题型二:空间几何体的平面展开图
2020新课标高考艺术生数学复习:空间几何体的结构特征、直观图含解析
已知A′B′=A′C′=a,在△OA′C′中,
由正弦定理得 = ,
所以OC′= a= a,
A.圆柱
B.圆锥
C.球体
D.圆柱、圆锥、球体的组合体
解析:C[当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面.]
3.如图所示,观察四个几何体,其中判断正确的是( )
A.①是棱台B.②是圆台
C.③是棱锥D.④不是棱柱
解析:C[图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图③是棱锥;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱.故选C.]
(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.
斜二测画法中的“三变”与“三不变”
“三变”
“三不变”
[思考辨析]
判断下列说法是否正确,正确的在它后面的括号里打“√”,错误的打“×”.
(1)球的任何截面都是圆.( )
A. a2B. a2C. a2D. a2
[解析]D[如图所示为原图形和其直观图.
由图可知,A′B′=AB=a,O′C′= OC= a,
在图中作C′D′⊥A′B′于D′,则C′D′= O′C′
= a.∴S△A′B′C′= A′B′·C′D′= ×a× a= a2.故选D.]
[互动探究]
小学六年级立体图形三视图及展开图
立体图形三视图及展开图一、知识点(一)三视图在观察物体的时候,我们往往可以从不同的角度进行观察,角度不同,看到的风景就会不同。
比如:我们可以从正面看、上面看、左面看,看到的图形分别称为正视图、俯视图和左视图,并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的。
对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积(二)正方体的展开图展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等,我们采用不同的剪开方法,共可以得到下面(三)长方体的展开图:观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即S上=S下=长×宽,S左=S右=宽×高,S前=S后=长×高。
(四)判断图形折叠后能否围成长方体或正方体的方法判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断。
二、题型(一)展开图与对立面【例1.1】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”、“你”、“前”分别表示正方体的________________________。
【答案】后面、上面、左面【解析】易知“你”、“程”相对,“前”、“锦”相对,“祝”、“似”相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面。
【例1.2】一个数学玩具的包装盒是正方体,其表面展开图如下。
现在每方格内都填上相应的数字。
已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是___________。
【答案】3、1、2【解析】面上的数是“0”,与“B”相对的面上的数是“2”,与“C"相对的面上的数是“1”。
展开与折叠(3种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)
展开与折叠(3种题型)【知识梳理】一.几何体的展开图(1)多数立体图形是由平面图形围成的.沿着棱剪开就得到平面图形,这样的平面图形就是相应立体图形的展开图.同一个立体图形按不同的方式展开,得到的平面展开图是不一样的,同时也可看出,立体图形的展开图是平面图形.(2)常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形.④三棱柱的侧面展开图是长方形.(3)立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.二.展开图折叠成几何体通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.三.专题:正方体相对两个面上的文字(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.【考点剖析】一.几何体的展开图(共9小题)1.(2022秋•江汉区期末)下列平面图形中,是棱柱的展开图的是()A.B.C.D.【分析】依据棱柱的所有的面的形状以及位置,即可得到棱柱的表面展开图.【解答】解:A.该平面图形不能围成棱柱,故本选项错误;B.该图是棱柱表面展开图,故本选项正确;C.该平面图形不能围成棱柱,故本选项错误;D.该平面图形不能围成棱柱,能围成圆柱,故本选项错误.故选:B.【点评】本题考查了几何体的展开图以及棱柱的结构特征,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.(2022秋•南京期末)如图是一个正方体的表面展开图,在这个正方体中,与点B重合的点为()A.点C和点D B.点A和点E C.点C和点E D.点A和点D【分析】根据图形,把正方体展开图折叠成正方体,观察得到重合的点.【解答】解:在这个正方体中,与点B重合的点为点C和点D.故选:A.【点评】本题考查了几何体的展开图,掌握折叠后的正方体的图形是关键.3.(2022秋•莲湖区期末)诗语同学周末帮妈妈拆完快递后,将包装盒展开,进行了测量,结果如图所示.已知长方体盒子的长比宽多3cm,高是2cm.(1)求长方体盒子的长和宽.(2)求这个包装盒的体积.【分析】(1)利用图中关系首先求出宽,然后求出长;(2)用体积公式即可.【解答】解:(1)宽为:(14﹣2×2)÷2=5(cm),长为:5+3=8(cm);(2)8×5×2=80(cm3).【点评】本题考查的是几何体的展开图,解题的关键是求出长和宽.4.(2022秋•鹤壁期末)如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为元,则制作10个这样的包装盒需花费多少钱?(不考虑边角损耗)【分析】(1)根据长方体的表面积公式计算即可;(2)根据题意列式计算即可.【解答】解:(1)由题意得,2×(12×6+12×6+6×6)=360cm2;答:制作这样的包装盒需要360平方厘米的硬纸板;(2)360÷10000×5×10=1.8元,答:制作10个这样的包装盒需花费1.8元钱.【点评】本题考查了几何体的表面积,正确的计算出长方体的表面积是解题的关键.5.(2022秋•和平区期末)某校积极开展文明校园的创建活动,七年级学生设计了正方体废纸回收盒,如图所示,将写有“收”字的正方形添加到图中,使它们构成完整的正方体展开图,共有种添加方式.【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:“收”字分别放在“垃”“圾”“分”“类”下方均可成完整的正方体展开图,所以有4种添加方式.故答案为:4.【点评】本题主要考查了正方体的展开图特点,掌握正方体表面展开图的特征是正确判断的关键.6.(2022秋•江阴市期末)如图是一个正方体纸盒,下面哪一个可能是它的表面展开图()A.B.C.D.【分析】正方体的空间图形,从相对面入手,分析及解答问题.B,D与此不符,所以错误;再观察3个图案所在的位置,而选项C不符,正确的是A.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2022秋•二道区校级期末)图①,图②,图③均为5×5的正方形网格,在网格中选择2个空白的正方形涂上阴影,使它们与图中四个有阴影的正方形一起构成一个正方体的表面展开图,并且3种方法得到的展开图不相同.【分析】依据正方体展开图的特征进行判断,即可得到3种不同的正方体展开图.【解答】解:如图所示:(答案不唯一)【点评】此题主要考查了几何体的展开图,关键是掌握正方体展开图的结构特点.8.(2022秋•伊川县期末)如图,是一个几何体的表面展开图:(1)请说出该几何体的名称;(2)求该几何体的表面积;(3)求该几何体的体积.【分析】(1(2)依据长方体的表面积等于六个面面积之和即可得出结论;(3)依据体积计算公式,即可得到该几何体的体积.【解答】解:(1)该几何体的名称是长方体;(2)该几何体的表面积为:2×(2×3+2×1+1×3)=22(平方米);(3)该几何体的体积为:2×3×1=6(立方米).【点评】本题考查了几何体的展开图,掌握立体图形与平面图形的转化,建立空间观念是关键.9.(2022秋•仪征市期末)将一个无盖正方体展开成平面图形的过程中,需要剪开条棱.【分析】根据无盖正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.【解答】解:∵无盖正方体有5个表面,两个面共一条棱,共8条棱,要展成如图所示图形必须4条棱连接,∴要剪8﹣4=4条棱,故答案为:4.【点评】此题主要考查了正方体的展开图的性质,根据展开图的性质得出要展成如图所示图形必须4条棱连接,是解题关键.二.展开图折叠成几何体(共9小题)10.(2022秋•沈河区期末)如图,如果裁掉一个正方形后能折叠成正方体,那么能裁掉的是()A.①B.②和③C.③和④D.②或③或④【分析】根据正方体的展开图得出结论即可.【解答】解:由正方体的展开图可知,去掉②或③或④原图都可以折叠成正方形,故选:D.11.(2022秋•高新区期末)下列图形经过折叠不能成为一个封闭的正方体的是()A.B.C.D.【分析】根据正方体的展开图得出结论即可.【解答】解:由题意知,图形不能折叠成正方体,故选:D.【点评】本题主要考查正方体的展开图,熟练掌握正方体的展开图是解题的关键.12.(2022秋•青秀区校级期末)如图平面图形不能折成无盖长方体盒子的是()A.B.C.D.【分析】根据长方体展开图得出结论即可.【解答】解:由题意知,图形不能折成无盖长方体盒子,故选:C.【点评】本题主要考查长方体展开图的知识,熟练掌握长方体展开图的知识是解题的关键.13.(2022秋•晋江市期末)图①是正方体的表面展开图,该正方体从图①所示的位置折叠成图②的正方体,在图①标注的顶点A、B、C、D中,与点P重合的顶点是()A.点A B.点B C.点C D.点D【分析】先找出下面,然后折叠,找出正方形ABCD位于正方体的哪个面上,点P所在正方形位于正方体的哪个面上,即可找出与点P重合的顶点.【解答】解:如图:以正方形1为下面,将正方体从图①所示的位置折叠成图②的正方体时,正方形ABCD位于正方形的上面,点P所在正方形在前面,点B与点P重合.故选:B.【点评】本题考查正方形的展开图和空间想象能力,关键是找出或想象出折叠前后图形的关系.14.(2022秋•秦淮区期末)下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【解答】解:A、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;B、折叠后能围成三棱柱,故本选项正确;C、底面有2个三角形,不能折叠围成一个三棱柱,故本选项错误;D、展开图有3个底面,不能围成三棱柱,故本选项错误.故选:B.【点评】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,15.(2022秋•姜堰区期末)小明在学习了《展开与折叠》这一课后,掌握了长方体盒子的制作方法.如图是他制作的一个半成品的平面图:(1)在中补充一个长方形,使该平面图能折叠成一个长方体盒子;(2)已知小明制作长方体的盒子长是宽的2倍,宽是高的2倍,且长方体所有棱长的和为56cm,求这个长方体盒子的体积.【分析】(1)根据长方体的展开图补充图形即可求解;(2)根据题意,设长方体的高为a,则宽为2a,长为4a,根据长方体所有棱长的和为56cm,列出方程,进而根据体积公式即可求解.【解答】解:(1)如图所示,(2)设长方体的高为acm,则宽为2acm,长为4acm,根据题意得,4(a+2a+4a)=56(cm),解得:a=2,∴这个长方体的高为2cm,宽为4cm,长为8cm,∴这个长方体盒子的体积为:2×4×8=64(cm3).【点评】本题考查了长方体的展开图,一元一次方程的应用,掌握以上知识是解题的关键.16.(2022秋•宛城区校级期末)某“综合实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为a(cm)的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒).【操作一】根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为b (cm)的小正方形,再沿虚线折合起来.【问题解决】(1)若a=12cm,b=3cm,则长方体纸盒的底面积为;【操作二】根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为b (cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来.【拓展延伸】(2)若a=12cm,b=2cm,该长方体纸盒的体积为;(3)现有两张边长a均为30cm的正方形纸板,分别按图1、图2的要求制作无盖和有盖的两个长方体盒子,若b=5cm,求无盖盒子的体积是有盖盒子体积的多少倍?【分析】(1)由折叠可得底面是边长为6cm的正方形,进而求出底面积即可;(2)由展开与折叠可知,折叠成长方体的长、宽、高分别为a﹣2b,,b,根据体积公式进行计算即可;(3)当a=30cm,b=5cm时,分别求出按图1,图2的折叠方式所得到的长方体的体积即可.【解答】解:(1)如图1,若a=12cm,b=3cm,则长方体纸盒的底面是边长为12﹣3×2=6(cm)的正方形,因此面积为6×6=36(cm2),故答案为:36cm2;(2)如图2,先在纸板四角剪去两个同样大小边长为b(cm)的小正方形和两个同样大小的小长方形,再沿虚线折合起来可得到长为a﹣2b,宽为,高为b的长方体,当a=12cm,b=2cm,该长方体纸盒长为12﹣2×2=8(cm),宽为=4(cm),高为2cm,所以体积为8×4×2=64(cm3),故答案为:64cm3;(3)当a=30cm,b=5cm时,按图1作无盖的长方体的纸盒的体积为(30﹣5×2)(30﹣5×2)×5=2000(cm3),按图2作的长方体的纸盒的体积为(30﹣5×2)()×5=1000(cm3),2000÷1000=2(倍),答:无盖盒子的体积是有盖盒子体积的2倍.【点评】本题考查展开图折叠成几何体,掌握棱柱的展开图的特征是正确解答的前提,根据展开图得出折叠后长方体的长、宽、高是解决问题的关键.17.(2022秋•昆明期末)图(1)和图(2)中所有的正方形都相同,将图(1)的正方形放在图(2)中的①②③④⑤某一位置,所组成的图形不能围成正方体的位置是()A.①②B.②③C.③④D.②⑤【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的②⑤的位置出现重叠的面,所以不能围成正方体.故选:D.【点评】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.熟记正方体的11种展开图是解题的关键.18.(2022秋•阳泉期末)小明在学习了正方体的展开图后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀剪开了一个长方体纸盒,可是一不小心多剪开了一条棱,把纸盒剪成了两部分,如图1、图2所示.请根据你所学的知识,回答下列问题:观察判断:小明共剪开了条棱;动手操作:现在小明想将剪断的图2重新粘贴到图1上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒(如图3),请你帮助小明在图1中补全图形;解决问题:经过测量,小明发现这个纸盒的底面是一个正方形,其边长是长方体的高的5倍,并且纸盒所有棱长的和是880cm,求这个纸盒的体积.【分析】(1)根据平面图形得出剪开棱的条数,(2)根据长方体的展开图的情况可知有四种情况,(3)设最短的棱长高为acm,则长与宽相等为5acm,根据棱长的和是880cm,列出方程可求出长宽高,即可求出长方体纸盒的体积.【解答】解(1)小明共剪了8故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20,∴这个长方体纸盒的体积为20×100×100=200000(立方厘米).【点评】本题主要考查了几何展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.三.专题:正方体相对两个面上的文字(共7小题)19.(2022秋•泗阳县期末)动手操作:做一个正方体木块,在正方体的各面分别写上1,2,3,4,5,6这6个不同的数字,若它可以摆放成如图所示的两种不同位置,请你判断数字5对面的数字是()A.1B.2C.3D.6【分析】根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2【解答】解:根据图形以及数字的摆放,第一图可得6的下面为1,1的右边为4,第二个图可知4的下面是5,5的右边是2,将正方形展开如图所示,∴5的对面是6,故选:D.【点评】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.20.(2022秋•溧水区期末)如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c =.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由图可知,c+1=3,1+b=1,a=﹣2,所以a=﹣2,b=0,c=2,所以a+b+c=0.故答案为:0.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.21.(2022秋•高邮市期末)一个正方体的6个面上分别标有字母a、b、c、d、e、f.若甲、乙两位同学分别在f、e朝上时,看到的另两个字母如图,则b对面的是.【分析】根据第一个图形和第二个图形中都含有d的面,即可判断.【解答】解:由题意可知d字母所在面相邻的面上的字母分别为a、c、e、f,则d的对面是b.即b对面的是d.故答案为:d.【点评】本题考查了正方体相对两个面上的文字,同时也考查了空间想象能力和推理能力.正确记忆立方体的特点是解题关键.22.(2022秋•川汇区期末)党的二十大报告提出,要以中国式现代化全面推进中华民族伟大复兴.将“中国式现代化”这六个字分别写在一个正方体的六个表面上,如图是它的一种展开图,则与“式”相对的字是()A.中B.国C.现D.代【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“式”字相对的面上的汉字是“中”.故选:A.【点评】本题考查了正方体的展开图形,掌握相对面进行分析及解答是关键.23.(2022秋•青神县期末)如果一个骰子相对两面的点数之和为7,它的表面展开图如图所示,则下面判断正确的是()A.A代表B.B代表C.C代表D.B代表【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.【点评】本题考查了正方体相对两个面上的文字,掌握从相对面入手是关键.24.(2022秋•汉台区期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.25.(2022秋•青神县期末)一个立方体的六个面上分别标上一至六点(一个小圆表示一点,每个面上的点数不同),然后将完全一样的四个立方体摆放成如图样式的一个长方体,我们能看到的面上的点数如图所示,则长方体底面上的点数之和是.【分析】先判断出相对的面的点数,再进行计算即可.【解答】解:由题意可知,“3点”的面的邻面有“2点、6点、4点、5点”,所以与“3点”相对的面的点数为“1点”;因为“4点”的面的邻面有“6点、5点、3点、1点”,所以与“4点”相对的面的点数为“2点”;因为“6点”的面的邻面有“3点、1点、4点、2点”,所以与“6点”相对的面的点数为“5点”;所以长方体底面上的点数之和是:4+1+5+2=12.故答案为:12.【点评】本题考查了正方体相对两个面上的文字,关键是弄清每个骰子六面点数之和是几,每个骰子看见面的点数之和是几.【过关检测】一.选择题(共4小题)1.(2022•河南三模)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“豫”字所在面相对的面上的汉字是()A.老B.南C.河D.家【分析】根据正方体的平面展开图找相对面的方法,同层隔一面判断即可.【解答】解:在原正方体中,与“豫”字所在面相对的面上的汉字是“家”,故选:D.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的平面展开图找相对面的方法是解题的关键.2.(2022•金坛区二模)某几何体的表面展开图如图所示,这个几何体是()A.圆柱B.长方体C.四棱锥D.五棱锥【分析】根据四棱锥的侧面展开图得出答案.【解答】解:这个几何体由四个三角形和一个正方形围成,故这个几何体为四棱锥.故选:C.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.3.(2022•梧州模拟)下列在立体图形中,它的侧面展开图是扇形的是()A.正方体B.长方体C.圆柱D.圆锥【分析】根据常见立体图形的侧面展开图判断即可得出答案.【解答】解:A选项,正方体的侧面展开图是长方形,故该选项不符合题意;B选项,长方体的侧面展开图是长方形,故该选项不符合题意;C选项,圆柱的侧面展开图是长方形,故该选项不符合题意;D选项,圆锥的侧面展开图是扇形,故该选项符合题意;故选:D.【点评】本题考查了几何体的展开图,掌握常见几何体的侧面展开图:①圆柱的侧面展开图是长方形.②圆锥的侧面展开图是扇形.③正方体的侧面展开图是长方形是解题的关键.4.(2022•丰台区二模)如图,下列水平放置的几何体中,侧面展开图是扇形的是()A.B.C.D.【分析】根据几何体的展开图:三棱柱的侧面展开图是三个长方形;四棱柱的侧面展开图是四个长方形;圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;可得答案.【解答】解:AB、侧面展开图是四个长方形,故此选项不符合题意;C、侧面展开图是一个长方形,故此选项不符合题意;D、侧面展开图是扇形,故此选项符合题意.故选:D.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题的关键.二.填空题(共3小题)5.(2022•晋中一模)“双奥之城”指既举办过夏季奥运会又举办过冬季奥运会的城市.2008年北京夏季奥会之后,2022年北京冬季奥运会成功举办,使北京成为世界上首座“双奥之城”.下列正方体展开图的每个面上都标有一个汉字,把它们折成正方体后,与“双”字相对面上的汉字是.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:与“双”字相对面上的汉字是城,故答案为:城.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.6.(2021秋•息县期末)根据表面展开图依次写出立体图形的名称:、、.【分析】根据表面展开图的形状判断即可.【解答】解:圆锥的表面展开图是一个扇形和圆,四棱锥的表面展开是一个四边形和四个三角形,三棱柱的表面展开是三个长方形和两个三角形.【点评】本题考查立体图形的表面展开,熟悉各几何体表面展开的形状是求解本题的关键.7.(2021秋•绵阳期末)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.三.解答题(共5小题)8.(2021秋•武功县期末)如图是正方体的平面展开图,若将图中的平面展开图折叠成正方体后,相对面上的两个数之和为7,求x﹣y+z的值.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面判断即可.【解答】解:由图可知:z与4相对,y与﹣2相对,x与12相对,由题意得:z+4=7,y+(﹣2)=7,x+12=7,∴z=3,y=9,x=﹣5,∴x﹣y+z=﹣5﹣9+3=﹣11,∴x﹣y+z的值为﹣11.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.9.(2021秋•临汾期末)阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置是;A.字母B B.字母A C.字母R D.字母T(2)若在图③中,网格中每个小正方形的边长为1,求包装盒的表面积.【分析】(1)根据长方体的表面展开图找相对面的方法,同层隔一面,判断即可;(2)根据长方体的表面积公式进行计算即可解答.【解答】解:(1)在图②中,若字母Q表示包装盒的上表面,字母P表示包装盒的侧面,则下表面在包装盒表面展开图中的位置:字母B,故答案为:A;(2)由题意得:2×3×2+2×3×1+2×2×1=12+6+4=22,∴包装盒的表面积为22.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据长方体的表面展开图找相对面的方法是解题的关键.10.(2021秋•渠县期末)如图,是底面为正方形的长方体的表面展开图,折叠成一个长方体,那么:(1)与N重合的点是哪几个?(2)若AB=3cm,AH=5cm,则该长方体的表面积和体积分别是多少?【分析】(1)把展开图折叠即可得出答案;。
高一数学空间几何体试题答案及解析
高一数学空间几何体试题答案及解析1.如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=8,BC=6,AB=2,E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC.(Ⅰ)当,是否在折叠后的AD上存在一点,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,说明理由;(Ⅱ)设BE=x,问当x为何值时,三棱锥A CDF的体积有最大值?并求出这个最大值.【答案】(1)存在点,;(2)当时,三棱锥的最大值.【解析】(1)与立体几何有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用空间中点、线、面的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点;(2)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;四是利用线面平行的定义,一般用反证法;(3)在求所列函数的最值时,若用基本不等式时,等号取不到时,可利用函数的单调性求解;(4)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.试题解析:解:(Ⅰ)假设存在使得满足条件CP∥平面ABEF在平面内过点作交于,在平面内作直线交于点,连结 3分∵∴ 4分∵5分又∴平面∥平面 6分又∵∴,故点就是所求的点 7分又∵∴ 8分(Ⅱ)因为平面ABEF平面EFDC,平面ABEF平面EFDC=EF,又AF EF,所以AF⊥平面EFDC 10分由已知BE=x,所以AF=x(),则FD=8x.∴ 12分故当且仅当,即=4时,等号成立所以,当=4时,有最大值,最大值为 14分解法二:故所以,当=4时,有最大值,最大值为 14分【考点】(1)探究性问题;(2)求体积的最大值.2.下图中的几何体是由哪个平面图形旋转得到的()【答案】A【解析】几何体的上半部分是一个圆锥,下半部分是一个圆台,故选A【考点】简单旋转体的概念3.一个正方体的顶点都在球面上,它的棱长为,则球的表面积是()A.B.C.D.【答案】B【解析】因为一个正方体的棱长为为2,则该正方体的对角线长为.又因为该正方体的顶点都在球面上,所以球的直径就是正方体的对角线,即球的半径.又因为球的表面积.故选B.【考点】1.球的内接正方体.2.球的表面积公式.3.长方体的对称性.4.若圆锥的表面积,侧面展开图的圆心角为,则该圆锥的体积为______.【答案】【解析】设该圆锥的底面圆的半径为,母线长为,因为侧面展开图的圆心角为,所以,因为圆锥的表面积,所以,所以该圆锥的体积为【考点】本小题主要考查圆锥的侧面积和表面积的关系以及圆锥的体积计算.点评:解决本题的关键是正确运用圆锥中相应的计算公式、圆锥的侧面展开图的关系等求出,进而求出圆锥的高,然后利用圆锥的体积公式计算体积.5.某高速公路收费站入口处的安全标识墩如图1所示。
专题27几何体的展开图最新中考真题精练(解析版)
专题27 几何体的展开图最新中考真题精练1.(2022·山东淄博·中考真题)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是()A.B.C.D.【答案】C【分析】根据正方体侧面上的字恰好环绕组成一个四字成语,即是正方体的表面展开图,相对的面之间一定相隔一个正方形,且有两组相对的面,根据这一特点作答.【详解】解∶由正方体的表面展开图,相对的面之间一定相隔一个正方形可知,A.“心”、“想”、“事”、“成”四个字没有相对的面,故不符合题意;B.“吉”、“祥”、“如”、“意”四个字没有相对的面,故不符合题意;C.“金”与“题”相对,“榜”、“名”是相对的面,故符合题意;D.“马”、“到”、“成”、“功”四个字没有相对的面,故不符合题意;故选∶C.【点睛】本题主要考查了正方体相对两个面上的文字,明确正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.2.(2022·江苏徐州·中考真题)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是()A.B.C.D.【答案】D【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.【详解】A项,2的对面是4,点数之和不为7,故A项错误;B项,2的对面是6,点数之和不为7,故B项错误;C项,2的对面是6,点数之和不为7,故C项错误;D项,1的对面是6,2的对面是5,3的对面是4,相对面的点数之和都为7,故D项正确;故选:D.【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.3.(2022·贵州六盘水·中考真题)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.①B.②C.③D.④【答案】A【分析】根据正方体展开图分析即可求解.【详解】根据正方体展开图分析,①的对面是⑤,不能裁掉①故选A【点睛】本题考查了正方体的表面展开图,理正方体的表面展开图的模型是解题的关键.正方体的表面展开图用‘口诀’:一线不过四,田凹应弃之,相间、Z端是对面,间二、拐角邻面知.4.(2022·山东枣庄·中考真题)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【答案】D【分析】根据正方体表面展开图相对面之间相隔一个正方形这一特点即可作答.【详解】在原正方体中,与“亮”字所在面相对的面上的汉字是:想,与“点”字所在面相对的面上的汉字是:春,与“青”字所在面相对的面上的汉字是:梦,故选:D.【点睛】本题主要考查了正方体的表面展开图,准确的找出每个面的相对面是解题的关键.5.(2022·湖南益阳·中考真题)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是( )A.1B.2C.3D.46.(2022·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高【答案】D【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.【详解】解:根据题意得:“盐”字所在面相对的面上的汉字是“高”,故选D【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.7.(2022·广东广州·中考真题)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】A【分析】由图可知展开侧面为扇形,则该几何体为圆锥.【详解】该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,故选:A.【点睛】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.8.(2022·江苏常州·中考真题)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【答案】D【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.9.(2022·四川内江·中考真题)如图是正方体的表面展开图,则与“话”字相对的字是( )A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.10.(2022·湖北恩施·中考真题)下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()A.“恩”B.“乡”C.“村”D.“兴”【答案】D【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.11.(2022·山东临沂·中考真题)如图所示的三棱柱的展开图不可能是()A.B.C.D.【答案】D【分析】三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个三角形的底面组成.从而可得答案.【详解】解:选项A、B、C均可能是该三棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.【点睛】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.12.(2022·江苏泰州·中考真题)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.13.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.14.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.15.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.16.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∴该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.17.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.18.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∴将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.19.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.20.(2022·四川广元·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.21.(2021·四川巴中·中考真题)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.【答案】A【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A.【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.22.(2021·广西百色·中考真题)下列展开图中,不是正方体展开图的是()A.B.C.D.【答案】D【分析】根据正方体的展开图特征解题.【详解】解:A.是正方体的展开图,故A不符合题意;B.是正方体的展开图,故B不符合题意;C.是正方体的展开图,故C不符合题意;D.不是正方体的展开图,故D符合题意,故选:D.【点睛】本题考查正方体的展开图,熟知正方体的11种展开图是解题关键.23.(2021·湖北荆门·中考真题)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是()A.传B.国C.承D.基【答案】D【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则:“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.(2021·辽宁大连·中考真题)某几何体的展开图如图所示,该几何体是( )A.B.C.D.【答案】D【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由该几何体的展开图可知该几何体是圆锥;故选D.【点睛】本题主要考查几何体的展开图,熟练掌握简单几何体的展开图是解题的关键.25.(2021·广东深圳·中考真题)如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年【答案】B【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“建”字相对的面上的汉字是“百”.故选B.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.26.(2021·广东·中考真题)下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.27.(2021·江苏扬州·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.28.(2021·浙江金华·中考真题)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D 选项中的图不是它的表面展开图;故选D .【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题29.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.三、解答题30.(2021·山东济宁·中考真题)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD A B C D -¢¢¢¢(图1).因为在平面AA C C ¢¢中,//CC AA ¢¢,AA ¢与AB 相交于点A ,所以直线AB 与AA ¢所成的BAA ¢Ð就是既不相交也不平行的两条直线AB 与CC ¢所成的角.解决问题如图1,已知正方体ABCD A B C D -¢¢¢¢,求既不相交也不平行的两条直线BA ¢与AC 所成角的大小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ;②在所选正确展开图中,若点M 到AB ,BC 的距离分别是2和5,点N 到BD ,BC 的距离分别是4和3,P 是AB 上一动点,求PM PN +的最小值.【答案】(1)60°;(2)①丙;②10【分析】(1)连接BC ¢,则A BC ¢¢△为等边三角形,即可求得既不相交也不平行的两条直线BA ¢与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ¢,∵//AC A C ¢¢,BA ¢与A C ¢¢相交与点A ¢,即既不相交也不平行的两条直线BA ¢与AC 所成角为BA C ¢¢Ð,根据正方体性质可得:A B BC A C ¢¢¢¢==,∴A BC ¢¢△为等边三角形,∴=60BA C ¢¢Ð°,即既不相交也不平行的两条直线BA ¢与AC 所成角为60°;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ¢,连接NM ¢,与AB 交于点P ,连接MP ,则PM PN PN PM NM ¢¢+=+=,过点N 作BC 垂线,并延长与M M ¢交于点E ,。
教案分享:五年级下册数学3.2长方体和正方体平面展开图
教案分享:五年级下册数学3.2长方体和正方体平面展开图作为数学教师,我们要不断学习和提高自己,不断探索新的教学方法,让学生在轻松、愉快的氛围中学到知识,提高数学素养。
本文将分享五年级下册数学3.2长方体和正方体平面展开图的教学方法与技巧,并从教材、课堂实践两个方面进行详细阐述。
希望本文可以给广大老师们带来一些启示,提高教学效果。
一、教材解析本节课的主题是“长方体和正方体平面展开图”。
长方体和正方体是我们生活中经常见到的几何体,对于学生而言,了解和掌握这两种几何体的平面展开图是非常重要的。
在教学中,我们应该先引导学生认识长方体和正方体的定义和特点,进而掌握它们的平面展开图,并了解这两种几何体的性质与应用。
我们需要让学生能够通过平面展开图还原出原来的立体图形。
以正方体为例,将正方体的六个面展开成一个平面图,让学生自己将其还原成原来的立体图形。
这个过程有助于学生理解平面图和立体图上形状的对应关系,并提高学生的空间想象能力。
我们需要让学生了解长方体和正方体的性质和应用。
例如,学生应该了解长方体有八个顶点、十二条棱和六个面,而正方体有八个顶点、十二条棱和六个面,其中每个面都是正方形;学生也应该能够应用这些性质来解决与长方体和正方体有关的问题。
在教学中,我们还需要让学生掌握长方体和正方体的表达式。
例如,长方体的体积可以表示为“V = l × w × h”,其中“l”、“w”和“h”分别为长方体的长、宽和高;而正方体的体积可以表示为“V = a^3”,其中“a”为正方体的边长。
学生应该掌握这些表达式,并能够应用它们来解决与长方体和正方体有关的题目。
二、课堂实践在课堂教学中,我们应该采用多种教学方法,如讲授、演示、练习等,以便让学生更好地理解和掌握知识。
以下是一些有效的教学方法和技巧,可供参考。
1. 演示平面展开图让学生看到长方体和正方体的平面展开图,特别是让学生自己动手将平面展开图还原成立体图形。
正方体的平面展开图
看 得见 的7个 面上 的数字 的和为 :1+2+3+5+4+
面 ,下 面能 由它 折 叠 而 成 的 是 ( )
6+3=24;
所 以,看不见的面上 的点数总和是63—24=39。
旬
故选 C。 点评 :本题考查 了正方体相对面上的文 字 ,利用
A
B
C
D
整体思想 ,把所有的面分成看得见 的面与看不见的
对 面 是 “利 ”,“祝 ”的对 面 是 “顺 ”。 故 选 C。
1到6,其 中可 以看见7个 面 ,其余 11个面 是 看不 见 的 ,则 看 不 见 的面 上 的 点 数 总
点评 :本题主要 考查 了正方体相对两个面上 的 和 是 ( )
文字 ,注 意正方 体的空间 图形 ,从相对 面人手 ,分析
二 、中考 题 型
同
D.展开得到[ ,不能和原图相对应,故本选
1.识 别 所 给 的 图 形是 否是 正方 体 的 平 面 展 开 图 项 错 误 。
例1 (2011.呼和浩特 )将如 图所示表面带有 图
故 选 B。
案的正方体 沿某些棱展开后 ,得 到的图形是 ( )
点评 :本题 考查 了展开 图折叠成几何体 ,熟悉其
A.a=lb=5
B.a=5b=l
C. 】16=5
D.a=5b:11
分析 :这是 一个正方体 的平 面展开 图,共有6个
面 ,其 中面“8”与 面“。”相对 ,面 "-6”与面“15”相对 , “6”与 面 “4”相 对 。又 因为 相对 两个 面上 所 写 的 两 个
整数之和都相等 ,且一6+15=9,所 以。+8=9,b+4=9,解
立体图形的表面展开图例题与讲解
立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
华师大七年级上43立体图形的展开图2同步练习含答案解析
2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.64.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()A.创B.教C.强D.市20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= ,b= ,c= .26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.2019年华师大版七年级数学上册同步测试:4.3 立体图形的展开图(02)参考答案与试题解析一、选择题(共21小题)1.一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是()A.建B.设C.和D.谐【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“和”与“岳”是相对面,“建”与“阳”是相对面,“谐”与“设”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“伟”与面“国”相对,面“大”与面“中”相对,“的”与面“梦”相对.故选D.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1 B.4 C.5 D.6【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“2”与“4”是相对面,“3”与“5”是相对面,“1”与“6”是相对面.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面上的字是()A.美B.丽C.家D.园【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“共”与“园”是相对面,“建”与“丽”是相对面,“美”与“家”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的特点得出其中上面的和下面的是相对的2个面,即可得出正方体中与“建”字所在的面相对的面上标的字是“南”.【解答】解:由正方体的展开图特点可得:“建”和“南”相对;“设”和“丽”相对;“美”和“云”相对;故选D.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.6.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是()A.中B.钓C.鱼D.岛【考点】专题:正方体相对两个面上的文字.【专题】常规题型.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“国”字相对的字是“鱼”.故选:C.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中和“值”字相对的字是()A.记B.观C.心D.间【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“值”字相对的字是“记”.故选:A.【点评】本题考查了正方体相对的两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有()A.1种B.2种C.3种D.6种【考点】专题:正方体相对两个面上的文字.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况.【解答】解:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选:C.【点评】此题考查了正方体相对两个面上的数字,解决本题的关键是明确1~6中偶数有2,4,6三个.9.如图是正方体的一个平面展开图,原正方体上两个“我”字所在面的位置关系是()A.相对B.相邻C.相隔D.重合【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“国”是相对面,“我”与“祖”是相对面,“爱”与“的”是相对面.故原正方体上两个“我”字所在面的位置关系是相邻.故选B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美【考点】专题:正方体相对两个面上的文字.【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.【点评】本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键.11.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.12.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“力”是相对面,“爱”与“辽”是相对面,“魅”与“宁”是相对面.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【考点】专题:正方体相对两个面上的文字.【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B.C.D.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,A、“油”与“子”是相对面,故本选项错误;B、“芦”与“子”是相对面,故本选项错误;C、“芦”与“子”是相对面,故本选项错误;D、“芦”与“学”是相对面,“山”与“子”想相对面,“加”与“油”是相对面,故本选项正确.故选D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.17.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.18.右图是正方体的平面展开图,每个面上标有一个汉字,与“考”字相对的字是()A.祝B.你C.成D.功【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“祝”字相对的字是“试”字,“考”字相对的字是“成”字,“你”字相对的字是“功”字.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是()【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“建”与“强”是相对面.故选C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是()A.0 B.2 C.数D.学【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“数”相对的字是“1”;“学”相对的字是“2”;“5”相对的字是“0”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题(共5小题)22.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱①③④(写出所有正确结果的序号).【考点】截一个几何体.【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形.【解答】解:①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个.故答案为:①③④.【点评】本题考查几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.23.如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“力”与“城”是相对面,“香”与“泉”是相对面,“魅”与“都”是相对面.故答案为泉.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是3 .【考点】专题:正方体相对两个面上的文字;规律型:图形的变化类.【专题】规律型.【分析】观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.【解答】解:观察图形知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2019÷4=503…2,∴滚动第2019次后与第二次相同,∴朝下的点数为3,故答案为:3.【点评】本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.25.在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a= 6 ,b= 2 ,c= 4 .【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的展开图的特点,找到向对面,再由相对面上的数字之和相等,可得出a、b、c的值.【解答】解:1与a相对,5与b相对,3与c相对,∵1+a=5+b=3+c,六个面上的数字为分别1,2,3,4,5,6∴a=6,b=2,c=4;故答案为:6,2,4.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.26.以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是(1)(3).【考点】展开图折叠成几何体.【专题】压轴题.【分析】由平面图形的折叠及三棱锥的展开图解题.【解答】解:只有图(1)、图(3)能够折叠围成一个三棱锥.故答案为:(1)(3).【点评】本题考查了展开图折叠成几何体的知识,属于基础题型.。
几何体展开图的制作及注意事项教案
几何体展开图的制作及注意事项教案一、教学目标:1. 让学生掌握常见几何体的展开图样式及特点。
2. 培养学生动手操作能力,能独立制作出各种几何体的展开图。
3. 培养学生空间想象力,理解几何体展开图与实际几何体的关系。
4. 培养学生学会观察、分析、总结的能力,能够发现并解决几何体展开图制作过程中的问题。
二、教学内容:1. 了解几何体的展开图概念,理解展开图是将几何体表面展开成平面图形的过程。
2. 学习常见几何体的展开图样式,如:正方体、长方体、圆柱体、圆锥体等。
3. 掌握展开图的制作步骤,包括:选择合适的视图、画出几何体的边界线、连接边界线、填充内部区域等。
4. 学习展开图的注意事项,如:保持展开图的完整性、避免出现重叠和遗漏、保持展开图与实际几何体的对应关系等。
三、教学重点与难点:1. 重点:常见几何体的展开图样式及制作步骤。
2. 难点:展开图的注意事项,特别是在制作复杂几何体展开图时,如何保持其完整性和准确性。
四、教学方法:1. 采用讲授法,讲解几何体展开图的概念、制作步骤及注意事项。
2. 采用示范法,展示不同几何体的展开图制作过程,让学生直观地理解展开图的制作方法。
3. 采用实践法,让学生动手制作各种几何体的展开图,巩固所学知识。
4. 采用讨论法,引导学生总结制作展开图时的经验和技巧,互相交流学习。
五、教学准备:1. 准备几何体模型,如:正方体、长方体、圆柱体、圆锥体等,以便让学生直观地观察和理解。
2. 准备展开图制作工具,如:直尺、剪刀、胶水等。
3. 准备展开图示例,以便让学生参考和模仿。
4. 准备练习题,以便让学生在课后巩固所学知识。
六、教学过程:1. 导入:通过展示几何体模型,引导学生回顾几何体的相关知识,为新课的学习做好铺垫。
2. 讲解:讲解几何体展开图的概念,介绍常见几何体的展开图样式及特点。
3. 示范:展示不同几何体的展开图制作过程,让学生直观地理解展开图的制作方法。
4. 实践:让学生动手制作各种几何体的展开图,教师巡回指导,解答学生疑问。
勾股定理与平面展开图—最短路径问题教学设计-人教版八年级数学下册(2)
教学设计授课教师单位授课时间课题勾股定理与平面展开图—最短路径问题教材版本人教版课型专题课教学目标1. 能把几何体表面展开成平面图形,找到最短路径。
2. 通过展开图形,构建直角三角形,运用勾股定理求出最短路径。
教学重点勾股定理来解决最短路径问题教学难点正方体长方体展开后有多条路线及如何分类观察从而归纳整理教法讲授法、讨论法、演示法(几何画板)学法合作探究学习教学准备制作正方体、长方体、圆柱等教具.教学过程设计意图复习引入1.有一只闯荡几何世界的蚂蚁,它想从点A到点B处吃食物,蚂蚁怎样走最近,为什么?两点之间,线段最短.2.在几何体不同平面上的两点如何寻找最短路径?带着问题我们来学习:勾股定理与平面展开图—最短路径问题活动一、圆柱中的最短路径问题例1 如图,一圆柱底面周长为6cm,高为4cm,一只蚂蚁从点A爬到对角的点B处吃食物,想一想,蚂蚁怎么走最近?最短路程是多少?(学生独立思考,举手回答,教师板演)C用“小蚂蚁”的问题引起学生兴趣,复习“两点之间,线段最短”并思考不同平面上的两点如何确定最短路径,从而引出课题。
解:如图将圆柱侧面展开,由题意得AC =4,BC =3 在Rt △ABC 中,∠ACB=90°∴ AB ==+22AB AC 53422=+ 答:蚂蚁爬行的最短路程是5cm. 练习1.有一圆形油罐底面圆的周长为6m ,高为4m ,一只蚂蚁从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为 米.2. 如图,有一圆柱油罐,已知油罐的底面圆的直径是4米,高是5米,要从点A 起环绕油罐建梯子,梯子的顶端正好到达点A 的正上方点B ,则梯子最短需 米.(π取3)归纳:求立体图形中最短路径的一般步骤:1. 展 立体—平面2. 找 起点、终点3. 连 两点之间,线段最短。
4. 求 勾股定理5. 答 答题活动二、正方体中的最短路径问题例2 如图,是棱长为1的正方体,蚂蚁从点A 到点B 处吃食物,问怎样爬行路径最短,最短路程是多少?它有几种最短爬行方法?(注:每个面均能爬行)(学生准备正方体,小组探究蚂蚁爬行的最短路线,由小组代表展讲)活动三、长方体中的最短路径问题通过学生的合作探究,先确定最短路径。
《几何图形初步》全章知识讲解
《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩主(正)视图----------从正面看几何体的三视图左视图----------------从左边看俯视图----------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线。
立方体平面展开图
展开图的连续性
总结词
立方体平面展开图的连续性是指其展开过程中各部分之间的连续变化,即各部分之间没有明显的断裂 或间隙。
详细描述
在立方体平面展开图中,各面之间的展开和折叠应保持连续,没有突然的转折或跳变。这种连续性保 证了展开图在折叠回立方体时能够平滑过渡,不会产生突兀的形状或结构。
展开图的稳定性
02
立方体的平面展开方式
展开图的定义
01
展开图是将立体几何图形沿着某 些棱或面进行切割,将其展开成 平面图形的过程。
02
立方体的平面展开图是指将一个 立方体切割并展开成平面图形的 结果。
展开图的种类
11种
立方体的平面展开图有11种基本 类型,包括“一”字型、“L”型 、“T”型、“十”字型、“凹” 字型等。
03
立方体平面展开图的特 性
展开图的对称性
总结词
立方体平面展开图的对称性是指其展开后的图形具有对称的特点,即图形在折叠 回立方体后能够完全恢复原状。
详细描述
立方体平面展开图的对称性主要表现在其展开后的图形具有轴对称、中心对称或 旋转对称等特性。这些对称性使得展开图在折叠回立方体时能够准确还原,确保 了立方体的完整性。
在建筑设计中的应用
01
02
03
建筑设计参考
立方体平面展开图可以为 建筑设计提供参考,帮助 设计师更好地理解建筑的 空间结构和立体感。
施工图绘制
在建筑施工过程中,立方 体平面展开图可以作为施 工图绘制的基础,为施工 提供准确的指导。
建筑模型制作
利用立方体平面展开图, 可以制作出精确的建筑模 型,用于展示和推敲设计 方案。
立方体的性质
总结词
立方体具有空间对称性、平行性和垂直性等性质。
立体图形的展开图
THANK YOU
汇报人:XXX
添加标题
正方体的展开图可以通过折叠、剪裁等方式制作出来,也可以使用计算机软件进行设计
添加标题
正方体的展开图在工程、建筑、设计等领域有着广泛的应用,例如:在工程领域,可以 用于制作模型、结构设计等;在建筑领域,可以用于制作建筑模型、室内设计等
长方体的展开图
长方体的展开图有11种 常见的展开图有:长方形、正方形、三角形、梯形等 展开图的特点:每个面都是长方形或正方形 展开图的应用:用于包装、建筑、家具等领域
添加副标题
立体图形的展开图
汇报人:XXX
目录
PART One
立体图形的展开图 概念
PART Three
立体图形展开图的 绘制步骤
PART Five
立体图形展开图的 应用
PART Two
立体图形的展开图 类型
PART Four
立体图形展开图的 绘制技巧
立体图形的展开图 概念
展开图的定义
立体图形的展开图是指将立体图形展开成平面图形的过程
立体图形展开图可以帮助设计师确 定机械结构的受力情况,从而更好 地进行强度分析和优化设计。
在科学研究中的应用
立体图形展开图在数学、物理、化学等领域的研究中具有重要应用价值。
在数学中,立体图形展开图可以用于研究几何体的性质和结构,如体积、表面积、对称性等。
在物理中,立体图形展开图可以用于研究物体的运动和力,如力学、光学、电磁学等。
绘制展开图:根据验证结果,绘制立体图形的展开图,注意线条的流畅性和准确性。
检查和修改:绘制完成后,对展开图进行检查和修改,确保其符合立体图形的性质和特点。
基本几何体的平面展开图课后综合练习九年级数学下册
基本几何体的平面展开图课后综合练习一、单选题1、下列图形中,不可以作为一个正方体的表面展开图的是A.B.C.D.2、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神3、下列图形中,哪一个是圆锥的侧面展开图?()A.B.C.D.4、把下列图标折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你C.顺D.利5、数学是研究数量关系和空间形式的科学.数学是人类文化的重要组成部分,数学素养是现代社会每个公民应该具有的基本素养.一个正方体盒子,每个面上分别写一个字,一共有“数学核心素养”六个字,如图是这个正方体盒子的平面展开图,那么“素”字对面的字是()A.核B.心C.学D.数6、下面哪个图形经过折叠后可以围成一个正方体()A.B.C.D.7、下列图形中,不是正方体表面展开图的是()A.B.C.D.8、如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.49、如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.OC=.则这个圆锥的侧面展开后扇形的10、如图,圆锥的底面半径3cmOB=,高4cm圆心角是()A.108︒B.120︒C.180︒D.216︒二、填空题BC=,D为BC的中点,一只蚂蚁从点A出1、如图,一个底面半径为3的圆锥,母线9发,沿着圆锥的侧面爬行到D,则蚂蚁爬行的最短路程为______.cm cm cm,若将它沿棱剪开,展成一个平面图2、长方体纸盒的长、宽、高分别是10,8,5形那么这个平面图形的周长的最小值是_______cm.3、已知圆锥的底面半径为1cm,母线长为3cm,则这个圆锥的侧面积是______.4、下图是某个几何体的展开图,该几何体是________.5、如图,一个正方体的六个面分别写着六个连续的整数,且相对面上的两个整数的和都相等,将这个正方体放在桌面,将其以如图所示的方式滚动,每滚动90°算一次,请问滚动2023次后,正方体贴在桌面一面的数字是______.+= 6、如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之积为12,则x y ______.7、如图所示,是三棱柱的表面展开示意图,则AB=_____,BC=_____,CD=_____,BD=_____,AE=_____.8、下面是一个正方体的展开图,图中已标出三个面在正方体中的位置,E表示前面,F 表示右面,D表示上面,则A表示________,B表示_____,C表示______.三、解答题1、如图所示,是一个长方体纸盒平面展开图,已知纸盒中相对两个面上的数互为相反数.求a,b,c的值?2、我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是(单选);A.B.C.D.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列平面图形中,可能是该长方体表面展开图的有(多选)(填序号);(3)下图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,请聪明的你写出该长方体表面展开图的最大外围周长为.3、马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如下图所示拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(添加所有符合要求的正方形,添加的正方形用阴影表示)4、如图,是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看长方形的高为3cm,从上面看三角形的边长为2cm,求这个几何体的侧面积.5、研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角. 例如,正方体ABCD A B C D -''''(图1).因为在平面AA C C ''中,//CC AA '',AA '与AB 相交于点A ,所以直线AB 与AA '所成的BAA '∠就是既不相交也不平行的两条直线AB 与CC '所成的角.解决问题如图1,已知正方体ABCD A B C D -'''',求既不相交也不平行的两条直线BA '与AC 所成角的大小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ; ②在所选正确展开图中,若点M 到AB ,BC 的距离分别是2和5,点N 到BD ,BC 的距离分别是4和3,P 是AB 上一动点,求PM PN +的最小值.6、已知长方形的长为5cm,宽为4cm,将其绕它的一边所在的直线旋转一周,得到一个立体图形.(1)得到的几何图形的名称为,这个现象用数学知识解释为.(2)求此几何体的表面积;(结果保留π)(3)求此几何体的体积.(结果保留π)。
2019-2020学年新教材人教A版高中数学必修第二册课件:第八章 8.1 基本立体图形
【解析】 选项A错,反例如图8-1-4;一个多面体至少有四 个面,如三棱锥有四个面,不存在只有三个面的多面体,所 以选项B错;选项C错,上、下底面是全等的菱形,各侧面是 全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.
图8-1-4 【答案】 D
训练题1 1下列三个命题中,正确的有 ( ) ①棱柱中互相平行的两个面叫做棱柱的底面;②有两 个面互相平行,其余四个面都是等腰梯形的六面体是 棱台;③四棱锥有4个顶点. A.0个 B.1个 C.2个 D.3个
圆台;
③半圆绕其直径所在的直线旋转一周所形成的曲面是球;
④用一个平面去截圆锥,得到一个圆锥和一个圆台.
A.0
B.1
C.2
D.3
2.A 解析:①错误,应以直角三角形的一条直角边所在直线 为轴;(2)错误,应以直角梯形的垂直于底边的腰所在直线为轴; ③错误,应把“球”改成“球面”;④错误,应是用一个与底 面平行的平面去截圆锥.
图8-1-2
(2)表示:棱锥用表示顶点和底面各顶点的字母来表示, 如图8-1-2中的棱锥记作棱锥S-ABCD. (3)分类:棱锥的底面可以是三角形、四边形、五边 形……,我们把这样的棱锥分别叫做三棱锥、四棱锥、五棱 锥……,其中三棱锥又叫四面体.底面是正多边形,并且顶 点与底面中心的连线垂直于底面的棱锥叫做正棱锥.
相关概念: 球心:半圆的圆心 半径:连接球心和球面上任意一点的线段叫做球的半径 直径:连接球面上两点并且经过球心的线段叫做球的直 图中的球表示为:球O 径(即半圆的直径).
空间几何体在结构上的相同点和不同点及联系
相同点
不同点
联系
棱柱 都由平面多边 、棱 形围成,都有 锥、 底面,且底面 棱台 都是多边形
8.1-第1课时棱柱、棱锥、棱台的结构特征(习题)-高一下学期人教A版(2019)必修第二册课件
底面(底):多边形 按 底 面 面.
各面都是有一个
侧面:有公共顶点 多 边 形
公共顶点的
的各个三角形面.的 边 数
__三__角__形__ , 由这
如图可记作:棱锥
侧棱:相邻侧面的 公共边.
分:三棱 锥、四棱
些面所围成的多 S-ABCD
顶点:各侧面的公 锥……
面体叫做棱锥
共顶点
多面体 定义
图形及表示
2.下列图形经过折叠可以围成一个棱柱的是
()
【答案】D 【解析】A,B,C中底面图形的边数与侧面的个数不一致,故不能 围成棱柱.故选D.
3.下列几何体中,________是棱柱,________是棱锥,________ 是棱台.(仅填相应序号)
【答案】①③④ ⑥ ⑤ 【解析】结合棱柱、棱锥和棱台的定义可知①③④是棱柱,⑥是棱 锥,⑤是棱台.
①若延 A1B1 展开,使面 AB1 与面 A1C1 共面,可求得 AC1= 42+5+32= 80=4 5.
②若延 BC 展开,使面 AC 与面 BC1 共面,可求得 AC1 = 32+5+42= 90=3 10.
③若延 BB1 展开,使面 BC1 与面 AB1 共面,可求得 AC1= 4+32+52 = 74.
A′B′C.
图1
图2
题型2 棱锥、棱台的结构特征 下列关于棱锥、棱台的说法:
①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图 形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是________. 素养点睛:本题考查了直观想象的核心素养.
【答案】①② 【解析】①正确,棱台的侧面一定是梯形,而不是平行四边形;② 正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四 棱锥被平面截成的两部分都是棱锥.
2021届高考数学 8.1空间几何体的三视图、直观图、表面积与体积配套文档 理
§8.1空间几何体的三视图、直观图、表面积与体积1.多面体的结构特点2.3.空间几何体的直观图经常使用斜二测画法来画,其规那么:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中维持原长度不变,平行于y轴的线段长度在直观图中长度为原先的一半.4.空间几何体的三视图(1)三视图的主视图、俯视图、左视图别离是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.(2)三视图的特点:三视图知足“长对正、高平齐、宽相等”或说“主左一样高、主俯一样长、俯左一样宽”.5.柱、锥、台和球的侧面积和体积1. (1)有两个面平行,其余各面都是平行四边形的几何体是棱柱. ( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,假设∠A 的两边别离平行于x 轴和y 轴,且∠A =90°,那么在直观图中,∠A =45°.( × ) (4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × ) (5)圆柱的侧面展开图是矩形.( √ ) (6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2. (2021·四川)一个几何体的三视图如下图,那么该几何体的直观图能够是 ( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3. (2021·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,若是不计容器的厚度,那么球的体积为( )A.500π3cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图象如下图,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5, 因此V =43πR 3=500π3. 4. 一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,因此原三角形的面积为62.5. 假设一个圆锥的侧面展开图是面积为2π的半圆面,那么该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一 空间几何体的结构特点 例1 (1)以下说法正确的选项是( )A .有两个平面相互平行,其余各面都是平行四边形的多面体是棱柱B .四棱锥的四个侧面都能够是直角三角形C .有两个平面相互平行,其余各面都是梯形的多面体是棱台D .棱台的各侧棱延长后不必然交于一点 (2)给出以下命题:①在圆柱的上、下底面的圆周上各取一点,那么这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面能够不相似,但侧棱长必然相等. 其中正确命题的个数是( )A .0B .1C .2D .3思维启发 从多面体、旋转体的概念入手,能够借助实例或几何模型明白得几何体的结构特点. 答案 (1)B (2)A解析 (1)A 错,如图1;B 正确,如图2,其中底面ABCD 是矩形,可证明∠PAB ,∠PCB 都是直角,如此四个侧面都是直角三角形;C 错,如图3;D 错,由棱台的概念知,其侧棱必相交于同一点.(2)①不必然,只有这两点的连线平行于轴时才是母线;②不必然,因为“其余各面都是三角形”并非等价于“其余各面都是有一个公共极点的三角形”,如图1所示;③不必然,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,可是侧棱长不必然相等. 思维升华 (1)有两个面相互平行,其余各面都是平行四边形的几何体不必然是棱柱. (2)既然棱台是由棱锥概念的,因此在解决棱台问题时,要注意“还台为锥”的解题策略. (3)旋转体的形成不仅要看由何种图形旋转取得,还要看旋转轴是哪条直线.如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,那么在正方体盒子中,∠ABC 的值为 ( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如下图,连接AB ,BC ,AC ,可得△ABC 是正三角形,那么∠ABC =60°. 题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,那么该几何体的俯视图能够是( )(2)正三角形AOB 的边长为a ,成立如下图的直角坐标系xOy ,那么它的直观图的面积是________.思维启发 (1)由主视图和左视图可知该几何体的高是1,由体积是12可求出底面积.由底面积的大小可判定其俯视图是哪个.(2)依照直观图画法规那么确信平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,应选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一样在已知图形中成立直角坐标系,尽可能运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.(1)(2021·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,那么该正方体的主视图的面积不可能等于( )A .1 B.2 C.2-12D.2+12(2)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,那么原图形是 ( ) A .正方形 B .矩形C .菱形D .一样的平行四边形答案 (1)C (2)C解析 (1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.(2)如图,在原图形OABC 中, 应有OD =2O ′D ′=2×22=42 cm ,CD =C ′D ′=2 cm.∴OC =OD 2+CD 2=422+22=6 cm ,∴OA =OC ,故四边形OABC 是菱形. 题型三 空间几何体的表面积与体积例3 (1)一个空间几何体的三视图如下图,那么该几何体的表面积为 ( )A .48B .32+817C .48+817D .80(2)已知某几何体的三视图如下图,其中主视图、左视图均由直角三角形与半圆组成,俯视图由圆与内接三角形组成,依照图中的数据可得几何体的体积为 ( ) A.2π3+12B.4π3+16 C.2π6+16D.2π3+12思维启发 先由三视图确信几何体的组成及气宇,然后求表面积或体积. 答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如下图,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.因此S表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确信该几何体是一个半球体与三棱锥组成的组合体,如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1,故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,因此三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt△ABC 是半球底面的内接三角形,因此球的直径2R =BC =2,解得R =22,因此半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.思维升华 解决此类问题需先由三视图确信几何体的结构特点,判定是不是为组合体,由哪些简单几何体组成,并准确判定这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积.(2021·课标全国)已知三棱锥S -ABC 的所有极点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,那么此棱锥的体积为 ( ) A.26 B.36 C.23 D.22答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,因此三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如下图, S △ABC =34×AB 2=34,高OD = 12-⎝ ⎛⎭⎪⎪⎫332=63, ∴V S -ABC =2V O -ABC =2×13×34×63=26.转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿 棱柱侧面通过棱CC ′到M 的最短线路长为29,设这条最短线路与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长;(3)三棱锥C —MNP 的体积.思维启发 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现如何的形式;(3)三棱锥以谁做底好. 标准解答解 (1)该三棱柱的侧面展开图为一边长别离为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如以下图,设PC =x ,那么MP 2=MA 2+(AC +x )2. ∵MP =29,MA =2,AC =3,∴x =2,即PC =2.又NC ∥AM ,故PC PA =NCAM ,即25=NC 2.∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离, 即h =32×3=332.∴V C —MNP =V M —PCN =13·h ·S △PCN=13×332×45=235.[12分] 温馨提示 (1)解决空间几何体表面上的最值问题的全然思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)若是已知的空间几何体是多面体,那么依照问题的具体情形能够将那个多面体沿多面体中某条棱或两个面的交线展开,把不在一个平面上的问题转化到一个平面上.若是是圆柱、圆锥那么可沿母线展开,把曲面上的问题转化为平面上的问题.(3)此题的易错点是,不明白从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方式与技术1.棱柱、棱锥要把握各部份的结构特点,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.3.三视图画法:(1)实虚线的画法:分界限和可见轮廓线用实线,看不见的轮廓线用虚线;(2)明白得“长对正、宽平齐、高相等”.4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规那么的几何体通过度割或补形将其转化为规那么的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确信有关元素间的数量关系,并作出适合的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的极点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体能够看成是由锥体截得的,但必然强调截面与底面平行.2.注意空间几何体的不同放置对三视图的阻碍.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时刻:40分钟)一、选择题1.正五棱柱中,不同在任何侧面且不同在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A.20 B.15C.12 D.10答案D解析如图,在正五棱柱ABCDE-A1B1C1D1E1中,从极点A动身的对角线有两条:AC1,AD1,同理从B,C,D,E点动身的对角线均有两条,共2×5=10(条).2.(2021·福建)一个几何体的三视图形状都相同、大小均相等,那么那个几何体不能够是( )A .球B .三棱锥C .正方体D .圆柱答案 D解析 考虑选项中几何体的三视图的形状、大小,分析可得. 球、正方体的三视图形状都相同、大小均相等,第一排除选项A 和C. 关于如下图三棱锥O -ABC ,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都可不能完全相同, 故答案选D.3. (2021·重庆)某几何体的三视图如下图,那么该几何体的体积为( )A.5603B.5803 C .200 D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =2+8×42=20.又棱柱的高为10,因此体积V =Sh =20×10=200.4. 如图是一个物体的三视图,那么此三视图所描述物体的直观图是( ) 答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5. 某几何体的三视图如下图,其中俯视图是个半圆,那么该几何体的表面积为( )A.32π B .π+3C.32π+ 3D.52π+3答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.二、填空题6. 如下图,E 、F 别离为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,那么四边形BFD 1E 在该正方体的面DCC 1D 1上的正投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的正投影为②:B 在面DCC 1D 1上的正投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7. 已知三棱锥A —BCD 的所有棱长都为2,那么该三棱锥的外接球的表面积为________. 答案 3π 解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,因此正方体ANDM —FBEC 的棱长为1.因此该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球确实是正方体ANDM —FBEC 的外接球,因此三棱锥A —BCD 的外接球的半径为32.因此三棱锥A —BCD 的外接球的表面积为S 球=4π⎝ ⎛⎭⎪⎪⎫322=3π. 8. (2021·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 别离是AB ,AC ,AA 1的中点,设三棱锥F -ADE的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,那么V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝ ⎛⎭⎪⎫12AD ·AE ·sin∠DAE 2h 122AD 2AE sin∠DAE=124. 三、解答题9.一个几何体的三视图及其相关数据如下图,求那个几何体的表面积.解 那个几何体是一个圆台被轴截面割出来的一半.依照图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故那个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个正三棱台的两底面边长别离为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如下图,三棱台ABC —A 1B 1C 1中,O 、O 1别离为两底面中心,D 、D 1别离为BC和B 1C 1的中点,那么DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中,O 1O =DD 21-OD -O 1D 12=43,因此棱台的高为4 3 cm. B 组 专项能力提升(时刻:30分钟)1. 在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为( )A.25VB.13VC.23VD.310V 答案 D解析 设点B 到平面EMC 的距离为h 1,点D 到平面EMC 的距离为h 2.连接MD .因为M 是AE 的中点,因此V M —ABCD =12V . 因此V E —MBC =12V -V E —MDC . 而V E —MBC =V B —EMC ,V E —MDC =V D —EMC ,因此V E —MBCV E —MDC =V B —EMC V D —EMC =h 1h 2.因为B ,D 到平面EMC 的距离即为到平面EAC 的距离,而AB ∥CD ,且2AB =3CD ,因此h 1h 2=32. 因此V E —MBC =V M -EBC =310V .2. 某三棱锥的三视图如下图,该三棱锥的表面积是( ) A .28+6 5 B .30+65C .56+125 D .60+125 答案 B 解析 由几何体的三视图可知,该三棱锥的直观图如下图,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,因此AC =41且S △ACD =10.在Rt△ABE 中,AE =4,BE =2,故AB =25. 在Rt△BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+65. 3. 表面积为3π的圆锥,它的侧面展开图是一个半圆,那么该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .那么12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4. 如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)依照图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2.(2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD ,因此在Rt△APD 中,PA =PD 2+AD 2=622+62=6 3 cm.5. 在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,PD ⊥底面ABCD ,且PD =a ,PA =PC =2a ,假设在那个四棱锥内放一球,求此球的最大半径.解 当球内切于四棱锥,即与四棱锥各面均相切时球半径最大,设球的半径为r ,球心为O ,连接OP 、OA 、OB 、OC 、OD ,那么把此四棱锥分割成四个三棱锥和一个四棱锥,这些小棱锥的高都是r ,底面别离为原四棱锥的侧面和底面,则V P -ABCD =13r (S △PAB +S △PBC +S △PCD +S △PAD +S 正方形ABCD )=13r (2+2)a 2.由题意,知PD ⊥底面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PD =13a 3. 由体积相等, 得13r (2+2)a 2=13a 3,解得r =12(2-2)a .。
学案7:§1.1 第1课时 棱柱、棱锥、棱台的结构特征
§1.1第1课时棱柱、棱锥、棱台的结构特征学习目标1.掌握柱、锥、台、球的结构特征,学会观察、分析图形,提高空间想象能力和几何直观能力.2.能够描述现实生活中简单物体的结构,学会建立几何模型研究空间图形,培养数学建模的思想.学习重点:柱、锥、台、球的结构特征.学习难点:归纳柱、锥、台、球的结构特征.知识梳理一、空间几何体1.概念:如果只考虑物体的________和________,而不考虑其他因素,那么由这些物体抽象出来的__________叫做空间几何体.2.多面体与旋转体(1)多面体:由若干个___________围成的几何体叫做多面体(如图),围成多面体的各个多边形叫做多面体的_____;相邻两个面的________叫做多面体的棱;棱与棱的________叫做多面体的顶点.(2)旋转体:我们把由一个平面图形绕它所在平面内的一条定________旋转所形成的___________叫做旋转体,这条定直线叫做旋转体的轴.归纳总结对多面体概念的理解,注意以下几个方面:(1)多面体是由平面多边形围成的,不是由圆面或其它曲面围成,也不是由空间多边形围成.(2)本章所说的多边形,一般包括它内部的平面部分,故多面体是一个“封闭”的几何体.(3)围成一个多面体至少要四个面.(4)规定:在多面体中,不在同一面上的两个顶点的连线叫做多面体的对角线,不在同一面上的两条侧棱称为多面体的不相邻侧棱,侧棱和底面多边形的边统称为棱.(5)一个多面体是由几个面围成,那么这个多面体称为几面体.二、几种常见的多面体1.棱柱用表示底面各顶点的____表示棱柱,如上图中的棱柱可记为棱柱ABCDE归纳总结棱柱的简单性质:(1)侧棱互相平行且相等;侧面都是平行四边形.(2)两个底面与平行于底面的截面是全等的多边形,如图①所示.(3)过不相邻的两条侧棱的截面是平行四边形,如图②所示.2.棱锥用表示顶点和底面各顶点的____表示,如上图中的棱锥可记为棱锥的性质:(1)侧棱有公共点,即棱锥的顶点;侧面都是三角形.(2)底面与平行于底面的截面是相似多边形,如图①所示.(3)过不相邻的两条侧棱的截面是三角形,如图②所示.3.棱台用表示底面各顶点的____表示棱台,如上图中的棱台可记为棱台归纳总结棱台的性质:(1)侧棱延长后交于一点;侧面是梯形.(2)两个底面与平行于底面的截面是相似多边形,如图①所示.(3)过不相邻的两条侧棱的截面是梯形,如图②所示.预习自测1.下列物体不能..抽象成旋转体的是()A.篮球B.日光灯管C.电线杆D.国家游泳馆水立方2.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.四棱锥有五个顶点C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等3.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形4.四棱柱有________条侧棱,________个顶点.题型一棱柱的结构特征例1 于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.规律总结(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.(2)多注意观察一些实物模型和图片便于反例排除.跟踪训练1 下列说法正确的是()A.棱柱的侧面都是矩形B.棱柱的侧棱都相等C.棱柱的棱都平行D.棱柱的侧棱总与底面垂直题型二棱锥、棱台的结构特征例2 下列关于棱锥、棱台的说法:(1)棱台的侧面一定不会是平行四边形;(2)棱锥的侧面只能是三角形;(3)由四个面围成的封闭图形只能是三棱锥;(4)棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.规律总结关于棱锥、棱台结构特征题目的判断方法:(1)举反例法结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法题型三空间几何体的平面展开图例3 如图是三个几何体的侧面展开图,请问各是什么几何体?规律总结立体图形的展开或平面图形的折叠是培养空间想象能力的好方法,解此类问题可以结合常见几何体的定义与结构特征,进行空间想象,或亲自动手制作平面展开图进行实践.跟踪训练3 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北,如下图1,现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到平面图形,如图2.则标“△”的面的方位是()A.南B.北C.西D.下课堂检测1.棱柱的侧棱()A.相交于一点B.平行但不相等C.平行且相等D.可能平行也可能相交于一点2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.长方体3.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱. 4.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成的几何体,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.参考答案知识梳理一、空间几何体1.形状大小空间图形2.(1)平面多边形面公共边公共点(2)直线封闭几何体二、几种常见的多面体1.平行四边形相邻平行多面体平行公共边公共顶点字母边数2.多边形有一个公共顶点公共顶点公共顶点公共边字母S-ABCD 边数四面体3.平行于底面与截面下底面上底面侧面公共边侧面字母ABCD-A′B′C′D′ 边数预习自测1.【答案】D【解析】水立方是多面体,不能抽象成旋转体;篮球、日光灯管、电线杆都可抽象成旋转体.2.【答案】B【解析】根据棱锥顶点的定义可知,四棱锥只有一个顶点,故选项B不正确.3.【答案】A【解析】三棱锥的侧面和底面均是三角形,故选A.4.【答案】48【解析】四棱柱有4条侧棱,8个顶点.题型一棱柱的结构特征例1 【答案】(3)(4)【解析】首先看是否有两个平行的面作为底面,再看是否满足其他性质.(1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).跟踪训练1 【答案】B【解析】由棱柱的定义知,棱柱的侧面都是平行四边形,不一定都是矩形,故A不正确;而平行四边形的对边相等,故侧棱都相等,所以B正确;对选项C,侧棱都平行,但底面多边形的边(也是棱)不一定平行,所以错误;棱柱的侧棱可以与底面垂直也可以不与底面垂直,故D不正确.题型二棱锥、棱台的结构特征例2 【答案】(1)(2)(3)【解析】根据棱锥、棱台的结构特征进行判断.(1)正确,棱台的侧面都是梯形.(2)正确,由棱锥的定义知棱锥的侧面只能是三角形.(3)正确,由四个面围成的封闭图形只能是三棱锥.(4)错误,如(下)图所示四棱锥被平面截成的两部分都是棱锥.跟踪训练2 解:图①、②、③都不是棱台.因为图①和图③都不是由棱锥所截得的,故图①、③都不是棱台,虽然图②是由棱锥所截得的,但截面不和底面平行,故不是棱台,只有用平行于棱锥底面的平面去截棱锥,底面与截面之间的部分才是棱台.题型三空间几何体的平面展开图例3 【分析】由题目可获取以下主要信息:(1)都是多面体;(2)①中的折痕是平行线,是棱柱;②中折痕交于一点,是棱锥;③中侧面是梯形,是棱台.解:①五棱柱;②五棱锥;③三棱台.如图所示.跟踪训练3 【答案】B【解析】将所给图形还原为正方体,如图3所示,最上面为△,最左面为东,最里面为上,将正方体旋转后让左面向东,让“上”面向上可知“△”的方位为北.课堂检测1.【答案】C【解析】棱柱的侧棱互相平行且相等,故选C.2.【答案】B【解析】棱锥的任意两个面都相交,不可能有两个面平行,所以不可能是棱锥.3.【答案】569【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.4.解:(1)这是一个上、下底面是平行四边形,4个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥.。
空间几何体的展开图
( 南 A)
解
() B 北
() C 西 + D 下 ( )
角形 逝长 酌÷, 有一组对角为直角, 余下部分
_l 。 l . r
将所 给 图形 还原 为
正方 体 , 图 1 如 0所 示 , 上 最 面为 △ , 最里 面 为上 , 正 方 将
按虚线折起 可成为一个缺上底的底 面为正
1 2 折 叠 .
棱将 它剪 开 平 铺 在 同 一 平 面 内而 成 平 面 图
形 , 个 平 面 图形 叫 该 多 面 体 的 平 面 展 开 图. 这
着重 研究棱 柱 、 锥 、 棱 圆柱 、 圆锥 的展开 图.
例 1 作 出正方 体 的展开 图.
解 正方 体 的展 开 图 可 以分 为 4类 l 1
() —— 1 1 4 1型 , 间 一 行 4个 作 侧 面 , 中 两 边 各 1 分 别 作 上 下 底 面 , 有 6种 , 图 1 个 共 如
所 示.
将 一些平 面图形 沿着某 些边 折叠 成立 体 几何图, 这个 立体 几 何 图 叫 该平 面 图 的折 叠 图. 将平 面 图形立体 化时 , 充分 发挥 我们 的 要 空 闻 想 象 力. 着重 研究 棱 柱 、 锥 、 柱 、 棱 圆 圆
说明
本题考查 学生 空问想 象能 力, 以及
对一些常 见 的立 体 图要 熟 悉 . 至 要用 到 棱 其
柱、 棱锥 、 台的定义来判断几何体的形状. 棱 例 3 给 出两块 正 三 角形 纸 片 , 求将 要
图 7
图 8
其 中一块剪拼 成一个底 面为正 三角形 的三棱 锥模 型 另一 块 剪拼 成一 个底 面 是正 三 角 形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型二:空间几何体的平面展开图&投影
1.如图是三个几何体的侧面展开图,请问各是什么几何体?
解 (1)五棱柱;(2)五棱锥;(3)三棱台.如图所示.
2.(1)请画出下图所示的几何体的表面展开图.
(2)根据下图所给的平面图形,画出立体图.
点评 (1)要画一个多面体的表面展开图,可以先用硬纸做一个相应的多面体的实物模型,然后沿着某些棱把它剪开,并铺成平面图形,进而画出相应的平面图形.将多面体的表面展开成平面图形,有利于我们解决与多面体表面有关的问题.
(2)平面图形的折叠问题实质上是多面体的表面展开问题的逆向问题(即逆向过程).这两类问题都是立体几何中的基本问题,我们必须熟练掌握折叠与展开这两个基本功,并准确地画出在折叠和展开的前后的平面图形和立体图形,进而找到折叠和展开前后的变化的量和不变的量. 3.纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北。
现有沿该正方体的一些棱将正方体剪开、外面朝上展平,得到右侧的平面图形,则标“ ”的面的方位是( )
A. 南
B. 北
C. 西
D. 下
4.在下面4个平面图形中,哪几个是下面各侧棱都相等的四面体的展开图?其序号是______.(把你认为正确的序号都填上
)
5.(2008•重庆)如图,模块①﹣⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①﹣⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为( )
A 、模块①,②,⑤
B 、模块①,③,⑤
C 、模块②,④,⑥
D 、模块③,④,⑤ 考点:简单空间图形的三视图。
专题:探究型;分割补形法。
分析:先补齐中间一层,说明必须用⑤,然后的第三层,可以从余下的组合中选取即可.
解答:解:先补齐中间一层,只能用模块⑤或①,且如果补①则后续两块无法补齐, 所以只能先用⑤补中间一层,然后再补齐其它两块. 故选A . 点评:本小题主要考查空间想象能力,有难度,是中档题. 6.下图中不可能围成正方体的是( D
)
7.用一个平面去截正方体,下列平面图形可能是截面的是
①正方形 ②长方形 ③等边三角形 ④直角三角形 ⑤菱形 ⑥六边形
8.正方体ABCD-A 1B 1C 1D 1中,E,F 分别是A 1A ,C 1C
的中点,则下列判断正确的有
①四边形BFD 1E 在底面ABCD 内的投影是正方形; ②四边形BFD 1E 在面A 1D 1DA
内的投影是菱形;
③四边形BFD 1E 在面A 1D 1DA 内的投影与在面ABB 1A 1内的投影是全等的平行四边形.
9.如图,在正方体ABCD-A 1B 1C 1n 中,M 、N 分别是BB 1BC 的中点,则
图中阴影部分在平面
ADD 1A 1.上的投影为图中的( )
A B C D
10.如图,点O 为正方体ABCD-A 1B 1C 1D 1的中心,点E 为平面B 1BCC 1的中心,点F 为B 1C 1的中点,则空间四边形D 1OEF 在该正方体的各个面上的投影可能是
11.如图所示,在正方体ABCD-A 1B 1C 1D 1中,M 、N 分别是BB 1,CC 1的中点,则图中阴影部分在平面ADD 1A 1上的正投影为( )
12.如图,E 、F 分别是正方体的面ADD 1A 1和面BCC 1B 1的中心,则四边形BFD 1E 在该正方形的面上的射影可能是图①②③④中的
13.下列四个平面图形中,每个小四边形皆为正方形,其中可以沿两个正方形的相邻边折叠围成一个立方体的图形是( )
13.一个正方体内接于一个球,作球的一截面,则截面的可能图形是( )
① ② ③ ④ A .①②
B.②④
C.①②③
D.②③④
解析:当截面平行于正方体的一条侧棱时,得①或②,当
截面过正方体的对角线时,得②,无论如何都不能截出④。
C
F
E D 1C 1
B 1A 1
D
C
B
A。