理想气体的压强公式平均平动动能与温度的关系
描述理想气体的统计规律

描述理想气体的统计规律
对单个分子来说,每个气体分子的运动都可视为质点运动, 遵从牛顿运动定律,只是由于受到其他分子极其频繁而又无法 预测的碰撞,其运动状态瞬息万变,显得杂乱无章,具有很大 的偶然性.但总体而言,在一定条件下,大量分子的热运动却遵从 确定的规律.这种大量偶然事件的总体所显示的规律性称为统计 规律性.显然,统计规律性不适用于少数或个别的分子,从而就 能对与其热运动相关联的宏观现象做出微观解释.
(3)利用压强的定义式
及大量分子热运动的统计
规律,推导出压强公式.
描述理想气体的统计规律
二、 温度的微观本质 1. 温度公式
根据理想气体的压强公式和状态方程,可以得到气 体的温度与分子的平均平动动能之间的关系,从而揭示 温度这一宏观量的微观本质.
将式(6- 2)与理想气体的压强公式
(6- 8)
描述理想气体的统计规律
可见,这个能量很大.
描述理想气体的统计规律
2. 气体分子的方均根速率
根据理想气体分子平均平动动能与温度的关系,可以求 出理想气体分子的方均根速率v2,它是气体分子速率的一种 统计平均值.
描述理想气体的统计规律
上式表明,气体分子的方均根速率与温度的平方根成正比, 与气体摩尔质量的平方根成反比.同一种气体,温度越高,方均根 速率越大;不同气体在同一温度下,分子质量或摩尔质量越大, 方均根速率越小.例如,在0 ℃时,虽然氢分子和氧分子的平均平 动动能相等,均为
描述理想气体的统计规律
利用式(6-8),可以计算出任何温度下理想气体分子的平均平动 动能εk.计算表明,εk一般是很小的.例如,当T=300 K时,εk约为 6.21×10-21J,即使理想气体的温度高达108 K,εk也只有2.07×10- 15J.但因为气体的分子数密度很大,因而气体分子的平均平动动能的 总和还是很大的.例如,当T=300 K,p=1.013×105 Pa时,由式( 12- 2)可得分子数密度为
热学习题(答案)07-08

热 学 习 题 课 (2007.10.18)Ⅰ 教学基本要求 气体动理论及热力学1.了解气体分子热运动的图象。
理解理想气体的压强公式和温度公式。
通过推导气体压强公式,了解从提出模型、进行统计平均、建立宏观量与微观量的联系到阐明宏观量的微观本质的思想和方法。
能从宏观和统计意义上理解压强、温度、内能等概念。
了解系统的宏观性质是微观运动的统计表现。
2.了解气体分子平均碰撞频率及平均自由程。
3.了解麦克斯韦速率分布率及速率分布函数和速率分布曲线的物理意义。
了解气体分子热运动的算术平均速率、方均根速率。
了解波耳兹曼能量分布律。
4.通过理想气体的刚性分子模型,理解气体分子平均能量按自由度均分定理,并会应用该定理计算理想气体的定压热容、定体热容和内能。
5.掌握功和热量的概念。
理解准静态过程。
掌握热力学过程中的功、热量、内能改变量及卡诺循环等简单循环的效率。
6.了解可逆过程和不可逆过程。
了解热力学第二定律及其统计意义。
了解熵的玻耳兹曼表达式。
Ⅱ 内容提要一、气体动理论(主要讨论理想气体) 1.状态方程 pV =( M/M mol )RT pV /T = 常量 p=nkT2.压强公式32 3 322/ n /v /v nm p t ερ=== 3.平均平动动能与温度的关系232/2kT/v m w ==4.常温下分子的自由度 单原子 i=t=3 双原子 i=t+r =3+2=5多原子 i=t+r =3+3=6 5.能均分定理每个分子每个自由度平均分得能量 kT /2 每个分子的平均动能 ()kT i k /2=ε 理想气体的内能:E =( M/M mol ) (i /2)RT ; 6.麦克斯韦速率分律:22232)2(4d d v ekTm v N N )v (f kT mv -==ππmol2rms 33RT/MkT/m v v ===()()mol 88M RT/m kT/v ππ== mol22RT/MkT/m v p ==7.平均碰撞次数 v n d Z 22π= 8.平均自由程 ()n d 221πλ=二、热力学基础 1.准静态过程(略)2.热力学第一定律Q= (E 2-E 1)+A d Q =d E +d A 准静态过程的情况下()⎰+-=21d 12V V V p E E Q d Q=d E +p d V3.热容 C =d Q /d T定体摩尔热容 C V ,=(d Q /d T )V /ν 定压摩尔热容 C p ,=(d Q /d T )p /ν比热容比 γ=C p ,/C V, 对于理想气体:C V ,=(i /2)R C p ,=[(i /2)+1]R C p ,-C V ,=R γ=(i +2)/i4.几个等值过程的∆E 、 A 、 Q 等体过程 ∆E = (M/M mol )C V ,∆T A =0 Q=(M/M mol )C V ,∆T 等压过程 ∆E = (M/M mol )C V ,∆TA = p (V 2-V 1) Q=(M/M mol )C p ,∆T 等温过程 ∆E =0 A =(M/M mol )RT ln(V 2/V 1) Q =(M/M mol )RT ln(V 2/V 1)绝热过程 pV γ=常量Q=0 ∆E= (M/M mol )C V ,∆TA = -(M/M mol )C V ,∆T =(p 1V 1-p 2V 2)/( γ-1) 5.循环过程的效率及致冷系数:η=A /Q 1=1-Q 2/Q 1 w=Q 2/A =Q 2/(Q 1-Q 2) 卡诺循环: ηc =1-T 2/T 1 w c =T 2/(T 1-T 2) 6.可逆过程与不可逆过程(略)7.热力学第二定律两种表述及其等价性(略)8.熵 S=k ln Ω熵增原理 孤立系统中 ∆S >0Ⅲ 练习九至练习十五答案及简短解答练习九 理想气体状态方程热力学第一定律一.选择题B B A D B二.填空题1. 体积、温度和压强;分子的运动速度(或分子运动速度、分子的动量、分子的动能). 2. 166J. 3. (2),(3),(2),(3).三.计算题1. (1)由V =p a ,得p=a 2/V 2,所以A=()()⎰⎰-==21212122211d d V V VVV /V /a V V a V p (2)由状态方程p 1V 1/T 1= p 2V 2/T 2知T 1/T 2=( p 1V 1)/( p 2V 2)= (V 1a 2/V 12)/( V 2 a 2/V 22) = V 2/V 1四.证明题1.两结论均错误.(1).等容吸热过程有Q=∆E=(M/M mol )C V ∆T∆T= Q/[(M/M mol )C V ]而C V (H e )=3R /2, C V (N 2)=5R /2,C V (CO 2)=6R /2.因摩尔数相同,吸热相同,所以∆T (H e ):∆T (N 2):∆T (CO 2) = 1/[C V (H e )] :1/[C V (N 2)] :1/[C V (CO 2)] =1/3:1/5:1/6即 ∆T (H e )>∆T (N 2)>∆T (CO 2)(2)因为等容过程,有p/T =恒量,得∆p/∆T .所以 ∆p (H e )>∆p (N 2)>∆p (CO 2)练习十 等值过程 绝热过程一.选择题A D D B B二.填空题1. 在等压升温过程中,气体膨胀要对外作功,所以比等容升温过程多吸收热量.2. >0; >0.3. 2/(i +2); i /(i +2).三.计算题 1. 容器左右初始体积都为V 0,末了体积左为4V 0/3右为2V 0/3.因等温,气体对外作功为A=[p 1V 1ln(V 2/V 1)]左+[ p 1V 1ln(V 2/V 1)]右=p 0V 0ln[(4V 0/3)/V 0]+ p 0V 0ln[(2V 0/3)/V 0] = p 0V 0ln[(4/3)(2/3)]= p 0V 0ln(8/9) 外力作功为 A '= -A =p 0V 0ln(9/8)四.证明题1.过C 再作一条绝热线CM,过D 作一条等容线DM,构成一个循环.因C 在绝热线AB 的下方,依热力学第二定律,知绝热线不能相交,故M 必在绝热线AB 的下方,即M 在D 的下方.因DM 为等容线,有 T D >T A E D >E M 循环CDMC 为正循环,对外作正功,即A=A CD-A CM>0而Q CD=E D-E C+A CDQ CM=E M-E C+A CM=0所以Q CD=Q CD-Q CM =E D-E M+ A CD- A CM>0练习十一循环过程热力学第二定律卡诺定理一.选择题A B A D C二.填空题1. 33.3%; 50%; 66.7%.2. 200J.3. V2; (V1/V2)γ-1T1; (RT1/V2)(V1/V2)γ-1三.计算题1. 单原子分子i=3, C V=3R/2, C p=5R/2. ca等温T a=T cab等压V a/T a=V b/T bT b=(V b/V a)T a=(V b/V a)T c(1)ab等压过程系统吸热为Q ab=(M/M mol)C p(T b-T a)= (5R/2)(V b/V a-1) T c=-6232.5Jbc等容过程系统吸热为Q bc=(M/M mol)C V(T c-T b)= (3R/2)(1-V b/V a)T c=3739.5Jca等温过程系统吸热为Q ca=(M/M mol)RT c ln(V a/V c)= RT c ln2=3456J (2)经一循环系统所作的净功A=Q ab+ Q bc+ Q ca=963J循环的效率η=A/Q1= A/( Q bc+ Q ca)=13.4%2.(1)CA等容过程p C/T C=p A/T AT C= (p C/p A)T A=75KBC等压过程V B/T B=V C/T CT B=(V B/V C)T C=(V B/V C)(p C/p A)T A=225K (2)由γ= 1.40可知气体分子为双原子,所以i=5, C V=5R/2, C p=7R/2CA等容吸热过程A CA=0Q CA=∆E CA=(M/M mol)C V(T A-T C)=(M/M mol)( 5R/2)(T A-T C)= (5/2)(p A-p C)V C=1500JBC等压放热过程A BC=p B(V C-V B)=-400J∆E BC=(M/M mol)C V(T C-T B)=(5/2)(V C-V B)p C=-1000JQ BC=∆E BC+ A BC=-1400JAB过程A BC=(1/2)(p A+p B)(V B-V A)=1000J ∆E BC=(M/M mol)C V(T B-T A)= (5/2)(p B V B-p C V C)=-500JQ BC= A BC+∆E BC=500J练习十二热力学第二定律卡诺定理(续)熵一.选择题 D A B A C二.填空题1. 500K.2. 7.8 .3. 不能, 相交, 1.三.计算题1.(1) T1/T2=Q1/Q2T2=T1Q2/Q1=320K(2) η=1-Q2/Q1=20%2.(1)A da=p a(V a-V d)= -5.065⨯10-3J (1)∆E ab=(M/M mol)(i/2)R(T b-T a)= (i/2)(p b-p a)V a=3.039⨯104J(2)A bc=(M/M mol)RT b ln(V c/V b)=p b V b ln(V c/V b)=1.05⨯104JA=A bc+A da=5.47⨯103J(3)Q1=Q ab+Q bc=∆E ab+A bc=4.09⨯104Jη=A/Q1=13.4%练习十三物质的微观模型压强公式一.选择题C B D A B二.填空题4. 1.33×105Pa.5.210K; 240K.6.物质热现象和热运动的规律; 统计.三.计算题1. (1) 因T等,有()2O kε=()2H kε=6.21×10-21Jmvkε22==4.83m/s(2) T=2kε/(3k)=300K2.kε=3kT/2p=2nkε/3=2n(3kT/2)/3=nkT= (N/V) kT =[(M/M mol)N A/V] kT=(M/M mol)RT/V得pV =(M/M mol)RT练习十四理想气体的内能分布律自由程一.选择题A B D B C1 1 2) 1) a(T 1二.填空题1. 5/3; 10/3.2. 1.04kg/m3.3. 温度为T 时每个气体分子每个自由度平均分得的能量.三.计算题1.依状态方程:pV= (M/M mol )RT ,有M=( pV/RT ) M mol因氢气氦气的压强、体积、温度相等, 有M (H 2)/ M (H e )= M (H 2)mol /M (H e )mol =1/2 依 E=(i/2)(M/M mol )RT=(i/2)pV 注意到压强、体积相等, 有E (H 2)/ E (H e )=[(5/2) pV ]/[(3/2) pV ]= 5/32. 平均平动动能的总和E t =(3/2)(M/M mol ) RT =(3/2)(ρV /M mol )RT =7.31×106J 内能增加 ∆E=(i /2)(M/M mol ) R ∆T=(i /2)(ρV/M mol )R ∆T =4.16×104J2v 的增量 ∆(2v )=∆(mol 3M RT )=()[]T RT/Md 3d mol∆T=()[1mol 13T M R ∆T/2=0.856m/s练习十五 热学习题课一.选择题B A C B B二.填空题1. mu 2/(3k ).2. 速率区间0~v p 的分子数占总分子数的百分比; ()()⎰⎰∞∞=ppv v v v f vv vf v d d3. 1.5; 1; 3.25R .三.计算题1. (1)CA 等容过程 p C /T C =p A /T A 有T C = (p C /p A )T A =100KBC 等压过程 V C /T C =V B /T B 有T B = (V B /V C )T C = (V B /V C )(p C /p A )T A =300K (2)各过程对外作功A →B A AB = (p A +p B )( V B -V A )/2=400J B →C A BC = p B ( V C -V B )=-200J C →A A BC =0(3)因循环过程 ∆E=0 所以气体吸热为Q=∆E+A=A= A AB +A BC +A BC =200J2.(1)理想循环的p —V 图曲线如图:ab 绝热线,bc 等容线,ca (2) ab 绝热,有 V 1γ -1T 1= V 2γ -1T 2T 2=(V 1/V 2) γ -1T 1=2γ -1T 1一次循环系统吸热:bc 等容过程Q bc =(M/M mol )C V (T c -T b )=C V (T 1- T 2)= (5R /2)(1-2γ -1)T 1 =-5(1-2γ -1)T 1R /2ca 等温过程Q ca =(M/M mol )RT c ln(V a /V c )= RT 1ln2所以 Q = Q bc +Q ca =-5(1-2γ -1)T 1R /2+RT 1ln2=-5(1-20.4)T 1R /2+RT 1ln2=-240J 即一次循环系统放热 Q '=239.6J n=100次循环系统放热熔解冰的质量 m=n Q '/λ=7.15×10-2kgⅣ 课堂例题一.选择题1.在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V . (C) 温度T . (D) 平均碰撞频率Z .2. 在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的. (3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的. 中,哪些是正确的?(A) (1)、(4). (B) (2)、(3). (C) (1)、(2)、(3)、(4). (D) (1)、(3).3.如图所示,一定量的理想气体,沿着图中直线从状态a ( 压强p 1 = 4 atm ,体积V 1 =2 L )变到状态b ( 压强p 2 =2 atm ,体积V 2 =4L ).则在此过程中:(A) 气体对外作正功,向外界放出热量.(B) 气体对外作正功,从外界吸热. (C) 气体对外作负功,向外界放出热量. (D) 气体对外作正功,内能减少.4. 下列各说法中确切的说法是: (A) 其它热机的效率都小于卡诺热机的效率.(B) 热机的效率都可表示为η = 1 – Q 2 / Q 1,式中Q 2表示热机循环中工作物向外放出的热量(绝对值),Q 1表示从各热源吸收的热量(绝对值). (C) 热机的效率都可表示为η = 1 – T 2 / T 1,式中T 2为低温热源温度,T 1为高温热源温度. (D) 其它热机在每一循环中对外作的净功一定小于卡诺热机每一循环中对外作的净功. 5.关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于1; (3) 热量不能从低温物体向高温物体传递; (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述 (A) 只有(2)、(4)正确. (B) 只有(2)、(3) 、(4)正确.(C) 只有(1)、(3) 、(4)正确. (D) 全部正确.6.设有以下一些过程: (1) 两种不同气体在等温下互相混合. (2) 理想气体在定体下降温. (3) 液体在等温下汽化. (4) 理想气体在等温下压缩. (5) 理想气体绝热自由膨胀. 在这些过程中,使系统的熵增加的过程是: (A) (1)、(2)、(3). (B) (2)、(3)、(4). (C) (3)、(4)、(5). (D) (1)、(3)、(5).p (atm )01234二.填空题1.用公式T C E V ∆=∆ν(式中V C 为定体摩尔热容量,视为常量,ν 为气体摩尔数)计算理想气体内能增量时,此式适用于过程。
气体方程与状态方程:气体状态方程与理想气体行为的关系

气体方程与状态方程:气体状态方程与理想气体行为的关系气体方程是描述气体性质的数学方程,而状态方程是用来描述气体在不同压力、温度和体积下的物理状态的方程。
气体状态方程描述的是气体在一定条件下的状态,其中最常用的方程是理想气体状态方程。
理想气体状态方程是描述理想气体性质的方程,也叫做理想气体定律。
它是理想气体行为的一个近似模型,假设气体分子之间不存在吸引力和排斥力,分子之间的碰撞完全弹性,从而使得气体分子运动服从一些简单的物理规律。
理想气体状态方程可以用来描述气体在不同条件下的状态变化,以及计算气体的压强、体积和温度等物理量的关系。
理想气体状态方程的数学形式为 PV = nRT,其中 P 代表气体的压强,V 代表气体的体积,n 为气体的物质量(一般用摩尔表示),R 为气体常数,T 代表气体的绝对温度。
根据这个方程,我们可以推导出其他一些气体性质的关系。
理想气体状态方程的推导基于以下几个假设:气体是由大量非常小的分子组成的,分子之间不断自由运动,彼此之间会发生碰撞;气体分子之间不存在吸引力和排斥力,碰撞是完全弹性的;气体分子的体积可以忽略不计,分子间距较大,相对于有效体积可以忽略不计。
根据这些假设,我们可以推导出理想气体状态方程。
首先考虑一个气体分子,它的动量可以用动能定理表示为FΔt = Δp,其中 F 为分子受到的作用力,Δt 为时间间隔,Δp 为动量的变化量。
由于气体分子之间的碰撞完全弹性,它们在碰撞过程中动量守恒。
考虑一个气体容器,里面有 N 个气体分子,由这些分子所受到的所有碰撞力的总和可以表示为F_total = N Δp / Δt。
这样,我们可以得到理想气体的状态方程为 F_total/A = P =NΔp / ΔtA,其中 A 为气体容器的面积。
根据动能定理,我们有Δp = 2mv,其中 m 为气体分子的质量,v 为分子的速度。
代入这个表达式,我们有P = 2 mv N / ΔtA。
考虑到 N = nNA,其中 n 为气体的物质量(摩尔数),NA 为阿伏伽德罗常数,我们可以得到 P = 2 nmNANA / ΔtA。
理想气体分子平均平动动能与温度的关系

四、理想气体分子平均平动动能与温度的关系(可以用一个公式加以概括)k ε=kT v m 23212=1.简单推导:理想气体的物态方程:RT mN m N RT M m PV A ''== 而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=2221322132v m V N v m n P n=N/V 为单位体积内的分子数,即分子数密度,k =R /N A =1.38×10-23J ·K -1称为玻尔斯曼常量。
所以:kT v m 23212= 这就是理想气体分子的平均平动动能与温度的关系,是气体动理论的另一个基本公式。
它表明分子的平均平动动能与气体的温度成正比。
气体的温度越高,分子的平均平动动能越大;分子的平均平动动能越大,分子热运动的程度越剧烈。
因此,温度是表征大量分子热运动剧烈程度的宏观物理量,是大量分子热运动的集体表现。
对个别分子,说它有多少温度,是没有意义的。
从这个式子中我们可以看出2.温度的统计意义该公式把宏观量温度和微观量的统计平均值(分子的平均平动动能)联系起来,从而揭示了温度的微观本质。
关于温度的几点说明1.由kT v m 23212=得021 02=v m T =,=ε,气体分子的热运动将停止。
然而事实上是绝对零度是不可到达的(热力学第三定律),因而分子的运动是用不停息的。
2.气体分子的平均平动动能是非常小的。
J K T 2110,300-==ε J K T 15810,10-==ε 例1. 一容器内贮有氧气,压强为P=1.013×105Pa ,温度t=27℃,求(1)单位体积内的分子数;(2)氧分子的质量;(3)分子的平均平动动能。
解:(1)有P=nkT得 ()3252351045.2273271038.110013.1--⨯=+⨯⨯⨯==m kT P n (2)kg N M m A 262331031.51002.61032--⨯=⨯⨯== (3)J kT k 21231021.6)27327(1038.12323--⨯=+⨯⨯⨯==ε例2. 利用理想气体的温度公式说明Dalton 分压定律。
气体的压强和温度关系和理想气体状态方程

气体的压强和温度关系和理想气体状态方程在我们日常生活中,常常会遇到一些与气体有关的问题。
当我们打开气罐的阀门时,气体会呼啸着涌出;当我们骑自行车时,气体会迎面而来,阻碍我们前进的速度。
这些现象都与气体的压强和温度有关。
首先,我们来探讨一下气体的压强对温度的影响。
根据一种被广泛接受的理论,当温度升高时,气体分子的平均动能也会增加,分子的运动速度会加快。
这导致气体分子频繁地撞击容器壁面,从而产生了压强。
例如,在一个密闭的容器中装有一定量的气体,我们将温度升高,那么气体分子的平均动能会增加,速度也会增加。
当它们与容器内壁碰撞时所施加的压强也会增加。
因此,我们可以得出结论,气体的压强与温度是正相关的。
接下来,我们来介绍一下理想气体状态方程,也被称为通用气体方程。
理想气体状态方程是描述气体行为的一个重要定律,它由三个参数组成:压强(P)、体积(V)和温度(T)。
理想气体状态方程可以表示为:PV = nRT,其中P是气体的压强,V是气体的体积,n是气体的物质量,R是气体常数,T是气体的温度(以绝对温度表示)。
这个方程的意义是非常深远的。
它告诉我们,对于一个理想气体而言,在一定的压强和温度下,它的体积是恒定的。
这可以解释为什么当我们打开气罐的阀门时,气体会呼啸着涌出,而当阀门关闭时,气体又会停止流动。
因为在阀门打开或关闭的过程中,气体的压强和温度保持不变,所以根据理想气体状态方程,体积也是不变的。
理想气体状态方程还告诉我们,当气体的温度升高时,体积会增大,压强会增加。
这可以解释为什么当我们骑自行车时,气体迎面而来,会阻碍我们前进的速度。
因为气体的温度升高,分子的平均动能增加,气体分子与我们前进的方向相碰撞施加的压强也会增加,从而造成了阻力。
理想气体状态方程在科学研究和工程实践中有着广泛的应用。
通过对气体的压强、温度和体积三个参数的测量,我们可以计算出气体的物质量,进而了解气体的性质和特性。
例如,在化学实验室中,研究人员可以通过气体的压强和温度变化来推测反应的进行和速率。
高中物理气体知识点总结

高中物理气体知识点总结一、气体的性质1. 气体的无定形:气体没有固定的形状和体积,能够自由流动。
2. 气体的可压缩性:由于气体分子之间的间距较大,气体易受到外界压力的影响而发生压缩或膨胀。
3. 气体的弹性:气体分子之间存在相互作用力,当气体受到外力作用时,能够产生弹性形变。
二、气体的状态方程1. 理想气体状态方程:PV = nRT,其中P为气体的压强,V为气体的体积,n为气体的物质的量,R为气体常数,T为气体的绝对温度。
2. 理想气体状态方程的应用:可以用于计算气体的压强、体积、物质的量和温度之间的关系,也适用于气体的混合、稀释等情况。
三、气体的压强1. 气体的压强定义:单位面积上气体分子对容器壁的撞击力。
2. 压强的计算公式:P = F/A,其中P为压强,F为气体分子对容器壁的撞击力,A为单位面积。
3. 压强的单位:国际单位制中,压强的单位为帕斯卡(Pa)。
4. 大气压:大气对地面单位面积上的压强,标准大气压为101325Pa。
四、气体的温度1. 气体的温度定义:气体分子的平均动能的度量。
2. 温度的单位:国际单位制中,温度的单位为开尔文(K)。
3. 摄氏度和开尔文度的转换:T(K) = t(℃) + 273.15。
五、气体的分子速率与平均动能1. 气体分子速率的分布:气体分子的速率服从麦克斯韦速率分布定律,速率越高的分子数目越少。
2. 平均动能与温度的关系:气体的平均动能与温度成正比,温度越高,气体分子的平均动能越大。
六、理想气体的压强与温度的关系1. Gay-Lussac定律:在等体积条件下,理想气体的压强与温度成正比,P1/T1 = P2/T2。
2. Charles定律:在等压条件下,理想气体的体积与温度成正比,V1/T1 = V2/T2。
3. 综合气体状态方程和Gay-Lussac定律、Charles定律,可以得到压强、体积和温度之间的关系。
七、气体的扩散和扩散速率1. 气体的扩散:气体分子由高浓度区域向低浓度区域的自由运动过程。
气体动理论答案

第七章气体动理论答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。
2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1.【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。
3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。
大学物理 部分公式

1.理想气体物态方程:pV=NkT 变形1:Pv=νRT (R=N A k)变形2:P=nkT (n=N/V为分子数密度)2.理想气体压强公式:P=(1/3)nmv^2 变形:P=2/3nεk (εk分子平均平动动能)3理想气体平均平动动能与温度关系:1/2mv^2=εk=3/2kT4方均根速率: Vrms=(3kT/m)^(1/2)= (3Rt/M)^(1/2)5自由度:单i=3 双刚=5 双非=7 三以上刚=6 ε =i1/2kT6理想气体内能:E=N A i1/2kT =i/2RT7三种统计速率:1)最概然速率V p=(2kT/m)^(1/2)= (2RT/M)^(1/2) 2)平均速率v =(8kT/πm)^(1/2) 3)4 8分子平均碰撞次数:Z,分子连续两次碰撞间的路程均值叫做平均自由程λλ=v/ Z Z =1.41πd ^2 vn 9准静态过程中体积变化做功:ΔW=PΔV=(Sv1v2)pdV10.摩尔定体热容:C v,m=dQ/dT dE=:C v,m* dT11热机效率:η=W/Q1 =(Q1-Q2)/Q1 =1-Q1/Q2 (Q1为吸热量 Q2为热源吸收量)12等体过程中V为常量,即dW=0 dQ=dE 吸收热量全部转化为内能13转动定理:M=Jα常见转动惯量1)中心轴细棒:ml^2 /12 2)圆柱体:mR^2 / 2 3)薄圆环J=mR24)端点轴细棒:J=ml2/14平行轴定理:J=J C+md215电容器电能:W=1/2 QU=1/2 CU216 电场能量密度:w=1/2εΕ217.磁场能量:W=1/2 LI2 密度w=W/V=B2/2μ19.毕奥撒法尔定律:dB=(μ0/4π)*(Idlsinθ/r^2)= (μ0/4π)*(Idl e r/r^2)20.运动电荷磁场:B=(μ0/4π)*(qvr/r^3)21.无限长直导线B=μ0I/2πr022.库伦定律 F=(1/4πε0)(q1q2/r^2)e r23圆形载流导线轴线上一点 B=(μ0/2)(R2I/(R2+x2)3/2) x>>R B=μ0IR2/2x3A-B 等温膨胀内能不变对外做功W1=从T1高温处吸热Q1W1=Q1=vRTT1ln(V2/V1)B-C 绝热膨胀对外做功等于气体减少的内能W2=vCv,m(T1-T2)C-D 等温压缩:外界对气体做功等于气体给低温热源的热量W3=Q2= vRTT2ln(V4/V3)。
气体分子运动论

但因 cos cos cos 1
2 2 2
故只需
r = 2 个转动自由度
故只需
r = 2 个转动自由度
所以,直线需要的自由度数为: i t r 3 2 5
(3)对刚体 确定刚体一轴线5个自由度 t 3, r 2
确定刚体绕轴转动加一个自由度 r 1 刚体的自由度数: i t r 3 3 6
1T1 2T2 由于 P 所以有: 1V1 P 2V2 混合前的总内能为: 3 5
8 E 0 E1 E 2 1 RT1 2 RT 2 1 RT1 2 2 2
混合后,气体的温度变为T,总内能为: 3 5 3 5T1 E 1RT 2 RT ( )1RT 2 2 2 2T2 由于混合前后总内能相等,即E0=E,所以有 8T1 8 3 5T1 284K 1 RT1 ( ) 1 RT T 3 5T1 / T2 2 2 2T2
2
3RT 3 8.31 273 = m / s 493m / s 3 M mol 28 10
5 一容器内贮有氧气,其压强 P 1 . 013 10 Pa,温 例3: t 27 ℃,求: 度 (1)分子的平均平动动能和平均转动动能; (2)1mol气体的总能量; (3)1千克气体的内能。
3
3 3 3
2
2 3 3
0
1 0
5
6 6 难以确定
非刚性
复杂
3. 能量按自由度均分定理 (1)分子平均平动动能
1 3 2 t m v kT 2 2
t 按自由度均分
每个自由度 上 都 得到了相同 的 (1/2)k T 的平均平动动能
1 1 1 1 2 2 2 2 mv mv x mv y mv z 2 2 2 2 1 2 1 2 1 2 1 m v x m v y m v z kT 2 2 2 2
简明大学物理重点知识总结

五 机械振动知识点: 1、 简谐运动微分方程:0222=+x dtx d ω ,弹簧振子F=-kx,m k=ω, 单摆lg =ω 振动方程:()φω+=t A x cos振幅A,相位(φω+t ),初相位φ,角频率ω。
πγπω22==T。
周期T, 频率γ。
ω由振动系统本身参数所确定;A 、φ可由初始条件确定:A=22020ωv x +,⎪⎪⎭⎫⎝⎛-=00arctan x v ωφ; 2由旋转矢量法确定初相:初始条件:t=0 1) 由得 2)由得 3)由0=x 00<v 0cos =ϕ2/3 , 2/ππϕ=,0sin 0<-=ϕωA v 0sin >ϕAx =000=v ϕcos A A =1cos =ϕAx -=000=v ϕcos A A =-1cos -=ϕ0=ϕ2/πϕ=πϕ=得 4)由得3简谐振动的相位:ωt+φ:1)t+φ→(x,v )存在一一对应关系;2)相位在0→2π内变化,质点无相同的运动状态; 相位差2n π(n 为整数)质点运动状态全同; 3)初相位φ(t=0)描述质点初始时刻的运动状态; (φ取[-π→π]或[0→2π])4)对于两个同频率简谐运动相位差:△φ=φ2-φ1. 简谐振动的速度:V=-A ωsin(ωt+φ)加速度:a=)cos(2ϕωω+-t A简谐振动的能量:E=E K +E P = 221kA ,作简谐运动的系统机械能守恒4)两个简谐振动的合成(向同频的合成后仍为谐振动):1)两个同向同频率的简谐振动的合成:X 1=A 1cos (1φω+t ) ,X 2=A 2cos (2φω+t ) 合振动X=X 1+X 2=Acos (φω+t )其中 A=()12212221cos 2φφ-++A A A A ,tan 22112211cos cos sin sin φφφφφA A A A ++=。
相位差:12φφφ-=∆=2k π时, A=A 1 + A 2, 极大12φφφ-=∆=(2k+1)π时,A=A 1 + A2极小若0=x 00>v ϕcos 0A =0cos =ϕ2/3 , 2/ππϕ=,0sin 0>-=ϕωA v 0sin <ϕ)(sin 21212222k ϕωω+==t A m m E v )(cos 2121222p ϕω+==t kA kx E 2/3πϕ=121,ϕϕ=>A A2) 两个相互垂直同频率的简谐振动的合成:x=A 1cos (1φω+t ) ,y=A 2cos (2φω+t )其轨迹方程为: 如果) 其合振动的轨迹为顺时针的椭圆πϕϕπ2)212<-<其合振动的轨迹为逆时针的椭圆相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。
气体动理论练习

气体动理论练习内容提要一、平衡态理想气体物态方程1.气体的物态参量气体的体积、压强和温度三个物理量称为气体的物态参量.在国际单位制中,体积的单位是立方米,符号为m。
压强的单位是帕[斯卡],符号为51atm1.01310Pa760mmHgPa,。
热力学温度的单位是开[尔文],符号为K,3Tt273.15。
2.理想气体物态方程:pVmRTM二、理想气体的压强公式温度的微观本质1.热动平衡的统计规律(1)分子按位置的分布是均匀的:ndNNdVV222(2)各方向运动概率均等:v某vyvz0;v某vyvz12v31222.理想气体压强的微观公式:pmnvnkt333.理想气体物态方程:pnkT4.理想气体分子的平均平动动能与温度的关系:kt三、能量均分定理和理想气体的内能1.刚性分子自由度分子种类单原子分子双原子分子多原子分子2.能量均分定理平动t333转动r02313m0v2kT22总自由度i356气体处于平衡态时,分子任何一个自由度的平均能量都相等,均为按自由度均分定理。
3.理想气体的内能:E1kT,这就是能量2miRTM21dNNdv94四、麦克斯韦气体速率分布定律1.麦氏分布函数:f(v)物理意义:气体在温度为T的平衡状态下,速率在v附近单位速率区间的分子数占总数的百分比。
2.三种统计速率(1)最概然速率:vp2kT2RTmM(2)平均速率:v8kT8RTπmπM2(3)方均根速率:v3kT3RTmM习题精选一、选择题1.对于一定质量的理想气体,以下说法正确的是()A、如果体积减小,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大B、如果压强增大,气体分子在单位时间内作用于器壁单位面积的总冲量一定增大C、如果温度不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变D、如果密度不变,气体分子在单位时间内作用于器壁单位面积的总冲量一定不变2.关于温度的意义,下列说法正确的是()(1)气体的温度是分子平均平动动能的量度(2)气体的温度是大量气体分子热运动的集体表现,具有统计意义(3)温度的高低反映物质内部分子运动剧烈程度的不同(4)从微观上看,气体的温度表示每个气体分子的冷热程度A、(1)、(2)、(4)B、(1)、(2)、(3)C、(2)、(3)、(4)D、(1)、(2)3.如图12-1所示,一气室被可以左右移动的隔板分成相等的两部分,一边装氧气,另一边装氢气,两种气体的质量相同、温度一样。
热学习题课

绝热
Qo
dQ o
CV ,m T
1 p1V 1 p2V2 1
0
p 1T c3
pV c1 TV 1 c2
dp p dV V
5、循环过程
A Q1
T2 1 T1
Q2 A Q1 Q2 1 Q1 Q1 Q1
解:
TV1 1
1
T2V2
1
T1 V2 T2 V1
1
v
8RT
v2 T2 V1 v1 T1 V2
1
2
2
1
2
5. 图为一理想气体几种状态变化过程的 p-V 图,其中 MT 为等温线,MQ 为绝热线,在 AM, BM, CM 三种准静态过程中: (1) 温度升高的是 BM, CM CM (2) 气体吸热的是 过程; 过程。
最概然速率 三种速率
vp 2kT m
3/ 2
ve
2 RT RT 1.41 M M
平均速率
方均根速率
v
vrms
8kT m
3kT m
8RT RT 1.59 M M
3RT RT 1.73 M M
7、玻耳兹曼分布律 在温度为T 的平衡态,系统的微观粒子按状态的分布与粒子的 能量 E 有关,且与成
S k ln
dQ dS T S S B S A
B A
dQ T
对孤立系统的自然过程,总有
S 0
绝 V 1T 常量 热 pV 常量 方 1 程 p T 常量
熵 的计算
dQ S 2 S1 (1) T R
( 2)
5-3 理想气体的压强公式 平均平动动能与温度的关系

(2) 分子各方向运动概率均等
分子运动速度
vi
vixi
viy
j
viz k
第五章 气体动理论和热力学
5-3 理想气体的压强公式 平均平动动能与温度的关系 物理学简明教程
(2) 分子各方向运动概率均等
分子运动速度
vi
vixi
viy
j
viz k
各方向运动概率均等 vx vy vz 0
x 方向速度平方的平均值
(4)分子的运动遵从经典力学的规律 .
第五章 气体动理论和热力学
5-3 理想气体的压强公式 平均平动动能与温度的关系 物理学简明教程
二 理想气体压强公式
设 边长分别为 x、y 及 z 的长方体中有 N 个全
同的质量为 m 的气体分子,计算 A1 壁面所受压强 .
y
A2
O
z
- mmvvvxx
x
v y A1 y
2x vix
单位时间碰撞次数 vix 2x
单个分子单位时间施于器壁的冲量 mvi2x x
第五章 气体动理论和热力学
5-3 理想气体的压强公式 平均平动动能与温度的关系 物理学简明教程
y
A2
O
z
- mmvvvxx
x
单个分子单位时间 施于器壁的冲量
A1 y
mvi2x x
大量分子总效应
zx
单位时间 N 个粒子
对器壁总冲量
mvi2x ix
m x
i
vi2x
Nm vi2x x iN
Nm x
v2x
器壁A1所受平均冲力 F v2x Nm x
第五章 气体动理论和热力学
5-3 理想气体的压强公式 平均平动动能与温度的关系 物理学简明教程
理想气体的压强及温度的微观解释

理想气体的压强及温度的微观解释在普通物理热学的教学中,对理想气体的压强、温度的学习和讨论时,学生对压强、温度的微观实质理解困难,特别是对宏观规律的微观解释与分析问题。
文章从理想气体分子模型的建立和统计假设的提出,对压强、温度的实质进行讨论,从而使学生得到正确理解,并学会用微观理论解释和研究宏观现象和规律的分析方法。
标签:理想气体;微观模型;压强;温度;微观本质在物理的学习和研究中,经常会讨论和分析一些物理现象和规律,很多物理现象和规律,是可以通过实验观察和验证的宏观规律,而表征分子、原子运动性质的微观量,很难用观察或实验直接测定。
宏观量与微观量之间必然存在着联系,要更深入地认识和研究宏观规律,必须对宏观规律的微观本质进行分析。
通过对理想气体的几个宏观规律与微观实质的关系对比和分析,帮助我们认识和理解气体动理论的有关规律,并掌握这一研究方法。
1 理想气体模型及状态方程1.1 理想气体模型。
所谓理想气体是指重力不计,密度很小,在任何温度、任何压强下都严格遵守气体实验定律的稀薄气体。
理想气体是一种理想化的物理模型,是对实际气体的科学抽象。
理想气体的微观特征是:分子间距大于分子直径10倍以上,分子间无相互作用的引力和斥力,分子势能为零,其内能仅由温度和气体的量决定,内能等于分子的总动能。
温度提高,理想气体的内能增大;温度降低,理想气体的内能减小。
实际气体抽象为理想气体的条件:不易被液化的气体,如氢气、氧气、氮气、氦气、空气等,在压强不太大、温度不太低的情况下,所发生的状态变化,可近似地按理想气体处理。
分子本身的线度与分子之间的距离相比可忽略不计,视分子为没有体积的质点;除碰撞瞬间外,分子之间及分子与容器壁之间没有相互作用力,不计分子所受的重力;分子之间及分子与器壁之间作完全弹性碰撞,没有能量损失,气体分子的动能不因碰撞而损失。
容器各部分分子数密度等于分子在容器中的平均密度n=NV,式中,n是气体分子数密度,N是气体的总分子数,V是气体容器的容积;沿空间各个方向运动的分子数目是相等的;气体分子的运动在各个方向机会均等,不应在某个方向更占优势,即全体分子速度分量vx、vy和vz的平均值vx=vy=vz=0。
12-4理想气体分子的平均平动动能与温度的关系讲解

则 pV NkT 或 p nkT
温度的微观本质
p
nkT 与压强公式
P
2 3
n k
比较
得
k
1 2
v2
3 2
kT
处于平衡态的理想气体,分子的平均平 动动能与气体的温度成正比。
例1 计算标准状态下,任何气体在1cm3体积中 含有的分子数 。
1 2 3
若各种气体的分子数密度分别为 n1,n2,n3,…
则混合气体的分子数密度为
n=n1+n2+n3+…
将n代入 p 2n / 3 ,得
p
2 3
n
2 3
(n1
n2
n3
)
p
2 3
n11
2 3
n2 2
2 3
n3 3
即 p p1 p2 p3
—— 道尔顿分压定律。
其中
p1
2 3
n11,
p2
2 3
n2 2 ,
p3
2 3
n3 3 ,
例3 有一容积为 10 cm3 的电子管,当温度为
300 K时用真空泵抽成高真空,使管内压强为 5×10-6 mmHg。求 (1) 此时管内气体分子的
数目; (2) 这些分子的总平动动能。
解 (1) 由理想气体状态方程得
N
pV kT
5106 133.3105 1.381023 300
12.4 温度的微观本质
一、理想气体温度与分子平均平动动能的关系
理想气体分子的平均平动动能为
1 v2 1 3kT
2
2
3 kT
2
6-4 理想气体分子的平均平动动能与温度的关系

温度 T 的物理意义
k
1 2
mv2
3 2
kT
(1)温度是分子平均平动动能的量度.
k T
(2)温度是大量分子的集体表现.
(3)在同一温度下各种气体分子平均平 动动能均相等.
第六章 气体动理论
2
6-4 理想气体分子平均平动动能与温度的关系
注意
热运动与宏观运动的区别:温度所 反映的是分子的无规则运动,它和物体 的整体运动无关,物体的整体运动是其 中所有分子的一种有规则运动的表现.
第六章 气体动理论
3
6-4 理想气体分子平均平动动能与温度的关系
理想气体压强公式
p
2 3
n k
理想气体物态方程 p nkT
分子平均平动动能:
k
1 2
mv2
3 2
kT
微观量的统计平均 宏观可测量量
பைடு நூலகம்
方均根速率: v2 3kT m
第六章 气体动理论
3RT M
1
6-4 理想气体分子平均平动动能与温度的关系
7-2理想气体的压强公式和温度的统计意义详解

热动平衡的统计规律( 平衡态 ) (1)分子按位置的分布是均匀的.
dN N n dV V
(2)分子各方向运动概率均等. 分子运动速度 vi vix i viy j viz k 各方向运动概率均等 v x v y v z 0
1 x 方向速度平方的平均值 v N
2 x
注意
热运动与宏观运动的区别:温度所 反映的是分子的无规则运动,它和物体 的整体运动无关,物体的整体运动是其 中所有分子的一种有规则运动的表现.
讨论
1 一瓶氦气和一瓶氮气密度相同,分子平均 平动动能相同,而且都处于平衡状态,则:
(A)温度相同、压强相同. (B)温度、压强都不同. (C)温度相同,氦气压强大于氮气压强. (D)温度相同,氦气压强小于氮气压强. 解 kT p nkT m0
1 3 2 k m0v kT 2 2
微观量的统计平均 宏观可测量量
温度 T 的物理意义
1 3 2 k m 0v kT 2 2
(1)温度是分子平均平动动能的量度.
k T
(2)温度是大量分子的集体表现. 是统计的结果 (N-- 数目少无意义)
(3)在同一温度下各种气体分子平均平 动动能均相等.
两次碰撞间隔时间:
2 x vix
单位时间碰撞次数:
vix 2 x
单个分子单位时间施于器壁的冲量:
2m0 vix vix 2x m0 v
2 ix
x
2m0 vix vix 2x m0 v
大量分子总效应
2 ix
x
单位时间 N 个粒子对器壁总冲量:
m0 v m0 Nm0 v Nm0 2 2 v ix vx x i N x x x i i
大学物理第5章题库(含答案)

05章 气体动理论一、填空题 (一)易(基础题)1、一定质量的气体处于平衡态,则气体各部分的压强 相等 (填相等或不相等),各部分的温度 相等 (填相等或不相等)。
2、根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i ,则当温度为T时,(1)一个分子的平均能量为(平均总动能) 12i kT ⋅;(2)ν摩尔理想气体的内能为2i RT ν⋅ ;(3)一个双原子分子的平均转动动能为 kT 。
3、对于单原子分子理想气体,①32RT 代表的物理意义为: 1mol 单原子分子理想气体的内能; ②R 23代表的物理意义为:单原子分子理想气体的定体摩尔热容 。
4、自由度数为i 的一定量的刚性分子理想气体,其体积为V,压强为p 时,其内能E=2iPV 。
5.两瓶不同种类的理想气体,它们温度相同,压强也相同,但体积不同,则它们分子的平均平动动能 相同,单位体积内分子的总平动动能 相同。
(均填相同或不相同) 6.一定量的某种理想气体,装在一个密闭的不变形的容器中,当气体的温度升高时,气体分子的平均动能 增大 ,气体分子的密度 不变 ,气体的压强 增大 ,气体的内能 增大 。
(均填增大、不变或减少)7、理想气体的压强公式为 P nkT = ,理想气体分子的平均平动动能与温度的关系为 32k kT ε=。
8、有两瓶气体,一瓶是氧气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氧气的内能是氢气的▁▁1▁▁倍。
9、一容器内贮有气体,其压强为1atm,温度为27ºC,密度为31.3kg m -⋅,则气体的摩尔质量为__33210-⨯____1kg mol -⋅,由此确定它是__氧____气.10、()Nf d u u 表示的物理意义是 表示速率分布在~d υυυ+内的分子数 ------------------------------------。
11、21()f d u u u u ò表示的物理意义是 表示速率分布在12~υυ范围内的分子数占总分子数的比率.12、在相同条件下,氧原子的平均动能是氧分子的平均动能的___35___倍.(二)中(一般综合题)1、如图1所示,两条曲线分别表示相同温度下,氢气和氧气分子的速率分布曲线,则a 表示▁氧▁▁气分子的速率分布曲线;b 表示▁▁氢▁气分子的速率分布曲线。
第1章质点的运动与牛顿定律练习题(大学物理11)

第1章质点的运动与牛顿定律一、选择题易1、对于匀速圆周运动下面说法不正确的是()(A)速率不变;(B)速度不变;(C)角速度不变;(D)周期不变。
易:2、对一质点施以恒力,则;()(A)质点沿着力的方向运动;( B)质点的速率变得越来越大;(C)质点一定做匀变速直线运动;(D)质点速度变化的方向与力的方向相同。
易:3、对于一个运动的质点,下面哪种情形是不可能的()(A)具有恒定速率,但有变化的速度;(B)加速度为零,而速度不为零;(C)加速度不为零,而速度为零。
(D) 加速度恒定(不为零)而速度不变。
中:4、试指出当曲率半径≠0时,下列说法中哪一种是正确的()(A) 在圆周运动中,加速度的方向一定指向圆心;(B) 匀速率圆周运动的速度和加速度都恒定不变;(C) 物体作曲线运动时,速度方向一定在运动轨道的切线方向,法线分速度恒等于零,因此法问加速度也一定等于零;(D) 物体作曲线运动时,一定有加速度,加速度的法向分量一定不等于零。
难:5、质点沿x方向运动,其加速度随位置的变化关系为:.如在x = 0处,速度,那么x=3m处的速度大小为(A);(B);(C);(D)。
易:6、一作直线运动的物体的运动规律是,从时刻到间的平均速度是(A);(B);(C);(D)。
中7、一质量为m的物体沿X轴运动,其运动方程为,式中、均为正的常量,t为时间变量,则该物体所受到的合力为:()(A)、;(B)、;(C)、;(D)、。
中:8、质点由静止开始以匀角加速度沿半径为R的圆周运动.如果在某一时刻此质点的总加速度与切向加速度成角,则此时刻质点已转过的角度为(A);(B); (C);(D)。
难9、一质量为本10kg的物体在力f=(120t+40)i(SI)作用下沿一直线运动,在t=0时,其速度v=6i,则t=3s时,它的速度为:(A)10i;(B)66i;(C)72i;(D)4i。
难:10、一个在XY平面内运动的质点的速度为,已知t = 0时,它通过(3,-7) 位置处,这质点任意时刻的位矢为(A);(B);(C);(D)。
7-4理想气体分子的平均平动动能与温度的关系

8
p = nkT
物理学 教程
7-4 理想气体分子平均平动动能与温度的关系 理想气体分子平均平动动能与温度的关系
3 一容器内储有氧气,温度为 oC,其 一容器内储有氧气,温度为27 压强为1.02×105Pa,求: (1)气体分子数密 压强为 , ) 度 ; (2)氧气的密度 (3)分子的平均平动 )氧气的密度; ) 动能; 动能 (4)分子间的平均距离. )分子间的平均距离. 解 (1) n = p / kT = 2.44×1025 m−3
M = mN A ,
m ′ = mN
m′ N R ∴ pV = RT ⇒ p = T M V NA
理想气体状态方程可改写为: 理想气体状态方程可改写为: 其中: 其中:
p = nkT
n= N V
N A = 6.02 × 10 23 mol −1
玻尔兹曼常数
k=
R = 1.3806513 × 10 − 23 J ⋅ K −1 NA
2 p = nε k 3
( 平均平动动能只与温度有关)
2 2 2 ∴ p = n1 ε k + n2 ε k + K + nn ε k 3 3 3 p = p1 + p 2 + K + p n 于是有
这就是说, 总压强等于各气体分压强之和, 这就是说, 总压强等于各气体分压强之和,这就 是道尔顿分压定律。 是道尔顿分压定律。
6
物理学 教程
7-4 理想气体分子平均平动动能与温度的关系 理想气体分子平均平动动能与温度的关系
讨论
1 一瓶氦气和一瓶氮气密度相同,分子平均 一瓶氦气和一瓶氮气密度相同, 平动动能相同,而且都处于平衡状态, 平动动能相同,而且都处于平衡状态,则: (A)温度相同、压强相同 )温度相同、压强相同. (B)温度、压强都不同 )温度、压强都不同. (C)温度相同,氦气压强大于氮气压强 )温度相同,氦气压强大于氮气压强. (D)温度相同,氦气压强小于氮气压强 )温度相同,氦气压强小于氮气压强. N k 解 p = nkT = kT = ρ T V m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 理想气体的微观模型
1)分子可视为质点; 线度 d ~ 10 10 m,
间距 r ~ 109 m, d r ;
2)除碰撞瞬间, 分子间无相互作用力;
3)弹性质点(碰撞均为完全弹性碰撞);
4)分子的运动遵从经典力学的规律 .
5-3 理想气体的压强公式 平均平动动能与温度的关系
5-3 理想气体的压k
1 mv2 2
3 kT 2
1) 温度是分子平均平动动能的量度 k T
(反映热运动的剧烈程度).
2)温度是大量分子的集体表现,个别分子无意义.
3)在同一温度下,各种理想气体分子平均平动动 能均相等.
热运动与宏观运动的区别:温度所反
k
1 mv2 2
k
1 N
N
ki
i 1
1 N
N i 1
1 2
mi2
1 m 1
2N
N
i2
i 1
1 mv2 2
P 1 n m 2 3
P
2 3
n k
5-3 理想气体的压强公式 平均平动动能与温度的关系
统计关系式
p
2 3
n k
宏观可测量量
微观量的统计平均值
注意
映的是分子的无规则运动,它和物体的整 体运动无关,物体的整体运动是其中所有
分子的一种有规则运动的表现.
5-3 理想气体的压强公式 平均平动动能与温度的关系
讨论 一瓶氦气和一瓶氮气密度相同,分子平均平动动 能相同,而且它们都处于平衡状态,则它们
(A)温度相同,但氦气的压强小于氮气的压强.
(B)温度相同,但氦气的压强大于氮气的压强.
1 N
vi2x
i
各方向运动概率均等
v
2 x
v
2 y
v2z
1 v2 3
5-3 理想气体的压强公式 平均平动动能与温度的关系
y
A2o
z
- mmvvvxx
x
A1 y
zx
气体压强
P 1 n m v2 3
5-3 理想气体的压强公式 平均平动动能与温度的关系
压强的物理意义 分子平均平动动能
压强是大量分子对器壁的碰撞对时间、对面积的 统计平均结果 .
5-3 理想气体的压强公式 平均平动动能与温度的关系
理想气体压强公式
p
2 3
n k
k
3 2n
p
3 kT 2
理想气体状态方程 pV NkT
p nkT
分子平均平动动能
k
1 mv2 2
3 kT 2
微观量的统计平均值
宏观可测量量
(C)温度、压强都不同。
(D)温度相同、压强相同。
解
p nkT Nm kT k T
Vm
m
m(N2 ) m(He) p(N2 ) p(He)
5-3 理想气体的压强公式 平均平动动能与温度的关系
例 理想气体体积为 V ,压强为 p ,温度为 T , 一个分子 的质量为 m ,k 为玻尔兹曼常量,R 为摩 尔气体常量,则该理想气体的分子数为:
(A) pV m
(B) pV (mT )
(C) pV (RT )
(D) pV (k T )
解 pV NkT N pV
kT
5-3 理想气体的压强公式 平均平动动能与温度的关系
本节练习 1. (B)
5-3 理想气体的压强公式 平均平动动能与温度的关系
作业
习题
5-3
二、理想气体的压强公式
分子运动速度
vi
vixi
viy
j
viz k
y
A2o
z
- mmvvvxx
x
A1 y
zx
各方向的平均速度
vx
1 N
N
ix
i 1
vx vy vz 0
5-3 理想气体的压强公式 平均平动动能与温度的关系
x 方向速度平方的平均值
v 2x