[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

合集下载

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)

考研数学一(行列式、矩阵)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年]行列式=( ).A.(ad-bc)2B.一(ad-bc)2C.a2d2一b2c2D.一a2d2+b2c2正确答案:B解析:令,则此为非零元素仅在主、次对角线上的行列式,即得|A|=一(ad-bc)(ad-bc)=一(ad-bc)2.仅B入选.知识模块:行列式2.设A是m×n矩阵,B是n×m矩阵,则( ).A.当m>n时,必有行列式|AB|≠0B.当m>n时,必有行列式|AB|=0C.当n>m时,必有行列式|AB|≠0D.当n>m时,必有行列式|AB|=0正确答案:B解析:利用矩阵秩和乘积矩阵秩的两不大于法则确定正确选项.因AB为m 阶矩阵,行列式|AB|是否等于零取决于其秩是否小于m.利用矩阵秩的两不大于法则得到m>n时,有秩(A)≤min{m,n}=n<m,秩(B)≤min{m,n}=n <m.再利用乘积矩阵秩的两不大于法则得到秩(AB)≤min{秩(A),秩(B)}<m,而AB为m阶矩阵,故|AB|=0.仅B入选.知识模块:行列式3.[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.B.C.D.正确答案:B解析:因Q=[α1+α2,α2,α3]=[α1,α2,α2],故因而Q-1AQ 知识模块:矩阵4.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:由A3=O知A为幂零矩阵,故其特征值λ1=λ2=…=λn=0,因而E —A与E+A的n个特征值均为μ1=μ2=…=μn=1,故E一A与E+A没有零特征值.可知,它们均可逆.知识模块:矩阵填空题5.设n阶矩阵,则|A|=______.正确答案:(一1)n-1(n一1)解析:|A|是行和与列和都相等的行列式.将各列加到第1列,提取公因式n一1,去掉与第1列成比例的分列,化为下三角形行列式,得=(一1)n-1(n 一1).知识模块:行列式6.[2015年] n阶行列式=______.正确答案:2n+1-2解析:按第1行展开得到递推关系式:=2Dn-1+2(一1)n+1(一1)n-1=2Dn-1+2.依此递推,得到Dn=2Dn-1+2=2(2Dn-2+2)+2=22Dn-2+22+2=22(2Dn-3+2)+22+2=23Dn-3+23+22+2 =…=2n-1D1+2n-1+2n-2+…+22+2=2n-1·2+2n-1+2n-2+…+22+2=2n+2n-1+2n-2+…+22+2=2(1+2+22+…+2n-1).由等比级数求和的公式a1+a1q+a1q2+…+a1qn-1=,令a1=2,q=2,得到Dn=2(1+2+22+…+2n-1)==(一1)(2—2n+1)=2n+1-2.知识模块:行列式7.[2016年]行列式=______.正确答案:λ4+λ3+2λ2+3λ+4解析:=λ[λ·λ·(λ+1)+0·2·0+3(-1)(一1)一0·λ·3一(一1)·2·λ—(λ+1)(一1)·0]+4=λ4+λ3+2λ2+3λ+4.知识模块:行列式8.设A,B为n阶矩阵,|A|=2,|B|=一3,则|2A*B-1|=______.正确答案:一22n-1/3解析:由|kA|=kn|A|.A*=|A|A-1,|A*|=|A|n-1,|B-1|=1/|B|,有|2A*B-1|=|2A*||B-1|=2n|A*|(1/|B|)=2n|A|n-1一/|B|=2n2n-1/(一3)=一22n-1/3.知识模块:行列式9.[2005年] 设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3].如|A|=1,那么|B|=______·正确答案:2解析:B=[α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3]=[α1,α2,α3]=AC.其中为三阶范德蒙行列式,则|C|=(2—1)×(3—1)×(3—2)=2,故|B|=|A||C|=2×1=2.知识模块:行列式10.[2006年]设矩阵,E为二阶单位矩阵,矩阵B满足BA=B+2E,则|B|=______.正确答案:2解析:由BA=B+2E得|B(A—E)|=|2E|=22=4,故|B||A—E|=4,|B|=4/|A—E|=4/2=2.知识模块:行列式11.[2004年]设矩阵,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=______.正确答案:1/9解析:在所给方程的两边同时右乘A,利用A*A=|A|E,得到ABA*A=2BA*A+A,即|A|AB=2|A|B+A,移项即得|A|(A一2E)B=A.两边取行列式,得到|A|(A-2E)B|=|A|,即|A|3|(A-2E)B|=|A|,|A|2|A一2E||B|=1,再由|A|=3,|A一2E|=1得到所求行列式|B|=1/|A|2=1/9.知识模块:行列式12.设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=______.正确答案:3解析:所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP=diag(1,2,2)=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4PΛ-1P-1一PEP-1=P(4Λ-1一E)P-1.两端取行列式有|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,1/2)一E|=3.知识模块:行列式13.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=______.正确答案:-1解析:由aij=一Aij,则(aij)T=一(Aij)T=一(Aji),即AT=一A*,从而|A|=|AT|=|—A*|=(一1)3|A|3-1=一|A|2.即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=一1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=一(ai12+ai22+ai32)=0 (i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵.这与假设矛盾,故|A|=一1. 知识模块:行列式14.若齐次线性方程组只有零解,则λ应满足的条件是______.正确答案:λ≠1解析:因方程个数与未知数的个数相同,又该方程组只有零解,可知,|A|≠0.而于是当λ≠1时,|A |≠0,即该方程组只有零解.知识模块:行列式15.设α为三维列向量,αT是α的转置.若ααT=,则αTα=______.正确答案:3解析:由ααT= 知,于是αTα=3.知识模块:矩阵16.设,而n≥2为整数,则An一2An-1=______.正确答案:O解析:先求出n=2和n=3时A2,A3的表示式,然后归纳递推求出An.当n=2时,A2==2A.当n=3时,A2=A2·A=2A·A=2A2=2·2A=22A.设Ak=2k-1A,下面证Ak+1=2kA.事实上,有Ak+1=Ak·A=2k-1A·A=2k-1A2=2k-1·2A=2kA.因而对任何自然数n,有An=2n-1A,于是An一2An-1=2n-1A一2·2n-2A=O.知识模块:矩阵解答题解答应写出文字说明、证明过程或演算步骤。

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数微分学)历年真题试卷汇编1.doc
(A)F(x)是偶函数 f(x)是奇函数
(B)F(x)是奇函数 f(x)是偶函数
(C)F(x)是周期函数 f(x)是周期函数
(D)F(x)是单调函数 f(x)是单调函数
二、填空题
23 (1999年)
24 (2002年)已知函数y=y(x)由方程ey+6xy+x2一1=0确定,则y"(0)=____________。
(A)当f(x)是奇函数时,F(x)必是偶函数
(B)当f(x)是偶函数时,F(x)必是奇函数
(C)当f(x)是周期函数时,F(x)必是周期函数
(D)当f(x)是单调增函数时,F(x)必是单调增函数
21 (2002年)设函数y=f(x)在(0,+∞)内有界且可导,则( )
22 (2005年)设F(x)是连续函数f(x)的一个原函数,“M N”表示“M的充分必要条件是N”,则必有( )
34 (2002年)已知两曲线y=f(x)与 在点(0,0)处的切线相同,写出此切线方程,并求极限
35 (2010年)求函数 的单调区间与极值。
36 (1999年)试证:当x>0时,(x2一1)lnx≥(x一1)2。
37 (2004年)设e<a<b<e2,证明
38 (2012年)证明:
(A)一个极小值点和两个极大值点
(B)两个极小值点和一个极大值点
(C)两个极小值点和两个极大值点
(D)三个极小值点和一个极大值点
15 (2011年)曲线y=(x一1)(x一2)2(x一3)3(x一4)4的拐点为( )
(A)(1,0)
(B)(2,0)
(C)(3,0)
(D)(4,0)
16 (2015年)设函数f(x)在(一∞,+∞)内连续,其中二阶导数f"(x)的图形如图所示,则曲线y=f(x)的拐点个数为( )

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(常微分方程)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (1998年)已知函数y=y(x)在任意点x处的增量且当△x→0时,α是△x的高阶无穷小,y(0)=π,则y(1)等于( )(A)2π(B)π(C)(D)2 (2016年)若是微分方程y′+p(x)y=q(x)的两个解,则q(x)=( )(A)3x(1+x2)(B)一3x(1+x2)(C)(D)3 (2008年)在下列微分方程中,以y=C1e x+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是( )(A)y"′+y"一4y′一4y=0(B)y"′+y"+4y′+4y=0(C)y"′一y"一4y′+4y=0(D)y"′一y"+4y′一4y=04 (2015年)设是二阶常系数非齐次线性微分方程y"+ay′+by=ce x的一个特解,则( )(A)a=一3,b=2,c=一1(B)a=3,b=2,c=一1(C)a=一3,b=2,c=1(D)a=3,b=2,c=1二、填空题5 (2006年)微分方程的通解是__________。

6 (2008年)微分方程xy′+y=0满足条件y(1)=1的解是y=___________。

7 (2014年)微分方程xy′+y(lnx—lny)=0满足y(1)=e3的解为y=____________。

8 (2005年)微分方程xy′+2y=zlnx满足的解为___________。

9 (2011年)微分方程y′+y=e-x cosx满足条件y(0)=0的解为y=__________。

10 (2000年)微分方程xy"+3y′=0的通解为_____________。

11 (2002年)微分方程xy"+y′2=0满足初始条件的特解是____________。

(1987-2016)历年考研数学一真题及答案

(1987-2016)历年考研数学一真题及答案

ˆπ 2
ˆ 2(1+cosθ)
x dxdy = dθ
r cosθ · r dr
D
ˆ−
π 2
2
π(
)
= 16 2 cos2θ + cos3θ + 1 cos4θ dθ
(0
3 )
1π 2 131π
= 16 · + + · · ·
22 3 3422
32 = + 5π.
3
16.(本题满分 10 分)
设函数 y(x) 满足方程 y′′ + 2y′ + ky = 0, 其中 0 < k < 1.
2
设矩阵 A = 2 a 1 , B = 1
2 a ,
−1 1 a
−a − 1 −2
当 a 为何值时, 方程 AX = B 无解、有唯一解、有无穷多解?在有解时, 求此方程.
1 −1 −1 2 2
1 −1 −1 2
2
解 (A | B) = 2 a 1
1
a → 0 a + 2 3 −3 a − 4
(3)
由 (1) 式知, 当 n → ∞ 时, xn+1 − xn → 0, 即 F (xn) → 0. 结合 (2) (3) 式知 xn → ξ. 即 lim xn ∈ (1, 2) ⊂ (0, 2).
n→∞
数学(一) 试题及解答 · 第 4 页(共 7 页)
20.(本题满分 11 分)
1 −1 −1
[A]
1 (A) −2 .
1 (B) −3 .
1 (C) .
3
1 (D) −2 .
二、填空题:9 ∼ 14 小题, 每小题 4 分, 共 24 分.

考研数学一(一元函数积分学)模拟试卷6(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷6(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷6(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设则F(x) ( )A.为正常数B.为负常数C.恒为零D.不为常数正确答案:A解析:因esinxsinx是以2π为周期的周期函数,所以又esinxcos2x≥0,故选A.知识模块:一元函数积分学2.设f(x)是以l为周期的周期函数,则之值( )A.仅与a有关B.仅与a无关C.与a及k都无关D.与a及k都有关正确答案:C解析:因为f(x)是以l为周期的周期函数,所以故此积分与a及k都无关.知识模块:一元函数积分学3.设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是( )A.B.C.D.正确答案:D解析:当g(x+T)=g(x)时,因为因为f(x)是以T为周期的函数,所以4个选项中的被积函数都是以T为周期的周期函数,但是仅是以T为周期的函数.知识模块:一元函数积分学4.下列反常积分收敛的是( )A.B.C.D.正确答案:C解析:选项A中,收敛;在选项D中,发散.知识模块:一元函数积分学5.平面π与π1:x一2y+z一2=0和π2:x一2y+z一6=0的距离之比为1:3,则平面π的方程为( ).A.x一2y+z=0B.x一2y+z一3=0C.x一2y+z=0或x一2y+z一3=0D.x一2y+z—4=0正确答案:C解析:设所求平面为π:x一2y+z+D=0,在平面π:x一2y+z+D=0上取一点,因为d1:d2=1:3,所以D=0或D=一3,选(C)。

知识模块:高等数学部分6.设则有( ).A.L1∥L3B.L1∥L2C.L2⊥L3D.L1⊥L2正确答案:D解析:三条直线的方向向量为s1={一2,一5,3),s2={3,3,7},s3={1,3,一1}×{2,1,一1}={一2,一1,一5},因为s1.s2=0,所以L1⊥L2,选(D).知识模块:高等数学部分7.抛物线y2=2x与直线y=x一4所围成的图形的面积为( ).A.B.18C.D.8正确答案:B解析:选积分变量为y(如图1.3—2),两条曲线的交点知识模块:一元函数积分学8.曲线上相应于x从3到8的一段弧的长度为( ).A.B.C.9D.6正确答案:A解析:知识模块:一元函数积分学填空题9.设z=f(x,y)二阶可偏导,=2,且f(x,0)=1,fy’(x,0)=x,则f(x,y)=__________.正确答案:y2+xy+1解析:由得,因为fy’(x,0)=x,所以φ(x)=x,即=2y+x,z=y2+xy+C,因为f(x,0)=1,所以C=1,于是z=y2+xy+1.知识模块:高等数学部分10.设(ay一Zxy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a =_________,b=___________。

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (2011年试题,一)设则I,J,K的大小关系是( ).(A)I<J<K(B)I<K<J(C)J<I<K(D)K<J<I2 (1997年试题,2)设在区间[a,b]上f(x)>0,f'(x)''>0.令,则( ).(A)S123(B)S213(C)S312(D)S2313 (2012年试题,一)设,则有( )•(A)I123(B)I321(C)I231(D)I2134 (2008年试题,1)设函数则f'(x)的零点个数是( ).(A)0(B)1(C)2(D)35 (1998年试题,二)设f(x)连续,则tf(x2一t2)dt=( ).(A)xf(x2)(B)一xf(x2)(C)2xf(x2)(D)一2xf(x2)6 (1997年试题,二)设则F(x)( ).(A)为正常数(B)为负常数(C)恒为零(D)不为常数7 (2010年试题,一)设m,n为正整数,则反常积分的收敛性( ).(A)仅与m有关(B)仅于n有关(C)与m,n都有关(D)与m,n都无关8 (2009年试题,3)设函数y=f(x)在区间[一1,3]上的图形如图1一3—3所示,则函数435的图形为( ).436(A)(B)(C)(D)9 (2007年试题,一)如图1一3—4,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的上、下半圆周,设则下列结沦正确的是( )。

(A)(B)(C)(D)二、填空题10 (2004年试题,2)已知f1(e x)=xe-s,且f(1)=0,则f(x)=__________.11 (2012年试题,二)=__________.12 (2010年试题,10)=__________.13 (2007年试题,二)=__________.14 (2000年试题,1)=__________.15 (1999年试题,一)=____________。

考研数学一-一元函数积分学

考研数学一-一元函数积分学

考研数学一-一元函数积分学(总分:222.50,做题时间:90分钟)一、{{B}}选择题{{/B}}(总题数:31,分数:124.00)1.下列命题不正确的是(分数:4.00)A.(A) 若f(x)在区间(a,b)内的某个原函数是常数,则f(x)在(a,b)内恒为零.B.(B) 若f(x)的某个原函数为零,则f(x)的所有原函数为常数.C.(C) 若f(x)在区间(a,b)内不是连续函数,则在这个区间内f(x)必无原函数.√D.(D) 若F(x)是f(x)的任意一个原函数,则F(x)必定为连续函数.解析:[分析] 假设F(x)是f(x)的一个原函数,则必有F'(x)=f(x).对于命题(A):如果f(x)在区间(a,b)内的某个原函数F(x)=k(k是常数),则在(a,b)内任意点x处,f(x)=F'(x)=0,所以此命题正确.对于命题(B):若F(x)=0是f(x)的一个原函数,则F(x)+c=c就是f(x)的所有原函数,从而此命题正确.f(x)在区间(a,b)内连续是其原函数存在的充分条件,命题(C)是错误的,只需举反例说明,如函数在(-1,1)内不连续,但它存在原函数若F(x)是f(x)的一个原函数,则必有F'(x)=f(x),说明F(x)可导,而可导必连续,所以命题(D)正确.综上分析,应选(C).2.设则下列结论①在[-1,1]上f1(x)存在原函数②存在定积分③存在f'2(0) ④在[-1,1]上f2(x)存在原函数中正确的是(分数:4.00)A.(A) ①、②.B.(B) ③、④.C.(C) ②、④.√D.(D) ①、③。

解析:[分析] ①不正确.若存在原函数F(x),则在区间[-1,0],;在区间(0,1]上F(x)=e x+C2.在x=0处F(x)应连续,所以C1=C2+1,于是但此F(x)在x=0处F'-(0)=0,F'+(0)=1,F'(0)不存在,所以此F(x)在[-1,1]上不是f1(x)的原函数,矛盾,故①不正确.②正确.f1(x)在[-1,1]上有界且只有1个间断点,所以存在,且③不正确.由导数定义可知f'2(0)不存在.④正确.因为f2(x)在[-1,1]上连续,所以存在原函数.综上分析,应选(C).3.设函数f(x)在[a,b]上有界,把[a,b]任意分成n个小区间,ξi为每个小区间[x i-1,x i]上任取的一点,则所表示的和式极限是(分数:4.00)A.B.C.D. √解析:[分析] 由定积分的定义可知(D)正确,应选(D).4.下列关于反常积分的命题①设f(x)是(-∞,+∞)上的连续奇函数,则②设f(x)在(-∞,+∞)上连续,且存在,则必收敛,且③若都发散,则不能确定是否收敛④若都发散,则不能确定是否收敛中是真命题的个数有(分数:4.00)A.(A) 1个.√B.(B) 2个.C.(C) 3个.D.(D) 4个.解析:[分析] 反常积分收敛的充分必要条件是对常数a,两个反常积分与都收敛.设f(x)=x,f(x)是(-∞,+∞)上的连续奇函数,且.但是发散.所以①、②、④不是真命题.设f(x)=x,g(x)=-x,由上面的讨论知都发散,但g(x)]dx收敛;设f(x)=x,g(x)=x,由上面的讨论知都发散,且也发散.这表明③是真命题.所以应选(A).5.设f(x)及g(x)在[a,b]上连续,则下列命题①若在[a,b]上,f(x)≥0,则f(x)≠0,②若在[a,b]上,f(x)≥0,且,则在[a,b]上f(x)=0 ③若f(x)在[a,b]的任意子区间[α,β]上有,则f(x)=0() ④若在[a,b]上,f(x)≤g(x),且,则在[a,b]上f(x)≡g(x) 中正确的是(分数:4.00)A.(A) ①、②.B.(B) ①、②、③.C.(C) ①、②、④.D.(D) ①、②、③、④.√解析:[分析] ①正确.根据条件必定存在x0∈[a,b],使得f(x0)>0.由函数f(x)在x0连续可知,存在a≤α<β≤b,使得当x∈[α,β]时.因此有由定积分性质得到故得到结论.②正确.用反证法.如果f(x)≠0,由由①得到,与假设条件矛盾,因此②成立.③正确.用反证法.若f(x)≠0(x∈[a,b]),则,f(x0)≠0,不妨设f(x0)>0,由连续性,,f(x)>0(x∈[x0-δ,x0+δ]).取[α,β]=[x0-δ,x0+δ],则,与已知矛盾.因此,f(x)≡0(x∈[a,b]).④正确.臣为h(x)=g(x)-f(x)≥0,且,由②可得h(x)≡0,从而结论成立.综上分析,应选(D).6.积分上限函数(a≤x≤b)是一种由积分定义的新的函数,它的特征是自变量x为积分上限,F(x)与x的对应法则由定积分给出下列对F(x)的理解不正确的是(分数:4.00)A.(A) 若函数f(x)在[a,b]上连续,则F(x)可导,且F'(x)=f(x).B.(B) 若函数f(x)存[a,b]上连续,则F(x)就是f(x)在[a,b]上的一个原函数.C.(C) 若函数f(x)存[a,b]上(有界,且只有有限个第一类间断点)可积,则F(x)在[a,b]上连续,且可微.D.(D) 若积分上限是x的可微函数g(x),则是F(u)与u=g(x)的复合函数,求导时必须使用复合函数求导法则,即解析:[分析] 对于(A):由变上限积分的性质可知(A)正确.由此得到一个重要结论:连续函数一定存在原函数.有些积分如等虽然“积”不出来,但因被积函数在其定义区间上连续,所以一定存在原函数.对于(B):若f(x)为[a,b]上的连续函数,由变上限积分函数的性质可知,必有由原函数的定义可知,若f(x)为[a,b]上的连续函数,则必为f(x)在[a,b]上的一个原函数.故(B)正确.评注1°此命题表明任何连续函数都存在原函数.2°若f(x)在[a,b]上存在原函数,则f(x)在[a,b]上的所有原函数可以表示为3°若f(x)为[a,b]上的连续函数,则为4°若f(x)不是[a,b]上的连续函数,则不一定为f(x)在该区间上的原函数.因为若f(x)不是连续函数,很可能不可导.如,设,则 (A)F(x)在x=0处不连续. (B)F(x)在(-∞,+∞)上连续,但在点x=0处不可导. (C)F(x)在(-∞,+∞)内可导,且满足F'(x)=f(x). (D)F(x)在(-∞,+∞)内可导,但不一定满足F'(x)=f(x).首先要注意:当f(x)为连续函数,的原函数,此时有如果f(x)不为连续函数,则上述结论不成立.由于f(x)为分段函数,因此变上限积分F(x)出为分段函数.当x<0时;当x>0时;当x=0时F(0)=0;因此F(x)=|x|,可知F(x)在(-∞,+∞)上连续,但是在x=0点处不可导.故应选(B).对于(C):F(x)在[a,b]上连续的结论是明显的,但F(x)不一定可微.假设F(x)可微,即有 F'(x)=f(x),这表明在某区间上可微函数的导函数具有第一类间断点,这与“若导函数有不连续点,则只可能是第二类间断点”相矛盾,故(C)不正确.对于(D):显然正确.综上分析,应选(C).7.设F(x)是函数f(x)=max{x,x2}的一个原函数.则(分数:4.00)A.(A) F(x)可能在x=0,x=1两点处间断.B.(B) F(x)只可能在x=1处间断.C.(C) F(x)的导函数可能在x=1处间断.D.(D) F(x)的导函数处处连续.√解析:[分析] 由于,所以f(x)处处连续.又因为F(x)是f(x)的原函数,所以F'(x)=f(x),从而选(D).8.设F(x)是f(x)在(a,b)上的一个原函数,则f(x)+F(x)在(a,b)上(分数:4.00)A.(A) 可导.B.(B) 连续.C.(C) 存在原函数.√D.(D) 不是分段函数.解析:[分析] 因为F(x)是f(x)在(a,b)上的一个原函数,所以F'(x)=f(x),因此F(x)在(a,b)上连续,于是F(x)在(a,b)上存在原函数,从而F(x)+f(z)在(a,b)上存在原函数,因此选(C).函数f(x)在(a,b)上存在原函数,f(x)在(a,b)上不一定连续(函数f(x)在(a,b)上连续是它在(a,b)上存在原函数的充分条件).又F(x)在(a,b)上连续,因此F(x)+f(x)在(a,b)上不一定连续,因此不选(B),从而也不选(A).另外,f(x)+F(x)存在原函数,但它不一定是初等函数,例如e|x|在(-∞,+∞)上存在一个原函数但就是分段函数,因此不选(D).9.设F(x)是函数f(x)在区间I上的原函数,则(分数:4.00)A.(A) F(x)必是初等函数且有界.B.(B) F(x)必是初等函数,但未必有界.C.(C) F(x)在I上必连续且有界.D.(D) F(x)在I上必连续,但未必有界.√解析:[分析] 根据原函数的定义,知F(x)在I上可导且F'(x)=f(x),所以F(x)在I上连续,但未必有界,如在(0,1)上的原函数是lnx,但lnx在(0,1)内是无界的.故应选(D).10.设,则根据定积分的几何意义可知下列结论正确的是(分数:4.00)A.(A) I是由曲线y=f(x)及直线x=a、x=b与x轴所围图形的面积,所以I>0.B.(B) 若I=0,则上述图形面积为零,从而图形的“高”f(x)=0.C.(C) I是曲线y=f(x)及直线x=a、x=b与x轴之间各部分而积的代数和.√D.(D) I是曲线y=|f(x)|及直线x=a、x=b与x轴所围图形的面积.解析:[分析] 由定积分的几何意义可知,(C)正确.例如:,而由曲线y=sinx,x轴与直线所围成的曲边梯形的面积为由此可知(A),(B)均不正确.(D)显然不正确.故应选(C).11.下列结论不正确的是(分数:4.00)A.(A) 若函数f(x)在[a,b]上可积,则定积分表示一个常数值,且该值与区间[a,b]、函数f(x)及积分变量的记号均有关.√B.(B) 若函数f(x)在[a,b]上可积,将[a,b]n等分,在每个小区间△x i上任取一点ξi,则必定存在,且C.(C) 设有常数I,如果对于任意给定的正数ε,总存在一个正数δ,使得对于区间[a,b]的任何分法,不论ξi在[x i-1,x i]中怎样选取,只要λ>δ,总有D.(D) 若函数f(x)在[a,b]上满足下列条件之一:(ⅰ)在[a,b]上连续;(ⅱ)在[a,b]上有界,且只有有限个间断点;(ⅲ)在[a,b]上单调,则f(x)在[a,b]上可积.解析:[分析] 对于(A):定积分定义中,是一种新的类型的极限,它既不能表示成数列的极限,也不能表示成函数的极限.λ愈小,表示分点愈密.对于[a,b]的任意划分,不论小区间|x i-1,x i]上点ξi怎样取法,当λ→0时,和为极限.因此,定积分仅与被积函数f(x)及积分区间[a,b]有关,而与积分变量的记号无关.即有故(A)不正确.对于(B):由定积分的定义可知(B)正确.该命题提供了一条求极限的途径.对于(C):这是定积分定义的等价表述(利用“ε-δ”的说法),因此,(C)正确.对于(D):这三个条件均为f(x)在[a,b]上可积的充分条件,故(D)正确.综上分析,应选(A).12.设f(x)在(-∞,+∞)内连续,则下列叙述正确的是(分数:4.00)A.(A) 若f(x)为偶函数,则B.(B) 若f(x)为奇函数,则C.(C) 若f(x)为非奇非偶函数,则D.(D) 若f(x)为以T为周期的周期函数,且是奇函数,则是以T为周期的周期隔数.√解析:[分析] 由于0既是偶函数又是奇函数,且,所以不选(A),(B).若f(x)为非奇非偶函数,也可能有.例如在(-∞,+∞)上为非奇非偶函数,但,因此不选(C),由排除法应选(D).事实上,利用“若f(x)为以T为周期的周期函数,则的值与a无关”与奇函数的积分性质可得,有所以是以T为周期的周期函数.13.下列命题不正确的是(分数:4.00)A.(A) 初等函数在其定义区间(a,b)内必定存在原函数.B.(B) 设a<c<b,f(x)定义在(a,b)上,若x=c是f(x)的第一类间断点,则f(x)在(a,b)不存在原函数.C.(C) 若函数f(x)在区间,上含有第二类间断点,则该函数在区间,上不存在原函数.√D.(D) 设函数x∈(-∞,+∞),则函数f(x)在(-∞,+∞)上不存在原函数.解析:[分析] 对于(A):由于初等函数在其定义区间内必定为连续函数,而连续函数必定存在原函数,因此(A)正确.对于(B):设f(x)在(a,b)存在原函数记为F(x),则它在(a,b)可导、连续.另一方面若x=c是f(x)的跳跃间断点,这与F(x)在x=c可导矛盾.若x=c是f(x)的可去间断点,则,也与F(x)是f(x)在(a,b)的原函数矛盾.因此,f(x)在(a,b)不存在原函数.故(B)正确.对于(C):例如函数的导函数为显然,x=0是f(x)的第二类间断点,但F(x)却是f(x)的原函数.故(C)不正确.对于(D):设f(x)在(-∞,+∞)存在原函数F(x),则由此可知,F(x)在点x=0处不可导,这与F'(0)存在矛盾.因此f(x)在(-∞,+∞)不存原函数.故(D)正确.综上分析,应选(C).14.下列命题正确的是(分数:4.00)A.(A) 设f(x)为(-∞,+∞)上的偶函数且在[0,+∞)内可导,则,f(x)在(-∞,+∞)内可导.B.(B) 设f(x)为(-∞,+∞)上的奇函数且在[0,+∞)内可导,则f(x)在(-∞,+∞)内可导.√C.(C) 设D.(D) 设x0∈(a,b),f(x)在[a,b]除x0外连续,x0是f(x)的第一类间断点,则f(x)在[a,b]上存在原函数.解析:[分析] 对于(A):令f(x)=|x|,则f(x)为(-∞,+∞)上的偶函数且在[0,+∞)内可导,但f(x)在x=0不可导.对于(C):令不存在.对于(D):令则f(x)在[-1,1]上不存在原函数.事实上在所给条件下,f(x)在[a,b]上一定不存在原函数.对于(B):当X0∈(-∞,0)时,由于所以f(x)在(-∞,0)内可导;当x0=0,由于故(B)正确.15.下列命题①设∫f(x)dx=F(x)+C,则对任意函数g(x),有∫f[g(x)]dx=F[g(x)]+C ②设函数f(x)在某区间上连续、可导,且f'(x)≠0.又f-1(x)是其反函数,且∫f(x)dx=F(x)+C,则∫f-1(x)dx=xf-1(x)-F[f-1(x)]+C ③设∫f(x)dx=F(x)+C,x∈(-∞,+∞),常数a≠0,则∫f(ax)dx=F(ax)+C.④设∫f(x)dx=F(x)+C,x∈(-∞,+∞),则中正确的是(分数:4.00)A.(A) ①、③.B.(B) ①、④.C.(C) ②、③.D.(D) ②、④.√解析:[分析] 这是一些函数恒等式,且左端均为不定积分,所以右端必须含一项任意常数项C,否则就不成立.余下就看右端的非常数项函数与左端的被积函数是否有相同的定义域以及右端函数的导数是否是左端的被积函数.对于①:例如函数g(x)=2x,有故①不正确.但当g(x)=x+b时,等式还是成立的,即∫f(x+b)dx=F(x+b)+C.对于②:应用分部积分法可得∫f-1(x)dx=xf-1(x)-∫fx[f-1(x)]'dx.记y=f-1(x),则x=f(y),dy=[f-1(x)]'dx,于是∫x[f-1(x)]'dx=∫f(y)dy=F(y)+C,∫f-1(x)dx=xf-1(x)-F[f-1(x)]+C.故②正确.对于③:因为F'(x)=f(x),所以[F(a x)]'=F'(ax)·a=af(ax),即a∫f(ax)dx=F(ax)+C,因此,a≠1时等式不成立.由此可知③不正确.对于④:因为F'(x)=f(x),所以因此.故④正确.综上分析,应选(D).16.设f(e x)=x,则函数f(x)在区间[1,2]上的平均值等于(分数:4.00)A.(A) ln2+1.B.(B) ln2-1.C.(C) 2ln2+1.D.(D) 2ln2-1.√解析:[分析] 令e x=t,则f(t)=lnt,从而它在区间[1,2]的平均值为.故应选(D).17.下列反常积分发散的是(分数:4.00)A.B.C.D. √解析:[分析] 发散.选(D).18.设,则F(x)(分数:4.00)A.(A) 是零.B.(B) 是一个正数.√C.(C) 是一个负数.D.(D) 不是常数.解析:[分析] 因被积函数f(t)=e cost cost是以2π为周期的偶函数,当x∈[0,π]时e cosx cosx≥0且不恒等于零,于是F'(x)=f(x+2π)-f(x)=0.所以F(x)必是一个常数.又因为,故应选(B).19.下列各式成立的是(分数:4.00)A.B. √C.D.解析:[分析] 根据反常积分的定义可知(A),(C)两个反常积分都不存在,所以不正确.而(D): 由排除法知应选(B).20.曲线y=x2与直线y=2x围成的平面图形绕Y轴旋转一周所得旋转体的体积V等于(分数:4.00)A.B. √C.D.解析:[分析] 解方程组可得两交点(0,0)和(2,4).故所求体积为21.下列结果正确的是(分数:4.00)A.B.C.D. √解析:[分析] 对于(D):因为的可去间断点,故存在,应选(D).对于(A),(B):由于(A),(B)是反常积分,不能使用牛顿-莱布尼兹公式.对于(C):换元积分法要求所作代换x=ψ(t)在所讨论范围内单值,而此处所作的代换不是单值函数.22.下列结果不正确的是(分数:4.00)A.B.C.D. √解析:[分析] 对于(A):以x为变量,为常数,故.(A)正确.对于(B):以b为变量,这是变上限积分的求导,则.故(B)正确.对于(C):以a为变量,这是变下限积分的求导,则.故(C)正确.对于(D):故(D)不正确.评注①在变限积分求导中常犯的错误是漏项,如分别漏掉了 (2x2)'=4x,(cos2x)'=-sin2x.②对积分上限的函数求导时应注意以下两点:第一,首先要弄清是对哪个变量求导,把积分上限的函数的自变量与积分变量区分开来.积分上限的函数的自变量是上限变量,因此对积分上限的函数求导,就是对上限变量求导,与积分变量没有关系.但有时会遇到上限变量也含在被积表达式内的情况,这时应先设法把上限变量从被积表达式内分离出来,并提到积分号外,然后再进行求导.例如对求导时,应先把它写作,然后应用乘积的求导公式求导.第二,当积分上限,甚至积分下限,都是x的函数时,就要应用复合函数的求导法则进行求导.一般说来,有下述结果:当函数α(x),β(x)均在(a,b)内可导,函数f(x)在[a,b]上连续时,则有综上分析,应选(D).23.下列等式或结论正确的是(分数:4.00)A.(A) [∫f(x)dx]'=∫f(x)dx=f(x).B.(B) ∫d[∫f(x)dx]=f(x).C.(C) d[∫f(x)dx]=f(x)dx.√D.(D) 若∫f(x)dx]'=[∫g(x)dx]',则∫f(x)dx=∫g(x)dx.解析:[分析] 对于(A):由于第二个等式的右侧没有积分常数,故(A)不正确.正确的结论为:[∫f(x)dx]'=f(x),∫f(x)dx=f(x)+C.对于(B):由于d[∫f(x)dx]=f(x)dx,所以∫d[f(x)dx]=∫f(x)dx.故(B)不正确.对于(C):显然正确.对于(D):由不定积分的性质[∫f(x)dx]'=f(x)及条件[∫f(x)dx]'=[∫f(x)dx]'可以得到f(x)=g(x).据不定积分的定义(带有任意常数项的原函数),则有∫f(x)dx=∫g(x)dx+C.故(D)不正确.综上分析,应选(C).24.设(分数:4.00)A.(A) 为反常积分,且发散.√B.(B) 为反常积分,且收敛.C.(C) 不是反常积分,且其值为10.D.(D) 不是反常积分,且其值为.解析:[分析] 由于,所以于是而发散,故为反常积分,且发散.选(A).25.下列结论正确的是(分数:4.00)A.(A) 若函数f(x)在[a,b]上可积,则f(x)在[a,b]上必有界;反之,若函数f(x)在[a,b]上有界,则f(x)在[a,b]上必可积.B.(B) 若函数f(x)在[a,b]上可积,则f(x)在[a,b]内必定有原函数;反之,若函数f(x)在[a,b]内有原函数,则f(x)在[a,b]上必定可积.C.(C) 若函数f(x)在任何有限区问上可积,则对任一点c,有√D.(D) 若函数f(x)在[a,b]上可积,则必存在ξ∈[a,b],使得解析:[分析] 对于(A):前半句正确,注意函数f(x)在[a,b]上有界是f(x)在[a,b]上可积的必要条件.后半句不正确,例如狄利克雷函数在[0,1]上有界,但不可积.因此(A)不正确.对于(B):前半句不正确,例如函数在[-1,1]上可积,且=1,但点x=0为f(x)的第一类间断点,从而在(-1,1)内f(x)没有原函数.后半句也不正确,例如函数在区间(0,1)内有原函数F(x)=lnx但f(x)在[0,1]上不可积.故(B)不正确.评注只有当函数f(x)在[a,b]上连续时,可积与原函数存在是相互等价的,而当f(x)在[a,b]上不连续时,这种相互等价的关系并不存在.对于(C):由“定积分对于积分区间具有可加性”可知,(C)正确.对于(D):例如函数在[0,2]上可积,且但不存在ζ∈[0,2],使得.故(D)不正确·评注函数在闭区间上连续是积分中值定理成立的充分、非必要条件.例如符号函数sgnx在[-1,1]上可积,且,若取ξ=0∈[-1,1],则有但sgnx在[-1,1]上不连续.综上分析,应选(C).26.设有一椭圆形的薄板,长半轴为a,短半轴为b,薄板垂直立于液体巾,而其短半轴与液面相齐,液体的比重为γ,则液体对薄板的侧压力为(分数:4.00)A.B. √C.D.解析:[分析] 建坐标如图所示.取y当积分变量,则其收取范围是[-a,0].压力微元素为所以所受压力为应选(B)27.下列命题①若函数F(x)、Φ(x)是同一个函数f(x)在区间I上的两个原函数,则其差F(x)-Φ(x)等于确定的常数②设F'(x)、Φ'(x),f(x)在集合D上有定义,且满足F'(x)=Φ'(x)=f(x),则F(x)-Φ(x)≡C ③若取积分常数C=0,则可积函数f(x)的原函数唯一④若f(x)在区间I上有原函数,则f(x)的任意两个原函数之和必为2f(x)的原函数中正确的是(分数:4.00)A.(A) ①、②.B.(B) ②、③.C.(C) ①、④.√D.(D) ③、④.解析:[分析] 对于①:由题设,有F'(x)=f(x),Φ'(x)=f(x),于是[Φ(x)-F(x)]'=Φ'(x)-F'(x)=f(x)-f(x)=0.由“在一个区间上导数恒为零的函数必为常数”可知,Φ(x)-F(x)=C0(C0为某个常数).故①正确.对于②:例如函数F(x)=arctanx,,在集合D=(-∞,-1)∪(-1,1)∪(1,+∞)内满足:F'(x)=Φ'(x)=f(x),但是这说明在D内F(x)-Φ(x)≠C.这与“函数的任意两个原函数之差为常数”的结论并无矛盾,因为原函数是建立在某一区间上的.故②不正确.对于③:例如函数e2x为连续函数,从而若取C=0,得e2x的一个原函数,但容易证明e x shx,e x chx也是e2x的原函数.又如,函数arcsin(2x-1),arocos(1-2x)和的原函数.对于④:由不定积分的性质可知④正确.综上分析,应选(C).28.下列计算(分数:4.00)A.(A) 0个.√B.(B) 1个.C.(C) 2个.D.(D) 3个.解析:[分析] 这几道题都是想用牛顿一莱布尼兹公式来计算定积分,在应用这个公式时要注意验证条件.若条件不满足则不能用.对于(1):被积函数在[0,3]是无界的,因此是不可积的(黎曼不可积),定积分不存在,第①步就是错的.对于(2):被积函数在[0,π]连续恒正,所以积分值是正的,从答案看,这是错的.错在哪里?第①、②、③步的变形是为了求出原函数没有定义,即不满足条件:,从而不能在[0,π]上用牛顿-莱布尼兹公式,第④步是错的.改正:注意,连续,且又于是可分别在利用推广的牛顿-莱布尼兹公式得对于(3):注意,此步骤①是错误的.改正:评注1°实质上被积函数是分段函数,所以要用分段积分法.2° 被积函数在上恒正,积分值应是正的,若算出I≤0,自然就是错的,应检查错在哪里?这里的错误是对于(4):可以验证:在x=0不可导,在[-1,1]上不满足用牛顿-莱布尼兹公式的条件,因此解法是错误的.改正:用分段积分法,并分别在[-1,0]与[0,1]上用推广的牛顿-莱布尼兹公式:评注这里要验证它在[-1,1]可积,只须考察因此f(x)在[-1,1]有界,只有间断点x=0,于是f(x)在[-1,1]可积.事实上,若补充定义f(0)=0,则f(x)在[-1,1]连续.29.设a>0,f(x)在[-a,a]上连续,则在[-a,a]上(分数:4.00)A.(A) f(cosx)的全体原函数为奇函数.B.(B) x[f(x)-f(-x)]的全体原函数为偶函数.C.(C) f(x2)有唯一原函数为奇函数.√D.(D) x[f(x)-f(-x)]的任一原函数既不是奇函数也不是偶函数.解析:[分析] 因奇函数的原函数一定是偶函数;而偶函数的原函数既有奇函数又有偶函数.所以(A)、(B)、(D)不正确.由于是f(x2)的一个原函数,且所以F(x)是奇函数,此外当常数c≠0时f(x)的原函数F(x)+c都不是奇函数,所以应选(C).30.下列函数不可积的是(分数:4.00)A.(A) f(x)=x a,x∈[0,1],a>0.B.(B) x∈[0,2].√C.(C) x∈[-1,1].D.(D) x∈[0,1].解析:[分析] 对于(A):因为x a(a>0)在[0,1]上连续,所以可积.对于(B):因为lnx在(0,2]上无界,所以不可积.对于(C):因为|f(x)|≤1,在[-1,1]上有界,除x=0外连续,所以可积.对于(D):因为f(x)在[0,1]单调上升,所以可积.综上分析,应选(B).评注①题中给出了一个有界而不可积的函数.该题表明,有下面的函数类的包含关系:[a,b]上的连续函数类上的可积函数类上的有界函数类.②若函数在区间上有原函数,这函数不一定在该区间上可积.例如函数F(x)=容易知道F(x)在(-∞,+∞)内可导,且f(x)=F'(x)=即函数f(x)在(-∞,+∞)上有原函数F(x),但由于函数f(x)在x=0的任一邻域内无界,故函数f(x)在包含x=0的区间上不可积.31.下列等式或结论正确的是(分数:4.00)A.(A) ∫0dx=0.B.(B) .√C.(C)D.(D) 设等式a+∫f(x)dx=∫f(x)dx成立,则a=0.解析:[分析] 对于(A):由于0只是0的一个原函数,并不是0的全体原函数,由不定积分的定义可知(A)不正确.事实上,应该是∫0dx=C.对于(B):由于等式右端的非常数项函数与左端的被积函数有相同的定义域,且右端函数的导数是左端的被积函数,由不定积分的定义可知(B)正确.评注注意.因为等式右端仅当x>0时才有意义,而左端对x<0时出有意义,所以当x<0时该等式不成立.对于(C):由于当a=-1时此等式不成立,因此(C)不正确.对于(D):由不定积分的定义知,对任意的a∈(-∞,+∞),a+∫f(x)dx=∫f(x)dx成立,因此(D)不正确.综上分析,应选(B).二、{{B}}填空题{{/B}}(总题数:40,分数:40.00)解析:[分析]解析:[分析]解析:[分析] 令t=e x,.再令t=sinu,则填空项1:__________________ (正确答案:xln(lnx)+C)解析:[分析]解析:[分析]解析:[分析]解析:[分析]解析:[分析]填空项1:__________________ (正确答案:ln(x+1)ln(x+2)+C)解析:[分析]41.若的原函数F(x)的表达式中,(Ⅰ)不包含对数函数;(Ⅱ)不含反正切函数,则其中的常数a和b分别满足条件______.(分数:1.00)填空项1:__________________ (正确答案:(Ⅰ)a任意且b=1(Ⅱ)a=0时且b任意)解析:[分析] 按真分式的分解公式,有(Ⅰ)F(x)的表达式中不包含对数函数的充分必要条件是A=0,C=0,即,即且b=1,即a任意且b=1.(Ⅱ)F(x)的表达式中不含反正切函数的充要条件是D=0,即x2+ax+b≡A(x+1)(x2+1)+B(x2+1)+Cx(x+1)2,且b=1+2A,即a=0时且b任意.42.设a≠b,,则A 1,B 2.(分数:1.00)解析:[分析] 两端对x同时求导可得43.设x≠0,,则∫f(x)dx 1.(分数:1.00)解析:[分析]44.设,且f[ψ(x)]=lnx,则∫ψ(x)dx=______.(分数:1.00)解析:[分析] 令x+1=t,则,于是∫ψ(x)dx=-2ln|1-x|+C.45.已知f(x)的一个原函数为,则∫xf'(2x)dx=______.(分数:1.00)解析:[分析] 令2x=u,则填空项1:__________________ (正确答案:-12π)解析:[分析] 利用对称区间上的奇、偶函数的简化计算公式知由于所以填空项1:__________________ (正确答案:0)解析:[分析] 令cosx=t,则,从而记,可见f(t)为奇函数,故原式=0.填空项1:__________________ (正确答案:4-π)解析:[分析] 根据定积分的对称性与定积分的几何意义可得填空项1:__________________ (正确答案:π)解析:[分析] (有端第一项因其被积函数为奇函数,故积分为0;第二项则是半径为2的圆面积的.) 解析:[分析]填空项1:__________________ (正确答案:8)解析:[分析]填空项1:__________________ (正确答案:0)解析:[分析]解析:[分析]解析:[分析]解析:[分析] 由于评注类似可求(n为正整数).56.设,则f(x)=______.(分数:1.00)填空项1:__________________ (正确答案:x+2)解析:[分析] 等式两边都乘以cosx得:,则 f(x)cosx=xcosx-Acosx,因此所以A=-2,故f(x)=x+2.57.若(分数:1.00)解析:[分析] 由于令所以58.已知f(x)为非负连续函数,且当x≥0时,则f(x)=______.(分数:1.00)解析:[分析] 由于令,由于F(0)=0,所以C=0.因此,又因为当x≥0时f(x)为非负连续函数,所以F(x)≥0.从而,因此.59.设F(x)是f(x)的一个原函数,f(x)具有连续导数,且F(0)=0,F(2)=F'(2)=1,则= 1.(分数:1.00)填空项1:__________________ (正确答案:1)解析:[分析]60.设f'(x)在[-1,1]上连续,则(分数:1.00)填空项1:__________________ (正确答案:0)解析:[分析]61.已知f(x)满足(分数:1.00)填空项1:__________________ (正确答案:8e4)解析:[分析]又因为,所以f(2)=4e4,f(0)=0,,62.设f(x)有一个原函数为(分数:1.00)解析:[分析] 由题设63.设连续非负函数满足f(x)f(-x)=1(-∞<x<+∞),则(分数:1.00)填空项1:__________________ (正确答案:1)解析:[分析] 因为所以解析:[分析]65.函数f(x)在[1,+∞)上连续,且反常积分收敛,并满足则函数f(x)的表达式是______.(分数:1.00)解析:[分析]66.已知,则a= 1,b= 2.(分数:1.00)填空项1:__________________ (正确答案:a=b=2e-2)解析:[分析]67.曲线y=ln(1-x2)相应于的一段的弧长为 1.(分数:1.00)解析:[分析] 先求.因此该段曲线的弧长为68.摆线的一拱(0≤t≤2π)的弧长为______.(分数:1.00)填空项1:__________________ (正确答案:8)解析:[分析] 因此,摆线的一拱(O≤t≤2π)的弧长为69.曲线y=x2-x与x轴及直线y=-2x+6在x≥0时所围成图形的面积为 1.(分数:1.00)填空项1:__________________ (正确答案:2)解析:[分析] 由题设所同面积为70.曲线y=xsinx(0≤x≤π)与x轴所围成的图形绕y轴旋转一周所成旋转体的体积= 1.(分数:1.00)填空项1:__________________ (正确答案:2π3-8π)解析:[分析] 所求旋转体的体积为71.在y轴上的0≤y≤2一段上,有一根细棒,其上每一点处的线密度等于该点到棒两端的距离平方之积,则其质心(分数:1.00)填空项1:__________________ (正确答案:1)解析:[分析]三、{{B}}解答题{{/B}}(总题数:7,分数:58.50)求下列不定积分.(分数:4.50)(1).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(2).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:由于,所以(3).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:[分析] 凑微分一般有两种方法:一是观察法,须对求导公式熟练;二是检验法,对于被积函数复杂的积分,一般将较复杂的那个因子或其主要部分来求导,若其导数是另一个因子的常数倍,则将那个较复杂的因子凑成微分.求下列不定积分:(分数:13.50)(1).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令x=sint,则(2).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令x=tant,则(3).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令x=3sect,则(4).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(5).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:方法1°令x+1=tant,则原不定积分变为方法2° 记x+1=t,则(6).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:记令当x<0时,(7).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令.于是(8).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令cost=A(sint+cost)+B(sint+cost)',可得(9).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:当被积函数中的分母含有因子x n(n≥2的自然数),一般可选倒代换消去被积函数分母中的变量因子x n.令.所以[分析] 求无理函数不定积分的一般方法是换元法.其基本思想是通过某种变量代换将根式去掉,将它化为有理函数的积分.必须记住常用的去根号的代换.求下列不定积分:(分数:9.00)(1).∫x2e2x dx;(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(2).∫(2x2+x+1)cos2xdx;(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(3).∫xarcsinxdx;(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(4).∫xlnxdx;(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(5).∫e2x cos(x+1)dx;(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(6).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:令,则 [分析] 当被积函数为“多项式与指数函数的积、多项式与三角函数的积、多项式与对数函数的积、多项式与反三角函数的积、指数函数与三角函数的积”时,须利用分部积分完成.求下列不定积分:(分数:7.50)(1).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(2).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:因为所以(3).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(4).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:(5).(分数:1.50)__________________________________________________________________________________________ 正确答案:()解析:设x n=tant,则,所以[分析] 分式有理函数积分的一般方法是将被积函数(如果是似分式的话)化为多项式与有理真分式的和,再把真分式分解成部分分式的和,然后分项积分.但当有理真分式的分母次数大于等于4时,用特殊的方法求解往往比较简单,常用的方法有凑微分和变量代换,特别当被积函数中的分母含有因子x n(n≥2的自然数),一般可选倒代换消去被积函数分母中的变量因子x n.求下列不定积分:(分数:15.00)(1).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:对于∫sinn m xcos n xdx,或m,n至少有一个奇数(不管是正奇数还是负奇数)可采用“凑微分”解决.(2).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:对于∫sin m xcos n xdx,若m,n都是小于零的偶数,一般设法化成∫R(tan k x)dtan k x或∫R(cot k x)dcot k x 形式求解;若m,n都是大于零的偶数,可先利用倍角公式降幂,再积分.(3).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:(4).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:(5).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:(6).(分数:0.30)__________________________________________________________________________________________ 正确答案:()解析:由于被积函数的分子、分母为sinx,cosx的线性组合,故可用“待定系数法”计算.令12sinx+cosx=A(5sinx-2cosx)+B(5sinx-2cosx)',则(7).。

考研数学数一数二数三 一元函数微分学2010-2020真题整理

考研数学数一数二数三 一元函数微分学2010-2020真题整理

题型一导数的定义
(2015 年数二3 题/4 分)
(2018年数一1题数二2题数三1题 /4分)
(2020年数一 2题/4分)
题型二切线、法线(几何及物理应用)
(2018年数二10题数三 9题 /4分)
题型三导数的计算(复合,参数,反函数,隐函数,高阶导数的计算)
(2012 年数三10 题/4 分)
(2017年数一9题/4分)
(2017年数二 10题/4分)
(2019年数二 10 题/4分)
(2020年数一 10题数二9题/4分)
(2020年数一 4题/4分)
也可解为
题型四单调性、极值和最值
(2017年数一 2题/4分)
(2017年数二 2题/4分)
(2017年数三 3题/4分)
(2017年数一 17题/10分)
(2017年数二 18题/10分)
(2019年数一 2题 4/分)
(2019年数二 15题数三 15题/10分)
题型五凹凸性与拐点
(2011 年数二16 题/11 分)
(2019年数二 2题数三10 题 4/分)
题型六函数的渐近线
(2020年数二 15题/10分)
题型七不等式的证明
(2020年数一 19题数三19题/10分)
题型八方程根的问题
(2017年数一 18题/11分)
(2017年数二 19题/11分)
(2019年数三 2题/4分)
题型九微分中值定理
(2019年数二 21题/11分)
(2020年数二 20题/11分)
题型十曲率与弧长(数学一、数学二)
(2018 数二 12题 4分)
(2019年数二 12 题/4分)可不选取该题
题型十一利用导数研究函数性态。

考研数学一分类真题一元函数积分学

考研数学一分类真题一元函数积分学

考研数学一分类真题一元函数积分学(总分:65.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:14,分数:26.00)1.由曲线y=lnx与两直线y=(e+1)-x及y=0所围成的平面图形的面积是______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:这种求面积问题一般先画草图(见下图),然后确定积分表达式.[*] 解1 令lnx=0,得x=1;令e+1-x=0,得x=e+1;令lnx=e+1-x,得x=e.则所求面积为 [*] 解2 对y积分,则所求面积为 [*] 本题主要考查利用定积分求面积,显然解2较解1方便.2.设f(x)f(7)=______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解等式[*]f(t)dt=x两边对x求导,得3x2f(x3-1)=1.令x=2,得12f(7)=1,f(7)=[*]本题主要考查变上限积分求导.3.设f(x)是连续函数,且f(x)=______.(分数:2.00)填空项1:__________________ (正确答案:x-1.)解析:解1 令[*],则f(x)=x+2a.将f(x)=x+2a代入[*],得[*],即[*]+2a=a,由此可得a=[*] 则f(x)=x-1 解2 等式f(x)=x+[*]两端从0到1对x积分得 [*] 即 [*],由此可知从而可知 f(x)=x-1.本题主要考查定积分的计算.本题的关键是要注意[*]是个常数,只要定出这个常数,f(x)便可求得.4.>0)的单调减少区间为______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解F'(x)=[*](x>0) 令[*],解得[*].则F(x)单调减少区间为[*] 本题主要考查变上限求导和函数单调性的判定..(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解由于[*] 所以 [*] 本题主要考查变上限积分求导..(分数:2.00)填空项1:__________________ (正确答案:sinx2.)解析:解令x-t=u,则 [*] 本题主要考查定积分变量代换和变上限积分求导..(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解1 [*]△解2 由定积分的几何意义知,积分[*]应等于圆x2+y2=2x围成面积的[*],此圆半径为1,其面积为[*],故[*].本题主要考查定积分换元法(解1),但显然解2最好..(分数:2.00)填空项1:__________________ (正确答案:1)解析:解 [*] 本题主要考查广义积分计算.9.已知f'(e x)-xe-x,且f(1)=0,则f(x)=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:解令e x=t,则x=Int,代入f'(e x)=xe-x得[*]由f(1)=0知,C=0,故f(x)=[*]本题主要考查对f'(e x)的理解和不定积分.解决此类问题的方法是先作变量代换求出f'(t),然后积分便可求得f(t)..(分数:1.00)填空项1:__________________ (正确答案:[*].)解析:解1 [*] 解2 令[*],则 [*] 本题主要考查计算定积分的分部积分法..(分数:2.00)填空项1:__________________ (正确答案:-4π)解析:解令[*],则x=t2,dx=2tdt原式=[*]=-4π本题主要考查定积分的计算方法.重点是两种方法,即换元积分法和分部积分法.12.s=______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解[*] 则 [*] 本题主要考查平面曲线弧长计算和变上限积分求导.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:解1 由于[*]令x-1=sint, 则dt=costdt[*]解2 由于[*]令x-1=t, 则dx=dt[*]本题是一道定积分计算的基本题,用到定积分计算中很多常用方法和结论、换元法(x-1=sint, x-1=t), 其中结论[*][*]定积分几何意义:[*](单位圆x2+y2≤1面积的[*])..(分数:1.00)填空项1:__________________ (正确答案:(ln2).)解析:[*] 本题主要考查反常积分的计算.二、{{B}}选择题{{/B}}(总题数:19,分数:19.00)15.设f(x)s>0,t>0,则I的值 ______∙ A.依赖于s和t.∙ B.依赖于s.t,x.∙ C.依赖于t和x,不依赖于s.∙ D.依赖于s,不依赖于t.(分数:1.00)A.B.C.D. √解析:解 [*] 由此可见,I的值只与S有关,所以应选D.本题主要考查定积分的概念和变量代换.16.设f(x)是连续函数,且F'(x)等于 ______∙ A.-e-x f(e-x)-f(x)∙ B.-e-x f(e-x)+f(x)∙ C.e-x f(e-x)-f(x)∙ D.e-x f(e-x)+f(x)(分数:1.00)A. √B.C.D.解析:解由[*]可知F'(x)=-e-x f(e-x)-f(x)故应选A.本题主要考查变上限积分求导.17.x→0时,f(x)是g(x)的 ______∙ A.等价无穷小.∙ B.同阶但非等价的无穷小.∙ C.高阶无穷小.∙ D.低阶无穷小.(分数:1.00)A.B. √C.D.解析:解因为[*] 所以,当x→0时,f(x)与g(x)是同阶但非等价的无穷小.本题主要考查无穷小量阶的比较和变上限积分求导.18.双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为______A.. B..C.. D.(分数:1.00)A. √B.C.D.解析:双纽线(x2+y2)2=x2-y2所围成的图形关于y轴和x轴都对称.因此,所求面积应为第一象限的4倍.而在计算双纽线围成的面积时应用极坐标方程r2=cos2θ,并且应特别注意在第一象限θ的取值范围应是0≤θ≤[*],而不是0≤θ≤[*].解设双纽线在第一象限围成的面积为S1,则[*]所求面积为 [*]所以应选A.本题主要考查平面图形的面积计算.19. ______∙ A.N<P<M.∙ B.M<P<N.∙ C.N<M<P.∙ D.P<M<N.(分数:1.00)A.B.C.D. √解析:注意本题中所给三个定积分的积分区间都是关于原点对称,因此首先应考虑被积函数的奇偶性.解由被积函数的奇偶性可知 M=0 N=[*] P=[*] 因此P<M<N,故应选D.本题主要考查关于原点对称区间上奇偶函数积分的性质.20.设f(x)有连续导数,f(0)=0,f'(0)≠0,x→0时,F'(x)与x k是同阶无穷小,则k 等于 ______∙ A.1.∙ B.2.∙ C.3.∙ D.4.(分数:1.00)A.B.C. √D.解析:解1 F(x)=[*]F'(x)=[*][*]由于[*]=f'(0)≠0,而上式右端极限存在且为非零常数,则k=3,所以应选C.解2 由原题知当x→0时,F'(x)与x k为同阶无穷小,换句话说,当x→0时,F'(x)是x的k阶无穷小,本题要决定k,即要决定当x→0时,F'(x)是x的几阶无穷小,如果能决定F(x)是x的几阶无穷小,降一阶就应是F'(x)的阶数.下面来决定F(x)是x的几阶无穷小.由于f(t)=f(0)+f'(0)t+o(t)=f(0)t+o(t)由于上式中第二项o(t)是高阶无穷小,略去它不影响F(x)的阶数,则x→0时,[*]与F(x)的阶数相同,而[*]显然它是x的四阶无穷小。

[考研类试卷]考研数学一(多元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(多元函数积分学)历年真题试卷汇编1.doc

[考研类试卷]考研数学一(多元函数积分学)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (2004年)设f(x)为连续函数,则F′(2)等于( )(A)2f(2)(B)f(2)(C)一f(2)(D)02 (2006年)设f(x,y)为连续函数,则等于( )3 (2014年)设f(x,y)是连续函数,则4 (2015年)设D是第一象限中由曲线2xy=1,4xy=1与直线y=x,围成的平面区域,函数f(x,y)在D上连续,则二、填空题5 (2001年)交换二次积分的积分次序:6 (2009年)设Ω={(x,y,z)|x2+y2+z2≤1},则7 (2015年)设Ω是由平面x+y+z=1与三个坐标平面所围成的空间区域,则8 (1998年)设L为椭圆其周长记为a,9 (2009年)已知曲线L:y=x2(0≤x≤),则10 (2004年)设L为正向圆周x2+y=2在第一象限中的部分,则曲线积分的值为____________。

11 (2010年)已知曲线L的方程为y=1一|x|(x∈[一1,1]),起点是(一1,0),终点是(1,0),则曲线积分12 (2017年)若曲线积分在区域D={(x,y)|x2+y2<1}内与路径无关,则a=___________。

三、解答题解答应写出文字说明、证明过程或演算步骤。

13 (2002年)计算二重积分其中D={(x,y)|0≤x≤1,0≤y≤1}。

14 (2011年)已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分15 (2005年)设D={(x,y)|x2+y2≤x≥0,y≥0},[1+x2+y2]表示不超过1+x2+y2的最大整数。

计算二重积分16 (2016年)已知平面区域D={(r,θ)|2≤r≤2(1+cosθ},计算二重积分17 (2006年)设区域D={(x,y)|x2+y2≤1,x≥0),计算二重积分I=18 (2015年)已知曲线L的方程为起点为终点为计算曲线积分19 (1999年)求其中a,b为正常数,L为从点A(2a,0)沿曲线到点O(0,0)的弧。

全国硕士研究生考试农学门类联考数学题库(章节题库-一元函数积分学)【圣才出品】

全国硕士研究生考试农学门类联考数学题库(章节题库-一元函数积分学)【圣才出品】

a
A. F (x) 是 f (x) 在[a,b]上的一个原函数
B. f (x) 是 f (x) 在[a,b]上的一个原函数
C. F (x) 是 f (x) 在[a,b]上的唯一原函数
D. f (x) 是 f (x) 在[a,b]上的唯一原函数
【答案】A
【解析】因为 F(x) f (x) ,所以 F(x) 是 f (x) 在a,b 上的一个原函数.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第 3 章 一元函数积分学
一、选择题
1.在可积函数 f (x) 的积分曲线簇中,每一条曲线在横坐标相同的点上的切线().
A.与 x 轴平行 B.与 y 轴平行 C.相互平行 D.相互垂直 【答案】C
【解析】因为积分曲线族为 f (x)dx F (x) C ,每一条曲线在横坐标相同的点上的 切线斜率均为 f (x)dx F (x) C f (x) ,所以切线相互平行.
2.若 f (x)dx 3x x 2 x C ,则 f (x) ().
A. 3x ln 3 2x 1 B. 3x 1 x3 1 x2 x
ln 3 3 2 C. 3x1 1 x3 1 x2 x
32 D. 3 2x 1
【答案】A
【解析】

3.已知 G(x) g(x) 则 x g(t a)dt (). a 1 / 38
4.求 d ( ex 2 3xdx) . 解: d ( ex 2 3xdx) ex 2 3xdx .
5.若 f (x) 的一个原函数是 sin x ,求 f (x)dx .
5 / 38
圣才电子书 十万种考研考证电子书、题库视频学习平台

2008-2020考研数学之一元函数微积分真题汇总

2008-2020考研数学之一元函数微积分真题汇总

()
(A) a 1,b 1 6
(B) a 1,b 1 (C) a 1,b 1
6
6
(D) a 1,b 1 6
(2013-1)一已知极限 lim x arctan x c ,其中 c, k 为常数,且 c 0 ,则( )
x0
xk
(A) k 2, c 1 2
1
一、一元函数的基本知识(极限、连续、导数和积分的定义、性质与基本定理)
(一)极限与连续 1、极限的定义、性质
(2008-5)二设函数 f (x) 在 (, ) 内单调有界,xn 为数列,下列命题正确的是( )
A 若xn 收敛,则 f (xn ) 收敛.
B 若xn 单调,则 f (xn ) 收敛.
(2013-15)(本题满分 10 分)当 x 0 时,1 cos x cos 2x cos3x 与 axn 为等价无穷小,求 n 与 a 的值。 (2015-15)(本题满分 10 分)设函数 f (x) x a ln(1 x) bx sin x, g(x) c kx3 .若 f (x) 与 g(x) 在
2
2
(C) a 1,b 1 2
(D) a 1,b 1 2
(2015-15)二(本题满分 10 分)已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(B) k 2, c 1 2
(C) k 3, c 1 (D) k 3, c 1
3
3
(2013-1)当 x 0 时,用 o(x) 表示比 x 高阶的无穷小,则下列式子中错误的是( )

考研数学一(一元函数积分学)模拟试卷9(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷9(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设F(x)=等于( )A.a2.B.a2f(a).C.0.D.不存在.正确答案:B解析:利用洛必达法则.因故选B.知识模块:一元函数积分学2.若连续函数f(x)满足关系式f(x)=+ln2,则f(x)等于( )A.exln2.B.e2xxln2.C.ex+ln2.D.e2x+ln2.正确答案:B解析:在等式f(x)=∫02xf()dt+ln2两端对x求导,得f’(x)=2f(x),则=2dx,lnx=2x+C1,即f(x)=Ce2x.由题设知f(0)=ln2,得C=ln2,因此f(x)=e2xln2.选B.知识模块:一元函数积分学3.I=∫01ln2xdx是( )A.定积分且值为.B.定积分且值为.C.反常积分且发散.D.反常积分且值为.正确答案:B解析:被积函数f(x)=xln2x虽在x=0无定义,但=0,若补充定义f(0)=0,则f(x)在[0,1]连续,因而∫01xln2xdx是定积分.故选B.知识模块:一元函数积分学4.数列极限=( )A.B.C.D.正确答案:B解析:由已知知识模块:一元函数积分学5.设f(x)连续,且∫01f(xt)dt=f(x)+1,则f(x)等于( )A.1+.B.2+Cxsinx.C.2+Cx.D.2+x.正确答案:C解析:令xt=u,则du=x.dt,那么代入通解公式,解得y=2+Cx.知识模块:一元函数积分学6.若连续函数满足关系式f(x)=+e,则f(x)=( )A.B.C.D.正确答案:C解析:由题意f(1)=∫11f(t2)dt+e,所以f(1)=e.知识模块:一元函数积分学7.设I1=,则( )A.I1>I2>1.B.1>I1>I2.C.I2>I1>1.D.1>I2>I1正确答案:B解析:知识模块:一元函数积分学8.积分I=( )A.B.C.D.正确答案:B解析:这是无界函数反常积分,x=±1为瑕点,与求定积分一样,作变量替换x=sint,其中t<,故选B.知识模块:一元函数积分学填空题9.=_________.正确答案:一4π解析:知识模块:一元函数积分学10.已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=_________正确答案:+C,C为任意常数解析:对等式∫f’(x3)dx=x3+C两边求导,得f’(x3)=3x2.令t=x3,C 为任意常数.知识模块:一元函数积分学11.=_________.正确答案:解析:知识模块:一元函数积分学12.=_________.正确答案:解析:令x一1=sint,则知识模块:一元函数积分学13.=_________.正确答案:解析:令t=x一1得知识模块:一元函数积分学14.设a>0,则I==_________。

《高等数学一》第五章 一元函数积分学 历年试题模拟试题课后习题(含答案解析)

《高等数学一》第五章 一元函数积分学  历年试题模拟试题课后习题(含答案解析)

第五章一元函数积分学[单选题]1、设函数f(x)连续,,则=()A、x f (x)B、a f(x)C、-x f(x)D、-a f (x)【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】本题考察积分上限函数应用..[单选题]2、如果是的原函数,则另一个原函数是()A、B、C、sin2xD、cos2x【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】且[单选题]3、已知且,则y= ()A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】故故.[单选题]4、微分方程cosydy=sinxdx的通解是()A、sinx+cosy=CB、cosx+siny=CC、cosx-siny=CD、cosy-sinx=C【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】分离变量,两端积分得sin y=-cos x+C,即cos x+sin y=C. [单选题]5、下列广义积分收敛的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]6、().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]7、计算().A、eB、0C、1D、e+1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]8、().A、ln2B、ln4C、0D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]9、下列积分中不能直接使用牛顿—莱布尼兹公式的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]10、设是连续函数,且,则().A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]11、计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]12、微分方程的解为(). A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】原方程可化为,即,由公式和通解可得:[单选题]13、设,则下列结论中错误的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】根据定积分的性质:,且都是任意常数,[单选题]14、().A、-1B、1C、2D、-2【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]15、设D是由直线和所围成的平面图形,其面积A =().A、B、0C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】.[单选题]16、用换元法计算().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】令[单选题]17、若()A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、若().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】?[单选题]19、=().A、0B、1C、2D、5【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】被积函数是奇函数,所以在对称区间上的积分为0. [单选题]20、().A、B、C、D、【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]21、().A、B、C、0D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】给定函数对关于t的定积分,当x求导,原式相当于常数.. [单选题]22、=().A、B、C、0D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】被积函数是奇函数,所以在对称区间上的积分为0.[单选题]23、已知生产某商品x个的边际收益为30-2x,则总收益函数为()A、30-2x2B、30-x2C、30x-2x2D、30x-x2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】R=当x=0时,R=0,所以C=0,此时R=30x-x2[单选题]24、无穷限积分().A、B、C、-1D、1【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】. [单选题]25、积分的值为()A、0B、4C、10D、20【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题用到奇函数在对称区间上的积分为0。

考研数学一(一元函数积分学)模拟试卷3(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷3(题后含答案及解析)

考研数学一(一元函数积分学)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设α1,α2,…,αs均为n维列向量,A是m ×n矩阵,下列选项正确的是A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs。

线性相关.B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关.C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关.D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关.正确答案:A 涉及知识点:一元函数积分学2.设向量组α1,α2,α3线性无关,则下列向量组线性相关的是A.α1-α2,α2-α3,α3-α1.B.α1+α2,α2+α3,α3+α1.C.α1-2α2,α2-2α3,α3-2α1.D.α1+2α2,α2+2α3,α3+2α1.正确答案:A 涉及知识点:一元函数积分学3.设A为n阶实矩阵,AT 是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):AT AX=0,必有A.(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.B.(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.C.(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.D.(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.正确答案:A 涉及知识点:一元函数积分学4.设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(A)=秩(B),则Ax=0与Bx=0同解.以上命题中正确的是A.①②.B.①③.C.②④.D.③④.正确答案:B 涉及知识点:一元函数积分学5.设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是A.若Ax=0仅有零解,则Ax=b有唯一解.B.若Ax=0有非零解,则Ax=b有无穷多个解.C.若Ax=b有无穷多个解,则Ax=0仅有零解.D.若Ax=b有无穷多个解,则Ax=0有非零解.正确答案:B 涉及知识点:一元函数积分学6.非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则A.r=m时,方程组Ax=西有解.B.r=n时,方程组Ax=b有唯一解.C.m=n时,方程组Ax=b有唯一解.D.r&lt;n时,方程组Ax=b有无穷多解.正确答案:A 涉及知识点:一元函数积分学7.当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn 是比ex2-1高阶的无穷小,则正整数n=________.A.1B.2C.3D.4正确答案:B 涉及知识点:一元函数积分学8.当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则A.a=1,b=-1/6B.a=1,b=1/6C.a=-1,b=-1/6D.a=-1,b=1/6正确答案:A 涉及知识点:一元函数积分学9.设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则A.φ[f(x)]必有间断点B.[φ(x)]2必有间断点C.f[φ(x)]必有间断点D.φ(x)/f(x)必有间断点正确答案:D 涉及知识点:一元函数积分学10.微分方程y”+y=x2+1+sinx的特解形式可设为A.y* =ax2+bx+c+x(Asinx+Bcosx).B.y* =x(ax2+bx+c+Asinx+Bcosx).C.y*=ax2+bx+c+Asinx.D.y* =ax2+bx+c+Acosx.正确答案:A 涉及知识点:一元函数积分学11.设f(x)是连续函数,F(x)是f(x)的原函数,则A.当f(x)是奇函数时,F(x)必是偶函数.B.当f(x)是偶函数时,F(x)必是奇函数.C.当f(x)是周期函数时,F(x)必是周期函数.D.当f(x)是单调增函数时,F(x)必是单调增函数.正确答案:B 涉及知识点:一元函数积分学12.已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为A.-y2/x2B.y2/x2C.-x2/y2D.x2/y2正确答案:A 涉及知识点:一元函数积分学13.设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则A.λ=1/2,μ=1/2B.λ=-1/2,μ=-1/2C.λ=2/3,μ=1/3D.λ=2/3,μ=2/3正确答案:A 涉及知识点:一元函数积分学14.若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内A.有极值点,无零点.B.无极值点,有零点.C.有极值点,有零点.D.无极值点,无零点.正确答案:B 涉及知识点:一元函数积分学15.设an>0(n=l,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分也非必要条件正确答案:B解析:解决数列极限问题的基本方法是:求数列极限转化为求函数极限;利用适当放大缩小法(夹逼定理);利用定积分定义求某些和式的极限. 知识模块:一元函数积分学填空题16.当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.正确答案:-4 涉及知识点:一元函数积分学17.当x→0时,kx2与[*]是等阶无穷小,则k=___________.正确答案:3/4 涉及知识点:一元函数积分学18.设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.正确答案:a2(a-2n) 涉及知识点:一元函数积分学19.设u=e-x sinx/y,则э2 u/эxэy 在点(2,1/π)处的值________。

考研数学一一元函数积分学-试卷3_真题(含答案与解析)-交互

考研数学一一元函数积分学-试卷3_真题(含答案与解析)-交互

考研数学一(一元函数积分学)-试卷3(总分66, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x)在[a,b]上连续,且f(x)>0.则方程在(a,b)内的根有( )SSS_SINGLE_SELA 0个B 1个C 2个D 无穷多个该题您未回答:х该问题分值: 2答案:B解析:令则F(x)在[a,b]上连续,而且故F(x)在(a,b)内有根.又,所以F(x)单调增加,它在(a,b)内最多只有一个根.应选B.2.设f(x)连续,f(0)=1,f"(0)=2.下列曲线与曲线y=f(x)必有公共切线的是( )SSS_SINGLE_SELABCD该题您未回答:х该问题分值: 2答案:D解析:曲线y=f(x)在横坐标x=0对应的点(0,1)处切线为y=1+2x.选项D中函数记为y=F(x).由F(0)=1,F"(0)=2f(0)=2,知曲线y=F(x)在横坐标x=0对应点处切线方程也为y=1+2x.故应选D.3.设φ(x)在[a,b]上连续,且φ(x)>0,则函数的图形( )SSS_SINGLE_SELA 在(a,b)内为凸B 在(a,b)内为凹C 在(a,b)内有拐点D 在(a,b)内有间断点该题您未回答:х该问题分值: 2答案:B解析:先将φ(x)利用|x一t|的分段性分解变形,有因为φ(t)在[a,b]上连续,所以φ(x)可导,因而答案不可能是D.为讨论其余三个选项,只需求出φ""(x),讨论φ""(x)在(a,b)内的符号即可.因故y=φ(x)的图形为凹.应选B.4.则 ( )SSS_SINGLE_SELA F(x)为f(x)的一个原函数B F(x)在(一∞,+∞)上可微,但不是f(x)的原函数C F(x)在(一∞,+∞)上不连续D F(x)在(一∞,+∞)上连续,但不是f(x)的原函数该题您未回答:х该问题分值: 2答案:D解析:请看通常的解法:求积分并用连续性确定积分常数,可得但是所以F"+(0)≠F"-(0).根据原函数定义,F(x)不是f(x)在(一∞,+∞)上的原函数.请考生看看,我们还有更好的方法解决这个问题吗?事实上,由于f(x)有第一类间断点,所以F(x)必然不是其原函数,而变限积分存在就必连续,所以答案自然选择D.5.则在(一∞,+∞)内,下列正确的是 ( )SSS_SINGLE_SELA f(x)不连续且不可微,F(x)可微,且为f(x)的原函数B f(x)不连续,不存在原函数,因而F(x)不是f(x)的原函数C f(x)和F(x)均为可微函数,且F(x)为f(x)的一个原函数D f(x)连续,且F"(x)=f(x)该题您未回答:х该问题分值: 2答案:A解析:可以验证x=0为f(x)的第二类间断点,因为:故x=0为f(x)的第二类振荡间断点,可能存在原函数.通过计算故F(x)可微,即F"(x)=f(x),故A正确.同样请考生自己得出此题的简捷做法.2. 填空题1.已知函数F(x)的导数为则F(x)=_________.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:解析:由题意2.SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:,其中C为任意常数解析:3.积分SSS_FILL该题您未回答:х该问题分值: 2答案:正确答案:其中C为任意常数解析:4.设z=xf(x+y)+g(x y,x 2+y 2 ),其中f,g分别二阶连续可导和二阶连续可偏导,则=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[考研类试卷]考研数学一(一元函数积分学)历年真题试卷汇编1
一、选择题
下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (2011年试题,一)设则I,J,K的大小关系是( ).
(A)I<J<K
(B)I<K<J
(C)J<I<K
(D)K<J<I
2 (1997年试题,2)设在区间[a,b]上f(x)>0,f'(x)''>0.令
,则( ).
(A)S123
(B)S213
(C)S312
(D)S231
3 (2012年试题,一)设,则有( )•
(A)I123
(B)I321
(C)I231
(D)I213
4 (2008年试题,1)设函数则f'(x)的零点个数是( ).(A)0
(B)1
(C)2
(D)3
5 (1998年试题,二)设f(x)连续,则tf(x2一t2)dt=( ).
(A)xf(x2)
(B)一xf(x2)
(C)2xf(x2)
(D)一2xf(x2)
6 (1997年试题,二)设则F(x)( ).
(A)为正常数
(B)为负常数
(C)恒为零
(D)不为常数
7 (2010年试题,一)设m,n为正整数,则反常积分的收敛性( ).
(A)仅与m有关
(B)仅于n有关
(C)与m,n都有关
(D)与m,n都无关
8 (2009年试题,3)设函数y=f(x)在区间[一1,3]上的图形如图1一3—3所示,则函数435的图形为( ).436
(A)
(B)
(C)
(D)
9 (2007年试题,一)如图1一3—4,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直
径为2的上、下半圆周,设则下列结沦正确的是( )。

(A)
(B)
(C)
(D)
二、填空题
10 (2004年试题,2)已知f1(e x)=xe-s,且f(1)=0,则f(x)=__________.
11 (2012年试题,二)=__________.
12 (2010年试题,10)=__________.
13 (2007年试题,二)=__________.
14 (2000年试题,1)=__________.
15 (1999年试题,一)=____________。

16 (2002年试题,一)=___________.
17 (2006年试题,一)点(2,1,0)到平面3x+4y+5z=0的距离d=____________.
三、解答题
解答应写出文字说明、证明过程或演算步骤。

18 (2001年试题,三)求
19 (2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,
4).设函数f(x)具有三阶连续导数,计算定积分
20 (2002年试题,四)已知两曲线y=f(x)与在点(0,0)处的切线相同,
写出此切线方程,并求极限
21 (1997年试题,五)设f(x)连续且,求φ'(x)并讨论φ'(x)在x=0处的连续性,
22 (2010年试题,17)(I)比较的大小,说明理由.(Ⅱ)设求极限
23 (2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。


F'(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
24 (2000年试题,九)设函数f(x)在[0,π]上连续,且
试证:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
24 (1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.
25 试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
26 又设f(x)在区间(0,1)内可导,且证明(1)中的x0是唯一的.
27 (2012年试题,三)已知曲线其中函数f(t)具有连续导数,
且f(0)=0,f'(t)>0,若曲线L的切线与x轴的交点到切点的距离值恒为1,求函数f(t)的表达式,并求此曲线L与x轴与y轴无边界的区域的面积.
27 (2003年试题,六)某建筑工程打地基时,需用汽锤将桩打进土层,汽锤每次击打,都将克服土层对桩的阻力而做功,设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为k,k>0),汽锤第一次击打将桩打进地下am,根据设计方案,要求汽锤每次击打桩时所做的功与前一次击打时所做的功之比为常数
r(0<r<1),问
28 汽锤击打桩3次后,可将桩打进地下多深?
29 若击打次数不限,汽锤至多能将桩打进地下多深?(注:m表示长度单位米.) 29 (2003年试题,三)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴
围成平面图形D(见图1一3—5).
30 求D的面积A;
31 求D绕直线x=e旋转一周所得旋转体的体积V.
32 (1999年试题,七)为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图1一3—6).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需做多少焦耳的
功?(说明:①1N×1m=1J;m,N,s,J分别表示米,牛,秒,焦.②抓斗的高度及
位于井口上方的缆绳长度忽略不计.)
33 (1998年试题,三)求直线在平面π:x一y+2z—1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成曲面的方程.。

相关文档
最新文档