人教版高中数学必修4第一章 任意角的三角函数 同步教案

合集下载

高中数学 121任意角的三角函数教案 新人教版必修4 教案

高中数学 121任意角的三角函数教案 新人教版必修4 教案

《任意角的三角函数》教案一、教学任务分析知识目标:位圆理解任意角的三角函数的定义;α终边上一点,会求角α的各三角函数值;3.从定义认识三角函数的定义域、函数值的符号,理解诱导公式(一)能力目标:1.理解并掌握任意角的三角函数的定义;2.树立映射观点,正确理解三角函数是以实数为自变量的函数;单问题。

情感目标:1.使学生认识到事物之间是有联系的,三角函数就是角度(实数)与三角函数值(实数)之间的一种对应;2.学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;二、教学重点、难点教学重点:任意角三角函数(正弦、余弦、正切)的定义教学难点:用单位圆上的点的坐标刻画三角函数。

理解三角函数就是实数与实数之间的一种对应三、教学情景设计问1 你能回忆一下锐角三角函数的定义吗?在AB Rt ∆中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b ===。

从学生原有的认知出发,来认识任意角三角函数的定义。

从角度到实数(三角函数值)之间的对应。

问2 如何用直角坐标系中角的终边上的点的坐标来表示锐角三角函数?引导学生用坐标法来研究锐角三角函数。

以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x 轴的非负半轴重合。

问3 改变终边上的点的位置,这三个比值会改变?为什么?说明比值与终边上的点的位置无关,只与角α的终边有关。

引导学生利用相似三角形的性质证明。

问4 能否通过取适当的点使表达式简化呢?引出单位圆的定义,三角函数的定义。

体现简约思想,从特殊到一般的思想。

设α是一个任意角,它的终边与单位圆交于点),(y x P ,那么:(1)y 叫做α的正弦,记作αsin ,即y =αsin ;(2)x 叫做α的余弦,记作αcos ,即x =αcos ;(3)x y 叫做α的正切,记作αtan ,即)0(tan ≠=x xy α。

普通高中数学必修4《任意角的三角函数》教案

普通高中数学必修4《任意角的三角函数》教案

课题:§1.2.1随意角的三角函数教材:人教A版·一般高中课程标准实验教科书·数学·必修 4一、教课目的1、知识目标:(1)理解随意角三角函数(正弦、余弦、正切 )的定义2)判断三角函数值的符号3)理解引诱公式一2、能力目标:(1)培育学生知识迁徙的能力(2)培育学生自主研究、合作沟通的能力3、感情目标:(1)在给出三角函数定义的过程中领会从一般到特别的思想2)在深入三角函数定义的过程中领会从特别到一般的思想二、教课要点与难点要点:(1)随意角的正弦、余弦、正切的定义2)三角函数在各象限的符号难点:(1)用角的终边上的点的坐标来刻画三角函数2)对三角函数定义的理解三、教课方法与手段本节课的教课方法主假如“问题研究、指引启迪、合作议论”相联合,用“问题”组织教课,经过“指引启迪、合作议论”,让学生学会在研究中学习.为了让学生更直观形象地理解问题,利用几何画板作图;为了防止不用要的繁琐的计算,借助了计算器进行协助计算.四、教课过程教课环节:创建情形研究新知建构观点知识应用概括总结部署作业教课问题师生活动设计企图环节实物演示:教师演示实验,学生察看.为了突出三角函数是刻画周(一)“装满细沙的漏斗在做期变化规律的数学模型;体现出数学根源于现实生活.单摆运动时,沙子落在与单摆创运动方向垂直运动的木板上设提出本节课的学习的任务就的轨迹”.情怎样将锐角的三角函数是学习随意角的三角函数.景推行到随意角的三角函数呢?(1) 你能说出初中锐角的三 教师提出问题,学生口头回 从原有的知识基础出发,为推角函数的定义吗?答.教师在课件中显示直角 广到随意角的三角函数打下三角形及三个三角函数值 基础.(二)的定义.直角三角形不可以知足非锐角探怎样将锐角的三角函数学生合作议论,教师一边引的三角函数,学生产生认知冲(2) 究导启迪.突,激发学生的求知欲念,也推行到随意角的三角函数新培育学生的合作精神.呢?知(3) 你能用直角坐标系中锐教师在课件中成立直角坐 指引学生用坐标法来研究锐角 的终边上的点P (x ,y ) 标系,显示锐角的终边及 角三角函数,使学生形成知识(不一样于坐标原点 )的坐标来 终边上的一点 P (x ,y ),学 迁徙的能力.表示锐角 的三角函数吗?生思虑并回答.教课问题师生活动设计企图环节(4)当点P在角终边上的地点改变时,上述三个比值会随之改变吗?(二)探究新知可否经过取适合点来将比值简化?给出随意角三角函数定义 .(三)建构概请同学们从函数的观点分析念三角函数定义中的对应关系.【示例练习】例1的教课总结:已知角的大小,求三角函数值的方法【深入三角函数定义】思虑1:(四)若已知角终边上随意一点知的坐标为P(x,y),怎样求识角的三角函数值?应变式练习2用总结:求三角函数值的方法①已知角的大小②已知角终边上点的坐标P15练习1、2【研究三角函数定义域】思虑2:正弦、余弦和正切函数的定义域是什么?教课问题环节教师利用几何画板演示点P在终边上滑动的过程,再取一点P/,计算比值;学生观察比值的变化状况,获得详细认识,由相像三角形得出结论.教师指引学生考虑点P到原点的距离,当距离为1时,可使比值化简.引入单位圆:圆心为原点,半径为1的圆.类比锐角的三角函数定义,给出随意角三角函数定义.教师指引学生以正弦为例,考虑角与纵坐标y能否知足函数关系,特别注意角用弧度数表示时是一个实数.近似得出余弦与正切也知足函数关系.教师在课件中演示角的终边地点,指引学生经过解直角三角形的知识,联合角的象限,先求出这个角的终边与单位圆的交点坐标,再由三角函数的定义求解.解题过程由学生自主达成.先由学生独立思虑,教师在课件演出示将随意点转变到单位圆上的点,再利用三角形相像得出结论的过程.练习由学生在黑板上操练,教师与学生一同评论.学生自主研究并达成书上P13的研究.师生活动要学生明确关于确立的角,这三个比值与点P在角终边上的地点没关,进而理解点P的随意性.引入单位圆,点P为终边与单位圆的交点,使正弦值用点P的纵坐标表示,余弦值用点P的横坐标表示,此设计表现由一般到特别的思想.使学生的学习成立在已有的认知经验基础上,对随意角的三角函数的定义的理解更深刻更全面.经过对对应关系的认识,深入对三角函数定义的理解.只给出角的大小,增强学生求交点的坐标的意识,进而达到懂得应用三角函数定义作为解题工具的目的.帮助学生打破原有知识的限制,领会从特别到一般的思想.经过总结加深对三角函数定义的实质的理解.让学生学习从定义出发研究三角函数的定义域,增强对定义的应企图识 .设计企图【研究三角函数的符号】思虑3:学生自主研究并达成书上三角函数在各象限的符号是P13的研究.什么?【研究特别角三角函数值】思虑4:学生自主研究并达成书上特别角三角函数值.P15的练习3.【示例练习】教师剖析证明思路,由学生例3的教课作出解答,师生对解答过程(四)进行评论.知P15练习6识【研究引诱公式一】应思虑5:用终边同样的角相差2的整教师指引学生从角的终边数倍,那么这些角的同一三角的关系到函数值之间的关函数值有何关系?怎样用数系得出结论.学公式表达?【研究引诱公式一】引诱公式一【示例练习】例4、例5的教课P15练习5、7请同学们从以下几个方面进行总结:1、从锐角三角函数推行就任(五)意角三角函数的过程先让学生自己总结,教师在2、随意角三角函数的定义学生总结的基础上再增补,归3、求三角函数值的方法特别是这节课表现的数形纳①已知角的大小联合、从一般到特别、从特总②已知角终边上点结坐标4、三角函数值在各象限的符号规律5、特别角的三角函数值6、本节表现的数学思想方法P20,习题,A组2,3,4,6(六)增补:若三角形的两内角布知足sincos<0,则此三角置形必为,,()作A.锐角三角形业B.钝角三角形C.直角三角形D.以上三种状况都可能五、教课反省让学生学习从定义出发研究三角函数的符号规律,增强对定义的应企图识.让学生学习从定义出发研究特别角的三角函数值,增强对定义的应企图识.培育学生谨慎的逻辑思想.练习让学生熟习三角函数符号规律及特别角的三角函数值.让学生领会三角函数值有“循环往复”的变化规律.懂得引诱公式一的作用.经过例题和练习,熟习引诱公式一的应用.学生对学习过程进行反应,对知识点、议论问题的思想方法进行总结,优化学生的认知结构. 增补的题目,使学生学会把三角函数值的符号与三角形的形状联系起来,掌握知识的应用.1.教课中应着厚利用三角函数刻画周期现象的重要性来引入这部分的知识,增强数学与生活的联系.给出三角函数定义需要经历一个逐渐化归的过程,以锐角三角函数为引子,由直角三角形中边的比到直角坐标系中坐标的比再到用单位圆上点的坐标定义三角函数,使学生的学习成立在已有任知经验基础上,对随意角的三角函数的定义的理解才能全面、深刻.我们在议论三角函数的相关问题时,能够从三角函数与单位圆之间的这类密切的内部联系中获得启迪,希望能够帮助学生在学习知识的同时学会数学地思虑问题.§1.2.1随意角的三角函数的教课设计说明教材:人教A版·一般高中课程标准实验教科书·数学·必修 4本节教课设计是在学生已经学过锐角三角函数的基础上,针对自学能力一般的班级设计的.教课环节按照学生的认知规律,表现顺序渐进与启迪式的教课原则.一.对教材的剖析本节内容利用单位圆上的点的坐标来定义随意角的三角函数,为后续学习同角三角函数的基本关系、引诱公式、三角函数图像与性质打下基础.所以,本节内容拥有承上启下的作用. 二.对教课目的和教课重难点的认识:依据学生的认知特色,本节课从认知、能力、感情三个层面确立了相应的教课目的.要点是随意角的正弦、余弦、正切的定义、三角函数在各象限的符号;而难点是用角的终边上的点的坐标来刻画三角函数、对三角函数定义的理解.三.对教课方法和教课手段的选择:采纳“问题研究、指引启迪、合作议论”相联合的教课方法,用“问题”组织教课,经过“指引启迪、合作议论”,让学生学会在研究中学习,增强学生能力的培育.为了让学生更直观形象地理解问题,利用几何画板作图,经过生动形象的演示,激活学生思想.四.对教课过程的说明:针对学生已有的知识以及学生的认知水平,把教课过程分为了①创建情形②研究新知③建构观点④知识应用⑤概括总结⑥部署作业共六个环节,让学生在老师的指引下,自主研究知识的形成过程,研究知识的实质应用.。

人教版高中数学必修4第一章三角函数-《1.1.1任意角》教案_001

人教版高中数学必修4第一章三角函数-《1.1.1任意角》教案_001

1.1.1 任意角教学目的:使学生认识角的始边、终边,知道什么是正角、负角、零度角,0到360 度以外的角,会用集合表示与角α终边相同的角。

教学重点:任意角的理解与表示方法。

教学难点:用集合表示与角α终边相同的角。

教学过程一、新课引入在体操中旋转1周多少度?旋转2周呢?旋转3周呢?二、新课1、角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

如图,从起始位置OA逆时针方向旋转到终止位置OB,形成一个角α,射线OA、OB分别是角α的始边和终边。

2、任意角体操中,旋转2周(720°),旋转3周(1080°),角度大于360°,有没有负角呢?我们规定:按逆时针方向旋转形成的角叫正角,按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们称它形成了一个零角,零角的始边与终边重合,若α是零角,则α=0°。

角包括正角、负角和零角,时针旋转形成的角都是负角。

角的顶点与原点重合,角的绐边与x轴非负半轴重合,那么,角的终边在第几象限,我们就说这个角在第几象限,如果角的终边在坐标轴上,就认为这个角不属于任何一个象限。

3、终边相同角的表示328°=-32°+360°-392°=-32°-360°设S={β|β=-32°+k·360°,k∈Z}328°、-392°、-32°角都是S的元素,因此,所有与-32°角终边相同的角,连同-32°角在内,都是集合S的元素;反过来,集合S的任一元素显然与-32°角终边相同。

所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}即任何一个与角α终边相同的角,都可以表示成角α与整数个周角的和。

4、例题讲解例1、在0°-360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限的角。

人教版高中数学必修4第一章三角函数-《1.2任意角的三角函数》教案(5)

人教版高中数学必修4第一章三角函数-《1.2任意角的三角函数》教案(5)

任意角的三角函数——三角函数线教学背景:1.教材地位分析:三角函数是中学数学的重要内容之一,而三角函数线的概念及其应用不仅体现了数形结合的数学思想,又贯穿整个三角函数的教学.借助三角函数线可以推出三角函数公式,求解三角函数不等式,探索三角函数的图像和性质,……可以说,三角函数线是研究三角函数的有利工具.2.学生现实分析:学习本节前,学生已经掌握任意角三角函数的定义,三角函数值在各象限的符号,以及诱导公式一,为三角函数线的寻找做好了知识准备.高一上学期研究指、对数函数图像时,已带领学生学习了几何画板的基础知识,现在他们已经具备初步的几何画板应用能力,能够制作简单的动画,开展数学实验. 教学目标:1.知识目标: 使学生掌握如何利用单位圆中的有向线段分别表示任意角的正弦、余弦、正切函数值,并能利用三角函数线解决一些简单的三角函数问题.2.能力目标: 借助几何画板让学生经历概念的形成过程,提高学生观察、发现、类比、猜想和实验探索的能力;在论坛上开展研究性学习,让学生借助所学知识自己去发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力.3.情感目标:激发学生对数学研究的热情,培养学生勇于发现、勇于探索、勇于创新的精神;通过学生之间、师生之间的交流合作,实现共同探究、教学相长的教学情境.教学重点难点:1.重点:三角函数线的作法及其简单应用.2.难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.教学方法与教学手段:1.教法选择:“设置问题,探索辨析,归纳应用,延伸拓展”——科研式教学.2.学法指导:类比、联想,产生知识迁移;观察、实验,体验知识的形成过程;猜想、求证,达到知识的延展.3.教学手段:本节课地点选在多媒体网络教室,学生利用几何画板软件探讨数学问题,做数学实验; 借助网络论坛交流各自的观点,展示自己的才能.教学过程:一、设置疑问,实验探索(17分钟)教学环节教学过程设计意图设置疑问,点明主题前面我们学习了角的弧度制,角α弧度数的绝对值rl=α,其中l是以角α作为圆心角时所对弧的长,r是圆的半径.特别地, 当r=1时,l=α,此时的圆称为单位圆,这样就可以用单位圆中弧的长度表示所对圆心角弧度数的绝对值,那么能否用几何图形来表示任意角的正弦、余弦、正切函数值呢?这就是我们今天一起要研究的问题.既可以引出单位圆,又可以使学生通过类比联想主动、快速的探索出三角函数值的几何形式.概念学习,分散难点有向线段:带有方向的线段.(1)方向:按书写顺序,前者为起点,后者为终点,由起点指向终点.如:有向线段OM,O为起点,M为终点,由O点指向M点.(动态演示)(2) 数值:(只考虑在坐标轴上或与坐标轴平行的有向线段)相关概念的学习分散了教学难点,使学生能够更多的围绕重点展开探索和研究.O Mα的终边 M P O x y Tα’的终边 AT ‘ A ‘ -1 1 (T)绝对值等于线段的长度,若方向与坐标轴同向,取正值;与坐标轴反向,取负值.如:OM= 1,ON= -1, AP =21实验探 索, 辨析研讨1.(复习提问)任意角α的正弦如何定义? 角α的终边上任意一点P(除端点外)的坐标是(y x ,),它与原点的距离是r, 比值ry 叫做α的正弦.思考:能否用几何图形表示出角α的正弦呢? 学生联想角的弧度数与弧长的转化, 类比猜测:若令r=1,则y =αsin .取角α的终边与单位圆的交点为P,过点P 作x 轴的垂线,设垂足为M ,则有向线段MP=αsin =y .(学生分析的同时,教师用几何画板演示)请学生利用几何画板作出垂线段MP,并改变角的终边位置,观察终边在各个位置的情形,注意有向线段的方向和正弦值正负的对应.特别地,当角的终边在x 轴上时,有向线段MP 变成一个点,记数值为0.这条与单位圆有关的有向线段MP 叫做角α的正弦线.2.思考:用哪条有向线段表示角α的余弦比较合适?并说明理由.请学生用几何画板演示说明.有向线段OM 叫做角α的余弦线.3. αtan xy =如何用有向线段表示?讨论焦点:若令x =1, 则y =αtan =AT ,但是第二、三象限角的终边上没有横坐标为1的点,若此时取x =-1的点T ‘,的表tan α=-y =T ‘A ‘,有向线段示方法又不能统一.引导观察:当角的终边互为反向延长线时,它们的正切值有什么关系?统一认识:方案1:在象限角的终边或其反向延长线上取x =1的点T ,则tan α=y =AT ; 方案2:借助正弦线、余弦线以及相似三角形知识得到αtan OM MP x y ===AT OAAT=. 几何画板演示验证:当角α的终边落在坐标轴上时,tan α与有向线段AT 的对应.这条与单位圆有关的有向线段AT 叫做角α的正切线.美国华盛顿一所大学有句名言:“我听见了,就忘记了;我看见了,就记住了;我做过了,就理解了.”要想让学生深刻理解三角函数线的概念,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程.教学已经不再是把教师或学生看成孤立的个体,而是把他们的教和学看成是相互影响的辩证发展过程.在和谐的氛围中,教师和学生都处在自由状态,可以不受框框的束缚,充分表达各自的意见,在自己积极思维的同时又能感受他人不同的思维方式,从而打破自己的封闭状态,进入更加广阔的领域.xyO-11MP21AN二、作法总结,变式演练(13分钟)教学环节教学过程设计意图作法总结正弦线、余弦线、正切线统称为三角函数线.请大家总结这三种三角函数线的作法,并用几何画板演示(一学生描述,同时用电脑演示):第一步:作出角α的终边,与单位圆交于点P;第二步:过点P作x轴的垂线,设垂足为M,得正弦线MP、余弦线OM;第三步:过点A(1,0)作单位圆的切线,它与角α的终边或其反向延长线的交点设为T,得角α的正切线AT.特别注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写顺序不能颠倒.余弦线以原点为起点,正弦线和正切线以此线段与坐标轴的公共点为起点,其中点A为定点(1,0).及时归纳总结,加深知识的理解和记忆.变式演练,提高能力练习:利用几何画板画出下列各角的正弦线、余弦线、正切线:(1)65π; (2)613π-.学生先做,然后投影展示一学生的作品,并强调三角函数线的位置和方向.例1 利用几何画板画出适合下列条件的角α的终边:(1)21sin=α;(2)21cos-=α;(3)1tan=α.共同分析(1),设角α的终边与单位圆交于P(yx,),则αsin=y,所以要作出满足21sin=α的角的终边,只要在单位圆上找出纵坐标为21的点P,则射线OP即为α的终边.(几何画板动态演示)请学生分析(2)、(3),同时用几何画板演示.例 2 利用几何画板画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)αsin≥21; (2)αcos≤-21.分析:先作出满足21sin=α,21cos-=α的角的终边(例1已做),然后根据已知条件确定角α终边的范围.(几何画板动态演示)答案:(1){αZkkk∈+≤≤+,65262ππαππ}.(2){αZkkk∈+≤≤+,342322ππαππ}.延伸:通过(1)、(2)两图形的复合又可以得出不等式组巩固练习,准确掌握三角函数线的作法.逆向思维,灵活运用三角函数线,并为利用三角函数线求解三角函数不等式(组)作铺垫.数形结合思想表现在由数到形和由形到数两方面.将任意角的正弦、余弦、正切值分别用有向线段表示出来体现了由数到形的转化;借助三角函数线求解三角函数方程和不等式又发挥了由形到数的巨大作用.⎪⎪⎩⎪⎪⎨⎧-≤≥.21cos ;21sin αα的解集: {αZ k k k ∈+≤≤+,652322ππαππ}. 三、思维拓展,论坛交流(10分钟) 教学环节 教学过程设计意图思 维 拓 展,论坛交流观察角的终边在各位置的情形,结合三角函数线和已学知识,你能发现什么规律,得出哪些结论?请说明你的观点和理由,并发表于焦作一中教育论坛 ().学生得出的结论有以下几种: (1) sin 2α + c os 2α = 1;(2)│sin α│ + │cos α│≥1;(3) -1≤sin α≤1, -1≤cos α≤1, tan α∈R;(4) 若两角终边互为反向延长线,则两角的正切值相等,正弦、余弦值互为相反数;(5) 当角的终边在第一象限逆时针旋转时,正弦、正切值逐渐增大,余弦值逐渐减小;(6) 当角的终边在直线x y =的右下方时, sin α<cos α;当角的终边在直线x y =的左上方时, sin α>cos α;……给学生建设一个开放的、有活力、有个性的数学学习环境.论坛交流既能展示个人才华,又能照顾到各个层次的学生.来自他人的信息为自己所吸收,自己的既有知识又被他人的视点唤起,产生新的思想.这样的学习过程使学生在轻松达成一个个阶段目标之后,顺利到达数学学习的新境界.四、归纳小结,课堂延展(5分钟) 教学环节 教学过程设计意图归 纳 小 结 1.回顾三角函数线作法.2.三角函数线是利用数形结合思想解决有关问题的重要工具,自从著名数学家欧拉提出三角函数与三角函数线的对应关系,使得对三角函数的研究大为简化,现在仍然是我们解三角不等式、比较大小、以及今后研究三角函数图像与性质的基础.回顾三角函数线作法,再次加深理解和记忆.点明三角函数线在其他方面的应用,以及数形结合思想,便于学生在后续学习中更深入的思考,更广泛的研究.巩固创新, 课 堂 延 展巩固作业:习题4.3 1,2提升练习:1. 已知:βαsin sin >,那么下列命题成立的是( ) A .若α、β是第一象限的角,则cos α>cos β. B. 若α、β是第二象限的角,则tan α>tan β. C. 若α、β是第三象限的角,则cos α>cos β. D. 若α、β是第四象限的角,则tan α>tan β.既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.2.求下列函数的定义域: (1) y =1cos 2 x ; (2) y = lg(3-4sin 2x) .延展作业:1. 类比正切线的作法,你能作出余切线吗?2.结合三角函数线我们已经发现了一些很有价值的结论,你还能得出哪些结论?请大家继续在论坛上交流.3.查阅数学家欧拉的生平事迹,了解他在数学方面的突出贡献,谈谈你的学习感受,并发表于论坛交流.教学设计说明:1.让计算机软件和网络真正走入数学课堂,发挥它们的辅助作用.“让计算机软件和网络走入数学课堂”是提出了多年的口号,但是如何真正让多媒体在数学学习中发挥积极的作用却是我们一直在探索的问题.本节课有较广的延展面,是培养学生发现、探索、创新能力的很好素材,但是要在一节课45分钟时间内实现构想,对课的安排提出了非常高的要求.几何画板软件的动画演示功能正好可以帮助学生做数学试验,探讨数学问题;网络论坛可以让他们充分交流,相互学习.为此,我把授课地点放在多媒体网络教室,充分发挥多媒体的优势,既丰富了三角函数线的概念,又培养了学生发现问题、解决问题的能力,探索精神、创新意识也有了相应的提高.2.不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法.课堂教学最终是为了让学生摆脱课堂,独立学习,所以不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法.本节课所采用的科研式教学法体现了研究新问题的一般思路,让学生逐步领悟这种科学的研究方法,有利于他们今后能够独立地开展科研活动.3.使学生始终保持学习兴趣,快乐学数学.苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学!。

【原创】人教A版高中数学必修4第一章1.2.1 任意角的三角函数 教学设计

【原创】人教A版高中数学必修4第一章1.2.1 任意角的三角函数 教学设计

1.2.1 《任意角的三角函数》教学设计 课 题 1.2.1 任意角的三角函数 课 型 新授课 核心素养 培养学生的逻辑推理能力和数学运算能力重点难点 三角函数的定义;任意角的三角函数在各象限的符号;教法学法 启发式教学,自主探究,合作交流教学过程一、导入课题问题提出:如果旋转轮的半径为r ,圆心O 到地面的高度为h ,主持人的右脚与圆心的交点记为A ,当OA 与水平线所成的角为α时,你能求出点A 到地面的高度吗?二、自主学习1、如图:在ABC Rt ∆中,A sin = A cos = A tan =2、前面我们学习了任意角,如果将A 与原点重合,AC 边与x 轴的非负半轴重合,B 的坐标为 ?设B 到原点的距离为r ,即______==r OB (用B 的坐标表示),你能用B 的坐标表示角A 的三角函数吗?_____tan _____,cos _____,sin ===A A A问题:在OB 上移动B 点,角A 的三角函数值会不会改变?3、如果将A 终边上的点B 特殊为让它到原点的距离为单位长度“1”,你能说出点B 的轨迹吗?三、新知点拨单位圆:以 圆心, 为半径的圆叫单位圆设α是一个任意角,它的终边与单位圆交于点中),(y x P ,那么:(1)y 叫做α的正弦,即αsin =y(2)x 叫做α的正弦,即αsin =x(3)x y 叫做α的正切,即αtan =xy 我们把 、 、 统称为三角函数。

四、互动探究 根据上面三角函数的定义,填出下表中三角函数的定义域及各三角函数在每个象限的符号:三角函数 定义域αsinαcosαtanαsin αcos αtan五、新知应用例1:求π35的正弦、余弦和正切值学以致用1:求π47的三角函数值。

例2:已知角α的终边经过点P (-3,-4),求角α的正弦、余弦、正切值.一般地,α是一个任意角,)(y x P ,为α终边上的任意一个点,r 为点P 到原点的距离,则: αsin = αcos = αtan = 其中:r =学以致用2:已知角α的终边过点P (-1,2),则sin α+cos α等于例3 求证:当下列不等式组成立时,角α为第三象限角。

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数

高一数学人教A版必修四教案:第一章三角函数1-2任意角的三角函数
问题 2.以上结论对任一个角 都成立吗?你能够说明吗?
(1) (sin)2 (cos)2 1对任一个角 都成立;
sin tan 对任何一个不等于 k (k Z ) 的角 都成立.
cos
2
(2)说明方法 1:用三角函数的定义说明(利用定义)
说明方法 2:用三角函数线说明(数形结合)
(3)体会从特殊到一般的认知规律,了解同角三角函数关系的几何意义.

所以原等式成立.
证法 2、(1 sin x)(1 sin x) 1 sin2 x cos2 x cos x cos x
且1 sin x 0,cos x 0 cos x 1 sin x
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所 在象限进行分类讨论.
五、评价设计
(1) 作业:习题 1.2A 组第 10,13 题. (2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.
1.2.3 同角三角函数的基本关系
教学重点:正弦、余弦、正切线的概念。 教学难点:正弦、余弦、正切线的利用。 授课类型:新授课 教学模式:讲练结合 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.三角函数的定义及定义域、值域:
练习 1:已知角 的终边上一点 P( 3, m) ,且 sin 2m ,求 cos,sin 的值。
r
x
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 ;
r4
x3
当 m 5 时, r 2 2, x 3 ,
cos x 6 , tan y 15 .
r4
x3
2.三角函数的符号:

高中数学必修4《任意角的三角函数》教案

高中数学必修4《任意角的三角函数》教案

高中数学必修4《任意角的三角函数》教案高中数学必修4《任意角的三角函数》教案【一】教学准备教学目标1、知识与技能(1)能根据三角函数的定义,导出同角三角函数的基本关系;(2)能正确运用进行三角函数式的求值运算;(3)能运用同角三角函数的基本关系求一些三角函数(式)的值,并从中了解一些三角运算的基本技巧;(4)运用同角三角函数的基本关系式进行三角函数恒等式的证明。

2、过程与方法回忆初中所学的几个三角函数之间的关系,用高中所学的同角三角函数之间的关系试着进行证明;掌握几种同角三角函数关系的应用;掌握在具体应用中的一定技巧和方法;理解并掌握同角三角关系的简单变形;提高学生恒等变形的能力,提高分析问题和解决问题的能力。

3、情感态度与价值观通过本节的学习,使同学们加深理解基本关系在本章中的地位;认识事物间存在的内在联系,使学生面对问题养成勤于思考的习惯;培养学生良好的学习方法,进一步树立化归的数学思想方法。

教学重难点重点: 同角三角函数之间的基本关系,化简与证明。

难点: 化简与证明中的符号,同角三角函数关系的灵活运用。

教学工具投影仪教学过程【创设情境,揭示课题】同角三角函数之间的关系我们在初中就已经学过,只不过当时应用不是很多,那么到底有哪些?它们成立的条件是什么?学习实践中,你还发现了哪些关系?今天这节课,我们就来讨论这些问题。

【探究新知】在初中我们已经知道,对于同一个锐角α,存在关系式:2.学生课堂练习教材P66练习1和P67练习2五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业教材P68习题中1—6课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

人教版数学必修四1.2.1《任意角的三角函数(第一课时)》教学设计

人教版数学必修四1.2.1《任意角的三角函数(第一课时)》教学设计

“任意角的三角函数”第一课时教学设计一、教学目标设置1、知识与技能:①借助单位圆让学生认识和理解任意角的三角函数的定义②让学生能根据定义判定三角函数的符号③让学生知道公式一,并由此体会三角函数的周期性特点.2、过程与方法:①通过回忆初中的锐角三角函数定义,发现角概念推广后其局限性,必须寻找其它方式定义;②在形成新的锐角三角函数定义的过程中领悟坐标法的优越性,加深对函数概念的理解;③由特殊到一般的思想推广到任意角的三角函数定义;④通过探究任意角正弦函数定义,类比得到任意角的余弦函数和正切函数,培养学生类比分析的能力;⑤通过对三角函数值在各个象限符号的确定,培养学生利用规律解决问题的意识;⑥通过对公式一的学习,培养学生数形结合的意识,让学生体会三角函数的周期性.3、情感态度与价值观:①培养学生在运动变化的过程中认识知识的发生和发展,体会知识之间的内在联系,感悟知识的整体性;②通过小组合作交流,倡导学生主动参与课堂,培养学生团队合作的意识;③通过对新知识的探究,培养学生分析解决问题的能力和理性思维的能力.二、教学重点1、对任意角的三角函数定义的理解;2、正弦、余弦、正切函数值在各个象限内符号的确定;3、三角函数的周期性特点(公式一).三、教学难点任意角的三角函数概念的建构过程.四、学生学情分析学生在初中学习的锐角三角函数是以锐角为自变量,以边的比值为函数值的函数,以及高中学习过的函数的定义和任意角及弧度制,这些是学生学习任意角的三角函数知识的基础和依据.本节课从研究锐角三角函数的概念出发,更容易激发学生学习的热情,从而催生学生创造性思维.在概念建构的过程中,学生必需经历由特殊到一般的认识过程以及把新的概念纳入到一般函数的结构之中,这是认知过程的一道坎,又是认知的一次升华.五、教学策略分析本课采用“引”“探”相结合的方式,将问题以问题串的形式展现,让学生在问题中形成认知冲突,体会、感悟数学研究的一般思路和方法.课堂中以学生为主体,将学生分成若干小组,使学生全员参与课堂,通过学生之间合作交流,教师间或参与学生的讨论,对有困惑的小组或者个别学生进行帮助和引导,培养学生主动探究新知识的能力.此外,为了提高教学效果,使课堂教学更生动形象,利用多媒体课件进行教学.六、教学过程(一)创设情境,导入新课(问题1到问题2是温故知新化过程)问题1 初中我们在直角三角形中学习过锐角三角函数,你能回忆出初中锐角的正弦、余弦、正切函数是怎样定义的吗?你能说出它们的自变量是什么,又以什么为函数值呢?自变量的范围是什么?设计意图:要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,因此对锐角三角函数的复习是必不可少的.将锐角三角函数融入学生已有的函数知识结构中,容易为学生建立起任意角的三角函数获取心理逻辑的自然.问题2 在高中,随着角的概念的推广和弧度制的引入,角的范围变成了全体实数R,那么对于任意角α,比如当α为钝角时,角α的“斜边”这种说法还存在吗?那么任意角的三角函数该如何定义呢?设计意图:利用角α的变化作为思维的切入点,打破学生已有的认知结构的平衡,感受学习新知识的必要性,即角的范围扩大了,初中锐角三角函数的定义也应该与时俱进,这有利于将探究的主动权交给学生.(二)提出问题,探求新知(问题3到问题5是定义坐标化过程)问题3 中国有句古话说的好,“工欲善其事,必先利其器”.随着角的概念推广和弧度制的引入,我们一般借助什么工具来研究角?设计意图:依托学生已有的经验,启发学生联想,触发学生的灵感,为坐标法的实施奠定研究的基础.问题4 我们先研究哪种角呢?是直接研究任意角的情形还是先研究锐角的情形呢?设计意图:以锐角三角函数的研究为本节课知识的“生长点”,这样的研究符合学生的认知规律,学生有思考的落脚点,更能够激发学生的求知欲,由特殊到一般的思想突破本节课任意角三角函数概念的建构这一教学难点.问题5 对于任意角α都有始边和终边.在直角坐标系中,如何放置锐角α可以方便研究?在锐角α的终边上任取一点(,)P a b ,它与原点O 的距离为r ,你能用点P 的坐标及r 来表示锐角α的三角函数吗?设计意图:把锐角α放在直角坐标系下对学生来说比较简单,构造直角三角形也是一目了然的,这样可以把复习的初中的锐角三角函数的定义纳入直角坐标系,将边长的比变成坐标关系,为任意角的三角函数定义的给出做好铺垫.提及“始边”、“终边”也是为了概念一般化做铺垫.(问题6到问题7是表达式形式优化过程)问题6 当锐角α确定,如果改变α的终边上的P 点位置,角α的正弦值会发生改变吗? 设计意图:问正弦值这一种情况,方便师生研究.余弦值和正切值可以类比得到,更方便学生理解(下面有类似问法也是同样考虑);由三角形相似,说明在终边上任意取点不影响三角函数值.这是为单位圆定义的提出做好铺垫.问题7 数学追求“简洁美”,既然这三个比值与终边上点P 的位置无关,那么当P 点选在何处时,sin cos αα和的形式最简单?设计意图:通过问题的形式过渡,自然得出单位圆的概念.由此便可顺势得出sin cos αα和的简化形式,体现了数学的“简洁美”.同时也明确在单位圆的背景下,锐角和单位圆上P 点有对应关系.(问题8到问题10是函数化过程)问题8 当锐角α发生变化时,P 点的坐标会发生相应的改变吗?(追问)当锐角α确定了,P 点的坐标是否唯一确定?(配合动画演示)(教师板书:任意锐角α(实数)→唯一实数b ;任意锐角α(实数)→唯一实数a .)设计意图:初中学生对函数理解还比较肤浅,这里提出的问题扣准了函数概念的内涵,突出了变量之间的依赖关系及对应关系,是从一般函数知识演绎到三角函数知识的重要环节,是准确理解三角函数概念的关键.问题9 你能给这个函数(任意锐角α(实数)→唯一实数b )命名吗?设计意图:只单问一个函数,可以方便学生思考,也方便师生共同总结,还可以让学生在自行总结任意角的三角函数概念时有参照对象.问题10 既然是函数,你能说出锐角α正弦函数的自变量吗?以什么为函数值呢?设计意图:让学生能更好的理解锐角三角函数的定义,同时为总结任意角三角函数定义打好基础.(问题11到问题12是特殊到一般化过程)问题11 我们现在得到的锐角三角函数的定义和初中所学锐角三角函数定义有什么区别? 设计意图:加强学生对新的定义方式的理解,让学生意识到任意角没有“斜边”,但是有“始边”、“终边”,从而发现对于任意角,如果始边放在x 轴非负半轴上,其终边定与单位圆有唯一交点,从而能形成函数关系.为归纳任意角三角函数概念扫清心理障碍.问题12 由特殊到一般的思想,你能给任意角的三角函数下一个定义吗?(教师在与学生交流中,板书定义)设计意图:利用类比、迁移的认知规律,学生容易给出任意角的三角函数定义.学生可以意识到锐角三角函数是任意角三角函数的特例,任意角三角函数是锐角三角函数的自然延伸.(三)分析思考,加深理解(下列问题是概念理解强化过程)问题13 既然它们是函数,就要注意其定义域,它是函数的“生命之域”,那么正弦、余弦、正切函数的定义域分别是什么?设计意图:因为角的集合与实数集之间可以建立一一对应的关系,故三角函数也可以看成实数为自变量的函数,强调了其函数属性.问题14 当α为锐角时,sin ,cos ,tan ααα的值都是正数,当α的终边落在各个象限时,它们分别取什么符号?设计意图:对比锐角三角函数,让学生再次回忆任意角三角函数的定义,培养学生利用规律解决问题的意识.设置一个阅读环节,让学生阅读“三角函数名称由来简史”.设计意图:通过三角知识简史的阅读,让学生有新奇感,同时提高课堂的数学文化感,让学生感知数学是源于生活的.以此,进一步激发学生的学习热情.(四)强化训练,巩固双基第一关 求53π的正弦、余弦和正切的值. 设计意图:将例题以闯关的形式呈现,和综艺节目设置相似,寓教于乐,能激发学生的学习热情;明确已知角的终边,要求其三角函数值,可以先求终边与单位圆的交点坐标,通过运用概念,巩固对概念的理解.问题15 (追问)求113π的正弦、余弦和正切的值. 设计意图:引起学生发现这两个角的终边是重合的,所以它们与单位圆的交点坐标相同,由任意角三角函数的定义可知,终边相同的角的同一三角函数值是相等的.让学生体验到公式一的作用和三角函数的周期性.第二关 确定下列三角函数值的符号:(1)cos 260; (2)sin()4π-; (3)tan(700)-; (4)tan3π.第三关 求下列三角函数值:(1)sin(1050)-; 9(2)cos 4π; 11(3)tan()6π-. 设计意图:判断三角函数值的正负符号,是本节课的教学目标之一,引导学生抓住定义、数形结合判断三角函数值的正负符号,同时应用终边相同的角的同一三角函数值是相等的这一结论.第四关 已知角α的终边经过点0(3,4),P --求角α的正弦,余弦和正切值.0(3,4)(0),P a a a--≠情况又如何?设计意图:该点不在单位圆上,与例题1的解法对比;为课后探究“角α终边上任一点(,)Q x y,求角α的正弦、余弦和正切的值.”这一问题作铺垫;增加了一个问题,加强了学生对任意角三角函数定义的理解,同时渗透了分类讨论的思想.(五)课堂小结,升华提高知识与技能:任意角三角函数的定义(单位圆);能根据定义判定三角函数的符号;公式一(终边相同的角的同一三角函数值相等)即三角函数的周期性特点.思想与方法:坐标法、特殊到一般、数形结合、类比、转化、分类讨论.设计意图:让学生自己总结,教师补充,并且提醒学生知识重要,探究的思想与方法更重要,体现了教学应以学生为主体,教师为主导的新课标理念.(六)作业布置:1、课本15页练习2、3、5.2、假设角α的顶点是直角坐标系的原点,始边与x轴的非负半轴重合,已知角α终边上任一点(,)Q x y,求角α的正弦、余弦和正切函数值.3、通过本节课学习,你对任意角三角函数有哪些新的认识?利用定义你能解决哪些问题?你还有哪些不明白的地方?请把它写下来.。

高中数学必修4第一章三角函数完整教案

高中数学必修4第一章三角函数完整教案

第一章 三角函数 4-1.1.1任意角(1)教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

教学重点:理解“正角”“负角”“象限角”“终边相同的角”的含义 教学难点:“旋转”定义角 课标要求:了解任意角的概念 教学过程: 一、引入同学们在初中时,曾初步接触过三角函数,那时的运用仅限于计算一些特殊的三角函数值、研究一些三角形中简单的边角关系等。

三角函数也是高中数学的一个重要内容,在今后的学习中大家会发现三角学有着极其丰富的内容,它能够简单地解决许多数学问题,在中学数学中有着非常广泛的应用。

二、新课1.回忆:初中是任何定义角的?(从一个点出发引出的两条射线构成的几何图形)这种概念的优点是形象、直观、容易理解,但它的弊端在于“狭隘”师:初中时,我们已学习了0○~360○角的概念,它是如何定义的呢?生:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

师:如图1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α。

旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点。

师:在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?生:逆时针旋转300;顺时针旋转300. 师:(1)用扳手拧螺母;(2)跳水运动员身体旋转.说明旋转第二周、第三周……,则形成了更大范围内的角,这些角显然超出了我们已有的认识范围。

本节课将在已掌握~角的范围基础上,重新给出角的定义,并研究这些角的分类及记法. 2.角的概念的推广: (1)定义:一条射线OA 由原来的位置OA ,绕着它的端点O 按一定方向旋转到另一位置OB ,就形成了角α。

人教版高中数学必修4教案第一章三角函数1.1.1任意角

人教版高中数学必修4教案第一章三角函数1.1.1任意角

第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于360︒角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.2、过程与方法通过创设情境:“转体720︒,逆(顺)时针旋转”,角有大于360︒角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.二、教学重、难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法与教学用具之前的学习使我们知道最大的角是周角,最小的角是零角.通过回忆和观察日常生活中实际例子,把对角的理解进行了推广.把角放入坐标系环境中以后,了解象限角的概念.通过角终边的旋转掌握终边相同角的表示方法.我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示.另外还有相同终边角的集合的表示等.教学用具:电脑、投影机、三角板四、教学设想【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360︒︒~之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了0360︒︒~角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720︒” (即转体2周),“转体1080︒”(即转体3周)等,都是遇到大于360︒的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360︒的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图 1.1.3(1)中的角是一个正角,它等于750︒;图 1.1.3(2)中,正角210α︒=,负角150,660βγ︒︒=-=-;这样,我们就把角的概念推广到了任意角(any angle ),包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。

人教版高中数学必修4第一章三角函数-《1.2.1任意角的三角函数》教案(1)

人教版高中数学必修4第一章三角函数-《1.2.1任意角的三角函数》教案(1)

1.2.1任意角的三角函数(1)教学目的:知识目标: 1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。

能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。

德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。

公式一是本小节的另一个重点。

教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.授课类型:新授课教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b asinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

二、讲解新课: 1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=;(2)比值x r叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x叫做α的正切,记作tan α,即tan yx α=;(4)比值x y叫做α的余切,记作cot α,即cot xy α=;(5)比值r x叫做α的正割,记作sec α,即sec rx α=;(6)比值r y叫做α的余割,记作csc α,即csc ry α=.说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y x α=与sec r x α=无意义;同理,当()k k Z απ=∈时,x coy yα=与csc ryα=无意义; ④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y 、r x 、ry分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。

高中数学必修4第一章第二节《任意角的三角函数》全套教案

高中数学必修4第一章第二节《任意角的三角函数》全套教案

任意角的三角函数1.2.1任意角的三角函数【教学目标】知识技能:1.掌握任意角的三角函数的定义。

2.已知角α终边上一点,会求角α的各三角函数值。

过程与方法:1.理解并掌握任意角的三角函数的定义。

2.树立映射观点,正确理解三角函数是以实数为自变量的函数。

3.通过对定义域、三角函数值的符号判断,提高学生分析、探究、解决问题的能力。

情感态度与价值观:体验知识探索过程,获得发现问题、解决问题的能力【教学重点难点】重点:任意角的三角函数的定义,三角函数的符号的规律。

难点:任意角的三角函数概念的建构过程【学前准备】:多媒体,预习例题电脑、三角板问题4:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?(老师引导,学生探究)(使角α的顶点与原点O 重合,始边与x 轴的非负半轴重合.在角α的终边上取一点P )。

如图,建立平面直角坐标系,设P 点坐标为(x,y ),则22||y x OP +=, 从而x yyx xy x y=+=+=αααtan ,cos ,sin 2222 问题5:若α是的的终边落到第二、三、四象限时,问题4的方法还使用吗? 思考1:对于确定的角α,上述三个比值是否随点P 在角α的终边上的位置的改变而改变呢?为什么?引导学生利用相似的知识不难得到:a b xyb a a y x x b a by x y b y a x ba y x AB PMOB OM OA OP ==+=+=+=+=⇒==++⇒==αααtan ,cos ,sin 222222222222归纳结论(强调):当α为锐角时,三个比值随α的变化而变化;但对于锐角α的每一个确定值,三个比值都是确定的,不会随P 在终边上的移动而变化。

通过类比再把锐角进一步推广到任意角都是成立的。

所以,三个比值分别是以角α为自变量、以比值为函数值的函数。

问题6:为了使sin α,cos α的表示式更简单,你认为点P 的位置选在何处最好?此时,sin α,cos α分别等于什么?单位圆交于点P (x ,y ),为了不与当α为锐角时的三角函数值发生矛盾,让学生尝试总结sin α,cos α,tan α对应的值应分别如何定义?:引导学生总结归纳出利用单位圆定义任意角的三角函数:设α是任意角,它的终边与单位圆交于点P (x ,y ),则: (1) y 叫做α的正弦(sine ),记作sin α,即sin α=y 。

高中数学人教版必修4教案 第一章 三角函数 1.2.1任意角的三角函数(1)

高中数学人教版必修4教案  第一章 三角函数  1.2.1任意角的三角函数(1)

1. 2.1 任意角的三角函数<第一课时>班级 姓名学习目标1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符号.2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.重点难点教学重点:任意角的正弦、余弦、正切的定义。

.教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号。

教学过程(一)提出问题问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗? 问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?问题3:如果改变终边上的点的位置,这三个比值会改变吗?为什么?问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化?(二)新课导学 1、单位圆的概念:.在直角坐标系中,我们称以 为圆心,以 为半径的圆为单位圆.2、三角函数的概念我们可以利用单位圆定义任意角的三角函数.如图,设锐角α的顶点与原点O 重合,始边与x 轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离r=22b a >0.过P 作x 轴的垂线,垂足为M,则线段OM 的长度为a,线段MP 的长度为b. 根据初中学过的三角函数定义,我们有 sinα=OP MP =r b ,cosα=OP OM =r a ,tanα=OP MP =ab.图2如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y 叫做α的正弦,记作sinα,即sinα=y; (2)x 叫做α的余弦,记作cosα,即cosα=x; (3)x y 叫做α的正切,记作tanα,即tanα=xy (x≠0).所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.(2)sinα不是sin 与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的. (3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P 在α的终边上的位置的改变而改变.3、例1:已知角α的终边与单位圆的交点是 求角α的正弦、余弦和正切值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 设α角属于第二象限,且2cos
2cos
α
α-=,则
2
α
角属于( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④9
17tan
cos 107sin
πππ
. 其中符号为负的有( )
A. ①
B. ②
C. ③
D. ④ 3. 02120sin 等于( ) A. 23±
B. 23
C. 23-
D. 2
1 4. 已知4
sin 5α=
,并且α是第二象限的角,那么tan α的值等于( ) A. 43- B. 34
- C. 43 D. 34
5. 若α是第四象限的角,则πα-是( )
A. 第一象限的角
B. 第二象限的角
C. 第三象限的角
D. 第四象限的角 6.已知角的终边落在直线y =3x 上,则sin =________.
7.已知P (-3,y )为角的终边上一点,且sin =
13
13
,那么y 的值等于________. 8.已知锐角终边上一点P (1,3),则的弧度数为________.
9.(1)sin 49πtan 3
7π_________
10.已知角的终边过P (-3,4),求的三种三角函数值
【能力提升】
1.角的终边上有一点P (a ,a ),a ∈R ,且a ≠0,则sin
的值是( )
A .
2
2 B .-
2
2 C .±
2
2
D .1
2.α是第二象限角,其终边上一点P (x ,5),且cos α=42
x ,则sin α的值为( )
A .410
B .46
C .42
D .-410
3.使lg (cos θ·tan θ)有意义的角θ是( )
A .第一象限角
B .第二象限角
C .第一或第二象限角
D .第一、二象限角或终边在y 轴上
4.设角α是第二象限角,且|cos 2α|=-cos 2α,则角2α
是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角 5.与
终边相同的最小正角是_______________;与-75°终边相同的角的集合是
___________________________。

6.-15°=_____________弧度;
=____________度。

7 时钟的分针走了1小时10分,它所转过的角度是_____________度,是__________弧度。

8.填入不等号:(1)
;(2)
;(3)

9.已知α与50°的终边相同,且
,则α是__________________。

10 是角θ终边上的一点,且
11.已知角α的终边落在第一和第三象限的角平分线上,求α的六个三角函数值。

12.一弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长和扇形的面积。

相关文档
最新文档