自动控制理论—数学模型
自动控制原理与系统第三章 自动控制系统的数学模型
④将该方程整理成标准形式。即把与输入量有关的 各项放在方程的右边,把与输出量有关的各项放在 方程的左边,各导数项按降幂排列,并将方程中的 系数化为具有一定物理意义的表示形式,如时间常
二、微分方程建立举例
[例3-1]直流电动机的微分方程。
1.直流电动机(Direct-Current Motor)各物理量间的 关系。
②在各环节功能框的基础上,首先确定系统的 给定量(输入量)和输出量,然后从给定量开始,由
左至右,根据相互作用的顺序,依次画出各个环节, 直至得出所需要的输出量,并使它们符合各作用量 间的关系。
③然后由内到外,画出各反馈环节,最后在图上标 明输入量、输出量、扰动量和各中间参变量。
④这样就可以得到整个控制系统的框图。
①列出直流电动机各个环节的微分方程[参见 式3-1~式3-4],然后由微分方程→拉氏变换式→ 传递函数→功能框。今将直流电动机的各功能框列 于表3-1中。
②如今以电动机电枢电压作为输入量,以电动 机的角位移θ 为输出量。于是可由开始,按照电动 机的工作原理,由依次组合各环节的功能框,然后 再加上电势反馈功能框,如图3-15所示。
(或环节)的固有特性。它是系统的复数域模型,也 是自动控制系统最常用的数学模型。
3.对同一个系统,若选取不同的输出量或不同 的输入量,则其对应的微分方程表达式和传递函数 也不相同。
4.典型环节的传递函数有
对一般的自动控制系统,应尽可能将它分解为 若干个典型的环节,以利于理解系统的构成和系统 的分析。
它还清楚地表明了各环节间的相互联系,因此它是 理解和分析系统的重要方法。
①全面了解系统的工作原理、结构组成和支配系统 工作的物理规律,并确定系统的输入量(给定量)和 输出量(被控量) ②将系统分解成若干个单元(或环节或部件),然后 从被控量出发,由控制对象→执行环节→功率。
自控原理课件 第2章-自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
2.2.2 传递函数 建立数学模型的目的是为了对系统进行性能分析。分析 自动控制系统最直接的方法是求解微分方程,求得被控 量在动态过程中的时间函数,然后根据时间函数的曲线 对系统性能进行分析。求解的方法有经典法、拉氏变换 法等。 拉氏变换法是求解微分方程的简便方法,当采用这一方 法时。微分方程的求解就成为象函数的代数方程和查表 求解,使计算大为简化。更重要的是,采用拉氏变换法 能把以线性微分方程描述的数学模型转换成复数域中代 数形式的数学模型——传递函数。传递函数不仅可以表 征系统的性能,而且可以用来分析系统的结构和参数变 化对系统性能的影响。经典控制理论中应用最广泛的频 率特性法和根轨迹法就是以传递函数为基础建立起来的, 传递函数是经典控制理论中最基本最重要的概念。
解:(1)确定输入和输出量。网络的输入量为 电压ur(t),输出量为电压uc(t) (2)根据电路理论,列出原始微分方程。
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
第2章 自动控制系统的数学模型
1.信号线 信号线是带有箭头的直线,箭头表示信号的流向,在直线旁标 记信号的象函数,如图2.20(a)所示。 2.引出点 引出点表示信号引出或测量的位置。从同一位置引出的信号在 数值和性质上完全相同, 图2.20(b)所示。 3.比较点 比较点表示多个信号在此处叠加,输出量等于输入量的代数和。 因此在信号输入处要标明信号的极性,如图2.20(c)所示。 4.功能框 功能框表示一个相对独立的环节对信号的影响。框左边的箭头 处标以输人量的象函数,框右边的箭头处标以输出量的象函数, 框内为这一单元的传递函数。输出量等于输入量与传递函数的 乘积,即
自动控制原理(数学模型)
Tm m m K m ur
Tmm m K m ur
Tm J m R /( R fm ce cm K m cm /( R fm ce cm )
)
电机时间常数 电机传递系数
例4 X-Y 记录仪
反馈口: u ur up 放大器: u K1u 电动机: Tmm m Kmu 减速器: 2 K3m 绳 轮: L K32 电 桥: up K4L
证明:左 e At f (t ) etsdt f (t ) e(s A)tdt
0
0
令 sA s
f (t ) estdt F (s) F(s A) 右 0
例7 例8
L
L
e at
e-3t
L
(2)微分定理 L f t s F s f 0
证明:左
f t estdt
estdf t
e-st f
t
0
f t dest
0
0
0
0-f 0 s f testdt sF s f 0 右
•建模方法
解析法(机理分析法)
根据系统工作所依据的物理定律列写运动方程
实验法(系统辨识法)
给系统施加某种测试信号,记录输出响应,并用 适当的数学模型去逼近系统的输入输出特性
§2.2 控制系统的数学模型—微分方程
线性定常系统微分方程的一般形式
d nc(t)
d n1c(t)
dc(t )
an dt n an1 dt n1 ... a1 dt a0c(t )
自动控制原理:第二章--控制系统数学模型全
TaTLma KJe K
dMdML m dtdt
L
Tm
Ra J K eKm
——机电时间常数(秒);
Ta
La Ra
—电动机电枢回路时间常数 (秒)
若输出为电动机的转角q ,则有
TaTm
d 3q
dt 3
Tm
d 2q
dt 2
dq
dt
1 Ke
ua
Tm J
ML
TaTm J
dM L dt
—— 三阶线性定常微分方程 9
(1)根据克希霍夫定律可写出原始方程式
((23))式消LuLCcdd中去(titd)i中2d是utRc间2(中Cti1)变间C1量iR变dCti量idd后udt,ct,(t它)u输r与u(入tc输)(输t)出出uu微rc((tt)分)有方如程下式关系
或
T1T2
d 2uc (t) dt 2
T2
duc (t) dt
扰动输入为负载转矩ML。 (1)列各元件方程式。电动机方程式为:
TaTm
d 2w
dt 2
测输T速Km出发td为d电wt电测压机速w 反 K馈1e系ua数
Tm J
M反L馈 电TaJT压m
dM L dt
ua Kae ut Ktw e ur ut 12
(2)消去中间变量。从以上各式中消去中间变
量ua,e,ut,最后得到系统的微分方程式
线性(或线性化)定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比 称为传递函数。
令线C性(s定)=常L[c系(t统)],由R下(s)述=Ln阶[r(微t)]分,方在程初描始述条:件为零
时[[aab,nnmbssdmdn进mt+ndn+dt行acmmbn(tm拉-r1)-(s1t氏ns)-am1变n+-1b1+…m换dd…1t+,nndd+1a1t得mm1bcs1(11到+ts)r+a关(t0b)]于0C]的RD(sM的s的a(()分s1s(分))=代sdbd为母)t1子为数cd传d多(tt多传方)r递项(项t程递函)式a式0函数c。b(0数tr) (t)
自动控制理论 线性系统数学模型
设具有连续变化的非线性函数为:y=f(x), y
若的取A某(x一0, y平0 )衡。状A点态附为近工有作点点为,如下图中y0
y0
y0
B(x x, y y),当 x很小时,AB段可
近似看做线性的。
0
B y f (x) A
x0 x0 x x
设f(x)在 A(x0, y0 )点连续可微,
y
则将函数在该点展开为泰勒级
G(s) = G1(s) G2(s) Gn(s)
控制系统的数学模型>>控制系统的结构图与信号流图
2、并联运算法则
因为 所以
R(s)
G1(s)
X1(s) + C(s)
G1 (s)
X1 (s) R(s)
-
G2 (s)
X 2 (s)
G
2
(s)
X2 (s) R(s)
X1(s) X2 (s) C(s)
G(s) C(s) X1 (s) X 2 (s) X1 (s) X 2 (s)
[ui (s)
u(s)]
1 R1
I1(s)
I1(s) I (s) I2(s) I(s) 1 u(s)
C1s
ui (s)
1
-
R1
I1(s)
u(s) I(s)
-
I1(s)
I2 (s)
I (s)
1 C1s
u(s)
[u(s) uo (s)]
1 R2
I 2 (s)
I 2 (s)
1 C2s
uo (s)
图3.1 RLC无源网络
解:
L
di(t) dt
Ri(t)
1 C
i(t)dt
ui(t)
自动控制原理-第二章 控制系统的数学模型
t
f (t)dt 0
t
f ( )d
n
ki .L[ f (t )]
i 1
sF (s) f (0 )
s2F (s) sf (0 ) f (0 )
snF (s) sn1 f (0 ) sn2 f (0 ) f (n1) (0 )
电枢回路方程为
La
dia (t) dt
Raia (t)
Ea (t)
ua (t)
电磁转矩方程 M m Cmia (t)
电动机轴上转矩平衡方程
Jm
dm (t)
dt
fmm (t)
Mm
MC
(t)
若以角速度 m 为输出量、电枢电压 ua 为输入量,
消去中间变量,直流电动机的微分方程为
(s2+s+1)Uc(s)= Ur(s)+0.1(s+2)
即 U S 1 U S 0.1S 2
C
S2 S 1 r
S2 S 1
通电瞬间, ur(t)=1 或 Ur(s)=L[ur(t)]=1/S
故 U S 1 1 0.1S 2
C
S2 S 1 S S2 S 1
再对上式两边求反拉氏变换:
u c
t
L1 U C
S
L1
S
2
1 S
1
1 S
S
2
1 S
1
=1+1.15e-0.5tSin(0.866t-120°)+ 0.2e-0.5tSin(0.866t+30°)
自动控制原理第二章数学模型
) (1)方程的系数 ai ( i 0 ,1 , n )、bj ( j 0,1, m为实常数。 (2)方程左端导数阶次高于方程右端。这是由于系统中含有 质量、惯性或滞后的储能元件。(n大于等于m)。 (3)方程两端各项的量纲是一致的。
相似系统——任何系统,只要他们的微分方程具有相同的形式 就是相似系统。在微分方程中占据相同位置的物 理量叫做相似量。
'
df x0 x kx , 可得 y dx
简记为 y=kx
若非线性函数由两个自变量,如 y=f(x1, x2), 则在平衡点处可展成
f ( x10 , x20 ) f ( x10 , x20 ) y f ( x1 , x2 ) f ( x10 , x20 ) [ ( x1 x10 ) ( x2 x20 )] x1 x2 f ( x10 , x20 ) 1 2 f ( x10 , x20 ) 2 [ ( x x ) 2 ( x x10 )(x x20 ) 1 10 2 2! x1x2 x1 2 f ( x10 , x20 ) 2 ( x x ) ] 2 20 2 x2
dt
d 2 (t )
返回子目录
§2.3 非线性微分方程的线性化
• 在实际工程中,构成系统的元件都具有不同程度的 非线性,如下图所示。
返回子目录
§2.3 非线性微分方程的线性化
于是,建立的动态方程就是非线性微分方程,对其求解有 诸多困难,因此,对非线性问题做线性化处理确有必 非线性元件微分方程的线性化 具有连续变化的非线性函数的线性化,可用切线法或 小偏差法。在一个小范围内,将非线性特性用一段直 线来代替。(分段定常系统) 一个变量的非线性函数 y=f(x) 在x0处连续可微,则可将它在该点附近用泰勒级数展开
自动控制原理控制系统的数学模型
自动控制原理控制系统的数学模型自动控制原理是现代控制工程学的基础,在控制系统的设计中起着至关重要的作用。
控制系统的数学模型是指通过数学方法对控制系统进行建模和描述,以便分析和设计控制系统的性能和稳定性。
控制系统的数学模型可以分为时域模型和频域模型两种形式。
一、时域模型时域模型是描述控制系统在时间域上动态行为的数学表达式。
时域模型是基于系统的差分方程或微分方程的。
1.线性时不变系统的时域模型对于线性时不变系统,可以通过系统的微分方程或差分方程来建立时域模型。
常见的时域模型包括:-一阶系统的时域模型:y(t)=K*(1-e^(-t/T))*u(t)-二阶系统的时域模型:y(t)=K*(1-e^(-t/T))*(1+t/Td)*u(t)2.非线性系统的时域模型对于非线性系统,时域模型可以通过系统的状态空间方程来建立。
常见的非线性系统时域模型包括:- Van der Pol方程: d^2x/dt^2 - μ(1 - x^2) * dx/dt + x = 0 - Lorenz方程:dx/dt = σ * (y - x), dy/dt = rx - y - xz, dz/dt = xy - βz二、频域模型频域模型是描述控制系统在频域上动态行为的数学表达式。
频域模型是基于系统的传递函数或频率响应函数的。
1.传递函数模型传递函数是系统的输入和输出之间的关系,是频域模型的核心。
传递函数可以通过系统的拉普拉斯变换或Z变换得到。
常见的传递函数模型包括:-一阶系统的传递函数模型:G(s)=K/(T*s+1)-二阶系统的传递函数模型:G(s)=K/(T^2*s^2+2ξ*T*s+1)2.频率响应模型频率响应函数是系统在不同频率下的输出和输入之间的关系。
频率响应函数可以通过系统的传递函数模型进行计算。
常见的频率响应模型包括:-幅频特性:描述系统在不同频率下的增益变化-相频特性:描述系统在不同频率下的相位变化控制系统的数学模型是对系统动态行为的数学描述,通过对控制系统进行数学建模和分析,可以有效地设计和优化控制系统,提高系统的性能和稳定性。
自动控制数学模型
2、1、1线性系统得微分方程模型
很多常见得元件或系统得输出量和输入量之间得关系都可 以用一个微分方程表示。微分方程得阶数一般就是指方程中最 高导数项得阶数, 又称为系统得阶数。
如图机械系统,由牛顿定理得到以下关系:
d2y F Fk Ff m dt 2
dy Fk ky ; Ff f dt
设输入量为r(t) ;输出量为 c (t) ,定义传递函数为:
G(s) L[c(t)] C(s) L[r(t)] R(s)
一般线性定常系统由下面得n阶线性常微分方程描述:
a0c(n) (t) a1c(n1) (t) a2c(n2) (t) an1c(t) anc(t) b0r (m) (t) b1r (m1) (t) b2r (m2) (t) bm1r(t) bmr(t)
f (t) L1[F (s)]
1) 部分分式法
将F(s)展开成多个典型函数得象函数之代数和,查表。
例2、3 F(s)含单极点和重极点时得拉氏反变换。
解:
F(s)
1
c1 c2 c3 c4
s(s 3)(s 1)2 s s 3 (s 1)2 s 1
c1 [F (s)s]s0 1/ 3
s 1 F (s) s(s2 s 1)
解: s2 s 1 (s 0.5 j0.866)(s 0.5 j0.866)
F (s)
c1 s
c2s s2 s
c3 1
1 s
(s
s 0.5 0.5 0.5)2 0.8662
f (t) L1 F (s) 1 e0.5t cos 0.866t 0.578e0.5t sin 0.866t (t 0)
点形式和多项式形式之间得互换。即可将传递函数进行展开和
自动控制理论-第二章
2-1 控制系统的时域数学模型
1、控制系统微分方程的建立 (1)举例 例1:电路无源网络 试列写以 u (t ) 为输入量,以 u (t )为 输出量的网络微分方程
i
o
解:设回路电流为 i(t ) ,由基尔霍夫 定律可写出回路方程为
di ( t ) 1 + i ( t ) dt + Ri ( t ) = u i ( t ) dt C ∫ 1 u o (t ) = i ( t ) dt C ∫ L
f 2 (t )
c(t ) = c1 (t )
作用时, c(t ) = c2 (t ) 叠加性:当 f (t ) 、 f (t ) 同时作用时,c(t ) = c1 (t ) + c2 (t ) 均匀性:当 f (t ) = A ⋅ f1 (t ) 时, c(t ) = A ⋅ c1 (t ) 线性系统的叠加原理表明:两个外作用同时加于系统所产生的 总输出,为各个外作用单独作用时分别产生的输出之和。
[
]
1 1 1 F ( s ) + n f ( −1) (0) + L + f ( − n ) (0) n s s s
式中
f
( −1)
f ( −1) (0)、f ( −2) (0) L f ( − n ) (0)
(−n)
为
f (t )
的各重积分在 t = 0 时的值。如果
(0) = f ( −2 ) (0) = L = f
(0) = 0 ,则有
L ∫ L ∫ f (t )(dt ) n =
[
]
1 F (s) sn
(4)初值定理 若函数 f (t ) 及其一阶导数都是可拉氏变换的,则
f (0 + ) = lim f (t ) = lim sF ( s)
自动控制原理:第2章-控制系统的数学模型可编辑全文
*
上式表明,三个环节的串联可以用一个等效环节来代替。这种情况可以推广到有限个环节串联(各环节之间无负载效应)的情况,等效环节的传递函数等于各个串联环节的传递函数的乘积,如有n个环节串联则等效传递函数可表示为:
*
2. 环节的并联
环节并联的特点是各环节的输入信号相同,输出信号相加(或相减)。
2.7 闭环系统的传递函数
一.闭环系统
*
(3)开环传递函数: 假设N(s)=0,主反馈信号B(s)与误差信号E(s)之比。
(2)反馈回路传递函数:假设N(s)=0,主反馈信号B(s)与输出信号C(s)之比。
*
(4)闭环传递函数 Closed-loop Transfer Function 假设N(s)=0 输出信号C(s)与输入信号R(s)之比。
复习拉普拉斯变换有关内容(6)
(3)积分定理
零初始条件下有:
进一步有:
例4 求 L[t]=?
解.
例5 求
解.
复习拉普拉斯变换有关内容(7)
(4)实位移定理
证明:
例6
解:
令
复习拉普拉斯变换有关内容(8)
(5)复位移定理
证明:
令
例7
例8
例9
复习拉普拉斯变换有关内容(9)
负反馈:反馈信号与给定输入信号符号相反的反馈。
正反馈:反馈信号与给定输入信号符号相同的反馈。
*
上述三种基本变换是进行方框图等效变换的基础。对于较复杂的系统,例如当系统具有信号交叉或反馈环交叉时,仅靠这三种方法是不够的。
(二)信号相加点和信号分支点的等效变换
对于一般系统的方框图,系统中常常出现信号或反馈环相互交叉的现象,此时可将信号相加点(汇合点)或信号分支点(引出点)作适当的等效移动,先消除各种形式的交叉,再进行等效变换即可。
自动控制原理 第2章数学模型
y y0 K ( x x0 ) 或写为 y Kx
即:线性化方程
式中,
y0
f ( x0 ),K
df dx
,y
x x0
y
y0,x
x x0
严格地说,经过线性化后的所得的系统微分方程式,只 是近似地表征系统的运动情况。
实践证明,对于绝大多数的控制系统,经过线性化后所 得的系统数学模型,能以较高的精度反映系统的实际运动过 程,所以线性化方法是很有实际意义的。
绝对的线性元件和线性系统不存在
非线性微分方程的线性化
实际物理元件或系统都是非线性的,构成系统的元件 都具有不同程度的非线性。
建立的动态方程就是非线性微分方程,对其求解有诸 多困难,因此,对非线性问题做线性化处理确有必要。
线性化:在满足一定条件的前提下,用近似的线性系统代 替非线性方程。
线性化的基本条件:非线性特性必须是非本质的,系统各 变量对于工作点仅有微小的偏离。
第二章 控制系统的数学模型
本章内容
2.1 控制系统的时域数学模型 2.2 控制系统的复数域数学模型 2.3 控制系统的结构图/方框图 2.4 梅森公式与信号流图
系统的数学模型
数学模型
描述系统输入、输出变量以及内部各变量之间关系的 数学表达式。
分析和设计任何一个控制系统,首要任务是建立系统 的数学模型。
b0s m a0s n
b1s m 1 a1s n 1
... bm 1s ... an 1s
bm an
N(s)=0 系统的特征方程,特征根 特征方程决定着系统的动态特性。 N(s)中s的最高阶次等于系统的阶次。
系统传递函数的极点就是系统的特征根。 零点和极点的数值完全取决于系统的结构参数。
自动控制原理数学模型知识点总结
自动控制原理数学模型知识点总结自动控制原理是现代控制理论的基础,其中数学模型是其核心内容之一。
本文将对自动控制原理中的数学模型知识点进行全面总结,旨在帮助读者更好地理解和应用这些知识。
一、数学建模基础在自动控制原理中,数学模型是描述控制系统行为和性能的数学表示。
为了建立一个有效的数学模型,需要了解以下基础知识点:1.1 微积分微积分是数学模型建立的基础。
常见的微积分概念包括函数、导数、积分和微分方程等。
在自动控制原理中,通过微积分可以描述系统的动态特性和响应。
1.2 线性代数线性代数是描述线性系统的数学工具。
矩阵和向量是线性代数中的重要概念,它们可以用来表示线性方程组和矩阵变换等。
在控制系统设计中,线性代数用来描述系统的状态空间表达式和传递函数等。
1.3 概率论与统计学概率论与统计学是描述系统随机性的数学工具。
在控制系统中,系统的噪声和测量误差等通常是随机的。
通过概率论和统计学方法,可以对这些随机变量进行建模和分析,提高控制系统的鲁棒性和性能。
二、常见的数学模型类型基于不同的系统特点和建模目的,自动控制原理中常见的数学模型类型包括:2.1 时域模型时域模型是描述系统输出响应随时间变化的数学模型。
常见的时域模型包括微分方程模型和差分方程模型。
通过时域模型,可以分析系统的稳定性、动态特性和响应等。
2.2 频域模型频域模型是描述系统响应随频率变化的数学模型。
常见的频域模型包括传递函数模型和频率响应函数模型。
通过频域模型,可以分析系统的频率特性、幅频特性和相频特性等。
2.3 状态空间模型状态空间模型是描述系统状态随时间变化的数学模型。
通过状态空间模型,可以全面了解系统的状态演化和控制输入输出关系。
2.4 仿真模型仿真模型是通过计算机软件建立的数学模型。
通过仿真模型,可以模拟系统的行为,并进行虚拟实验和性能评估。
三、常用的数学模型建立方法在自动控制原理中,数学模型可以通过以下常用的方法建立:3.1 基于物理定律的模型基于物理定律的模型是通过对系统的物理特性进行建模。
自动控制原理-控制系统的数学模型可编辑全文
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn
自动控制原理的数学模型
自动控制原理的数学模型自动控制是一种通过控制器、执行器和传感器等组件来改变系统特性以实现预期目标的过程。
自动控制原理的数学模型是描述该过程的数学方程组,用于定量地分析和设计控制系统。
实际上,自动控制原理的数学模型可以通过一些基本的物理规律和方程来构建。
下面将介绍几种常见的自动控制原理的数学模型。
1.线性系统模型线性系统是指系统的输出与输入之间的关系是线性的。
在自动控制领域中,线性系统模型是最常见和基础的数学模型。
线性系统的数学模型可以通过常微分方程或差分方程来描述。
常见的线性系统模型有传递函数模型、差分方程模型和状态空间模型等。
传递函数模型是一种常见的线性系统模型,将系统的输入和输出之间的关系表示为一个分子多项式与一个分母多项式的比值。
传递函数模型可以通过系统的拉普拉斯变换或者离散时间系统的Z变换得到。
2.非线性系统模型除了线性系统以外,许多现实中的控制系统是非线性的。
非线性系统的数学模型可以通过非线性方程组来描述。
非线性系统的模型可能难以分析和求解,因为非线性方程组通常没有解析解。
3.离散系统模型离散系统是指系统的输入和输出是在离散时间上进行的。
离散系统的数学模型可以通过差分方程来描述。
差分方程是描述离散时间系统的常用数学工具,可以通过差分方程求解得到系统的时间响应。
4.状态空间模型状态空间模型是一种描述线性动态系统的数学模型。
状态空间模型将系统的状态用向量表示,以描述系统在不同时间点的状态和状态之间的相互关系。
状态空间模型适用于揭示系统的内部细节和进行控制系统设计。
为了应用自动控制原理的数学模型,需要进行系统的建模和参数辨识。
系统的建模是根据系统的特性和运行规律,建立数学模型的过程。
参数辨识是根据实际测量数据和实验结果,确定数学模型中的参数值的过程。
总结起来,自动控制原理的数学模型是用于描述控制系统的数学方程组,常见的数学模型包括线性系统模型、非线性系统模型、离散系统模型和状态空间模型等。
建立和辨识数学模型是应用自动控制原理的重要步骤,可以通过物理规律和系统运行数据等来完成。
自动控制理论第二章--线性系统的数学模型全
理
论 一.物理模型 、数学模型及数学建模
物理模型 :
任何元件或系统实际上都是很复杂的,难以对
它作出精确、全面的描述,必须进行简化或理想化。
简化后的元件或系统称为该元件或系统的物理模型。
简化是有条件的,要根据问题的性质和求解的精确
要求来确定出合理的物理模型。
2
第二章 线性系统的数学模型
自
动
控
制 理
物理模型的数学描述。是指描述系统
零初使条件是指当t≤0时,系统r(t)、c(t)以及它们的各阶
导数均为零。
传递函数
输出信号的拉氏变换 输入信号的拉氏变换
零初始条件
C(s) R(s)
26
第二章 线性系统的数学模型
自
动
控 线性系统微分方程的一般形式为:
制
理 论
制 理 论
F(s)
br (s p1)r
br 1 (s p1)r1
b1 (s p1)
ar 1 s pr1
an s pn
br
B(s)
A(s)
(s
p1
)r
s p1
br 1
d
ds
B(s) A(s)
(s
p1 ) r
s p1
br j
1 dj
j!
ds
j
B(s) A(s)
(s
p1
La
dia (t ) dt
Raia (t )
Ea
+
(1) -
La
if Ra
m
+ ia
Ea ——电枢反电势,其表达式为 Ua
Ea S M
负 载
jmfm
Ea Cem(t) (2) --
自动控制原理(数学模型)精选全文完整版
t 0
s
证明:由微分定理 df (t) estdt s F (s) f (0)
0 dt
lim df (t) estdt lim s F (s) f (0)
s 0 dt
s
左 df (t) limestdt 0 0 dt s
lim
s
s F(s)
f (0 )
0
f
二、非线性系统微分方程的线性化
例5 已知某装置的输入输出特性如下,求小扰动线性化方程。
y( x ) E0 cos[x(t )]
解. 在工作点(x0, y0)处展开泰勒级数
y( x)
y(x0)
y( x0 )( x
x0 )
1 2!
y( x0 )( x
x0 )2
取一次近似,且令
y(x) y(x) y(x0) E 0 sin x0 ( x x0 )
1
s(s a)( s b)
f
lim
s0
s
ss
1
as
b
1 ab
例12
Fs
s2
ω ω2
f sinωt t
lim s
s0
s2
ω ω2
0
3 用拉氏变换方法解微分方程
系统微分方程
y(t) a1 y(t) a2 y(t) 1(t)
y(0) y(0) 0
L变换
(s2
a1s
a2 )Y (s)
0
1 1
1 1 2 j
2j
s
j
s
j
2j
s2
2
s2
2
2 拉氏变换的几个重要定理
(1)线性性质 La f1(t) b f2(t) a F1(s) b F2(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Friday, May 22, 2020
1
本章的主要内容
控制系统的微分方程-建立和求解 控制系统的传递函数 控制系统的结构图-等效变换 控制系统的信号流图-梅逊公式 各种数学模型的相互转换
Friday, May 22, 2020
2
概述
概述
[数学模型]: 我们把描述系统或元件的动态过程中各变量之间相
这也是一个两阶定常微分方程。X为输出量,F为输入量。
Friday, May 22, 2020
13
相似系统和相似量
[需要讨论的几个问题]: 1、相似系统和相似量: 我们注意到例2-2和例2-3的微分方程形式是完全 一样的。
LC
d 2uo dt 2
RC
duo dt
uo
ui
mx fx kx F
可见,同一物理系统有不同形式的数学模型,而不同类型的系 统也可以有相同形式的数学模型。
6
概述
[线性系统]:如果系统满足叠加原理,则称其为线性系统。叠 加原理说明,两个不同的作用函数同时作用于系统的响应,等 于两个作用函数单独作用的响应之和。
线性系统对几个输入量同时作用的响应可以一个一个地处 理,然后对每一个输入量响应的结果进行叠加。
[线性定常系统和线性时变系统]:可以用线性定常(常系数)微 分方程描述的系统称为线性定常系统。如果描述系统的微分方 程的系数是时间的函数,则这类系统为线性时变系统。
2.1 控制系统的时域数学模型 ——微分方程
Friday, May 22, 2020
9
控制系统的微分方程
微分方程的编写应根据组成系统 各元件工作过程中所遵循的物理定理 来进行。例如:电路中的基尔霍夫电 路定理,力学中的牛顿定理,热力学 中的热力学定理等。
Friday, May 22, 2020
10
[例2-3] 求弹簧-阻尼-质量的机械位移系统的微分方程。
输入量为外力F,输出量为位移x。
Fk
F kx
[解]:图1和图2分别为系 统原理结构图和质量块
m
m
f x fx mx
受力分析图。图中,m 为质量,f为粘性阻尼系 数,k为弹性系数。
图1
图2
根据牛顿定理,可列出质量块的力平衡方程如下: mx fx kx F
宇宙飞船控制系统就是时变控制的一个例子(宇宙飞船的 质量随着燃料的消耗而变化)。
Friday, May 22, 2020
7
概述
古典控制理论中,采用的是单输入单输出 描述方法。主要是针对线性定常系统,对于 非线性系统和时变系统,解决问题的能力是 极其有限的。
Friday, May 22, 2020
8
控制系统的微分方程
[例2-1]:写出RC串联电路的微分方程。
解:根据KVL定律
由②:i C d,uc代入①得: dt
ui Ri uc ①
i c duc
②
dt
uc
Rc duc dt
ui
这是一个线性定常一阶微分方程。
Friday, May 22, 2020
11
[例2-2]:写出RLC串联电路的微分方程。
[作用]利用相似系统的概念可以用一个易于实现的系统来模拟 相对复杂的系统,实现仿真研究。
Friday, May 22, 2020
14
非线性环节微分方程的线性化
2、非线性元件(环节)微分方程的线性化 在经典控制领域,主要研究的是线性定常控制系
统。如果描述系统的数学模型是线性常系数的微分 方程,则称该系统为线性定常系统,其最重要的特 性: (1)线性叠加原理:系统的总输出可以由若干个输 入引起的输出叠加得到。 (2)均匀性原理:输入输出域内保持比例因子不变
[解]:据基尔霍夫电路定理:
ui
L
R
i
C
uo
ui 输入
uo 输出
L
di dt
Ri
1 C
idt
ui
①
uo
1 C
idt
②
由②:i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
Friday, May 22, 2020
12
控制系统的微分方程
例如对一个微分方程,若已知初值和输入值,对微分方程 求解,就可以得出输出量的时域表达式。据此可对系统进行 分析。所以建立控制系统的数学模型是对系统进行分析的第 一步也是最重要的一步。
控制系统如按照数学模型分类的话,可以分为线性和非线 性系统,定常系统和时变系统。
Friday, May 22, 2020
在工作点附近用泰勒级数展开,取前面的线性项。可以得到
等效的线性环节。
设具有连续变化的非线性函数为:y=f(x), y
若的取某一平。衡A点状附态A(近为x0,有工y0点作) 点,如下图中y0
为 B(x x, y y) ,当x 很小时,
y0
y0
B y f (x) A
AB段可近似看做线性的。
0 x0 x0 x x
Friday, May 22, 2020
16
线性系统微分方程的编写步骤
3.线性系统微分方的编写步骤: ⑴确定系统和各元部件的输入量和输出量。
⑵对系统中每一个元件列写出与其输入、输出量有关的物理 的方程。 ⑶对上述方程进行适当的简化,比如略去一些对系统影响小 的次要因素,对非线性元部件进行线性化等。 ⑷从系统的输入端开始,按照信号的传递顺序,在所有元部 件的方程中消去中间变量,最后得到描述系统输入和输出关 系的微分方程。
4
数学模型的几种表示方式
数学模型
时域模型
频域模型
频率特性,波特图
复域模型
状态空间模型
1传递函数2 结构图-信号流图
1、微分方程-输入量和状态变量都是连续的 2、差分方程-离散系统
Friday, May 22, 2020
5
常用的数学模型有微分方程,传递函数,结构图,信号 流图,频率特性以及状态空间描述等。
Friday, May 22, 2020
15
非线性环节微分方程的线性化
若描述系统的数学模型是非线性(微分)方程,则相应
的系统称为非线性系统,这种系统不能用线性叠加原理。在
经典控制领域对非线性环节的处理能力是很小的。但在工程
应用中,除了含有强非线性环节或系统参数随时间变化较大
的情况,一般采用近似的线性化方法。对于非线性方程,可
互关系的数学表达式叫做系统或元件的数学模型。
Friday, May 22, 2020
3
建立控制系统数学模型的方法
分析法——对系统各部分的运动机理进行分析,物理 规律、化学规律
实验法——人为施加某种测试信号,记录基本输出响 应。
输入(已知) 黑匣子
输出(已知)
Friday, May 22, 2020