关于数控论文数控刀具论文

合集下载

关于数控论文数控刀具论文5篇

关于数控论文数控刀具论文5篇

关于数控论文数控刀具论文5篇第一篇:关于数控论文数控刀具论文关于数控论文数控刀具论文刀具补偿在数控加工中的应用摘要:在上世纪早期的数控加工中,编程人员根据刀具的理论路线和实际路线的相对关系来进行编程,容易产生错误。

刀具补偿的概念出现以后,在数控加工中发挥了巨大的作用,有效提高了编程的工作效率。

数控加工中常用的两种补偿是刀具半径补偿和刀具长度补偿,这两种补偿为我们解决了加工中因刀具形状而产生的问题。

关键词:数控加工;半径补偿;长度补偿一、刀具半径补偿刀具半径补偿的概念。

因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小。

以铣刀铣削外轮廓为例,在没有使用半径补偿时,编程人员必须依次算出刀具中心各点的坐标,然后才能进行编程。

当刀具直径发生变化时,各点的坐标必然也会发生变化,程序中的坐标点需重新进行计算,这样使得每一次刀具变化都要重新计算重新编程,大大增加了编程工作量。

同样的情况如果使用了刀具半径补偿,编程人员不必计算刀具的实际中心轨迹,只需根据工件的轮廓计算出图纸上各点的坐标值然后编出程序,再把刀具半径作为补偿量放在半径补偿寄存器里。

数控装置能自动计算出刀具中心轨迹,不管刀具半径如何变化,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小,对上述程序基本不用作修改。

刀具半径补偿的指令。

刀具半径补偿是通过指令G41、G42来执行的,基本格式为G41/G42 G00/G01 X_ Y_ H_;其中H为补偿量代码。

补偿有两个方向:当沿着刀具切削方向看,刀具在工件轮廓的左侧是刀具半径左补偿用G41,反之则是刀具半径右补偿用G42。

取消补偿用G40;刀具半径补偿的应用。

在应用、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。

刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,将会影响加工的零件形状。

正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后再进行正常的切削。

(毕业论文)数控加工刀具技术的现状及发展趋势(可编辑)

(毕业论文)数控加工刀具技术的现状及发展趋势(可编辑)

数控加工刀具技术的现状及发展趋势近年来在微电子技术计算机技术信息工程和材料工程等高新技术的推动下传统的制造技术得到了飞速的发展迅速发展成为一门新兴的制造技术数字化制造技术对比传统制造技术其重要的特征就是数控加工技术得到了广泛的应用这一发展的原动力来自于制造业对产品制造效率的强烈追求在这一背景下以制造业为主要服务对象的刀具制造及应用技术发展迅速大量高速高效柔性复合环保的数控加工刀具及应用新技术不断涌现使传统的切削加工技术发生了根本的变化如今硬切削干式切削高速高效加工已成为现代切削技术的重要标志并带动着切削加工技术水平的全面提高已成为数控加工的关键技术刀具产品已发展成为高附加值高科技含量的产品包含着当代材料信息科学计算机微电子应用技术领域中的最新成果1刀具材料的进展当前刀具材料进展的主要特点是一方面硬质合金取代高速钢成为主要的刀具材料另一方面超硬刀具材料使用比重大幅增加11 在硬质合金基体方面1硬质合金新牌号的开发越来越具有很强的针对性如美国Kennametal公司仅针对不同被加工材料的车削加工牌号就有加工钢材的KC9110加工不锈钢的KC9225加工铸铁的KY1310加工耐热合金的KC5410加工淬硬材料的KC5510加工非铁材料的KY1615新牌号比原牌号平均可提高切削效率15~20山高公司推出的加工铸铁的TK1000TK2000新牌号可提高切削速度20~30而该公司为加工钢件开发的TP3000在重切削断续切削大进给的应用中则有很好的可靠性铸铁和不锈钢是目前两种应用较多的工件材料然而两者的可加工性有很大的差异很多公司都开发出了加工这两种材料的专用牌号如株洲钻石切削刀具股份有限公司开发的黑金刚刀片系列是专门加工铸铁的硬质合金刀片包括可干式高速加工灰铸铁的YBD052可高速加工球墨铸铁的YBD102可用于中高速或铣削的YBD152 及适用中低速湿式铣削或断续条件下车削的YBD252等牌号这些新牌号比原有的牌号可提高切削速度30~40使用寿命可提高将近40~50在加工不锈钢方面瑞典Sandvik公司车削奥氏体不锈钢的GC2015是具有梯度区的抗塑性变形和改进热硬性的基体加上专为此牌号而设计的TiN-TiNAl2O3多层-TiCN涂层并对涂层表面进行平滑处理提高了抗磨料磨损抗剥落抗积屑瘤的能力而韩国KORLOY公司的PC9530为铣削不锈钢的牌号采用超细颗粒的基体和PVD涂层2在新牌号的开发中重视基体和涂层的优化组合对于适合高速加工的牌号其基体应有较高抗塑性变形的能力和富钴的表层及抗月牙磨损的涂层对于适合断续切削的牌号基体和涂层都要有较好的韧性Sandvik公司车削铸铁的专用牌号GC3205GC3210GC3215为CVD涂层硬质合金分别用于灰铸铁的高速加工球墨铸铁的高速加工各种铸铁的中低速的断续切削加工这三种牌号分别采用不同的硬质合金基体和不同厚度的Al2O3MT-TiCN涂层日本三菱综合材料公司开发的车削铸铁用的UC5105UC5115硬质合金CVD涂层牌号前者用于灰铸铁或球墨铸铁的高速连续切削采用高硬度的基体后者用于球墨铸铁的不稳定条件加工采用强韧的基体两者均涂覆微粒Al2O3和微粒且纤维状的TiCN厚膜蓝帜集团的BOEHLERIT公司的车削铸铁牌号Casttec LC620H采用强韧基体可用于断续切削而Al2O3的表面涂层可减小月牙洼磨损下面还有一层互锁的中间层提高结合强度能以400mmin高速加工灰铸铁12 在超硬刀具材料方面随着干切削硬切削的发展近年来国外各公司都推出了陶瓷及超硬刀具材料的新牌号如Kennametal公司的KY4400陶瓷刀片是一种适合于硬车削的混合陶瓷材料在1μm晶粒度的Al2O3基体中加入了TiCN硬材料以提高刀片的硬度和韧性适合于精车或半精车硬度达40~67HRC的淬火钢或铸铁Sandvik公司的CT5005无镍金属陶瓷车刀片是用于超精加工的新牌号适用于高效干切削或湿切削Iscar公司推出了两种超细颗粒硬质合金基体加PVD TiAlN涂层的908907牌号前者有高的抗塑性变形的能力适用于钻孔刀片和车螺纹刀片后者适用耐热合金奥氏体不锈钢和淬硬钢的低中速加工2刀具涂层技术取得重大进展先进的涂层设备为涂层技术的发展创造了重要条件尤其是PVD涂层工艺技术一方面在改进控制技术提高等离子体密度提高磁场强度改进阴极靶的形状实现过程的计算机全自动控制等关键技术上取得了全面的进展从而使涂层与基体的结合强度涂层的性能有显著的提高如PLATIT和PVT公司采用的多弧涂层工艺及设备可对电弧产生的液滴进行有效控制使刀具涂层表面的光洁度得到很大改善CemeCon公司开发的CC8009涂层设备采用磁控溅射技术从根本上避免多弧工艺的液滴问题为解决磁控溅射沉积速率低结合力低的缺陷开发了HIS高电离化溅射技术并在此基础上com高电离化脉冲技术推出了能同时具有氧化物涂层的化学稳定性及硬质涂层的物理特性的Supernitrides系列涂层另一方面涂层的品种也从常规的TiNTiCNTiAlN迅速扩展到特殊TiAlNAlTiNTiAlCNCrNCBCDLC等涂层以及各种复合涂层和纳米涂层并能对涂层的组分百分比结构在更大范围内加以控制和改变以适应不同的被加工材料和不同的切削条件从而显著地提高了刀具的切削性能如Balzers的CrAlN涂层以Cr 元素代替Ti元素具有3200Hv硬度和1100℃的氧化温度的高性能与TiAlN相比韧性更好更适合于断续切削如铣削滚削日立公司开发的9种涂层自成体系除了常规的TiNTiCNTiAlN以外还开发了以Si元素代替Al元素的涂层有适用于硬切削的TiSiN涂层有润滑性的CrSiN涂层在Cr中添加Si使涂层细微化进一步降低摩擦系数更适用于铝不锈钢等粘附性强的材料的加工有超强耐氧化能力的AlCrSiN涂层和在高温下具有低摩擦系数的TiBON涂层Balzers公司开发的并已被一些刀具制造商应用的FUTUNA NANO和FUTUNA TOP是两种TiAlN纳米结构涂层涂层硬度均为3300Hv开始氧化温度900℃纳米涂层的开发和推广应用将进一步提高切削加工的效率与此同时为了提高加工铝合金等非铁金属和非金属材料的效率金刚石涂层得到进一步的应用产品覆盖了可转位刀具和整体硬质合金刀具厦门金鹭特种材料有限公司利用引进的Balzers设备开发出了金刚石涂层整体硬质合金球头立铣刀OSG公司开发出了超微粒结晶的金刚石涂层铣刀结晶粒度为1μm使刀具的刃口更加锋利减少切削中的粘结降低了工件表面的粗糙度此外提高涂层表面光洁度也是涂层技术发展的一个动向以提高涂层刀具抗摩擦抗粘结的能力在CVD涂层中通过晶粒细化技术使涂层表面光滑如株洲钻石公司用于铸铁精加工的YBD052黑金刚刀片表层是细晶的Al2O3刀片外观光亮平滑三菱公司的UE系列加工钢材的CVD涂层硬质合金刀片采用平滑氧化铝和平滑涂层技术对微粒氧化铝进行平滑涂层处理即在上层涂覆特殊钛化物沉积层表面组织平滑且化学稳定性好减少了刀具粘结磨损日本不二越公司为GS立铣刀开发的GS涂层采用平滑化技术涂层表面的粗糙度Ra 008μmRz 11μm显著改善了涂层表面的特性3立铣刀丝锥钻头等传统刀具进入高速切削发展阶段长期以来立铣刀丝锥和钻头属于量大面广的通用刀具主要采用高速钢制造切削效率偏低近年来由于刀具材料尤其是超细颗粒硬质合金材料性能的提高和应用的普及涂层技术和刀具数控磨削技术的不断进步使通用刀具发生了根本的变化首先是整体硬质合金铣刀的性能成倍提高切削速度由原来的不到100mmin提高到180mmin以上特别是在航空工业铝合金加工方面切削速度更是达到了2000~5000m min具备了高性能刀具的水平其次是整体硬质合金刀具的品种增加涵盖了立铣刀麻花钻丝锥等众多的品种应用领域进一步扩大第三是数控工具磨床的广泛应用和普及使刀具在结构方面产生了巨大变化理论上讲当前工具制造企业所使用的五轴联动数控工具磨床可以加工出几乎任何形状的刀具来从而使刀具切削部分的几何形状参数和刀具的结构突破了传统标准刀具千篇一律的旧格局实现了多样化的并充分体现切削过程内在规律的创新设计使通用刀具的潜力得到充分的挖掘通用刀具的这种重大进展标志着立铣刀丝锥钻头等传统通用刀具的发展已进入了高速切削的新阶段4可转位刀具的新进展随着制造业的高速发展汽车工业航空航天工业以及模具行业等重点产业部门对切削加工不断提出了更高的要求CADCAM技术和CNC数控制造技术在刀具开发中的应用以及刀片压制技术的进步推动着可转位刀具持续的发展近年来可转位刀具在刀杆结构的优化切削负荷的合理分布刀片三维断屑槽形开发以及带前角的螺旋形刀刃铣削刀片的问世和小规格浅孔钻的开发等方面都取得明显的成效其中可转位立铣刀的进展尤为突出如Iscar公司开发的FEEDMILL立铣刀系列以新的刀片外形较小的切削主偏角和新的装夹结构使每齿进给量最高可达35mm以小吃深大进给的方式实现很高的金属切除率小的主偏角能把高速进给的径向力转化为轴向力因此可采用悬伸较长的刀杆对较深的模腔或外轮廓进行高效加工主副切削刃之间的平缓的过渡刃既可增加刀尖的强度又能改善加工的表面粗糙度为了使刀片的装夹更可靠以适应大的进给量在刀片的底面多出一个圆柱形的凸起在安装时与刀座的孔相配可承受大部分切削力减少中间夹紧螺钉的载荷开发多功能的复合刀具是当前刀具结构发展中的另一个趋势为了发挥以车削加工中心和镗铣类加工中心为代表的数控加工技术的优势对复杂零件在一次安装中进行多工序的集中加工并淡化传统的车铣镗螺纹加工等不同切削工艺的界限是当前提高数控机床效率加快产品开发的重要途径为此也对刀具提出了新的要求除了刀具模块化以外还要求一种刀具要尽可能多地完成对零件不同工序的加工减少换刀次数节约频繁换刀时间同时还可以减少刀具的数量和库存量有利于管理和降低制造成本SandvikKennametal等公司都开发出了为加工汽车航空发动机零件飞机构件开发的成套专用复合刀具随着这类刀具的品种增加结构优化几何参数更趋合理性能得到提高应用面不断扩大它不仅在车削铣削钻削领域的应用有新的突破而且扩大到拉削和齿轮加工等复杂形面的加工领域这类专用高效刀具已经成为现代自动生产线的特色对减少投资费用保证生产节拍和产品质量发挥了重要作用也反映出刀具与工艺在制造技术中的紧密关系甚至是开发新工艺设计新的生产线的前提5切削加工新的配套技术切削加工的配套技术是现代切削技术不可缺少的组成部分对切削技术的进步起着重要的作用已成为现代工具产品的一部分并与切削技术和刀具保持着快速同步的发展现阶段的切削配套技术主要包括工具系统的刀柄刀具的装夹与动平衡刀具的使用监控和管理技术等首先在工具系统和刀柄方面HSK刀柄的应用更加普及各类带HSK刀柄的工具在我国的汽车工业航空航天工业模具制造业气轮机制造业等行业得到了广泛的应用与此同时日研公司和大昭和公司分别开发了三处接触3LOCK SYSTEM和双面接触BIG PLUS两种724连接刀柄与现有的724刀柄比较它们有更高的连接刚性和精度可用于高速高效切削并且还能与现有的724刀柄或机床兼容减少了新增的工具费用具有现实意义Sandvik公司的Capto刀柄随着使用面的不断扩大推出了与之配套的刀具主轴并以OEM的方式供应数控机床制造商以充分发挥Capto刀柄在车削中心复合加工中的优良性能其次在夹紧部位方面各类高效高性能工具夹头得到广泛应用国外各刀具公司研制开发了液压夹头热装夹头压入式夹头等各种刀具夹紧系统如德国雄克公司开发了一种无夹紧元件的三棱变形静压夹头日本日研工作所开发的PF压入式系列刀柄也实现了端面接触卸刀时采用专门装置把刀具顶出Sandvik公司开发了CoroGrip液压驱动夹头BiltzZoller等数家公司开发了热装夹头及加热装置新推出的加热夹头装置都加快了冷却的速度增加了冷却的工位有的还增加了轴向可调的机构并与对刀仪结合在一体提高了加热夹头装刀的轴向精度第三在刀具安全性技术方面刀具的动平衡技术得到了飞速发展刀具的动平衡是高速铣削刀具的重要指标为此德国的HAIMER和意大利的CEMB等公司根据对刀具动平衡的要求开发了专用的动平衡仪可实现全自动的刀具动平衡测量计算机屏幕显示不平衡量的大小相位及相应的平衡质量等级和最大使用转速等数据并可根据需要作一个平面或两个平面的不平衡测量设定平面的位置不平衡量的去重位置由激光束指示还可通过更换主轴接头测量不同刀柄的刀具目前安全性技术已被世界上著名的工具制造厂家所采用除德国的WalterMapal等公司推出的高速铣刀外日本东芝Tungaloy公司的DIA9000加工铝合金铣刀住友电工公司的专用SUMIDIA金刚石铣刀等在结构上都作了改进以适应高速加工的需要推荐的切削速度为3000~5000m min美国Valenite公司推出的直径3~12in的高速面铣刀其铝合金刀体经表面处理后硬度达60HRC提高了刀体的耐磨性旋转刀具的动平衡按ISO19401的规定已达G40等级以上某些精加工高速铣刀的不平衡质量已达到G25级平衡性比G40高很多而美国平衡技术公司推出的刀具动平衡机甚至可平衡到G10级6数控切削技术的发展对工具工业提出了更高的要求一方面高精度高效率高可靠性和专用化是先进数控加工技术的基本特征现代刀具企业最响亮的竞争口号就是为制造业提供效率最高的切削刀具制造业也认识到通过采用高效率刀具提高劳动生产率来降低成本比单纯节省刀具费用更加有利所以在现代刀具的制造和使用领域效率优先已经代替了传统的性能价格比老概念其次要求现代工具企业具有综合的高科技特征现代工具企业的生存和发展需依靠强大的研究开发能力作后盾在提高切削率这样一个根本目标的推动下现代刀具企业从传统的单纯加工型企业逐步发展成为涉及刀具基础材料表面处理基础工艺和和成套服务等具有综合高科技特征的开发型企业其表现在第一工具新材料的研发和生产已经成为现代刀具企业不可分割的组成部分第二涂层技术PVD和CVD的开发和应用成为现代刀具制造业中与新材料发展并驾齐驱的技术发展方向第三先进数控加工技术的开发和应用已经成为现代刀具制造业确保产品质量的必备手段现代刀具发展的重要特征之一是专业化复合化和多功能化导致刀具结构日趋复杂形状变得十分特异传统的刀具工艺技术普通机床和卡具已经无法保证刀具和刀片的安装基准和切削单元之间的空间位置精度因此多轴联动的数控加工技术已经成为现代刀具企业不可缺少的手段由于刀具制造工艺的特殊性刀具制造的专用数控机床通常由刀具企业自行研究开发机床企业协作制造所以刀具专用数控技术和装备的开发和应用已经成为现代工具企业的一个重要工作内容由此可见现代刀具企业的运作范围从专用原材料的研究和生产开始囊括了表面处理技术和刀具生产专用数控技术及装备的研发和应用三高一专刀具产品的研究生产和推广服务成为了企业竞争的焦点谁发展慢一点就要被淘汰出局这种竞争的结果使国际工具工业的发展日趋集中化那些具有强大研发能力和经济实力的企业在竞争中脱颖而出成为推动和领导行业发展的主力在制造业中生产技术运作跨度如此宽的行业并不多见另一方面对用户提供综合服务的深度和广度日益成为衡量现代工具企业竞争力的重要标志在传统工具工业的生产模式下工具企业只是一个标准刀具的生产供应商使用现场的诸多技术问题和管理问题都是使用者自己来解决的而发展到现代工具工业阶段这个服务者的角色发生了大变换国外制造业为使新产品开发费用和管理工作量部分地转嫁到工具供应商达到共同承担开发风险之目的广泛采用平台战略全球采购一体化管理方式已成趋势在工具的采购上将目标转向生产成本低的国家和地区以降低生产成本增加市场竞争力在工具管理上则突出表现为工具厂从主要提供刀具产品转变为主要提供切削技术负责刀具采购管理和现场服务即所谓一体化管理模式工具企业向用户提供的已经不是单纯的刀具产品而是切削加工问题的整体解决方案这个方案的两个基本要素就是先进的刀具和优质的服务因此是否具备向用户提供全方位优质服务的能力已经成为衡量现代工具企业竞争力的一个重要指标高速切削的定义高速切削的定义是什么对于高速切削的讨论在一定程度上仍是混乱的如何定义高速切削 HSM 目前有许多观点和许多方法让我们看一下这些定义中的几个高切削速度切削高主轴速度切削高进给切削高速和高进给切削高生产率切削我们对高速切削的定义描述如下HSM不是简单意义上的高切削速度它应当被认为是用特定方法和生产设备进行加工的工艺高速切削无需高转速主轴切削许多高速切削应用是以中等转速主轴并采用大尺寸刀具进行的如果在高切削速度和高进给条件下对淬硬钢进行精加工切削参数可为常规的4到6倍在小尺寸零件的粗加工到半精加工精加工及任何尺寸零件的超精加工中HSM意味着高生产率切削零件形状变得越来越复杂高速切削也就显得越来越重要现在高速切削主要应用于锥度40的机床上高速切削的目标是什么高速切削的主要目标之一是通过高生产率来降低生产成本它主要应用于精加工工序常常是用于加工淬硬模具钢另一个目标是通过缩短生产时间和交货时间提高整体竞争力达到这些目标的主要因素为一次更少此数装夹的模具加工通过切削改善模具的几何精度同时可减少手工劳动和缩短试模时间使用CAM系统和面向车间的编程来帮助制定工艺计划通过工艺计划提高机床和车间的利用率高速切削的实际优点是什么刀具和工件可保持低温度这在许多情况下延长了刀具的寿命另一方面在高速切削应用中切削量是浅的切削刃的吃刀时间特别短这就是说进给比热传播的时间快低切削力得到小而一致的刀具弯曲这与每种刀具和工序所需的恒定的加工余量相结合是高效和安全加工的先决条件之一由于高速切削中典型的切削深度是浅的刀具和主轴上的径向力低这减少了主轴轴承导轨和滚珠丝杠的磨损高速切削和轴向铣削也是良好的组合它对主轴轴承的冲击小使用这种方法可以使用悬伸较长的刀具而振动的风险不大小尺寸零件的高生产率切削如粗加工半精加工和精加工在总的材料去除率相对低时有很好的经济性高速切削可在一般精加工中获得高生产率可获得杰出的表面质量表面质量常低于Ra 02μm采用高速切削使对薄壁零件的切削成为可能使用高速切削吃刀时间短冲击和弯曲减小了模具的几何精度提高了组装就容易和更快了无论是什么人技能如何都能获得CAMCNC生产的表面纹理和几何精度如果花在切削上的时间稍多一些费时的人工抛光工作可显著减少常常可减少达60-100一些加工如淬火电解加工和电火花加工 EDM 可以大大减少这就可降低投资成本和简化后勤供应用切削代替电火花加工 EDM 模具使用寿命和质量也得到提高采用高速切削可通过CADCAM很快改变设计特别是在不需要生产新电极的情况下由于起始过程有高的加速度和减速度以及停止导轨滚珠丝杠和主轴轴承产生相对快的磨损这常常导致较高的维护成本需要专门的工艺知识编程设备和快速传送数据的接口可能很难找到和挑选高级技术员工有相当长的调试和出故障时间加工中无需紧急停止导致人为错误和软件或硬件故障会产生许多严重后果必须有良好的加工计划向饥饿的机床提供食物必须有安全保护措施使用带安全外罩及防碎片盖的机床避免刀具的大悬伸不要使用重刀具和接杆定期检查刀具接杆和螺栓是否有疲劳裂纹仅使用注明最高主轴速度的刀具不要使用整体高速钢 HSS 刀具高速切削对机床有哪些要求对ISOBT 40号机床的典型要求如下主轴速度范围 22 kW可编程进给率 40-60 m分快速横向进给 1g块处理速度 1-20 毫秒数据传递速度 250 Kbits 1 毫秒增量线性 5-20 微米或 NURBS 插补主轴具有高热稳定性和刚性主轴轴承具有高的预张力和冷却能力通过主轴的送风冷却液具有高的吸收振动能力的刚性机床框架各种误差补偿温度象限滚珠丝杠是最重要的CNC中的高级预见功能高速切削对切削刀具的典型特性或要求有哪些整体硬质合金高精度磨削径向跳动低于3微米尽可能小的凸出和悬伸最大的刚性尽可能小的刀具弯曲变形和大的芯核直径。

数控车床论文(精选5篇)

数控车床论文(精选5篇)

数控车床论文(精选5篇)第一篇:数控车床论文[摘要]:数控系统经过一段时间的使用,电子原器件性能下降,甚至损坏,有些机械部件如导轮及导轮轴承等也是如此。

【关键词】:润滑、定期润滑、定期调整浅析机床数控系统的技术维护数控系统经过一段时间的使用,电子原器件性能下降,甚至损坏,有些机械部件如导轮及导轮轴承等也是如此。

为了保持机床能正常可靠地工作,延长其使用寿命,就必须对数控系统进行日常的维护。

数控系统经过一段时间的使用,电子原器件性能下降,甚至损坏,有些机械部件如导轮及导轮轴承等也是如此。

为了保持机床能正常可靠地工作,延长其使用寿命,就必须对数控系统进行日常的维护。

概括地说主要注意以下几个方面:一、制定数控系统的日常维护的规章制度要根据各部件的特点,确定各自保养规则。

如明确规定哪些部件需要经常清洁、校验(如CNC系统的光电输人机或电报机头的清洁)哪些部件需要定期润滑调整(如轴承、丝杠、传动齿轮的定期润滑支流伺服电动机电刷和换向器应每半月检查一次等)。

二、定期润滑数控机床上需要定期润滑的部位均有说明,主要有机床导轨,丝杠,螺母、传动齿轮等处,一般用油枪注人,轴承和滚珠丝杠如有保护套式的可以经半年后拆开来注油。

三、尽a少开数控柜和强电柜的门因为在加工车间的空气中大都含有油污,灰尘甚至金属颗粒,一旦它们落在数控系统内的印制线路或原器件上,极易导致器件绝缘性下降,甚至导致原器件上,极易导致器件绝缘性下降,甚至导致元器件及线路的损坏。

有的操作者在夏天为了使数控系统超负荷工作,而打开数控柜的门来散热,这样会导致数控系统的加速损坏。

正确的方法应是设法降低设备外部环境温度,除非进行必要的维护,不能随便打开柜门,更不允许在使用时敞开柜门。

四、定期调整丝杠螺母、导轨及电极丝挡块,进电块等,根据使用时间,间隙大小或沟槽深浅进行调整,部分数控线切割机床采用锥形开槽式的调节螺母,则需要适当地拧紧一些,凭经验和手感确定间隙,保持转动灵活,滚动导轨的调整方法为松开工作台一边的导轨固定螺钉,拧调节螺钉看百分表的反映使其紧靠另一边,挡丝块和进电块如使用日久,摩擦出沟痕,须转动或移动一下,以改变接触位置即可。

数控技术毕业论文(5篇)

数控技术毕业论文(5篇)

数控技术毕业论文(5篇)1.数控编程与其发展数控编程是目前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作用。

在诸如航空工业、汽车工业等领域有着大量的应用。

由于生产实际的强烈需求,国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。

下面就对数控编程及其发展作一些介绍。

1.1数控编程的基本概念数控编程是从零件图纸到获得数控加工程序的全过程。

它的主要任务是计算加工走刀中的刀位点(cutterlocationpoint简称CL点)。

刀位点一般取为刀具轴线与刀具表面的交点,多轴加工中还要给出刀轴矢量。

1.2数控编程技术的发展概况为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。

其后,APT几经发展,形成了诸如APTII、APTIII、APT(算法改进,增加多坐标曲面加工编程功能)APTAC(Advancedcontouring),APT/SS(SculpturedSurface)等先进版。

采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素。

APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。

针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为为CATIA。

随后很快出现了象EUCLID,UGII,INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP 等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。

有关数控加工论文范文

有关数控加工论文范文

有关数控加工论文范文[摘要]如何利用和发展数控加工,实现高效数控加工High Efficiency NC Machining已成为企业普遍关心的大事。

许多企业中数控加工效率低下,数控制造能力不足已成为较突出的共性问题。

如何通过高效数控加工技术的研究提高数控制造技术水平,提高数控加工的能力,是摆在我们面前的严峻课题。

实现高效数控加工对增强企业的综合竞争力,提高可持续发展能力都具有现实意义。

[关键词]提升效率数控机床切削刀具一、提升数控加工的意义所在数控机床具有生产效率和加工自动化程度高,零件的加工精度和产品的质量稳定性好,能完成许多普通机床难以加工或根本无法加工的复杂型面加工,几乎不要专用的工装卡具、减少在制品,提高经济效益和大大减轻操作工人的劳动强度等一系列优点。

随着制造业的迅速发展,大力发展以数控机床为先导的装备制造业已成为我国政府的一项产业政策,将对数控机床的发展产生重大的影响。

用好数控机床提高数控机床的利用率具有重要的现实意义,它不仅能增加企业的效益,而且还有助于提高我国制造业的整体素质和加快建设制造强国的进程。

二、影响数控机床加工的因素1.数控机床应用水平不高数控加工在中国制造业中已经有了较长的使用时间,虽然有严格的数控机床操作规范、良好的机床维护保养,但是其本身的精度损失是不可避免的。

为了控制产品的加工质量,我们定期对数控设备进行检测维修,明确每台设备的加工精度,明确每台设备的加工任务。

对于大批量成批生产的零件加工工厂,应严格区分粗、精加工的设备使用,因为粗加工时追求的是高速度、高的去除率、低的加工精度,精加工则相反,要求高的加工精度。

而粗加工时对设备的精度损害是最严重的,因此我们将使用年限较长、精度最差的设备定为专用的粗加工设备,新设备和精度好的设备定为精加工设备,做到对现有设备资源的合理搭配、明确分工,将机床对加工质量的影响降到了最低,同时又保护了昂贵的数控设备,延长了设备的寿命。

数控技术毕业论文范文3篇

数控技术毕业论文范文3篇

数控技术毕业论⽂范⽂3篇计算机毕业论⽂-数控技术和装备发展趋势及对策计算机毕业论⽂摘要:简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加⼊WTO和对外开放进⼀步深化的新环境下,发展我国数控技术及装备、提⾼我国制造业信息化⽔平和国际竞争能⼒的重要性,并从战略和策略两个层⾯提出了发展我国数控技术及装备的⼏点看法。

装备⼯业的技术⽔平和现代化程度决定着整个国民经济的⽔平和现代化程度,数控技术及装备是发展新兴⾼新技术产业和尖端⼯业(如信息技术及其产业、⽣物技术及其产业、航空、航天等⼯业产业)的使能技术和最基本的装备。

马克思曾经说过“各种经济时代的区别,不在于⽣产什么,⽽在于怎样⽣产,⽤什么劳动资料⽣产”。

制造技术和装备就是⼈类⽣产活动的最基本的⽣产资料,⽽数控技术⼜是当今先进制造技术和装备最核⼼的技术。

当今世界各国制造业⼴泛采⽤数控技术,以提⾼制造能⼒和⽔平,提⾼对动态多变市场的适应能⼒和竞争能⼒。

此外世界上各⼯业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重⼤措施来发展⾃⼰的数控技术及其产业,⽽且在“⾼精尖”数控关键技术和装备⽅⾯对我国实⾏封锁和限制政策。

总之,⼤⼒发展以数控技术为核⼼的先进制造技术已成为世界各发达国家加速经济发展、提⾼综合和国家地位的重要途径数控技术是⽤数字信息对机械运动和⼯作过程进⾏控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电⼀体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加⼯、传输技术;(3)⾃动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。

1数控技术的发展趋势数控技术的应⽤不但给传统制造业带来了⾰命性的变化,使制造业成为⼯业化的象征,⽽且随着数控技术的不断发展和应⽤领域的扩⼤,他对国计民⽣的⼀些重要⾏业(IT、汽车、轻⼯、医疗等)的发展起着越来越重要的作⽤,因为这些⾏业所需装备的数字化已是现展的⼤趋势。

数控论文范文

数控论文范文

数控论文范文随着职业院校数控技师专业的不断发展,数控技师论文的辅导愈加重要。

下面是店铺为大家推荐的数控论文,供大家参考。

数控论文范文一:数控机床技术论文【摘要】文章首先介绍了数控机床的优点与缺点,接着阐述了数控机床的种类,最后指出了数控机床控制技术的发展与数控机床控制技术的发展趋势。

【关键词】数控机床控制技术数控机床是机电一体化的典型产品,数控机床控制技术是集计算机及软件技术、自动控制技术、电子技术、自动检测技术、液压与气动技术和精密机械等技术为一体的多学科交叉的综合技术。

随着科学技术的高速发展,机电一体化技术迅猛发展,数控机床在企业普遍应用,对生产线操作人员的知识和能力要求越来越高。

一、数控机床的优点与缺点(一)数控机床的优点对零件的适应性强,可加工复杂形状的零件表面。

在同一台数控机床上,只需更换加工程序,就可适应不同品种及尺寸工件的自动加工,这就为复杂结构的单件、小批量生产以及试制新产品提供了极大的便利,特别是对那些普通机床很难加工或无法加工的精密复杂表面(如螺旋表面),数控机床也能实现自动加工。

加工精度高,加工质量稳定。

目前,数控机床控制的刀具和工作台最小移动量(脉冲当量)普遍达到0.0001mm,而且数控系统可自动补偿进给传动链的反向间隙和丝杠螺距误差,使数控机床达到很高的加工精度。

此外,数控机床的制造精度高,其自动加工方式避免了生产者的人为操作误差,因此,同一批工件的尺寸一致性好,产品合格率高,加工质量稳定。

生产效率高。

由于数控机床结构刚性好,允许进行大切削用量的强力切削,从主轴转速和进给量的变化范围比普通机床大,因此在加工时可选用最佳切削用量,提高了数控机床的切削效率,节省了机动时间。

与普通机床相比,数控机床的生产效率可提高2—3倍。

良好的经济效益。

使用数控机床进行单件、小批量生产时,可节省划线工时,减少调整、加工和检验时间,节省直接生产费用;同时还能节省工装设计、制造费用;数控机床加工精度高,质量稳定,减少了废品率,使生产成本进一步下降。

新版数控技术毕业论文(精品多篇)

新版数控技术毕业论文(精品多篇)

新版数控技术毕业论文(精品多篇)数控技术毕业论文篇一数控技术的进步与发展,在很大程度上提升了计算机的智能集成能力,智能科技的集成成为了数控技术的核心和关键点。

随着计算机数控技术的不断进步,计算机数控的相关标准也在不断地更新。

数控关键技术的运用能够提升数控机床的生产效率,实现数控机床的自动化、智能化作业,从而优化生产工艺,不断提升生产质量。

在数控机床中,智能集成数控关键技术的运用能够有效地提升零部件生产的效率和质量,提升零部件生产工艺的水准。

随着计算机技术的不断进步,传统的数控机床技术已经难以适应生产的需要,智能集成计算机数控关键技术成为发展的趋势,并逐步运用在实际的数控机床的零部件加工和生产中。

1 新型数控关键技术中的智能要素在新型数控系统中,现有的数控关键技术突破了传统的数控技术的弊端和不足之处,增加了很多智能化的要素,进一步提升了数控机床的生产效率,优化了数控机床的生产工艺。

例如特征技术,图形用户接口以及高级的语言概念和数据库结构都应该包含于此。

任务规划的智能化任务智能化是指数控机床将接受的任务,变为数控机床随环境的变化而不断调整的目标任务。

这样一来在数控机床加工零部件时,可以根据自身的相关性能而随时做出改变,以有效地提升零部件的生产工艺,减少不合格率,综合提升其生产性能。

自适应的人机界面在数控机床中,利用智能集成化的数控关键技术能够极大地提升其自动性和自主性,从而优化其管理模式及生产模式,提升数控机床的运作效率,提升数控机床的运作水平,不断提升其运作能力。

特别是在智能化的主导因素下,利用数控关键技术能够提升机床作业的人机互动性,便于数控机床可以自动化识别不同的人员,根据不同人员的使用习惯及方法来进行一定的自我适应,提升数控机床运作的整体实力和水平。

加工环节的智能控制提升了数控机床的智能化运转,最明显的体现在于,在数控机床的运转过程中,利用智能化的因素能够有效地提升数控机床加工环节中的质量和效率。

数控技术毕业论文通用9篇

数控技术毕业论文通用9篇

数控技术毕业论文通用9篇
未来发展方向建议篇一
1、高速化和高精度化
质量、效率是优良制造技术的关键。

高速和高精的加工技术会大大提高效率,同时也会提高产品档次和质量,并缩短生产的周期以及增强市场的竞争能力
2、多轴联动的加工与复合的加工
使用这种5轴联动来对三维曲面的零件进行加工,还可用刀具的最佳的几何形状来进行切削,这样光洁度很高,同时效率也提高了。

3、网络化、开放式、智能化
大量的采用计算机技术与网络通信的技术,这样机床制造厂商就可以通过远程技术体系,以此来实现工况的信息传输、查询、存储和显示,甚至是远程的智能诊断。

4、高柔性化
所谓柔性也就是数控设备对适应加工的对象变化的能力。

随着数控车床的发展,对加工对象变化有了很较强的适应性,并朝着单元的柔性化与系统的柔性化这个方向发展。

5、绿色化
在当今世纪,数控车床应该把重心放在节能与环保上,也就是要努力做到切削加工的工艺绿色化。

而且绿色制造这种趋势将使得我国把环保节能车床的发展放在重要位置,来为我们将来占领更广泛的世界市场做准备。

数控车床加工论文数控刀具论文

数控车床加工论文数控刀具论文

数控车床加工论文数控刀具论文在数控车床加工中刀具位置补偿的应用摘要:随着数字化控制机床的产生,许多机械加工的工艺也变得越来越简便。

文章通过对数控机床中刀具补偿的作用和方法的分析,阐述如何利用这一功能来增加工件的尺寸精度、提高刀具的质量和生产效率,降低生产成本,并期望能够给车间生产提供一些有价值的信息。

Abstract: With the generation of digital control machine tools, many machining technological also becomes more and more convenient. Based on theanalysis of functions and methods of blade compensation of CNC lathe, this paper describes how to use this function to increase the size of workpiece precision, improve the tool's quality and production efficiency and reduce the production cost, and hopes to provide some valuable information for workshop production.关键词:数控车床;刀具补偿;生产;位置补偿Key words: CNC lathe;blade compensating;production;position compensation中图分类号:TH18 文献标识码:A文章编号:1006-4311(2010)35-0040-010引言不同价格和类型的机床有不同的配置,其中经济型机床缺乏刀具补偿的功能,所以在生产的过程中只能人工运行刀位点的运动轨迹尺寸加工程序;而数控车床则能按照刀具工件的轮廓和尺寸进行自动的运算,将刀位点自动调整到刀具工件的运行轨迹上来。

数控刀具论文

数控刀具论文

数控刀具论文数控刀具论文数控刀具论文数控刀具的主要材料种类及用途机床与刀具的发展是相辅相成、相互促进的。

刀具是由机床、刀具和工件组成的切削加工工艺系统中最活跃的因素,刀具切削性能的好坏取决于刀具的材料和刀具结构。

切削加工生产率和刀具寿命的高低加工成本的`多少、加工精度和加工表面质量的优劣等,在很大程度上取决于刀具材料、刀具结构及切削参数的合理选择。

近几十年来,作为切削加工最基本丰素的刀具材料得到了迅速发展,刀具的结构形式也得到了极大丰富。

数控刀具主要材料种类(1)超硬刀具。

所谓超硬材料是指人造金刚石和立方氮化硼(简称CBN),以及用这些粉末与结合剂烧结而成的聚晶金刚石(简称PCD)和聚晶立方氮化棚(简称PCBN)等。

超硬材料具有优良的耐磨性,主要运用于高速切削及难切削材料的加工。

(2)陶瓷刀具。

陶瓷刀具具有很高的硬度、耐磨性能及良好的高温力学性能,与金属的亲合力小,不易与金属产生粘结,并且化学稳定性好。

陶瓷刀具主要应用于钢、铸铁及其合金和难加工材料的切削加工,可以用于超高速切削、高速切削和硬材料切削。

(3)涂层刀具。

刀具涂层技术自问世以来,对刀具性能的改善和加工技术进步起着非常重要的作用,涂层技术将传统刀具涂覆一层薄膜后,刀具性能发生了巨大的变化。

主要的涂层材料有:Tic、TiN、Ti(C,N)、TiALN、ALTiN等。

涂层技术己应用于立铣刀、铰刀、钻头、复合孔加工刀具、齿轮滚刀、插齿刀、剃齿刀、成形拉刀及各种机夹可转位刀片,满足高速切削加工高强度、高硬度铸铁(钢)、锻钢、不锈钢、钛合金、镍合金、镁合金、铝合金、粉末冶金、非金属等材质工件的生产技术不同要求。

(4)硬质合金。

硬质合刀具是数控加工刀具的主导产品,有的国家有90%以上的车刀和55%以上的铣刀都采用了硬质合金制造,而且这种趋势还在增加。

硬质合金可分为普通硬质合金、细晶粒硬质合金和超晶粒硬质合金。

按化学成分区分,可分为碳化钨基硬质合金和碳(氮)化钛基硬质合金。

数控刀具管理的论文

数控刀具管理的论文

数控刀具管理的论文摘要:数控加工从单台加工中心模式向数控车间及计算机集成制造发展,刀具管理及特殊应用方法对车间管理意义重大。

有效的管理方法及刀具特殊应用对于成本管理及工艺改进有明显的促进作用。

关键词:数控刀具管理方法集中管理成本特殊应用前言数控技术是现代制造技术的基础,它的广泛应用对全球机械制造业产生了根本性变化,已成为衡量一个企业乃至一个国家科技进步和工业现代化水平的重要标志。

伴随社会进步与发展,单个企业拥有的数控设备已经不再是屈指可数了,再加上人们的需求向个性化发展,数控制造即向专业化又向综合化发展(既有提供生产设备又有提供解决方案的)。

数控设备的增加必然需要大量的刀具,单台设备时的刀具管理模式已不能满足数控车间的刀具管理要求。

1 数控刀具管理1.1 数控刀具管理的意义以前大多数的车、铣、钻、刨、磨机加设备只是具有单一功能,而今车削中心、加工中心以及计算机集成制造系统往往是多种加工功能的集合,为了满足这种加工功能集合的趋势,刀具材料、刀具型式也经历一个不断发展变化的过程。

刀具材料也由以前以高速钢、YT类硬质合金为主逐渐向高速度、高韧性、高硬度、高耐磨性发展。

刀柄类型统一化标准化。

再加上数控车间的出现,大量数控刀具要被应用。

如果还是按照起初的单台管理模式管理势必带来以下弊端。

第一,刀具重复购置增加企业成本。

单台设备刀具往往由设备操作员管理,这种情况下各设备的操作员之间有许多相互重复的刀具并不同时使用造成闲置浪费和重复购置浪费。

第二,刀具取用时间成本增加。

刀具数量大大增加后如果没有统一标示及分类摆放,造成刀具取用时乱找一气,时间成本增加。

第三,重复添置大量的刀具调整工具。

由于不同类型的刀具装夹调整工具不同,分散管理导致要因人数配置大量工具,有时候相互之间乱拉乱放,虽然工具很多,但用时也不能得心应手。

第四,人员新老交替时要单独培训增加人工教育成本。

而且有些刀具价值较高,一旦调整应用不当就会造成较大损失,机会成本较大。

数控毕业论文数控机床刀具的选用及加工工艺和数控技术的发展方向 精品

数控毕业论文数控机床刀具的选用及加工工艺和数控技术的发展方向 精品
3、驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。
4、辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等。
1.2.数控机床特点
数控机床的操作和监控全部在这个数控单元中完成,它是数控机床的大脑。与普通机床相比,数控机床有如下特点:
1、加工精度高,具有稳定的加工质量;
2、可进行多坐标的联动,能加工形状复杂的零件;
3、加工零件改变时,一般只需要更改数控程序,可节省生产准备时间;
4、机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);
第一章、数控概述
1.1.
数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作并加工零件。
数控机床种类繁多,由数控系统通过伺服驱动系统去控制各运动部件的动作,主要用于轴类和盘类回转体零件的多工序加工,具有高精度、高效率、高柔性化等综合特点,适合中小批量形状复杂零件的多品种、多规格生产。
5、机床自动化程度高,可以减轻劳动强度;
6、对操作人员的素质要求较高,对维修人员的技术要求更高。
1.3.数控机床的组成
数控机床一般由下列几个部分组成:
1、主机,他是数控机床的主题,包括机床身、立柱、主轴、进给机构等机械部件。他是用于完成各种切削加工的机械部件。

刀具使用与数控加工论文

刀具使用与数控加工论文

刀具使用与数控加工论文随着科技的发展和工业制造的进步,数控加工技术的应用越来越广泛。

数控加工设备受到广泛的关注和应用,而刀具则是数控加工中最关键的元素之一。

刀具的使用直接影响加工质量和加工效率。

因此,应该更加注重刀具的使用和管理,并不断改进和优化刀具的设计和制作。

本文基于对刀具使用与数控加工的研究,分析了刀具的基本原则、刀具的种类、及刀具的优选。

同时,对数控加工常见的刀具使用问题进行了分析,并提出了一些改进意见和技术建议。

一、刀具的基本原则在数控加工中,刀具是一个非常重要的因素。

正确使用和管理刀具是数控加工的重要保障。

在刀具的使用中,需要注意以下原则:1.使用正确的刀具:在不同的加工过程中需要使用不同的刀具,因此需要根据具体加工要求和加工物料的特征选择合适的刀具。

选对刀具的种类和规格是正确加工的前提。

2.正确更换和保养刀具:使用一定时间后,刀具会磨损、变形和疲劳,需要及时进行检查和更换。

在更换时应注意与加工工件的尺寸、形状的变化。

在使用过程中,对刀具进行适当的保养和润滑是必要的。

3.安全使用刀具:在使用刀具时需要注意安全,特别是对于高速旋转的刀具。

刀具必须正确安装好、合理调试,使用过程中不能随意更换或调整,以免引起安全事故。

二、刀具的种类目前常用的数控加工刀具主要包括下列几种:1.铣刀:广泛用于数控铣床和加工中心等设备。

铣刀分为平头铣刀、球头铣刀、立铣刀等不同类型。

2.钻头:用于在工件上钻孔的刀具。

钻头分为中心钻、直纹钻、深孔钻等多种类型。

3.车刀:用于数控车床上进行车削操作的刀具。

车刀分为内圆车刀、外圆车刀、螺纹车刀等不同类型。

4.切削刀具:用于对工件进行切削操作的刀具。

切削刀具分为锯条、刨刀、切削刃等多种类型。

5.其他刀具:数控加工中还有一些特殊的刀具,如刻刀、磨剪刀、模具刀等。

三、刀具的优选正确选择刀具是提高加工质量和效率的关键。

在刀具的选择中,需要注意以下几点:1.选择合适的刀具材质:刀具材质的选择要根据加工材料的特性来确定。

数控加工论文范文

数控加工论文范文

数控加工论文范文数控加工论文范文数控加工论文范文第1篇(1)数控技术的概念数控技术是在传统机械加工技术的基础上,采纳数字掌握技术来进一步提高机械加工的质量,并且结合传统机械制造技术、计算机技术与网络通信技术等进行机械加工运动。

较传统机械加工技术来说,其不但具有高准度与高效率,同时还具备柔性自动化等优点,国内现在对数控技术的应用主要是预先编制好程序,再通过掌握程序来掌握设备,一般采纳计算机进行掌握。

(2)数控加工技术的主要特点数控加工技术可以简便的转变相关工艺参数,因此在进行换批加工与研制新产品时特别便利。

另外,像一般机床很难完成的加工简单零件与零件曲面外形等,利用数控加工技术都可以高质量量完成。

数控加工技术采纳模块化标准工具,在换刀与安装方面都节约了许多时间,同时对工具的标准化程度与管理水平都有较大的提高。

2数控技术在机械加工技术中的应用意义(1)数控技术在机械加工技术中的应用提高了机床的掌握力近年来数控技术在机械加工技术中的应用,对机床掌握力有了很大程度上的提高,进一步提高了机械加工的工作效率。

采纳数控技术来掌握机床设备,充分发挥了机床设备的功能,同时使机床设备的操作更加简洁,通过在数控器上预先编制好机械加工的流程与操作方法,并由掌握器依据相关数字信息来掌握机床运行,不但保证了机械加工的质量,同时也使机床设备更具高效化。

(2)数控技术在机械加工技术中的应用推动了汽车制造业的进展数控技术对进一步进展汽车制造业有很大的关心,通过将数控技术应用到机械加工技术中以提高机械加工技术的有效,为进一步进展汽车制造业供应了技术保障,在汽车零件的加工中运用数控技术可有效提高生产率,同时强化了汽车进行机械加工的效果,使原本简单的操作更加简洁,提高汽车零件加工生产的效率同时促使汽车制造业实现最大化收益。

3有效提高数控技术在机械加工技术中的应用效果(1)重视对数控技术的应用近些年来,数控技术虽已被广泛应用到机械加工技术中,但是仍旧有一部分企业内部对数控技术的应用缺乏足够的重视。

数控刀具论文

数控刀具论文

数控铣刀的发展特点近年来,随着数控机床的不断发展,数控刀具的种类越来越多,但无论样式如何改变,从总体上看,数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,而数控刀具中又以数控铣刀应用最为广泛,下面就介绍一下数控铣刀的发展特点:一、数控铣刀的分类:(一)按制造铣刀所用的材料可分为1.高速钢刀具;2.硬质合金刀具;3.其他材料刀具,如立方氮化硼刀具、陶瓷刀具等4.金刚石刀具;。

(二)按铣刀结构形式不同可分为1.镶嵌式:可分为焊接式和机夹式。

2.。

整体式:将刀具和刀柄制成一体3.内冷式:切削液通过刀体内部由喷孔喷射到刀具的切削刃部;。

4.减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具5.特殊型式:如复合刀具、可逆攻螺纹刀具等。

(三)按铣刀结构形式不同可分为:1.模具铣刀:模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球头立铣刀和圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和莫氏锥柄。

它的结构特点是球头或端面上布满切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。

铣刀工作部分用高速钢或硬质合金制造。

2.面铣刀(也叫端铣刀):面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。

面铣刀多制成套式镶齿结构和刀片机夹可转位结构,刀齿材料为高速钢或硬质合金,刀体为40Cr。

钻削刀具,包括钻头、铰刀、丝锥等;3.成形铣刀:切削刃与待加工面形状一致。

4.。

键槽铣刀:用于铣削键槽二、常用数控铣刀发展特点:现就几种目前比较常用的铣刀类型就其应用场合加以说明。

(一)两刃立铣刀和四刃立铣刀:该类刀具一般采用整体合金结构,其特点是拥有很强的稳定性,刀具可在加工面上稳固地工作,使加工质量得以有效的保证。

适用材料范围广,如碳素钢、模具钢、合金钢、工具钢、不锈钢、钛合金、铸铁、适用于一般模具、机械零件加工。

(二)单刃铣刀:该刀具加工效率高,采用优质的硬质合金作刀体,一般采用刃口锐磨工艺,以及高容量的排屑,使刀具在高速切割中有不粘屑,低发热,光洁度高等特点。

数控专业技术论文(2)

数控专业技术论文(2)

数控专业技术论文(2)数控专业技术论文篇二数控车床技术发展浅析摘要:数控技术,简称数控(NumeriealControl--NC),是利用数字化信息对机械运动及加工过程进行控制的一种方法。

由于现代数控都采用了计算机进行控制,因此,也可以称为计算机数控.采用了数控技术进行控制的机床,或者说装备了数控系统的机床称为数控机床.它是一种综合应用了计算机技术、自动控制技术、精密测量技术和机床设计等先进技术的典型机电一体化产品,是现代制造技术的基础,它很好地解决了形状结构复杂、精度要求高、小批量及多变零件的加工问题且能稳定产品的加工质量,降低工人劳动强度,大幅度提高生产效率。

机床控制也是数控技术应用最早、最广泛的领域,因此,数控机床的水平代表了当前数控技术的发展水平和方向。

与普通机床相比,数控机床能够自动换刀、自动变更切削参数,完成平面、回旋面、平面曲线的加工,加工精度和生产效率都比较高,因而应用日益广泛。

一、数控的发展历史1952年美国帕森斯(PARSONS)公司与麻省理工学院(MIT)合作试制了世界上第一台三坐标联动、利用脉冲乘法器原理工作、直线插补连续控制的立式数控铣床。

1954年11月美国本迪克斯公司(Bendix一eooperation)生产了世界上第一台工业用数控机床。

最初由电子管控制,随后经历了用晶体管控制、集成电路控制(NC)、计算机控制(CNC),直到用微处理器控制(MNC)。

数控系统到现在已经发展到了第六代,数控系统采用电子管的为第一代(1952年),晶体管的为第二代(1959年),小规模集成电路的为第三代(1965年),20世纪70年代小型计算机开始用于数控系统(1970年),成为第四代数控系统。

1974年微处理器开始用于数控系统,数控系统发展到第五代。

前三代数控系统是属于采用专用控制计算机的硬接线(硬件)数控系统,一般称为普通数控系统,简称NC;从第四代开始的数控系统称为软接线(软件)数控,即计算机数控(CNC),其控制功能大部分由软件技术来实现,因而使得硬件得到简化,系统可靠性得到提高,功能更加灵活和完善[l.]。

浅析机械制造中的数控技术论文

浅析机械制造中的数控技术论文

浅析机械制造中的数控技术论文浅析机械制造中的数控技术论文1 国内数控技术的发展现状1.1 数控系统的发展现状改革开放以来,国家对数控技术和数控机床的发展十分重视,通过引进技术和科技攻关,经历了“六五”、“七五”引进消化吸收、“八五”开发自主版权数控系统,“九五”的商品化、产业化三个阶段。

此3个阶段的研究、使用经验为数控加工技术的产业化奠定了良好的基础,也使数控加工技术取得了长足的进步。

在引进消化吸收阶段,我国从日、德、美、西班牙先后引进数控系统技术,进行合作、合资生产、科技攻关,解决了数控机床可靠性和稳定性的问题,数控机床开始正式生产和使用,并逐步向前发展。

在开发自主版权数控系统阶段,通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。

商品化、产业化阶段,我国数控产业发展迅速,1998年—2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%;从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国;但是,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。

目前,我国数控技术已由研究开发阶段向推广应用阶段过渡,也是由封闭型系统向开放型系统过渡的时期。

现已有一批能成批量生产数控机床和数控系统的企业。

在数控技术软件上,一些单项技术已达到国外水平。

1.2 数控机床的发展现状20世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。

由于中国技术水平和工业基础还比较落后,数控机床的性能、水平和可靠性与工业发达国家相比,差距还是很大,尤其是数控系统的控制可靠性还较差,数控产业尚未真正形成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于数控论文数控刀具论文
刀具补偿在数控加工中的应用
摘要:在上世纪早期的数控加工中,编程人员根据刀具的理论路线和实际路线的相对关系来进行编程,容易产生错误。

刀具补偿的概念出现以后,在数控加工中发挥了巨大的作用,有效提高了编程的工作效率。

数控加工中常用的两种补偿是刀具半径补偿和刀具长度补偿,这两种补偿为我们解决了加工中因刀具形状而产生的问题。

关键词:数控加工;半径补偿;长度补偿
一、刀具半径补偿
刀具半径补偿的概念。

因为有了刀具半径补偿,我们在编程时可以不要考虑太多刀具的直径大小。

以铣刀铣削外轮廓为例,在没有使用半径补偿时,编程人员必须依次算出刀具中心各点的坐标,然后才能进行编程。

当刀具直径发生变化时,各点的坐标必然也会发生变化,程序中的坐标点需重新进行计算,这样使得每一次刀具变化都要重新计算重新编程,大大增加了编程工作量。

同样的情况如果使用了刀具半径补偿,编程人员不必计算刀具的实际中心轨迹,只需根据工件的轮廓计算出图纸上各点的坐标值然后编出程序,再把刀具半径作为补偿量放在半径补偿寄存器里。

数控装置能自动计算出刀具中心
轨迹,不管刀具半径如何变化,我们只需更改刀具半径补偿值,就可以控制工件外形尺寸的大小,对上述程序基本不用作修改。

刀具半径补偿的指令。

刀具半径补偿是通过指令G41、G42来执行的,基本格式为G41/G42 G00/G01 X_ Y_ H_;其中H为补偿量代码。

补偿有两个方向:当沿着刀具切削方向看,刀具在工件轮廓的左侧是刀具半径左补偿用G41,反之则是刀具半径右补偿用G42。

取消补偿用G40;刀具半径补偿的应用。

在应用G41、G42进行半径补偿时,应特别注意使补偿有效的刀具移动方向与坐标。

刀具半径补偿的起刀位置很重要,如果使用不当刀具所加工的路径容易出错,将会影响加工的零件形状。

正确的走刀应该是在刀具没有切削工件之前让半径补偿有效,然后再进行正常的切削。

同样的道理在取消刀具半径补偿时,也应该是在切削完毕离开工件之后。

二、刀具长度补偿
刀具长度补偿的概念。

数控铣床上刀具长度补偿只是和Z坐标有关,对于X、Y平面内的编程零点,由于刀具是由主轴锥孔定位决定,因此X、Y平面内的编程零点位置是固定不变的。

对于Z坐标的编程零点就不一样了。

在铣床上应用的每一把刀具长度都是不同的,例如,我们要钻一个深度为40mm的孔,然后将其进行攻丝,攻丝深度设为30mm,加工刀具假设为一把长为250mm的钻头和一把长为350mm的丝锥。

首先用钻头钻削出40mm深的孔,机床以其为基准
设定了相应的工件零点,当采用丝锥攻丝时,如果按照设定的工件零点开始加工,则由于两把刀具长度不同,从而使得攻丝过长,损坏了刀具和工件。

此时如果采用刀具长度补偿,那么当工件零点设定之后,即使丝锥和钻头长度不同,在调用丝锥工作时,零点Z坐标已经自动向Z+(或Z-)补偿了丝锥与钻头的长度差,保证了加工零点的正确,这样就不会损坏刀具和工件了。

刀具长度补偿的指令。

刀具长度补偿一般通过含有G43(G44)和H指令来实现的,格式为指令格式为G43 G01 Z_H_;或G44 G01 Z_H_。

其中G43表示刀具长度正补偿,即把编程的Z值加上H代码指定的偏值寄存器中预设的数值后作为CNC实际执行的Z坐标移动值,也就是说实际执行的Z坐标值为Z'=Z_+(H_);而G44则正好相反,实际执行的Z坐标值为Z'=Z_-(H_)。

其中H可设正值或负值,我们可以将这两个指令通过H的正负值设定进行统一,即只用G43和G44其中之一。

加工结束后要取消刀具长度补偿,用指令G49实现;刀具长度补偿的应用:(1)用刀具的实际长度作为刀具长度的补偿(推荐使用这种方式)。

使用刀具的实际长度作为补偿就是使用对刀仪测量刀具的长度,然后把测量出来的数值输入到刀具长度补偿寄存器中,作为刀具长度补偿。

以避免加工不同的工件时不断地修改刀具长度偏置值,减少由此产生的操作失误。

(2)以其中一把较长的刀作为标准刀具,,这个标准刀具的长度补偿值为0,其余刀具实际长度与标准刀具长度的差值作为这些刀具的长度补偿数值,输入到其所采
用的H代码地址内。

(3)利用每把刀具到工件坐标系原点的距离作为各把刀的刀长补偿,该值一般为负;此时用于设定工件坐标系偏置的G54的Z值为0。

以上是在数控加工中常用的两种补偿方式,它给我们的编程和加工带来很大的方便。

参考文献:
[1]王志平.机床数控技术应用[M].高等教育出版社,2003.
[2]叶伯生,戴永清.数控加工编程与操作[M].华中科技大学出版社,2005.
[3]宇龙数控仿真系统说明书[M].。

相关文档
最新文档