风机的失速现象主要发生于轴流式风机

合集下载

风机喘振、失速、抢风区别

风机喘振、失速、抢风区别

附件:轴流风机“失速”、“喘振”、“抢风”区别1)轴流风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。

当风机流量减小时,w的方向角改变,气流冲角增大。

当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。

由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。

因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。

若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。

结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。

叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。

也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反。

这种现象称为旋转失速。

与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因。

从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区。

为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量。

2)轴流风机喘振风机的喘振,是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象。

现以单台风机为例,配合上图加以说明。

当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K。

但当风机负荷降到低于Qk时,进入不稳定区工作。

此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功。

电站轴流式风机的失速喘振与防治

电站轴流式风机的失速喘振与防治
1 轴流风机的失速与喘振现象
轴流式风机当调节叶片(动叶调节风机为动叶片,静叶调节风机为入口调节叶片)角度固定在某一位置时,在正常工作区域内,风机的压力随风机流量的减小而增加,当流量减小到某一值时压力达到最大、当流量进一步减小时,风机压力和运行电流突然降低,振动和噪音增大这一现象被称为风机失速。 风机失速后有两种不同表现,一是风机仍能稳定运行,即压力、风量、电流保持相对稳定,但噪音增加;风机及其进、出口气流压力承周期性脉动;风机振动常常比正常运行高。这种现象称之为旋转失速。另一是风机即压力、风量、电流大幅度波动,噪音异常之大,风机不能稳定运行,风机可能很快遭受灭性损坏,这种现象称之为喘振。
图8 轴流风机防失速装置
图9 轴流风机有无防失速装置性能曲线比较
9 防止运行中轴流风机失速措施
1)运行人员应了解风机所在系统的阻力构成,特别是那些阻力较大又易于堵塞的设备(如预热器、暖风器、消声器等)的正常阻力范围。 2)在实际运行中若这些设备阻力超出了范围可能导致风机失速时,应控制该风机的出力,并及时采取措施消除堵塞。
从两次风机失速时的开度均大于停磨后两风机稳定运行时的开度(参见下表)说明:风机失速主要原因是在停磨过程中,在减小磨煤机通风量的同时,未能及时将一次风机的出力降到应有值,即一次风机入口门调节不到位,造成总一次风量低于两台一次风机当时开度下的失速流量,从而导致一台风机失速。
停磨过程中一次风机失速时与停磨后稳定运行时风机有关参数比较
2) 在轴流风机的进出口之间加旁路再循环风(烟)道;当风机失速时,打开旁路风道门,使一部分风(烟)量从风机出口流向风机入口,即使一部分风(烟)量在风机内循环,以增加风机的风(烟)量,使风机脱离失速区运行。但这增加了风机的耗功,是很不经济的。
加装防失速装置 为消除轴流风机的失速,多年来学者们进行了大 量的研究和实验工作,并提出了一些能把失速区向小 风量方向推移,戓者把压力曲线上的波谷减弱直到完 全消除的办法。但戓因结构复杂,戓因对风机效率影 响大,或噪音问题而未能得到广泛应用。直到1974年 原苏联伊万诺夫提出了一种简单有效的装置--空气分 流器来消除旋转失速,并在矿井局扇上获得广泛应 用。取得了美、英、法、原西德、印度、丹麦等多国 专利后,在轴流风机上加装防失速装置才在静调轴流 风机上得到较广泛使用。如德国kkk公司的KSE、我国 淮南煤碳学院和西安热工院均成功地设计出了类似的 防丢速装置并分别应用到矿井和电站轴流风机上。下 面以西安热工院开发的该型防失速装置为例进行介绍

轴流式送风机失速原因分析及预防措施

轴流式送风机失速原因分析及预防措施

轴流式送风机失速原因分析及预防措施纵轴流式送风机是一种成熟可靠的送风机,它具有较大的风量,广泛
应用于国内外的大型气体管路中。

但是在运行中,除了正常的使用过程外,如果由于各种原因导致纵轴流式送风机失速,将会严重影响设备的安全和
可靠性。

因此,关于纵轴流式送风机失速的原因分析及其预防措施的研究
是十分必要的。

一、纵轴流风机失速的原因
纵轴流风机失速的原因有两个方面:
1.机械原因。

送风机的驱动系统中的轴承、封头和轴承座等部件容易
过早磨损,这可能会导致机械轴失速。

2.热原因。

由于风机本身的问题,风机内部的温度增加,轴承会造成
热应力老化,从而导致轴失速。

二、纵轴流风机失速的预防措施
1.正确安装和定期检查轴承。

在安装过程中,应确保轴承的正确及紧固,定期检查轴承的状况,检查是否有凹痕或烧烤现象,如果发现,及时
进行维修和更换。

2.控制风机热量的传输。

应采取措施减少风机内部热量的传输,如采
用节能型机型,增加风机冷却系统,增加机腔内部阻燃材料的使用等措施。

3.选择合适的电机重量。

喘振与失速区别

喘振与失速区别

谁知道风机失速、喘振、抢风都什么意思,三者有什么关系?我在网上查过,但都没看太明白,望不吝赐教。

失速是风机本身特性引起的喘振是风压由于管道压力的滞后导致与风机出口压力周期性变化,就来来回倒腾抢风如这个词,两台风机不是你出力大就是我大,搞的最后两败俱伤。

我的理解轴流风机的喘振与失速是不同的情况可以简单概括如下:喘振一般发生在性能曲线带驼峰的轴流风机低负荷运行时;失速一般发生在动叶可调轴流风机的高负荷区。

主要是动叶指令太大导致,叶片进风冲角过大引起叶片尾部脱流产生风机失速带驼峰抢风是当并联轴流风机中的一台发生喘振或失速时人们的一般性叫法。

喘振是指当风机处于不稳定工作区运行,可能会出现流量、全压的大幅度波动,引起风机及管路系统周期性的剧烈波动,并伴随着强烈的噪声。

避免喘振主要采用合适的调节方式抢风是指风机并联运行中有时会出现一台风机流量大,另一台流量特别小,稍加调节情况相反避免抢风主要有:1。

不采用不稳定性能风机2.同时在低负荷运行时可以单台运行3.采取动叶调节4.开启旁路风一、风机失速图1:风机失速轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w 的方向与叶片安装角之差)约为零,气流阻力小,风机效率高。

当风机流量减小时,w的方向角改变,气流冲角增大。

当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况。

由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等。

因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现。

若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变。

结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞。

叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流。

轴流式风机失速原因分析及处理

轴流式风机失速原因分析及处理

轴流式风机失速原因分析及处理摘要:本文根据福州发电公司600 MW 机组一次风机失速现象, 分析了造成失因, 并通过对失速前后风机运行参数的分析比对, 提出了相应的预防和处理措施。

希望多我厂#3机吸风机失速处理提供参考。

关键词:轴流式风机; 一次风机; 失速; 叶轮; 叶片1 轴流风机的失速及其危害图1 为轴流风机的性能曲线, 它由失速界线分为两个区域。

在失速线的右下方为稳定运行区域, 在失速线的左上方为不稳定工作区域即失速区域。

当轴流式风机进入到不稳定区运行时, 在轴流风机叶轮的环形叶栅上将产生一个到数个失速区, 且这些失速区会沿着与叶轮旋转相反的方向在叶片间传递, 称为旋转失速。

失速是由于叶片吸力面发生了附面层分离( 脱流) ,使叶片产生的升力突减所致。

失速会造成流道的堵塞, 并使叶片前后的压力发生变化, 对轴流风机的安全运行是一个威胁。

在旋转失速情况下, 脱流区依次经过每个叶片, 叶片每遇一次失速就会受到一次激振力的作用, 从而使叶片受到交变力的作用, 叶片的动应力增加, 致使叶片发生疲劳损坏。

若此交变力的频率与叶片自振频率合拍, 则将使叶片产生共振, 造成叶片折断。

2 风机失速的原因( 1) 风机在一定的动叶角下运行, 如果由于某种原因, 母管风压突升, 风机流量下降, 这样在动叶角度还未发生变化之前, 压力迅速攀升, 以致于超出失速线而进入失速区运行。

对于并联运行的2 台风机, 如果其中一台动叶调节性能不好, 这台风机就有可能先失速。

( 2) 风机正常运行中流量异常降低、一次风压突升都可能导致风机失速。

在受到外部突发因素的影响下, 风机流量极可能落在风机特性曲线的驼峰段, 故极易发生风机失速。

( 3) 风机出口挡板销子脱落或断裂等原因导致其突然关闭或部分关闭, 动叶调节未能跟上压力的突变, 在压力波动及动叶自动调整过程中, 造成并列运行的其中一台风机失速。

( 4) 变负荷过程中由于调节失灵或误操作致使2 台风机风量、风压严重不平衡而失速。

火力发电厂轴流风机失速原因分析及处理

火力发电厂轴流风机失速原因分析及处理

火力发电厂轴流风机失速原因分析及处理摘要:由于动叶可调轴流风机具有体积小、质量轻、低负荷区域效率较高、调节范围宽广、反应速度快等优点,近十年来,国内大型火力发电厂已普遍采用动叶可调轴流风机。

因为轴流风机具有驼峰形性能曲线这一特点,理论上决定了风机存在不稳定区,当风机工作点移至不稳定区时就有可能引发风机失速现象的发生。

本文阐述了轴流风机失速的形成机理,结合运行中单台一次风机的失速问题,分析了失速的原因,以及可能造成的危害及后果,同时根据实际情况制定了相关的防范措施。

关键词:轴流式通风机;失速;防范措施本文针对某火力发电厂一期工程2×600MW机组一次风机在运行期间发生的失速问题,对失速原理进行了分析,并提出了相应检查和整改措施,以及风机在正常运行过程中如何避免失速的发生。

1轴流风机失速形成机理1.1失速形成机理目前,一般轴流风机通常采用高效的扭曲机翼型叶片,当气流沿叶片进口端流入时,气流就沿着叶片两端分成上下两股,处于正常工况时,冲角为零或很小,气流则绕过机翼型叶片而保持流线平稳的状态。

当气流与叶片进口形成正冲角时,且此正冲角超过某一临界值时,叶片背面流动工况则开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象。

1.2影响冲角大小的因素通常风机是定转速运行的,即叶片周向线速度可以看作是一定值,这样影响叶片冲角大小的因素就是气流速度与叶片的安装角。

1.3失速风机性能曲线分析在轴流风机Q-H性能曲线中,全压的峰值点左侧为不稳定区,是旋转脱流区。

从峰值点开始向小流量方向移动,旋转脱流从此开始,到流量等于零的整个区间,始终存在着脱流。

旋转脱流的发生只取决于叶轮本身、叶片结构、进入叶轮的气流情况等因素,与风道系统的容量、形状等无关,但却与风道系统的布置形式有关。

1.4失速探头装置虽然脱流区的气流是不稳定的,但风机中流过的流量基本稳定,压力和功率亦基本稳定,风机在发生旋转脱流的情况下尚可维持运行,因此,运行人员较难从感觉上进行判断,所以一般大容量轴流风机都装有失速探头以帮助运行人员及时发现危险工况。

某大型火电厂一次风机失速原因分析及预防措施

某大型火电厂一次风机失速原因分析及预防措施
在 机组满 负 荷条件 下 ( 对应 锅炉 蒸发 量 1 4 . 26 8 th , 次风 机 的风 量 和 风 压 略小 于 B R工 况设 / )一 MC
机过程中, 在减小磨煤机通风量的同时, 风机失速的
主要 原 因是 未 能及 时将 一 次 风 机 的 出力 降 到 应 有 值, 即一 次风 机动 叶调节 不 到位 , 造成 总一 次风 量低
2 运 行 中一 次 风 机 失速 现 象
21 00年 5月 2 日, 9 A侧 一 次 风 机 出 口风 压 从
1.2 P 1 8 a缓慢 升至 1 . 8k a后 , k 2 5 P A侧 一 次 风 机 出
现 了失速 现象 , 次风 压突 降 至 7 2 P , 一 .9k aA侧一 次
1 . 0 P 缓 慢 升至 1 . 4k a , 18 k a 2 0 P 后 A侧 一 次 风 机 出
叶可调 轴 流式 风机 , 速时 常 常会 引起振 动 , 失 严重 时
会 威胁 到 机组 的安 全运 行 。
现 了失 速 现象 , 一次 风压 突 降至 7 7 P , 一 次 .3 a A侧 k
片 上将 产生 旋转 脱流 , 能使 叶片 发生共 振 , 可 造成 叶
片 疲劳 断裂 。
气流 一 方向 一
团) 股份公 司与 东方 一日立有 限公 司合作设计 、 联 合制造。该锅炉是超临界参数变压运行 直流锅炉 ,
单 炉膛 、 次 再 热 、 衡 通 风 、 天 布 置 、 一 平 露 固态排 渣 、 全钢 构 架 、 悬 吊结 构 n 型锅 炉 , 大 连续 蒸 发 量 全 最 为 15 h 0/ 。采用 正 压 直 吹 式 制 粉 系 统 , 2台 一 9 t 由 次风 机提 供 介质 流 动动 力 ; 采用 5台 B D 84型 双 B 35 进双 出钢 球磨 煤 机 , 台磨煤 机 配 2台给煤 机 , 每 B R工 况下 5台磨煤 机全 部 投入 运 行 , 备用 ; MC 无 每

常见风机故障原因及处理方法

常见风机故障原因及处理方法

常见风机故障原因及处理方法摘要:分析了风机运行中轴承振动、轴承温度高、动叶卡涩、保护装置误动作等故障的几种原因,提出了被实际证明行之有效的处理方法。

风机是一种将原动机的机械能转换为输送气体、给予气体能量的机械,它是火电厂中不可少的机械设备,主要有送风机、引风机、一次风机、密封风机和排粉机等,消耗电能约占发电厂发电量的1.5%~3.0%。

在火电厂的实际运行中,风机,特别是引风机由于运行条件较恶劣,故障率较高,据有关统计资料,引风机平均每年发生故障为2次,送风机平均每年发生故障为0.4次,从而导致机组非计划停运或减负荷运行.因此,迅速判断风机运行中故障产生的原因,采取得力措施解决是发电厂连续安全运行的保障。

虽然风机的故障类型繁多,原因也很复杂,但根据调查电厂实际运行中风机故障较多的是:轴承振动、轴承温度高、动叶卡涩、保护装置误动.1 风机轴承振动超标风机轴承振动是运行中常见的故障,风机的振动会引起轴承和叶片损坏、螺栓松动、机壳和风道损坏等故障,严重危及风机的安全运行。

风机轴承振动超标的原因较多,如能针对不同的现象分析原因采取恰当的处理办法,往往能起到事半功倍的效果。

1.1 不停炉处理叶片非工作面积灰引起风机振动这类缺陷常见于锅炉引风机,现象主要表现为风机在运行中振动突然上升。

这是因为当气体进入叶轮时,与旋转的叶片工作面存在一定的角度,根据流体力学原理,气体在叶片的非工作面一定有旋涡产生,于是气体中的灰粒由于旋涡作用会慢慢地沉积在非工作面上。

机翼型的叶片最易积灰。

当积灰达到一定的重量时由于叶轮旋转离心力的作用将一部分大块的积灰甩出叶轮。

由于各叶片上的积灰不可能完全均匀一致,聚集或可甩走的灰块时间不一定同步,结果因为叶片的积灰不均匀导致叶轮质量分布不平衡,从而使风机振动增大。

在这种情况下,通常只需把叶片上的积灰铲除,叶轮又将重新达到平衡,从而减少风机的振动。

在实际工作中,通常的处理方法是临时停炉后打开风机机壳的人孔门,检修人员进入机壳内清除叶轮上的积灰。

轴流式风机失速原因及预防措施

轴流式风机失速原因及预防措施

轴流式风机失速原因及预防措施摘要:动叶可调式轴流风机具有流量大、效率高、体积小、调节范围广、反应速度较快等特点,在火力发电厂得到普遍应用。

由于轴流式风机具有驼峰形性能曲线,其特性决定该类型风机必然存在着不稳定工作区,同时轴流式风机失速特性受诸如风道阻力等诸多因素的影响,风机并不能在任何工作点都稳定运行,当风机工作点移动至不稳定区域内就可能引发风机失速现象发生。

本文针对某电厂轴流式风机失速案例进行分析解决,为同类型风机失速的预防、处理、防范提供借鉴意义。

关键字:失速;轴流式风机;措施Reasons for stall of axial-flow fan and preventive measuresZhaoZhenYu(Inner Monglia Datang International Tuoketuo Power GenerationCo.Ltd.,Tuoketuo 010206,China)Abstract:The movable vane adjustable axial flow fan is widelyused in thermal power plants because of its high flow rate, high efficiency, small size, wide adjustment range and fast reactionspeed.Because of the hump-shaped performance curve of the axial-flow fan, its characteristics determine that there must be an unstable working area for this type of fan. At the same time, the stall characteristics of the axial-flow fan are affected by many factorssuch as duct resistance, and the fan can not run stably at any working point. When the working point of the fan moves to an unstable area,stall phenomenon of the fan may occur.In this paper, the stall case of an axial-flow fan in a power plant is analyzed and solved, whichprovides reference for stall prevention, treatment and prevention ofthe same type of fan.Key word s:Stall;Axial flow fan;Measures0引言大唐国际托克托电厂 8号机组为 600 MW 亚临界参数燃煤发电机组,锅炉是由东方锅炉 (集团 )股份有限公司与三井 - 巴布科克公司合作生产的 DG2070/17. 5 II4 型亚临界、一次再热、前后墙对冲燃烧方式、单炉膛、平衡通风、紧身封闭、固态排渣、自然循环型锅,其配备了2台由豪顿华公司生产的双级动叶可调型轴流一次风机,风机型号为ANT1938/1250N,出口压力14.7kpa,风量143.6m³/s,风机运行过程中转速恒定,通过液压调节系统控制叶片开度从而调整风量,在双级叶片前后分别设置导叶。

轴流式引风机失速原因及预防措施

轴流式引风机失速原因及预防措施

轴流式引风机失速原因及预防措施摘要:轴流式引风机失速问题在工业和能源领域中常见,可能导致生产中断和设备损坏。

本文探讨了轴流式引风机失速的原因和预防措施。

失速主要涉及气动性能和机械结构两个方面。

气动性能分析包括工作点、叶片设计和调整,而机械结构维护涉及机械结构和操作控制策略。

通过优化叶片设计、定期维护和采用适当的操作控制策略,可以降低轴流式引风机失速的风险,提高系统的可靠性和效率。

关键词:轴流式;引风机;失速;预防引言轴流式引风机在工业生产和能源生产中扮演着至关重要的角色,然而,失速问题常常困扰着工程师和运营人员。

失速可能导致不仅生产中断,还可能造成设备的严重损坏,带来不必要的维修和维护成本。

为了更好地理解失速问题的机理以及如何预防它,本文将从原因和预防措施两个方面进行讨论。

1. 轴流式引风机失速机理轴流式引风机失速是在工业和能源领域中常见的问题,它可能导致生产中断、能源浪费和设备损坏。

失速的机理可以追溯到流体动力学和机械工程的原理。

首先,了解轴流式引风机的基本工作原理是必要的。

这种风机通常由旋转的螺旋桨叶片和外壳组成,它们通过旋转产生气流,以提供气体输送或通风。

失速问题通常涉及到风机的工作点偏离了设计工况,而这通常与风机的叶片角度、叶片形状或转速有关。

气动失速是由于气体在叶片上产生过于强烈的湍流或分离现象,导致气流分离、压力降低和风机性能下降。

这通常发生在风机操作点位于性能曲线的边缘或超出设计工况时。

气动失速可以通过优化叶片设计、调整叶片角度、改变风机转速或通过使用导流装置来解决。

机械失速则与风机的机械结构相关。

这可能包括轴承故障、叶片断裂、机械振动等问题,这些问题可能导致风机停机以防止进一步损坏。

机械失速的机理更多涉及到风机的材料和制造质量,需要定期的维护和监测来减少失速风险。

2. 轴流式引风机失速分析2.1气动性能分析轴流式引风机的气动性能是失速问题的关键因素之一。

在分析气动性能时,需要考虑风机的工作点、流量、压力升力曲线等参数。

发电机组一次风机失速的原因及处理措施

发电机组一次风机失速的原因及处理措施

一、前言风机的失速现象主要发生于轴流式风机。

而一般情况下,大型火电机组锅炉的三大风机均为轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。

某发电厂#1、#2机组锅炉的吸风机为静叶可调轴流风机,送风机及一次风机为动叶可调式轴流风机,下面对风机在运行过程中的失速问题作简要分析。

二、失速产生的机理1、失速的过程及现象轴流风机的叶片均为机翼型叶片。

风机处于正常工况时,叶片的冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态。

当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象。

冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。

风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。

如果某一叶片进口处的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。

u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。

假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。

可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。

这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。

风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。

叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。

风机喘振、失速、抢风,这些操作一定要知道

风机喘振、失速、抢风,这些操作一定要知道

风机喘振、失速、抢风,这些操作一定要知道失速与喘振现象是两种不同的概念,失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如脱流区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受泵与风机管路系统的容量和形状的影响。

喘振是泵与风机性能与管路系统耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受泵与风机管路系统容量的支配,其流量、全压和轴功率的波动是由不稳定工况区造成的。

但是,试验研究表明,喘振现象总是与叶道内气流的旋转脱流密切相关,而冲角的增大也与流量的减小有关。

所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。

出现失速并不一定出现喘振,出现喘振一定已经出现了失速;失速只属于轴流风机内流特性,而喘振是轴流风机内外特性耦合结果,与出口管路特性有必然的联系。

在实际运行中,风机喘振时,风机和管道会产生很大的振动,且发出噪声。

失速的风机不会产生很大的振动,也不会发出噪声只要对动叶或转速进行调整可以继续运行。

抢风肯定是发生在并联管路中,抢风时不一定发生失速与喘振,和管路情况有关。

一般风机出现抢风现象,主要是两台风机的出口到负荷点管路系统的沿程阻力和局部阻力发生变化引起。

如一侧空预器发生严重堵灰,脱硝、脱硫系统发生堵塞,有增压风机的系统,增压风机故障。

都会使沿程阻力和局部阻力。

典型的如沿锅炉前后墙直列布置的磨煤机系统,因为各磨煤机一次风进口跟一次风母管的距离偏差很大,当一台磨煤机跳闸时,原本出力平衡的两台一次风机,因为沿程阻力偏差大,就可能使一台阻力大的风机的风被顶住,两台风机出力形成偏差。

一般大流量时,抢风不会很严重。

但如果在小流量时就可能会使风机进入失速和喘振区,造成风机失速和喘振,形成严重的抢风现象。

所以说两台风机中的一台发生失速与喘振肯定会发生抢风现象。

延伸阅读风机由于运行条件恶劣,故障率较高,容易导致机组非计划停运或减负荷运行,影响正常生产。

风机振动是运行中常见的现象,只要在振动控制范围之内,不会造成太大的影响。

330WM机组轴流式引风机失速的分析及预防措施

330WM机组轴流式引风机失速的分析及预防措施

330WM机组轴流式引风机失速的分析及预防措施摘要:引风机是火力发电厂的关键辅助设备,对锅炉的安全运行起着重要作用。

在具体运行过程中,由于引风机在烟气压力下长期连续运行,不可避免地会受到粉尘破坏、侵蚀和烟气中烫伤等极端条件的影响。

这些客观环境因素将导致引风机故障率上升。

当引风机故障跳闸时,如果操作不当,很容易造成锅炉熄火的不安全事件。

因此,立即诊断引风机的运行状况并正确处理其故障至关重要。

只有保证引风机的正常运行,才能有效地保证机组的安全稳定运行。

关键词:330WM机组;轴流式引风机;失速;预防措施1、设备状况公司配备两台SAF26-17-2型轴流动叶调节引风机,2级叶轮,叶型为16DA16+7.5%,材料为15MnV,叶片调节范围是-40°-+10°。

引风机本身的结构主要由进气口、壳体部分、风机蜗壳、自身的涡旋压缩机、风机轴承、叶轮、轴承箱、静叶调节执行器和伺服电气装置组成。

这两台轴流引风机的风机按短轴与电机相连,整个主轴系统有3个,由三级轴承组成,其中1#,2#为滚柱轴承,起到支撑电机转子的作用;3#轴承是一组组合轴承,用于支撑风机转子,并通过金属隔膜联轴器连接到电机。

风机前部分别设有调心轴承和调心滚柱推力球轴承,以保证其能承受径向推力和轴向推力。

在风机后部还设置了一个调心轴承,以承受轴向推力。

风机轴承的润滑方式为润滑脂,冷却方式为润滑脂和外轴冷却风机。

2、轴流式引风机失速机理轴流式引风机通常设置有机翼型的叶片,其气流方向如下图所示:图1轴流式引风机叶片气流方向示意图图1(a)显示,当空气以0°攻角沿叶片进口端流动时,形成双旋风。

双旋风分离器分别从机翼表面的左侧和右侧流动,并选择流线方法流经叶片腹部及其背部的光滑边界层。

叶片上有阻力和推力,阻力低于推力,其中阻力平行于叶片,而推力和叶片垂直。

图1(b)表明,如果流入叶片的气体方向和进口视角之间存在一定偏差,并且旋风分离器和叶片产生正攻角,当接近临界点时,叶片后旋风分离器可能会慢慢变为恶性。

低负荷工况非典型引风机失速事故的分析

低负荷工况非典型引风机失速事故的分析

低负荷工况“非典型”引风机失速事故的分析摘要:轴流引风机由于自身的特点,在选型设计不合理、调整不当或烟道系统阻力大时,易发生风机失速。

引风机失速一般发生在机组高负荷期间,但如一些原因引起烟气系统阻力变化,在较低负荷情况下,操作人员对引风机参数监视不够重视,也易发生引风机失速。

当烟气的飞灰中有机物含量高,或电除尘故障使烟气含尘量高,容易引起吸收塔浆液冒泡。

浆液产生的泡沫密度低,而目前吸收塔普遍采用的压力转换型液位计无法直接反应泡沫厚度,使泡沫堆积至吸收塔烟道入口,引起烟道阻力大大增加,甚至在机组较低负荷时,也发生引风机失速。

关键词:引风机;失速;因素;浆液起泡;对策目前,大型火力发电机组的送、引风机、一次风机广泛采用轴流式风机。

我厂的#7-10机组,送、引风机均采用轴流风机。

轴流风机由于自身的特点,在选型设计不合理、调整不当或系统阻力偏大时,容易发生风机失速。

风机失速时,会引起风机出口压力下降,风机无出力,振动加大,容易引起风机损坏或风道损坏,调节处理不当时,容易造成燃烧不稳。

由于风机失速时,会引起炉膛负压大幅变化,炉膛负压极易达到炉膛负压保护动作定值,引起锅炉熄火和机组跳闸,甚至可能造成炉墙或烟道的损坏。

引风机失速时,会导致炉膛冒正压,对周围造成污染,且大大增加锅炉房着火的风险。

随着环保要求的提高,各机组都进行了超低排放改造,烟道阻力大幅增加;特别是空预器、MGGH冷却器积灰,脱硫吸收塔区域烟道积石膏等种种原因,随着机组连续运行时间增加,烟道阻力会不断上升,在高负荷或工况大幅变化时,很容易引起轴流式引风机失速。

据不完全统计,近5年来,浙能集团内电厂共发生风机失速事件35起,其中,大部分是引风机失速。

我厂超低排放改造后,#7、9、10机均发生过引风机失速的事故。

特别是2018年9月17日,#9机组发生了一次“非典型”引风机失速引起的锅炉灭火保护动作的事故。

1轴流式风机失速的机理轴流式风机在运行中,气流是沿着风机轴向方向进入风机,在叶轮处获得能量后也沿轴向方向流出风机,性能特点是流量大,扬程(全压)低。

轴流式风机失速、喘振和抢风的区别

轴流式风机失速、喘振和抢风的区别

轴流式风机失速、喘振和抢风的区别轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高当风机流量减小时,w的方向角改变,气流冲角增轴流风机叶片通常都是流线型的,设计工况下运行时,气流冲角(即进口气流相对速度w的方向与叶片安装角之差)约为零,气流阻力小,风机效率高当风机流量减小时,w的方向角改变,气流冲角增大当冲角增大到某一临界值时,叶背尾端产生涡流区,即所谓的脱流工况(失速),阻力急剧增加,而升力(压力)迅速降低;冲角再增大,脱流现象更为严重,甚至会出现部分叶道阻塞的情况由于风机各叶片存在安装误差,安装角不完全一致,气流流场不均匀相等因此,失速现象并不是所有叶片同时发生,而是首先在一个或几个叶片出现若在叶道2中出现脱流,叶道由于受脱流区的排挤变窄,流量减小,则气流分别进入相邻的1、3叶道,使1、3叶道的气流方向改变结果使流入叶道1的气流冲角减小,叶道1保持正常流动;叶道3的冲角增大,加剧了脱流和阻塞叶道3的阻塞同理又影响相邻叶道2和4的气流,使叶道2消除脱硫,同时引发叶道4出现脱流也就是说,脱流区是旋转的,其旋转方向与叶轮旋转方向相反这种现象称为旋转失速与喘振不同,旋转失速时风机可以继续运行,但它引起叶片振动和叶轮前压力的大幅度脉动,往往是造成叶片疲劳损坏的重要原因从风机的特性曲线来看,旋转失速区与喘振区一样都位于马鞍型峰值点左边的低风量区为了避免风机落入失速区工作,在锅炉点火及低负荷期间,可采用单台风机运行,以提高风机流量风机的喘振,是指风机在不稳定区工况运行时,引起风量、压力、电流的大幅度脉动,噪音增加、风机和管道剧烈振动的现象现以单台风机为例,配合上图加以说明2U7W-{*D"^6W$[当风机在曲线的单向下降部分工作时,其工作是稳定的,一直到工作点K但当风机负荷降到低于Qk时,进入不稳定区工作此时,只要有微小扰动使管路压力稍稍升高,则由于风机流量大于管路流量(Qk>QG),工作点向右移动至A点,当管路压力PA超过风机正向输送的最大压力Pk时,工作点即改变到B点,(A、B点等压),风机抵抗管路压力产生的倒流而做功此时,管路中的气体向两个方向输送,一方面供给负荷需要,一方面倒送给风机,故压力迅速降低至C点时停止倒流,风机流量增加但由于风机的流量仍小于管路流量,QC。

600MW燃煤机组引风机失速问题的分析与处理

600MW燃煤机组引风机失速问题的分析与处理

t h a t t h e m a i n r e a s o n o f t h e p r o b l e ms i s d u e t o t h e d i f e r e n t a n g l e o f t h e i m p e l l e r s , c “s e d b y b l a d e s ’j a m mi n g , a n d r a i s e s c o n c r e t e s t e p s t o s o l v e t h e p r o b l e m, i t a l s o P r o v i d e
工业技术
I ■
6 0 0 MW 燃煤机组引风机失速问题的分析与处理
高 亚 。陈 欣 谢 倩
( 成都 电力机 械厂 6 1 0 0 4 5)
[ 摘 要保 6 0 0 1  ̄ I W燃煤机组配备两台动叶可调轴流引风机 , 运行中出现明显的失速现象 , 本文根据现场实际情况, 分析造成失速问题的主要原因是由于 结垢引起叶片卡涩 ,造成运行中叶片角度不一致 ,并提出解决问题的具体措施 ,为处理同类问题提供新的思路。
行是 很重 要 的 。 。本 文通 过某 6 0 0 M W 机 组 引风机 失速实 例 的分析 ,为判 断 和处 理失 速 问题提 供新 的思路 。
1 系 统概 述
某电厂 6 0 0 MW燃煤机组锅炉为超临界参数变压运行直流炉,单炉膛、 次再 热 、四角切 圆燃 烧方 式 、三分仓 回转 式空 气预热 器 、 平 衡通风 、露天 布置 、 固态排 渣 、 全 钢构 架 、 全 悬 吊结构 Ⅱ型锅 炉 , 最 大连 续蒸发 量 1 9 0 0 d h 。 烟气 系统采用 引 风机与 增压 风机合 并 的布置 方式 , 配备 两 台双级动 叶可 调联 合 引风 机 ,同时克 服引 风阻 力及脱 硫 系统阻力 。 1 1 引风 机及 配套 电动机 设备 参数 ( 表1 ) 表 1 引风机设备参数

轴流式一次风机异常失速分析及防范措施

轴流式一次风机异常失速分析及防范措施

轴流式一次风机异常失速分析及防范措施摘要:沈阳风机厂制造的双级动叶可调轴流式风机,主要由转子总装、轴承组、进气箱、主体风筒、中导风筒、扩散器、液压调节管路、自控调节系统、联轴器、挠性连接与底座、消声器等部件构成。

在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。

本文简述失速分析及防范措施,以供参考。

关键词:一次风机;风机失速;风量裕量引言轴流式一次风机并联运行时,在制粉系统管路压力扰动时,易造成开度较大侧一次风机进入不稳定区域,出现出力受限甚至失速的情况。

一次风机系统匹配性不佳,尤其是风机在高负荷运行时压力失速裕量偏低,风机存在着较大的失速风险。

因此为了保障一次风机的安全稳定运行,如何降低故障概率成为解决重点。

一、事故经过锅炉采用中速一次风正压直吹制粉系统,配有上海重型机械厂生产的HP1003型磨煤机六台,每台磨煤机的最大出力为66.5t/h,正常运行时五运一备。

锅炉一次风系统配备两台沈阳鼓风机(集团)有限公司生产的AST-1792/1120型动叶可调式轴流一次风机。

随着机组近年来掺烧经济适烧煤种,二期机组一次风机在运行过程中出现出力受限甚至失速的情况,影响机组安全稳定运行。

典型事例如下。

8月26日,#3机组协调投入,AGC、一次调频投入,负荷400MW,3A/3B/3C/3D/3F制粉系统运行,其中3C,3D制粉系统已开始燃用“托福11”印尼煤(低位发热量3811Kcal/kg,干燥无灰基挥发份51.49%,全水34.71%,属于极易自燃煤种),六大风机均正常运行,各辅机自动调节均在投入状态。

3A/3B一次风机电流121.9/121.5A,一次风母管压力9.03kPa,3A/3B引风机电流为230.5/233.14A,炉膛负压-0.16kPa,3B密封风机运行,密封风母管压力13.33kPa。

3C磨煤机给煤量35.5t/h、电流34.85A、一次风流量104.2t/h、一次风进出口风温279℃/65℃、一次风进、出口风压为5.70kPa/3.49kPa。

轴流风机失速分析及其预防措施

轴流风机失速分析及其预防措施

故障维修—120—轴流风机失速分析及其预防措施丁国川(华能营口电厂运行部,辽宁 营口 115007)引言轴流式一次风机是我厂锅炉的主要辅机设备,其运行状态的好坏对电厂的安全与经济运行有着重大的影响,风机运行中最常见的故障就是发生失速。

而风机的失速现象是风机的一种不稳定的运行工况,对风机的运行安全危害很大。

风机失速时,风量、风压大幅度降低,引起炉膛燃烧的剧烈变化,甚至发生灭火事故。

失速风机的振动会明显增大,如果处理过程不正确,容易引发风机喘振,损坏设备并危及机组的安全运行。

1.轴流式一次风机失速机理我厂二期一次风机叶片是机翼型的,当空气顺着机翼叶片进口端(冲角 =0。

)按图la 所示的流向流人时,叶片背部和腹部的平滑“边界层”处的气流呈流线形。

作用于叶片上的力有2种:一种是垂直于叶面的升力,另一种平行于叶片的阻力,升力≥阻力。

当空气流入叶片的方向偏离了叶片的进口角时,它与叶片形成正冲角(Ot>0。

)。

当冲角增大至临界值时,叶背的边界受到破坏,在叶背的尾端出现涡流区,即所谓“失速”现象。

随着冲角 的增大,脱离现象更为严重,甚至出现部分流道阻塞的情况。

此时作用于叶片的升力大幅度降低,阻力大幅度增加,压头降低。

其中,鞍形曲线为风机不同安装角的失速点连线,工况点落在马鞍形曲线的左上方,均为不稳定工况区,这条线也称为失速线。

在同一叶片角度下,管路阻力越大,风机出口风压越高,风机运行越接近于不稳定工况区。

在管路阻力特性不变的情况下,风机动叶开度越大,风机运行点越接近不稳定工况区。

在正常运行中,风机流量异常降低可能导致风机失速,常见原因有如下3种: (1)风机出口挡板故障导致其突然关闭或部分关闭,或挡板误动。

(2)在变负荷过程中,由于调节失灵或误操作致使2台风机风量严重不平衡。

(3)风机出入口风道堵塞,如人口滤网堵塞或空气预热器严重积灰。

2.轴流式一次风机失速分析2.1 失速情况描述及处理 华能营口电厂2×600 MW 机组#1炉为哈尔滨锅炉制造厂生产的超超临界变压直流中间再热燃煤锅炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、固态排渣、全钢悬吊Ⅱ型结构锅炉。

风机抢风火检丧失机组非停事件分析

风机抢风火检丧失机组非停事件分析

风机抢风火检丧失机组非停事件分析一、事件过程(一)事件前机组及设备运行工况年月日,6时00分,2号机组负荷600MW,主蒸汽压力22.88MPa,温度571℃,再热蒸汽压力3.74MPa,温度569℃,燃料量282t/h,蒸发量1778t/h,给水流量1781t/h,总风量1898t/h,氧量2.35%,炉膛压力-70Pa,一次风母管压力8.2KPa,A、B、C、D、E、F磨煤机运行,一次风机动叶控制为自动。

A、B汽泵运行,电泵备用,CCS、AGC控制投入。

6时01分,2号机组AGC指令持续降负荷至330MW。

(二)事件详细经过月日时1分,负荷降至560MW,停止A磨煤机运行。

06:24分,继续降负荷至440MW,停运F磨煤机运行。

锅炉保持B、C、D、E磨煤机运行。

06时24分,运行人员发现B一次风机动叶自动跳为手动,A一次风机动叶在自动控制位,一次风机自动控制仍自动状态,运行人员立即投入B一次风机动叶自动,发现A一次风机电流在82.3A~90A之间波动,动叶在52%~60%之间波动,B一次风机电流波动不大,一次风母管压力在7.0KPa~8.1KPa之间波动,立即解除A、B一次风动叶自动进行手动调整。

06时26分,手动调整A一次风机动叶至65%,电流94A,B一次风机电流98A,动叶52%,A一次风机电流、动叶波动消除,一次风母管压力9.3KPa。

06时26分55秒,根据运行方式手动调整A、B一次风机动叶,降低一次风母管压力至8.9KPa,A一次风机动叶至60%,电流93A,B一次风机电流93A,动叶48%。

06时27分10秒,投入B一次风机动叶自动,A一次风机动叶自动尚未投入,一次风机自动控制未投,发现B一次风机动叶由48%自动关至40%,B一次风机电流由93A降至80.3A,一次风母管压力降至8.3KPa。

06时27分20秒,运行人员为防止两侧一次风机出现抢风现象,立即解除B一次风机动叶自动,手动增加B一次风机动叶至44%,B一次风机电流无变化。

轴流式送风机失速原因分析及预防措施资料

轴流式送风机失速原因分析及预防措施资料

轴流式送风机失速原因分析及预防措施作者:佚名文章来源:不详点击数:更新时间:2008-9-24 10:18:33摘要:针对华能德州电厂锅炉送风机曾经多次发生失速的情况, 在介绍轴流送风机失速机理基础上, 根据实测数据对送风机失速原因进行了分析, 认为空预器堵塞严重导致管路阻力特性变化、送风机动叶开度过大是送风机失速的原因, 并提出了送风机失速的处理及预防措施。

关键词:轴流式送风机;失速;动叶可调;预防措施0引言华能德州电厂6号机组额定容量为660 MW,锅炉容量为2 209 t/h,是德国制造的亚临界、一次中间再热、单炉膛、Γ型布置、自然循环汽包炉。

锅炉配有2台三分仓回转式空预器,2台型号为FAF30.15.1的动叶可调轴流式送风机,动叶调节范围为-29°~31°(对应动叶开度0%~100%),设计风量为315m3/s,设计静压为4 275 Pa,风机转速为985 r/min。

2台送风机入口处各装设一组50%容量暖风器,暖风器设计压降0.2kPa。

华能德州电厂6号机组于2002 年10 月投产发电,投产后,在2003年5月~6月期间,多次发生送风机失速现象,一度影响了机组带负荷能力,经过技术人员分析,认为6号锅炉送风机失速的主要原因是空预器堵灰严重,风道阻力特性变化使送风机动叶开度过大、运行在不稳定区所致,经过设备治理,使空预器压差减小到设计值范围内,消除了送风机失速的隐患。

1轴流式送风机失速机理轴流风机叶片通常是机翼型的, 轴流式风机叶片气流方向如图1所示。

当空气顺着机翼叶片进口端(冲角α= 0°),按图1(a)所示的流向流入时, 它分成上下两股气流贴着翼面流过,叶片背部和腹部的平滑“边界层”处的气流呈流线形。

作用于叶片上有两种力,一是垂直于叶面的升力, 另一种平行于叶片的阻力, 升力≥阻力。

当空气流入叶片的方向偏离了叶片的进口角, 它与叶片形成正冲角(α>0°),如图1(b)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风机的失速现象主要发生于轴流式风机。

一般情况下,大型火电机组的锅炉送风机均为动叶可调节轴流式风机,失速时常常会引起振动,严重时威胁到机组的安全运行。

华能大连电厂于上世纪末引进Babcock公司制造的350MW火电机组,本文就其配套的
ANN2180/1000N型送风机在运行过程中的失速问题作简要分析。

1失速产生的机理
1.1失速的过程及现象
风机处于正常工况时,冲角很小(气流方向与叶片叶弦的夹角即为冲角),气流绕过机翼型叶片而保持流线状态,如图1(a)所示。

当气流与叶片进口形成正冲角,即α>0,且此正冲角超过某一临界值时,叶片背面流动工况开始恶化,边界层受到破坏,在叶片背面尾端出现涡流区,即所谓“失速”现象,如图1(b)所示。

冲角大于临界值越多,失速现象越严重,流体的流动阻力越大,使叶道阻塞,同时风机风压也随之迅速降低。

字串8
风机的叶片在加工及安装过程中由于各种原因使叶片不可能有完全相同的形状和安装角,因此当运行工况变化而使流动方向发生偏离时,在各个叶片进口的冲角就不可能完全相同。

如果某一叶片进口处
的冲角达到临界值时,就首先在该叶片上发生失速,而不会所有叶片都同时发生失速。

如图2中,u是对应叶片上某点的周向速度,w是气流对叶片的相对速度,α为冲角。

假设叶片2和3间的叶道23首先由于失速出现气流阻塞现象,叶道受堵塞后,通过的流量减少,在该叶道前形成低速停滞区,于是气流分流进入两侧通道12和34,从而改变了原来的气流方向,使流入叶道12的气流冲角减小,而流入叶道34的冲角增大。

可见,分流结果使叶道12绕流情况有所改善,失速的可能性减小,甚至消失;而叶道34内部却因冲角增大而促使发生失速,从而又形成堵塞,使相邻叶道发生失速。

这种现象继续进行下去,使失速所造成的堵塞区沿着与叶轮旋转相反的方向推进,即产生所谓的“旋转失速”现象。

风机进入到不稳定工况区运行,叶轮内将产生一个到数个旋转失速区。

叶片每经过一次失速区就会受到一次激振力的作用,从而可使叶片产生共振。

此时,叶片的动应力增加,致使叶片断裂,造成重大设备损坏事故。

字串2
1.2影响冲角大小的因素
大型火电机组的送风机一般是定转速运行的,即叶片周向速度u 是一定值,这样影响叶片冲角大小的因素就是气流速度与叶片开度角。

如图3所示,可以看出:当叶片开度角β一定时,如果气流速度c越小时,冲角α就越大,产生失速的可能性也就越大。

从图3还可以看出,当流速C一定时,如果叶片角度β减小,则冲角α也减小;当流速C很小时,只要叶片角度β很小,则冲角α也很小。

因此,当风机刚启动或低负荷运行时,风机失速的可能性大大减小甚至消失。

1.3运行中风机失速的原因
由于气流速度与流量成正比,因此正常运行中导致风机流量异常降低的因素都可能导致风机失速:
(1)风机出口挡板销子脱落或断裂等原因导致其突然关闭或部分关闭时。

(2)变负荷过程中由于调节失灵或误操作致使两台风机风量严重不平衡。

7
(3)风机出入口风道堵塞,如暖风器或空预器严重积灰。

2华能大连电厂ANN2180/1000N送风机失速特性及相关保护
2.1风机的失速特性曲线
华能大连电厂#3、#4机组的送风机是动叶可调轴流式风机,制造商HOWDEN VARIAX,风机型号ANN2180/1000N,采用17个机翼型叶片,设计转速1490 r/m, BMCR时风机出口风压2.4KPa。

风机动叶片就地实际开度范围15°~55°,对应于控制室动叶开度0%~
100%,其中就地开度25°对应于控制室动叶开度25%。

图4是该风机的失速特性曲线,当就地叶片开度角为50°时(控制室动叶开度87.5%),A—B是其对应的正常运行区,B—C—D—E 为失速区。

下面就以风机叶片开度50°时为例说明其失速特性。

当风机由于某种原因导致出口压力升高时,例如出口门关闭或风道堵塞时,运行工作点将从A向B移动,空气流量减小,冲角α增大,到达B点时,叶片将失速,叶轮内将产生一个到数个旋转失速区,风机压力和流量将剧烈下降。

由于失速区的不稳定,风机的运行工况点也不会稳定,可能会在C点附近摆动。

失速区继续发展,风机工况点将到达D点,此时所有叶片的顶部将形成一个环形失速区域带。

如果出口压力进一步升高,空气流量还要减小,风机工作点将到达E 点,此时风机整个叶轮将处于失速区。

如果现在出口压力降低,空气流量将逐渐增加,工作点将沿E点返回至D点,并沿DCˊBˊ直至脱离失速区域。

字串4
2.2风机的失速保护
华能大连电厂#3、#4机组的送风机装有失速CB(CUTBACK)保
护及失速跳闸保护装置。

送风机失速CB保护就是通过检测两台送风机出入口差压点
PT023AI、PT024AI大小,并和相应送风量所对应的风机差压高高值相比较,如果差值都≥0,则认为送风机进入失速危险区域,失速CB 保护发出,控制系统自动将两台送风机动叶指令目标值设置为0%,快速关小动叶开度,同时目标负荷为0,快速减小机组负荷,直至差值<0为止,失速CB保护才停止。

正常运行中两台送风机都投自动的情况下,如果仅是一台送风机出入口差压达高高值,则失速CB保护不会动作,需要手动进行处理。

表1是单台送风机负荷和其相应的差压高高动作值。

表1 送风机负荷及其相应的出入口差压高高值对照表
失速跳闸保护是由失速探测器发出的。

失速探测器根据风机失速时压力剧烈波动原理工作,其检测到的差压信号送至一个差压开关PSBA027。

如果PSBA027>500Pa,且送风机叶片角度>25°(25%)时,则延时120秒跳闸该送风机。

如果叶片角度<25°,将取消失速保护功能。

字串2
为什么叶片角度<25°,将取消失速保护功能?如前所述,当叶片角度β很小时,则冲角α也很小,风机失速可能性很小。

所以该送风机设计为当叶片角度小于30°时,即使发生出口挡板全关,空气流量为零这样最恶劣的情况,送风机也不会失速,风机运行还是安全的,如图4中的阴影部分所示。

但是如果流量太小,风机出口压力很高,失速保护容易误动,考虑到一定的裕量,当叶片角度<25°,就将失速保护功能断开。

3风机失速3的处理及预防措施
从以上分析中可以得出处理失速方法的本质是设法减小冲角,恢复叶片线形绕流。

实际运行中当风机发生单侧出入口差压高高报警或失速报警,风机进入危险区域运行时,为避免风机失速,应采取以下紧急处理方法:
(1)立即检查并确认风道各挡板全部打开。

(2)快速降低机组负荷,同时关小风机导叶开度,直至风机恢复正常运行。

(3)尽量调节两台送风机风量相平衡。

为防患于未然,必须做好预防送风机失速的相关措施:
(1)每次大修后第一次起机时记录下送风机各负荷工况下对应的风机风压/差压值,并以此作为基准参照值,供以后运行中对比使用。

(2)正常运行中,尽量保持两台送风机的风量相平衡,并经常监视动叶开度与风压/差压和风量的关系,检查核对就地风烟挡板实际开
度情况。

如果发现任一台送风机出口压力/差压不正常升高,或送风机出口通道阻力超过设计值时,则表明风机正进入危险区域,有可能发生失速。

可根据情况在低谷期间锅炉投半侧运行方式,对相应侧暖风器和空预器进行冲洗,恢复风道通畅。

字串2
(3)利用每次停机的机会对空预器和暖风器进行检查,发现积灰或杂物堵塞都要及时清理。

(4)每次机组检修时应该对送风机失速探测器和相关压力变送器、差压开关进行检查,确保保护动作可靠。

相关文档
最新文档