ=. 对它进行积分,便得方程(2)的通解为⎰+=21),(C dx C x y ϕ.例3 求微分方程y x y x '=''+2)1(2,满足初始条件,10==x y 30='=x y的特解.解 所给方程是),(y x f y '=''型的.令,p y ='代入方程并分离变量后,有dx x x p dp 212+=. 两边积分,得C x p ++=)1ln(ln 2,235即 )1(21x C y p +='=. ()C e C ±=1 由条件30='=x y ,得31=C ,所以 )1(32x y +='. 两边再积分得 233C x x y ++=. 又由条件,10==x y 得12=C ,于是所求的特解为133++=x x y .三、),(y y f y '=''型的微分方程形如),(y y f y '='' (3)的方程,其中不明显地含自变量x .这时,只要令p y =',并利用复合函数的求导法则把y ''化为对y 的导数,即dydppdx dy dy dp dx dp y =⋅=='' 这样方程(3)就成为),(p y f dydpp=. 这是一个关于变量p y ,的一阶微分方程,再按一阶微分方程求解.设它的通解为 ),(1C y p y ϕ==', 分离变量并积分,便得方程(3)的通解为⎰+=21),(C x C y dyϕ.例4 求微分方程02='-''y y y的通解.解 所给方程是),(y y f y '=''型的.令 p y =',则236dydp p y ='', 代入原方程,得02=-p dydpyp. 在0≠y 、0≠p 时,约去p 并分离变量,得ydyp dp =. 两边积分,得C y p +=ln ln ,即 y C p 1=,或y C y 1'= )(1C e C ±=. 再分离变量并两端积分,便得所求方程的通解为2'1ln C x C y +=,或 xC1e C y 2= )2'=(2C e C ±.第六节 二阶线性微分方程一、二阶常系数齐次线性微分方程二阶齐次线性微分方程的形式为0)()(=+'+''y x Q y x P y . (1)如果)()(x Q x P y y 、的系数、'均为常数,则(1)式为0=+'+''qy y p y , (2)其中q p 、是常数,则称(2)为二阶常系数齐次线性微分方程.如果q p 、不全为常数,称(1)为二阶变系数齐次线性微分方程.下面我们主要研究二阶常系数齐次线性微分方程的解法.关于方程(2),我们不加证明地给出二阶常系数齐次线性微分方程的有关定理: 定理1 (解的叠加定理)如果21y y 、是方程(2)的两个解,那么2211y C y C y +=也是(2)的解,其中21,C C 是任意常数.237定理2 如果21y y 、是方程(2)的两个不成比例的特解(即常数≡/21y y ),则2211y C y C y +=就是方程(2)的通解,其中21,C C 是任意常数.在这里我们之所以要求21,y y 不成比例,是因为如果有21Cy y =,那么就可推出()2212211y C C C y C y C y +=+=,即通解2211y C y C y +=中的两个任意常数变成一个.根据定理2,要求(2)的通解,只要设法先求出它的两个解21,y y ,且常数≡/21y y ,则2211y C y C y +=就是方程(2)的通解.仔细观察方程(2)可知,它的解应该具有各阶导数都只相差一个常数因子的性质,因此我们推测方程(2)的解是指数函数.取rx e y =(r 为常数),选取适当的r ,使它满足方程(2),则rx e y =就是方程(2)的解. 将rx e y =代入方程(2),得到0)(2=++rx e q pr r .由于0≠rxe,所以02=++q pr r . (3)由此可见,只要r 满足代数方程(3),函数rx e y =就是微分方程(2)的解.我们把代数方程(3)叫做微分方程(2)的特征方程.特征方程(3)是一个二次代数方程,其中r r 、2的系数及常数项恰好依次是微分方程(2)中y y '''、及y 的系数.特征方程(3)的两个根21r r 、可以用公式2422,1qp p r -±-=求出.它们有三种不同的形式:(i )当042>-q p 时,21,r r 是两个不相等的实根:2421q p p r -+-=,2422q p p r ---=(ii )当042=-q p 时,21,r r 是两个相等的实根:221pr r -==238(iii )当042<-q p 时,21,r r 是一对共轭复根:,1βαi r += ,2βαi r -=其中 ,2p-=α 242p q -=β. 相应地,微分方程(2)的通解也就有三种不同的情形.分别讨论如下: (ⅰ)特征方程有两个不相等的实根:21r r ≠. 微分方程(2)有两个解x r x r e y e y 2121==、,并且12y y 不是常数,因此微分方程(2)的通解为 x r x r e C e C y 2121+=.(ⅱ)特征方程有两个相等的实根:21r r =. 这时,微分方程(2)有一个解.11x r e y =下面求出微分方程(2)的另一个解2y ,并且要求12y y 不是常数. 设)(12x u y y =,)(12x u e y x r =即,代入微分方程(2),可得 0)(=''x u因为这里只要得到一个不为常数的解,所以不妨选取x u =,由此得到微分方程(2)的另一个解.21x r xe y =从而微分方程(2)的通解为x r x r xe C e C y 1121+=即 ()xr e x C C y 121+=(ⅲ) 特征方程有一对共轭复根:)0(,21≠-=+=ββαβαi r i r . 这时,微分方程(2)有两个解()()x i xi e y ey βαβα-+==21, ,并且12y y 不是常数.但它们是复值函数形式.为了得出实值函数形式,我们先利用欧拉公式θθθsin cos i ei +=,21,y y 把改写为()),sin (cos 1x i x e e e e y x x i x x i ββαβαβα+=⋅==+ ())sin (cos 2x i x e e e e y x x i x x i ββαβαβα-=⋅==--.239由于复值函数21y y 与之间成共轭关系,因此,取它们的和除以2就得到它们的实部;取它们的差除以2i 就得到它们的虚部.根据方程(2)有关解的定理,所以实值函数,cos )(21211x e y y y x βα=+=x e y y i y x βαsin )(21212=-=还是微分方程(2)的解,且x xe xe y y x x βββααcot sin cos 21==不是常数,所以微分方程(2)的通解为)sin cos (21x C x C e y x ββα+=.综上所述,求二阶常系数齐次线性微分方程0=+'+''qy y p y , 的通解的步骤如下:第一步 写出微分方程(2)的特征方程02=++q pr r . 第二步 求出特征方程(3)的两个根21,r r .第三步 根据特征方程(3)的两个根的不同情形,按照下列表格写出微分方程(2)的通解:例1 求微分方程032=-'-''y y y 的通解. 解 所给微分方程的特征方程为0322=--r r ,其根3,121=-=r r 是两个不相等的实根,因此所求通解为x x e C e C y 321+=-.例2 求方程0222=++s dt dsdts d 满足初始条件2400-='===t t s s 、的特解.解 所给微分方程的特征方程为2400122=++r r ,其根121-==r r 是两个相等的实根,因此所求微分方程的通解为t e t C C s -+=)(21,将初始条件2400-='===t t s s、代入通解,得41=C ,22=C于是所求特解为t e t s -+=)24(.例3 求微分方程052=+'-''y y y 的通解. 解 所给方程的特征方程为,0522=+-r r其根i r 212,1±=为一对共轭复根.因此所求通解为)2sin 2cos (21x C x C e y x +=.二、二阶常系数非齐次线性微分方程二阶常系数非齐次线性微分方程的一般形式是),(x f qy y p y =+'+'' (4) 其中q p 、是常数,0)(≠x f .当0)(=x f 时,(4)可写为0=+'+''qy y p y . (5)叫作方程(4)对应的二阶常系数齐次线性微分方程.关于方程(4)的通解,我们不加证明地给出如下定理:定理3 如果*y 是方程(4)的一个特解,Y 是方程(4)对应的齐次方程(5)的通解,则方程(4)的通解为*+=y Y y .由上述定理3可知,求二阶常系数非齐次线性微分方程(4)的通解,归结为求对应的齐次线性方程(5)的通解和非齐次方程(4)本身的一个特解.由于二阶常系数齐次线性微分方程的通解的求法已得到解决,所以这里只需讨论求二阶常系数非齐次线性微分方程的一个特解*y 的方法.本节介绍当方程(4)中的()x f 取两种常见形式时求*y 的方法.这种方法的特点是不用积分就可以求出*y 来,这种方法叫做待定系数法.)(x f 的两种形式是241(1)x m e x P x f λ)()(=,其中λ是常数,)(x P m 是x 的一个m 次多项式:m m m m m a x a x a x a x P ++⋅⋅⋅++=--1110)(.(2)]sin )(cos )([)(x x P x x P e x f n l x ωωλ+=,其中ωλ、是常数,)()(x P x P n l 、分别是x 的l 次、n 次多项式,其中有一个可为零.下面分别介绍)(x f 为上述两种形式时*y 的求法.1.)()(x P e x f m x λ=型我们知道,方程(4)的特解*y 是使(4)成为恒等式的函数.怎样的函数能使(4)成为恒等式呢?因为(4)式右端)(x f 是多项式)(x P m 与指数函数x e λ的乘积,而多项式与指数函数乘积的导数仍然是同一类型,因此,我们推测x e x Q y λ)(=*(其中)(x Q 是某个多项式)可能是方程(4)的特解.把"'***y y y 及、代入方程(4),然后考虑能否选取适当的多项式)(x Q ,使x e x Q y λ)(=*满足方程(4).为此将,)(x e x Q y λ=*[])()(x Q x Q e yx '+='*λλ, [])()(2)(2x Q x Q x Q e yx ''+'+="*λλλ 代入方程(4)并消去x e λ,得 )()()()()2()(2x P x Q q p x Q p x Q m =+++'++''λλλ. (6)推导可知如下结论:如果x m e x P x f λ)()(=,则二阶常系数非齐次线性微分方程(4)具有形如x m k e x Q x y λ)(=* (7)的特解,其中)(x Q m 是与)(x P m 同次m (次)的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取为10、或2. 上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(7)式中的k 是特征方程含根λ的重复次数(即若λ不是特征方程的根,k 取为0;若λ是特征方程的s 重根,k 取为s ).例1 求微分方程1332+=-'-''x y y y 的一个特解.解 这是二阶常系数非齐次线性微分方程,且函数)(x f 是x m e x P λ)(型(其中0,13)(=+=λx x P m ).与所给原方程对应的齐次线性微分方程为032=-'-''y y y ,242它的特征方程为0322=--r r .有两个实根3,121=-=r r ,由于这里0=λ不是特征方程的根,所以应设特解为10b x b y +=*.把它代入原方程,得13323100+=---x b b x b ,比较两端x 同次幂的系数,得⎩⎨⎧=--=-13233100b b b 由此求得31,110=-=b b .于是求得一个特解为 31+-=*x y . 例2 求微分方程x xe y y y 265=+'-''的通解.解 所给方程也是二阶常系数非齐次线性微分方程,且型是x m e x P x f λ)()((其中)2,)(==λx x P m . 与所给原方程对应的齐次线性微分方程为065=+'-''y y y ,它的特征方程为0652=+-r r ,有两个实根3,221==r r ,于是与所给方程对应的齐次方程的通解为x x e C e C Y 3221+=.由于2=λ是特征方程的单根,所以应设*y 为x e b x b x y 210)(+=*,把它代入所给原方程,得x b b x b =-+-10022,比较等式两端同次幂的系数,得⎩⎨⎧=-=-0212100b b b , 解得1,2110-=-=b b .因此求得一个特解为243x e x x y 2)121(--=*. 从而所求的通解为 x x x e x x e C e C y 223221)2(21+-+=. 2.[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型 应用欧拉公式和方程(4)有关解的定理,不加证明地可得如下结论:如果[]x x P x x P e x f n l x ωωλsin )(cos )()(+=,则二阶常系数非齐次线性微分方程(4)的特解可设为]s i n c o s )([)2()1(x R x x R e x y m m x k ωωλ+=* (8)其中)(),()2()1(x R x R m m 是m 次多项式,},max{n l m =,而ωλi k +按(或ωλi -)不是特征方程的根、或是特征方程的单根依次取为10或.上述结论可推广到n 阶常系数非齐次线性微分方程,但要注意(8)式中的k 是特征方程中含根ωλi +(或ωλi -)的重复次数.例3 求微分方程x x y y 2cos =+''的一个特解.解 所给方程是二阶常系数非齐次线性微分方程,且属于[]x x P x x P e x f n l x ωωλsin )(cos )()(+=型(其中0)(,)(,2,0====x P x x P n l ωλ).与所给方程对应的齐次方程为0=+''y y ,它的特征方程为012=+r ,有两个复根i r i r -==21,,由于这里i i 2=+ωλ不是特征方程的根,所以应设特解为x d cx x b ax y 2sin )(2cos )(+++=*.把它代入所给方程,得x x x a d cx x c b ax 2cos 2sin )433(2cos )433=++-+--(.比较两端同类项的系数,得⎪⎪⎩⎪⎪⎨⎧=--=-=+-=-0430304313a d c c b a , 由此解得 94,0,0,31===-=d c b a . 于是求得原方程的一个特解为244 x x x y 2sin 942cos 31+-=*. 以上我们主要介绍了二阶线性微分方程的解法,该方法可以推广到高阶线性微分方程.。
第7节 微分方程的初等积分法
![第7节 微分方程的初等积分法](https://img.taocdn.com/s3/m/7648e8c7770bf78a652954ac.png)
常微分方程: 偏微分方程:
微分方程的阶 :
n阶微分方程的一般形式为 F (x, y, y, y,, y(n) ) 0
1、微分方程的解 : 2、微分方程的通解: 3 初始条件:
n阶微分方程 F(x, y, y,, y(n) ) 0 的初始条件为
y(x0 ) y0 , y(x0 ) y1,, y (n1) (x0 ) yn1
m
d 2s dt 2
mg
即d 2s dt 2
g
(2)
(2) 若考虑空气的阻力,设阻力大小与速度成正比,
则 F mg kv mg k ds , dt
由此得 m d 2 s mg k ds ,
dt 2
dt
即
d 2s dt 2
k m
ds dt
g
(3)
此外, s(t) 还应满足条件 : s(0) 0, s(0) 0
解 : 令 z y , 则 y z dz , dy
原方程化为:
2y z dz 1 z 2 , dy
注 1:对不显含 y 与不显含 x 的二阶方程,均作变换
z y , 但实际上是有区别的。
2:求二阶微分方程初值问题的解时,应边解边确定 任意常数。
3
例 16 求第一节例 3 中方程 (1 y2 ) 2 a y 的通解。
例 7 求 dy 1 y 1的通解. dx x
解:常数变易法:
齐次方程 dy 1 y 0 的通解: y Cx
设
y
dx C(x) x
为xdy
1
y
1的解,
代入得
dx x
微分方程的初等积分法
![微分方程的初等积分法](https://img.taocdn.com/s3/m/f740495cbe23482fb4da4c9b.png)
f (u ) u(可分离变量的方程 )
例 9 求 2 xy
2
2
dy dx
3
2y x
3
3
dy dx
的通解 .
解 : ( 2 xy x ) dy dx 2y
2
dy dx
3
2y
3
2( x )
y
3
2 xy x 3 y du 2u 令 u ,得:
求
dy
y
的通解 .
xe
y
2
dy
[ ye
y dy
2
dy C ] y [ ln y C ].
2
四.可经变量代换化为已知类型的几类一阶线性方程 dy y 1.齐次方程 f( ) ( f (tx, ty) f ( x, y )) dx x
令u x du dx
如 : 前面的 (1) 式为一阶微分方程 微分方程 ,
y
(4) 5
, ( 3 ), ( 4 )为二阶
.
y sin 2 x 为四阶微分方程
微分方程的解 : 满足微分方程的函数.
微分方程的通解 : n阶微分方程含有n个独立的 任意常数的解.
如 (1) 式中的微分方程
2
dy dx
2 x , 显然函数 y x ,
2
2
a y
(4)
2. 基本概念 微分方程 : 含有未知函数及未知函数的导数
或微分的关系式. 常微分方程 : 未知函数为一元函数
有一元函数的导数或微 偏微分方程 : 未知函数为多元函数 导数 . , 关系式中只含 分. , 关系式中含有偏
微分方程的阶 : 微分方程中所含导数的最高阶数
高中数学解微分方程的步骤和实例分析
![高中数学解微分方程的步骤和实例分析](https://img.taocdn.com/s3/m/5b0aab772f3f5727a5e9856a561252d380eb2029.png)
高中数学解微分方程的步骤和实例分析微分方程作为高中数学的重要内容之一,是数学与实际问题相结合的桥梁。
在高考中,微分方程的解题是一个重要的考点,也是学生们普遍感到困惑的难点。
本文将结合具体的题目,详细介绍解微分方程的步骤和实例分析,帮助高中学生和他们的父母更好地理解和应用微分方程。
一、解微分方程的基本步骤解微分方程的基本步骤包括:确定微分方程的类型、求解微分方程、验证解的正确性。
下面我们将结合具体的题目进行分析,以便更好地理解这些步骤。
例1:求解微分方程$\frac{{dy}}{{dx}}=2x$。
步骤1:确定微分方程的类型。
根据方程中的导数形式,可以确定这是一个一阶线性微分方程。
步骤2:求解微分方程。
对方程进行变形,得到$dy=2xdx$。
然后对两边同时积分,得到$\int{dy}=\int{2xdx}$。
对右边的积分进行计算,得到$y=x^2+C$,其中C为常数。
步骤3:验证解的正确性。
将解$y=x^2+C$代入原方程$\frac{{dy}}{{dx}}=2x$中,得到$\frac{{d(x^2+C)}}{{dx}}=2x$。
对左边进行求导,得到$2x=2x$,符合原方程。
二、实例分析通过解题实例的分析,我们可以更好地理解微分方程的解题思路和方法。
例2:求解微分方程$\frac{{dy}}{{dx}}=3x^2$。
步骤1:确定微分方程的类型。
根据方程中的导数形式,可以确定这是一个一阶线性微分方程。
步骤2:求解微分方程。
对方程进行变形,得到$dy=3x^2dx$。
然后对两边同时积分,得到$\int{dy}=\int{3x^2dx}$。
对右边的积分进行计算,得到$y=x^3+C$,其中C为常数。
步骤3:验证解的正确性。
将解$y=x^3+C$代入原方程$\frac{{dy}}{{dx}}=3x^2$中,得到$\frac{{d(x^3+C)}}{{dx}}=3x^2$。
对左边进行求导,得到$3x^2=3x^2$,符合原方程。
微分方程及其应用举例分析
![微分方程及其应用举例分析](https://img.taocdn.com/s3/m/29a8b1216fdb6f1aff00bed5b9f3f90f76c64d9c.png)
微分方程及其应用举例分析微分方程是数学中一种重要的工具,它描述了物理、工程、生物等领域中各种自然现象的变化规律。
无论是极简单的指数函数、正弦函数,还是较为复杂的天文学和经济学中的模型,微分方程都能够对其进行求解和描述。
本文将围绕微分方程及其应用展开探讨。
一、微分方程的定义和分类微分方程是指包含未知函数及其导数等于已知函数的方程,其中未知函数是一种确定其变化规律的函数。
微分方程分为常微分方程和偏微分方程两种。
常微分方程是由自变量和未知函数的一阶或高阶导数组成的方程,常常用于描述自变量是时间的一些物理或经济现象,可以解出函数在每个时间点的取值。
例如,余弦函数的求解:$$y''+y=0$$该方程的通解为$y=A\cos(x)+B\sin(x)$。
偏微分方程描述的是多个自变量的函数中各自对其它自变量的偏导数和未知函数之间的关系。
偏微分方程对于描述空间中的物理现象,如导热、扩散、波动等,具有重要的作用。
二、微分方程的应用及其举例微分方程广泛应用于各行各业,从天文学到生物学到经济学,无所不包。
下面将以几个例子来说明微分方程在实际应用中的作用。
1. 生物学中的SIR模型SIR模型是一种流行病学模型,常用于描述疾病的传染情况。
该模型中假设人群分为易感染者(Susceptible)、感染者(Infected)和康复者(Recovered)三类,对每一类人群的数量变化建立微分方程模型。
令$S$表示易感染者的数量、$I$表示感染者的数量、$R$表示康复者的数量,则该模型的微分方程为:$$\frac {dS}{dt} = −βSI$$$$\frac {dI}{dt} = βSI − γI$$$$\frac {dR}{dt} = γI$$其中,参数$β$和$γ$分别表示感染率和恢复率。
2. 物理学中的振动问题振动在无数学科和技术领域中都有着广泛的应用。
物理学中的振动有着很多形式,比如弹簧振子、摆锤等。
假设有一个弹簧振子,弹性系数为$k$,质量为$m$,初始位置为$x_0$,初速度为$v_0$。
微积分在生物科学中的实例
![微积分在生物科学中的实例](https://img.taocdn.com/s3/m/66749991ac51f01dc281e53a580216fc700a530b.png)
微积分在生物科学中的实例导言微积分是数学的一个重要分支,它在各个科学领域中都具有广泛的应用。
生物科学作为自然科学的一个重要分支,也不例外。
微积分的应用可以帮助我们解决许多与生物相关的问题。
本文将以几个实例来探讨微积分在生物科学中的应用。
实例一:变化率与生物增长生物的生长一直是生物科学研究的一个重要课题。
微积分可以帮助我们理解生物的生长模式。
例如,我们可以使用微积分中的导数来计算生物的增长速率。
考虑一个细菌种群,假设在t时间单位内,细菌的数量为N(t)。
我们可以定义细菌数量的增长速率为dN/dt,即细菌数量随时间的变化率。
通过测量实验数据,我们可以得到细菌数量随时间的变化趋势。
然后,我们可以使用微积分中的导数来计算细菌数量的增长速率,并进一步研究细菌的生长模式。
实例二:微分方程与生物反应动力学生物反应动力学研究了生物反应过程中物质的变化规律。
微分方程是描述这些变化规律的重要工具。
例如,酶催化反应中的酶底物反应可以用一个一阶微分方程来描述。
考虑一个简单的酶底物反应,其中底物的浓度为S(t),酶的浓度为E(t),酶底物复合物的浓度为C(t)。
这个反应的速率可以用微分方程dC/dt = k1E(t)S(t) -k2C(t)来描述,其中k1和k2是反应的速率常数。
通过解这个微分方程,我们可以研究底物浓度、酶浓度和复合物浓度随时间的变化规律,进一步了解酶底物反应的动力学过程。
实例三:积分与遗传学遗传学是研究遗传现象的科学。
微积分在遗传学中也有重要应用。
例如,我们可以使用微积分中的积分来计算基因型频率。
考虑一个简单的遗传模型,其中有两个等位基因A和a。
基因型AA的频率为p,基因型aa的频率为q,则基因型Aa的频率为2pq。
通过进行积分操作,我们可以计算在每一代中基因型频率的变化规律,并进一步研究不同基因型在种群中的分布情况。
结论微积分在生物科学中有着广泛的应用。
通过应用微积分的概念和技术,我们可以更好地理解和研究生物学中的各种现象和过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
x
S
图3-3
例4 一根长度为l的金属杆被水平地夹在两端垂直的支架上,一
端的温度恒为T1,另一端温度恒为T2,(T1、T2为常数,T1> T2)。 金属杆横截面积为A,截面的边界长度为B,它完全暴露在空气中, 空气温度为T3,(T3< T2,T3为常数),导热系数为α,试求金属 杆上的温度分布T(x),(设金属杆的导热率为λ) dt时间内通过距离O点x处截面的热量为: AT '( x)dt 热传导现象机理:当温差在一定范围内时,单位时间里由温度高
微分方程模 型
浙江大学数学建模实践基地
§3.1 微分方程的几个简单实例
在许多实际问题中,当直接导出变量之间的函数关系 较为困难,但导出包含未知函数的导数或微分的关系式较 为容易时,可用建立微分方程模型的方法来研究该问题,
本节将通过一些最简单的实例来说明微分方程建模的 一般方法。在连续变量问题的研究中,微分方程是十分常 用的数学工具之一。
例3 一个半径为Rcm的半球形容器内开始时盛满了
水,但由于其底部一个面积为Scm2的小孔在t=0时刻 被打开,水被不断放出。问:容器中的水被放完总共 需要多少时间?
解: 以容器的底部O点为 原点,取坐标系如图3.3所示。 令h(t)为t时刻容器中水的高度,现建立h(t)满足的微分 方程。 设水从小孔流出的速度为v(t),由力学定律,在不计水 即: dh 0.6S 2hg 2 的内部磨擦力和表面张力的假定下,有: dt [ R2 ( R h) ] (t ) 0.6 2gh 这是可分离变量的一阶微分方程,得 y 2 2 0 [ R ( R h) ] 因体积守衡,又可得: dh T 易见:
敌潜艇发现自己目标已暴露后,立即下潜,并沿着直 线方向全速逃逸,逃逸方向我方不知。 设巡逻艇在A处发现位于B处的潜水艇,取极坐标,以B 为极点,BA为极轴,设巡逻艇追赶路径在此极坐标下的方 程为r=r(θ),见图3-2。 A1 dr ds dr 由题意, 2 ,故ds=2dr ds dt dt
dθ
T2 T 系统处于热平衡状态,故有: AT ( x)dxdt1 Bdx[T ( x) T3 ]dt l
所以金属杆各处温度T(x)满足的微分方程: o
这是一个两阶常系数线 性方程,很容易求解
T ( x)
B T3 (T T3 ) 单摆运动)建立理想单摆运动满足的微
分方程,并得出理想单摆运动的周期公式。 从图3-1中不难看出,小球所受的合力为mgsinθ, g 根据牛顿第二定律可得: 0 (3.2) (3.1)的 l 近似方程 ml mg sin 从而得出两阶微分方程: (3.2)的解为: θ(t)= θ0cosωt 这是理想单摆应 g sin 0 其中 g 满足的运动方程 (3.1) l l T 当t 时,θ(t)=0 (0) 0, (0) 0 4 gT 故有 l 4 2 (3.1)是一个两阶非线性方程,不 由此即可得出 易求解。当θ很小时,sinθ≈θ,此时, g T 2 可考察(3.1)的近似线性方程:
( 图3-2可看出,ds)2 (dr)2 (rd )2
B
θ 图3-2
A
故有: 3(dr )2 r 2 (d )2 即:
r dr d 3
(3.3) (3.4)
解为:r
Ae
3
追赶方法如下:
先使自己到极点的距离等于潜艇到极点的距离然后按(3.4) 对数螺线航行,即可追上潜艇。
但由题意可以看出,因金属 一般情况下,在同一截面上 的一侧向温度低的一侧通过单位面积的热量与两侧的温差成正比, dt时间内通过距离O点x+dx处截面的热量为: AT '( x dx)dt 杆较细且金属杆导热系数又 的各点处温度也不尽相同, 比例系数与介质有关。 由泰勒公式: AT '( x dx)dt A[T '( x) T ( x)dx]dt 较大,为简便起见,不考虑 如果这样来考虑问题,本题 这方面的差异,而建模求单 要建的数学模型当为一偏微 金属杆的微元[x,x+dx]在dt内由获得热量为: AT ( x)dxdt 变量函数T(x)。 分方程。 同时,微元向空气散发出的热量为: Bdx[T ( x) T3 ]dt
l
(0) 0, (0) 0
l
M P Q
mg
图3-1
例2 我方巡逻艇发现敌方潜水艇。与此同时敌方潜水艇也发现了
我方巡逻艇,并迅速下潜逃逸。设两艇间距离为60哩,潜水艇最 大航速为30节而巡逻艇最大航速为60节,问巡逻艇应如何追赶潜 水艇。
这一问题属于对策问题,较为复杂。讨论以下简单情形:
(2 R hR2 h h )dh 2 r0.6SR 2 g( R )
dV 0.6dh 2 gh dt r 2 S s 0
R
3 2
R r h
5 2
故有:
4 2 14 R [R (R h)2 ]dh 0.6S 2ghdt Rh h 0 R 5 0.6S 2 g 3 9S 2 g