分数的产生和意义(1)PPT课件
合集下载
《分数的产生和意义》课件
分数的产生过程
分数与比例
分数可以表示比例,比如说 1/3表示一个整体中的三分之 一。
分数的几何意义
分数可以表示线段或面积, 比如说一条线段上的1/2表示 长度相等的两个线段中的一 个。
分数的物质意义
分数可以表示物品的部分数 量,比如说购买某个物品的 折扣。
分数的意义
1
相等的分数
不同的分式可以表示相同的数量,比如
思考题
1 小明的作业
小明用了1个小时来完成5/8的作业,若他想在2个小时内完成全部作业,他还需要多少时 间?
谢谢观看
感谢您观看此ppt课件。助您成功是我们的最终目标!
分数的产生和意义
在本课程中,我们将深入探讨分数的原理,以及在我们的日常生活和数学中 如何应用分数。
整数的局限性
பைடு நூலகம்
1
无法表示所有的数量
整数只适用于整数的情况,无法正确表
引入分数
2
示非整数的数量。
为了正确表示非整数数量,我们需要引
入分数这一概念。
3
分数的定义
分数由分子和分母组成,可以约分和通 分,对于非整数,可以表示成假分数。
总结
分数的定义和产生过程
分数由分子和分母组成,可以表示比例、线段或面积,以及物品部分数量。
分数的意义、大小关系和运算
相同的两个分数可以用不同的分式进行表示,可以通过通分和约分,以及比较大小来进行运 算。
分数在实际生活和数学中的应用
分数可以表示药物剂量、金融利率,以及几何图形的面积和数学表达式的形式化工具。
分数的大小关系
2
说2/4和1/2表示相同的量。
两个分数的大小比较需要通分,然后比
较分子的大小。
分数的产生和意义课件
先找到两个分数的最小公倍数,然后将分子和分母都乘以相应的 倍数,再进行相加。
分数减法
与分数加法类似,只是分子相减,分母保持不变。
分数的乘除法
分数乘法:分子乘分子,分母乘分母。 分数除法:乘以倒数。
分数的混合运算
分数与整数相乘除
整数与分子相乘除,分母保持不变。
分数与分数相加减
先统一分母,再进行加减运算。
举例
如1(1/2)、2(2/3)、3(3/4)等。
应用
带分数在日常生活和数学中应用广泛,可以表示具有实际意义的量, 如温度、海拔、时间等。
整数
定义
整数包括正整数、0和负整数,是可以不分割的整 体。
举例
如0、1、2、-1、-2等。
应用
整数在数学和日常生活中应用广泛,可以表示数 量、次序等。
03 分数的性质
在数学中的应用
代数
分数在代数中用于表示未知数或 表达式的值,如解方程时找到的
解可能是分数形式。
几何
在几何学中,分数用于表示长度、 面积和体积等量,如1/4圆的面
积或1/3立方体的体积。
逻辑推理
在逻辑推理中,分数用于表示可 能性或不确定性,例如在贝叶斯 定理中,后验概率可能是分数形
式。
THANKS FOR WATCHING
分数的产生和意义
目录
• 分数的产生 • 分数的种类 • 分数的性质 • 分数的应用
01 分数的产生
分数在生活中的出现
01
02
03
食品分配
当有不同大小的蛋糕或糖 果需要分配时,可以使用 分数来表示每个人应得的 部分。
建筑测量
在建筑领域,分数的概念 经常用于表示比例尺,例 如1/4英寸代表实际建筑 物的1英尺。
分数减法
与分数加法类似,只是分子相减,分母保持不变。
分数的乘除法
分数乘法:分子乘分子,分母乘分母。 分数除法:乘以倒数。
分数的混合运算
分数与整数相乘除
整数与分子相乘除,分母保持不变。
分数与分数相加减
先统一分母,再进行加减运算。
举例
如1(1/2)、2(2/3)、3(3/4)等。
应用
带分数在日常生活和数学中应用广泛,可以表示具有实际意义的量, 如温度、海拔、时间等。
整数
定义
整数包括正整数、0和负整数,是可以不分割的整 体。
举例
如0、1、2、-1、-2等。
应用
整数在数学和日常生活中应用广泛,可以表示数 量、次序等。
03 分数的性质
在数学中的应用
代数
分数在代数中用于表示未知数或 表达式的值,如解方程时找到的
解可能是分数形式。
几何
在几何学中,分数用于表示长度、 面积和体积等量,如1/4圆的面
积或1/3立方体的体积。
逻辑推理
在逻辑推理中,分数用于表示可 能性或不确定性,例如在贝叶斯 定理中,后验概率可能是分数形
式。
THANKS FOR WATCHING
分数的产生和意义
目录
• 分数的产生 • 分数的种类 • 分数的性质 • 分数的应用
01 分数的产生
分数在生活中的出现
01
02
03
食品分配
当有不同大小的蛋糕或糖 果需要分配时,可以使用 分数来表示每个人应得的 部分。
建筑测量
在建筑领域,分数的概念 经常用于表示比例尺,例 如1/4英寸代表实际建筑 物的1英尺。
《分数的产生与意义》PPT课件
5 9
表示把(单位“1” )平均分成( 9 )份, 取这样( 5 )份的数。
判断题:
分数的意义
,
用下面的分数表示图中的阴影部分,对的打 错的打 。
1 2
( )
1 3
( ) (
3 7
) (
3 9
)
每个茶杯是这套 茶杯的 ( 1 ) 。 ( 3)
每块月饼是这盒 月饼的 ( 1 ) 。 ( 8)
每袋粽子是这些
猜一猜:每幅图是什么意思?
• 1 • 2
• 3
1
4
• 4
1 4
1 4
在下面各种图形中表示出
小组合作:
• 要求: 1 • 1· 组内合作,在图片上用涂色的方式表示出 4
• 2· 讨论 :
把()平均分成()份,表示其中() 份的数就是()。
• 3· 涂色时注意什么?
平均分
•
1 用一张正方形纸表示 4 1 4
1份占这堆苹果的(
1 4
),
• 把4个苹果、一堆苹果平均分,我们又可以 称之为把一些物体平均分。
相同点: 平均分成4份,表示其中的一份。 不同点: 物体总量不同,每份的量也不同。
一个物体
“1”
“1”
一个计量单位
单位:“1”
“1”
一些物体组成 的一个整体
“1”
分数的意义
平均分 4份 1份 3份
小组合作:
• 要求: 1 • 1· 组内合作,在图片上用涂色的方式表示出 4
• 2· 讨论 :
我把()看作一个整体,平均分成() 份,表示其中的()份的数就是()。
分数的意义
把4个苹果看作一个整体, 平均分
成4
份,
《分数的产生和意义》课件PPT课件
第37页/共38页
感谢您的观看。
第38页/共38页
第15页/共38页
1 2
第16页/共38页
把许多物体组成的 一个整体平均分成若干 份,这样的一份或几份
也可用分数表示。
第17页/共38页
一个把物体单,位一“些1物”平体均等分都可成以若看干作份一,个这整样体的,一 份把几或这份个都几整可份体以都平用可均分以分数用成来分若表数干示份来,表这示样的一份或
第6页/共38页
第7页/共38页
把一个苹果平均分成2份, 1
每份是这个苹果的
2
No Image
第8页/共38页
1 5
4 5
把一条线段平均分成5份,每份
是 1 ,4份是它的( 4 )
5
5
第9页/共38页
把一个物体或一个计量单位 看作一个整体平均分成若干 份,这样的一份或几份可用
分数表示。
第10页/共38页
一个整体可以用自然数1表示, 通常把它叫单位“1”。
把
看成单位“1”,每个 是
的
1 4
第18页/共38页
一个物体
“1”
一种图形
“1” “1”
一个计量单位 单位:“1”
许多物体组成
“1”
的一个整体
“1”
第19页/共38页
1 2 2 3 3 4 5 6
第20页/共38页
第21页/共38页
8、读出下面的分数,并说出每一个分数的分数单位。
第28页/共38页
No Image
() 平均每人分这堆苹果的( ) ,是( )个.
第29页/共38页
观察上面图形,阴影部
分占长方形的( 1 ),占
8
《分数产生和意义》课件
CHAPTER 03
分数的运算
分数的加减法
分数加减法的或分离的过程,以得到一
个新的分数。
同分母分数的加减法
02
同分母分数相加减,只需要对分子进行相应的加减运算,分母
保持不变。
异分母分数的加减法
03
异分母分数相加减,需要先找到两个分数的最小公倍数,将它
们转化为同分母分数后再进行加减运算。
比例和比率
分数用于表示比例和比率,例如价格比例、税率等。
CHAPTER 05
分数的扩展知识
分数和小数的转换
转换方法
将分数转换为小数的方法是将分子除以分母,得到一个小数。 例如,将分数2/3转换为小数,即2除以3,得到0.666...。
精度问题
由于除法的精度限制,分数转换为小数时可能会出现精度损失的 情况。例如,将分数1/3转换为小数,得到的结果是0.333...,但
截断法
对于一些需要近似计算的分数,我们可以使用截断法来得到一个近似的结果。例如,将分数14/3截断为一位小数 ,即4.67。
THANKS
[ 感谢观看 ]
分数在生活中的实际应用
日常生活中的应用
分数在日常生活中有着广泛的应用, 例如食品的分配、时间的划分、比例 的计算等。
科学实验中的应用
在科学实验中,分数用于描述和计算 各种物理量,如物质的量、反应速率 等。
分数在数学中的地位和作用
分数的定义和性质
分数是数学中描述有理数的一种方式,具有一系列重要的性质和定理,如分数的 加减法、乘除法等。
分数的混合运算
混合运算的顺序
在进行分数的混合运算时,应遵 循先乘除后加减的顺序,并注意 括号内的运算优先级。
运算的优先级
分数的产生和意义数学课件PPT
第四单元 分数的意义和性质
4.1 分数的产生和意 义 部 编 版 数 学 五 年 级 下 册
学习目标
1.理解分数的含义。 2.理解单位“1”,认识分数单位。
重点 理解分数及单位“1”的含义,认识分数单位。
情境引入
4个桃子平均分给2 只猴子,每只猴子 分多少个桃子?
每只猴子分2个桃子。
情境引入
1 个桃子平均分给 2只 猴子,每只猴子分多少 个桃子?
例题解读
结 绳 计 数
分数的产生
剩下的不是 怎么计?
例题解读
把桌上的东西平均分给两个同学。
1 我能分到 2 个 。
例题解读
1 每人能分到 2 个
1 每人能分到 2 块
1 每人能正好得到整数的结果, 这时常用分数来表示。
分数的意义
你能举例说明 1 的含义吗?
2
3
5
1
5
4
4
9
2
随堂小测
2.
每个茶杯是这套茶杯的(1 )
3
每块月饼是这盒月饼的(
1 8
)
每个图标是这排图标的(1 )
5
课后作业
1.从课后习题中选取
感谢您的聆听
部编版数学五年级下册
4
1
1
4
4
1
4
正方形、圆和线段看作一个整体。
分数的意义
每根是这把香蕉的 1
4
每份是这盘面包的 1
4
一把香蕉和一盘面包也看作一个整体 。
分数的意义
一个物体、一个计量单位或是一些物体等都可以看作一个整 体。把这个整体平均分成若干份,这样的一份或几份都可以 用分数表示。 一个整体可以用自然数1来表示,通常把它叫做单位“1”。
4.1 分数的产生和意 义 部 编 版 数 学 五 年 级 下 册
学习目标
1.理解分数的含义。 2.理解单位“1”,认识分数单位。
重点 理解分数及单位“1”的含义,认识分数单位。
情境引入
4个桃子平均分给2 只猴子,每只猴子 分多少个桃子?
每只猴子分2个桃子。
情境引入
1 个桃子平均分给 2只 猴子,每只猴子分多少 个桃子?
例题解读
结 绳 计 数
分数的产生
剩下的不是 怎么计?
例题解读
把桌上的东西平均分给两个同学。
1 我能分到 2 个 。
例题解读
1 每人能分到 2 个
1 每人能分到 2 块
1 每人能正好得到整数的结果, 这时常用分数来表示。
分数的意义
你能举例说明 1 的含义吗?
2
3
5
1
5
4
4
9
2
随堂小测
2.
每个茶杯是这套茶杯的(1 )
3
每块月饼是这盒月饼的(
1 8
)
每个图标是这排图标的(1 )
5
课后作业
1.从课后习题中选取
感谢您的聆听
部编版数学五年级下册
4
1
1
4
4
1
4
正方形、圆和线段看作一个整体。
分数的意义
每根是这把香蕉的 1
4
每份是这盘面包的 1
4
一把香蕉和一盘面包也看作一个整体 。
分数的意义
一个物体、一个计量单位或是一些物体等都可以看作一个整 体。把这个整体平均分成若干份,这样的一份或几份都可以 用分数表示。 一个整体可以用自然数1来表示,通常把它叫做单位“1”。
分数的产生和意义1PPT课件
通常把它叫单位“1”。
构成分数的三个把条4个件苹:果
看作一个整体
平均分
4份
1 4
1 把单位“1”平均分;
2 分成若干份;
3 表示这看把作样6一个的个熊一整猫体份平或均分几6份份;16
1.说出下面分数的含义
12 1 5 2
7
11
23 8 8 7
9
15
平均分成2份,每份是这堆糖的((12))
平均分成3份,
分数的产生和意义
分数的产生
分数起源于分。在原始社会,人们集 体劳动要平均分配果实和猎物,逐渐 有了分数的概念。以后在土地计算、 土木建筑、水利工程等测量过程中,
当得不到一个整数的结果时, 便产生了分数。
讨论一下,在表示四分之一过程中, 有什么发现?
一个物体,一些物体等都可以看作一个整体
一个整体可以用自然数1表示,
1 3
1.说出下面分数的分数单位
12 1 5 2
7
11
23 8 8 7
9
15
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More You Know, The More Powerful You Will Be
每份是这堆糖的((
1) 3)
2份是这堆糖的
( (
2) 3)
平均分成4份,
每份是这堆糖的((
1) 4)
3份是这堆糖的
(3) (4)
平均分成6份,
每份是这堆糖的((
1) 6)
5份是这堆糖的 (5) (6)
2、下面哪个图形里的涂色部分能用分数表示,请写 出来。
构成分数的三个把条4个件苹:果
看作一个整体
平均分
4份
1 4
1 把单位“1”平均分;
2 分成若干份;
3 表示这看把作样6一个的个熊一整猫体份平或均分几6份份;16
1.说出下面分数的含义
12 1 5 2
7
11
23 8 8 7
9
15
平均分成2份,每份是这堆糖的((12))
平均分成3份,
分数的产生和意义
分数的产生
分数起源于分。在原始社会,人们集 体劳动要平均分配果实和猎物,逐渐 有了分数的概念。以后在土地计算、 土木建筑、水利工程等测量过程中,
当得不到一个整数的结果时, 便产生了分数。
讨论一下,在表示四分之一过程中, 有什么发现?
一个物体,一些物体等都可以看作一个整体
一个整体可以用自然数1表示,
1 3
1.说出下面分数的分数单位
12 1 5 2
7
11
23 8 8 7
9
15
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More You Know, The More Powerful You Will Be
每份是这堆糖的((
1) 3)
2份是这堆糖的
( (
2) 3)
平均分成4份,
每份是这堆糖的((
1) 4)
3份是这堆糖的
(3) (4)
平均分成6份,
每份是这堆糖的((
1) 6)
5份是这堆糖的 (5) (6)
2、下面哪个图形里的涂色部分能用分数表示,请写 出来。
分数的产生和意义ppt
二、判断
× 1、把单位 “1” 分成几份,表示这样一份或几份的数叫做分数(
)
× 2、 把单位 “1” 平均分成若干份,表示其中一份或几份的数,叫做分数单位(
)
× 3、 1 和 单位 “1” 相等
(
)
√ 4、把单位“1”平均分成8份,取其中的5份,就是 八分之五 (
)
三、思考:下图中涂色部分占全图的几分之几?
2
(
)
8
4
(
)
6
通过今天的学习,我们知道了在很早以前 我们人类为了解决实际生产和生活中不能用整 数表示结果的问题,就已经开始用分数来表示 了,经过几千年的发展,我们对于分数的应用 也变得更熟练更广泛。希望通过学习,我们每 一位同学也能更多的了解分数,更好的学习分 数知识。
分数走过的历史
我国的数学古书《九章算术》是世界上系
1 2
1
3
1
4
3
猜猜一共有几枝?
1 6
猜猜一共有几枝?
1 6
猜猜一共有几枝?
2 5
猜猜一共有几枝?
1 3
拓展练习:
1.把单位“1”平均分成a份,表示这样的
b份的分数是(
b a
),分数单位是
1 ( a )。
1 2.分数单位是 7 的分数你能写几个?
1 2 3 4 5 6 7 …… 7 7 777 7 7
1
1
2
2
像刚才在进行测量,分物或计算时,往往 不能正好得到整数的结果,这时需要用一种 些物体等都可以看作一个整体,这样的一个整体 可以用自然数1来表示,通常把它叫做单位“1”。
一个物体: 如一个苹果、一张纸片、一块布 1 单位“1” 一个计量单位 :如1米、1千克、1平方米 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是由(
3
)个
1 5
组成的。
1 就是 3 的分数单位。
5
5
把单位“1”平均分成若干份,表示其中一份的数 就是分数单位。
三、实践练习
1.
每个茶杯是这套茶杯的( 1 )。 (3 )
每块月饼是这盒月饼的((
1 8
))。
三、实践练习
Байду номын сангаас2.
先分一分,再在每个图里涂色表示
2 3
。
三、实践练习
3. 说说下图中阴影部分占整个圆的几分之几?
分数的产生和意义
一、新授新课
(一)分数的产生
一、新授新课
(一)分数的产生
每人平均分到_____块 ,______包
。
一、新授新课
(一)分数的产生
1÷3=?
7÷4=?
一、新授新课
(一)分数的产生
2000多年前,中国用 算筹表示分数。
半
1
2
少半
1 3
大半
2
3
一、新授新课
(一)分数的产生
一、新授新课
结束语
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
(二)分数的意义
一、新授新课
(二)分数的意义
1
1
4
4
1 4
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
一、新授新课
(二)分数的意义
0
1 5
2
3
5
5
4 5
1
3 5
( 3)
1
(16)
16
四、运用拓展
10支
拿出这盒彩笔的 1 ,是
。
5
四、运用拓展
15支
拿出这盒彩笔的 1 ,是
。
5
原来这盒彩笔有( 15 )支。
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More You Know, The More Powerful You Will Be