最新核酸组织化学

合集下载

生物化学 第2章Ⅱ 核酸(共86张PPT)

生物化学 第2章Ⅱ 核酸(共86张PPT)

内呈正比
5、电泳缓冲液
DNA的凝胶电泳检测
(ethidiumbromide, 简称EB)是一种核酸染料,可以插入到DNA
或RNA分子的碱基之间,并在300nm波长的
紫外光照射下放射出橘红色的荧光,可用来显现 凝胶中的核酸分子。
在凝胶电泳中,溴化乙锭染料可对核酸分子 染色,在紫外光下便可以十分敏感而方便地检测 出凝胶介质中DNA谱带。
五、变性、复性与杂交
(一)、DNA的变性
1、概念 2、变性因素
3、变性的指标
1、概念
是指核酸双螺旋区的氢键断裂,双螺旋 解开,变成无规则线团的现象。核酸变 性其分子中的共价键并没有破坏,分子 量也不改变,核酸的变性(
denaturation )
2、DNA的变性的因素
温度升高;
酸碱度改变、 pH(>11.3或<5.0);
1、核酸分子本身的大小:同分子的摩擦
系数成反比的 Maxam和Gilbert 于1977年发明
Primer1(10uM)
2、琼脂糖的浓度:迁移率与胶浓度成反比 而聚丙烯酰胺凝胶制胶时不能将染料加入,会影响聚合。
第五节 核酸的研究方法 据此特性可以定性和定量检测核酸。
在液氮蒸发去2/3时,用自制研杵迅速磨碎叶片;
RNA本身只有局部的双螺旋区,所以变 性行为所引起的性质变化没有DNA那样 明显。 天然状态的DNA在完全变性后,紫外吸
收(260 nm)值增加25-40%.而RNA变性 后,约增加1.1%。
4. DNA变性后的表现
A260值增加
粘度下降
浮力密度增大
分子量不变
(二)、DNA的复性
1、概念:
变性DNA在适当的条件下,两条彼此分 开的单链可以重新缔合成为双螺旋结构 ,这一过程称为复性;

核酸化学

核酸化学

2.DNA双螺旋特征
(1)主链:两条平行的多核 苷酸链,以相反的方向,(即 一条由3΄向5΄,另一条由5΄向 3΄),围绕着同一个(想象的) 中心轴,以右手旋转方式构成 一个双螺旋形状。疏水的碱基 位于螺旋的内侧,亲水的磷酸 基和脱氧核糖以磷酸二酯键相 连成的骨架位于外侧。糖环平 面与中心轴平行,碱基平面与 中心轴相垂直。
• DNA三股螺旋结构常出现在 DNA复制、转录、重组的起始位 点或调节位点,如启动子区。 第三股链的存在可能使一些调控 蛋白或RNA聚合酶等难以与该区 段结合,从而阻遏有关遗传信息 的表达。
(3)四股螺旋DNA
•形成条件--串联重复的鸟苷酸 •基本结构单元--鸟嘌呤四联体 •碱基之间靠 Hoogsteen 键连接 •已有实验结果表明--真核细胞端 粒中存在四链结构
第4章 核酸化学
生物大分子
生物大分子是指生命体 内一些组织结构复杂的高分 子,它们是生命活动的主要 物质基础,因而被称为生命 物质。主要类型有蛋白质、 核酸、多糖、脂类。 生物大分子大多数是由 简单的组成结构聚合而成的, 蛋白质的组成单位是氨基酸, 核酸的组成单位是核苷 酸……
第1节 核酸的种类、分布与化学组成
DNA超螺旋的形成
DNA正常的双螺旋结构 处于能量最低状态,双 螺旋中没有张力而处于 松弛状态。如果这种正 常双螺旋额外增加或减 少螺旋圈数,就会使双 螺旋内的原子偏离正常 的位置而产生张力,这 样正常的双螺旋就发生 扭曲而形成超螺旋。超 螺旋总是向着抵消初级 螺旋改变的方向发展。
大多数原核生物 : 1)共价封闭的环状 双螺旋分子 2)超螺旋结构:双 螺旋基础上的螺旋化
Erwin Chargaff (1905-1995)
(二)DNA的一级结构 由4种脱氧核苷酸 dAMP 、 dGMP 、 dCMP 、 dTMP 按 照 一定的排列顺序通 过磷酸二酯键连接 而成的没有分支的 多核苷酸链。

核酸化学PPT课件

核酸化学PPT课件

DNA与RNA结构特点
DNA结构特点
DNA是一种长链生物聚合物,组成单 位为四种脱氧核苷酸,由碱基、脱氧 核糖和磷酸构成。
RNA结构特点
RNA由核糖核苷酸经磷酸二酯键缩合而 成长链状分子。一个核糖核苷酸分子由 一分子磷酸、一分子核糖和一分子含氮 碱基构成。
碱基互补配对原则
碱基互补配对原则是指在DNA分子结构中,由于碱基之间的氢键具有固定的数目和DNA两条链之间的距离保持不变,使得碱基配 对必须遵循一定的规律,这就是A(腺嘌呤)一定与T(胸腺嘧啶)配对,G(鸟嘌呤)一定与C(胞嘧啶)配对,反之亦然。
多肽。
基因编辑技术
如CRISPR-Cas9等,可对基因组 进行定点编辑,实现基因敲除、
敲入、突变等操作。
05
核酸药物设计与应用
抗病毒药物设 利用病毒基因序列中的特异性区域,设计与之互 补的核酸药物,通过阻断病毒基因复制或表达, 达到抗病毒效果。
靶向病毒关键蛋白的药物设计 针对病毒生命周期中的关键蛋白,设计能够与之 结合的核酸药物,从而阻止病毒的组装、释放等 过程。
RNA转录过程及调控
RNA转录的基本过程 转录起始、链延长、链终止与释放
RNA转录的酶学 RNA聚合酶、转录因子等
RNA转录的特点
模板链的选择性、转录的不对称性、 转录后加工等
RNA转录的调控
转录起始的调控、转录延伸的调控、 转录终止的调控
核酸酶作用及降解产物
核酸酶的种类与特性
01
核酸内切酶、核酸外切酶等
核酸的降解过程
02
核酸酶的切割作用、降解产物的生成与性质
核酸降解产物的应用
03
用于核酸序列分析、核酸检测等
03
核酸性质与功能

第5章核酸的化学 第二节 核酸的化学组成

第5章核酸的化学 第二节  核酸的化学组成
DNA和RNA分子中,主要元素有碳、氢、氧、氮、磷等, 个别核酸分中还含有微量的S。磷在各种核酸中的含量比较接 近和恒定,DNA的平均含磷量为9.9%,RNA的平均含磷量为 9.4%。因此,只要测出生物样品中核酸的含磷量,就可以计算 出该样品的核酸含量,这是定磷法的理论基础。
食品生物化学
二、核酸的水解产物
3.次黄嘌呤衍生物——次黄嘌呤核苷酸(IMP)
在肌肉组织中,腺嘌呤核苷酸循环过程中由AMP脱氨形成 次黄嘌呤核苷酸。
次黄嘌呤核苷酸在生物体内是合成腺嘌呤核苷酸和鸟嘌呤 核苷酸的关键物质,对生物的遗传有重要的功能。另外,它还 是一种很好的助鲜剂,有肉鲜味,与味精以不同比例混合制成 具有特殊风味的强力味精(见第九章第二节鲜味)。
2.腺苷衍生物——环腺苷酸(cAMP)
cAMP是由ATP经腺苷酸环化酶催化而成的。
食品生物化学
图5-7 环腺苷酸(cAMP)
食品生物化学
cAMP广泛存在于一切细胞中,浓度很低。它们的主要作 用不是作为能量的供体,而是在生物体内参与细胞内多种调节 功能,如它可调节细胞内催化糖和脂肪反应的一系列酶的活性, 也可以调节蛋白激酶的活性。一般把激素称为第一信使,而称 cAMP为“第二信使”。
核酸是一种聚合物,它的结构单位是核苷酸 。
核酸
核苷酸
磷酸
核苷
碱基
戊糖
(嘌呤碱和嘧Ch啶em碱Pa)st(e核r 糖或脱氧核糖)
图5-1 核酸的水解产物
食品生物化学
三、核酸水解产物的化学结构
1.戊糖
DNA和RNA的主要区别是所含戊糖不同,DNA分子中的戊 糖是β-D-2-脱氧核糖,而RNA分子中的戊糖是β-D-核糖 。
碱基 Ade Gua Cyt Ura

核酸的化学

核酸的化学

一、DNA的二级结构---DNA的双螺旋模 型
DNA的二级结构-双螺旋结构 DNA双螺旋结构的研究背景和历史意义 DNA双螺旋结构模型要点
DNA的二级结构 ——双螺旋结构
(一)双螺旋结构模型的实验依据
1、对DNA分子结晶的X衍射数据:由Franklin和Wilkins提供,来源 不同的DNA的二级结构非常相似。前者早逝,后者与Watson、Creck 分享了诺贝尔奖。
第二节
核酸的一级结构
5′端
核酸的一级结构
C
定义
核酸中核苷酸的排列
顺序。
A
由于核苷酸间的差异
主要是碱基不同,所以也
称为碱基序列。
G
3′端
核苷酸的连接方式
核苷酸之间以磷酸二酯键连接 形成多核苷酸链,即核酸。 DNA和RNA中的核苷酸残基 都是通过磷酸基团这个“桥” 而共价连接的。即核酸的主链 是由相间出现的磷酸核糖残基 通过共价键连接起来的,各种 碱基可以看成是联系在主链上 的侧链基团。 见P71图3-13
NN HOCH2 O
HH
H2N N N HOCH2 O
HH
H
H
H
H
OH OH
OH OH
腺嘌呤核苷
鸟嘌呤核苷
HO N HOCH2 O
HH
HO N HOCH2 O
HH
H
H
H
H
OH OH
OH OH
胞嘧啶核苷
尿嘧啶核苷
Adenosine Guanosine Cytidine Uridine
假尿苷(ψ) 见P66
1944年,O.T.Avery等人发表了"脱氧核糖型的 核酸是III型肺炎球菌转化要素的基本单位"即 DNA是细菌的转化因子,第一次证明了DNA是 遗传物质。

高中化学核酸的教案设计

高中化学核酸的教案设计

高中化学核酸的教案设计随着科技的不断发展,生物化学领域的研究日益深入,其中核酸作为生命活动的重要物质基础,更是受到了广泛关注。

在高中化学教学中,核酸的教学同样占据了重要的地位。

今天,我们就来分享一份高中化学核酸的教案设计范本,帮助大家更好地理解和掌握这一知识点。

一、教学目标1. 知识与技能:理解核酸的基本概念、结构和功能,掌握核酸的化学组成和性质。

2. 过程与方法:通过实验操作,培养学生观察、分析和解决问题的能力,提高学生的实践操作能力。

3. 情感态度与价值观:激发学生对生物化学的兴趣,培养学生探索科学的精神。

二、教学内容1. 核酸的基本概念、结构和功能。

2. 核酸的化学组成和性质。

3. 核酸在生命活动中的作用。

三、教学方法1. 采用讲授法,讲解核酸的基本概念、结构和功能,以及核酸的化学组成和性质。

2. 采用实验法,让学生亲自动手进行核酸提取实验,观察和分析实验现象,加深对核酸性质的理解。

3. 采用讨论法,引导学生探讨核酸在生命活动中的作用,培养学生的思考和表达能力。

四、教学过程1. 引入:通过讲述生物体内的遗传信息传递过程,引出核酸的概念和重要性。

2. 讲解:详细讲解核酸的基本概念、结构和功能,以及核酸的化学组成和性质。

3. 实验:指导学生进行核酸提取实验,观察和分析实验现象,加深对核酸性质的理解。

4. 讨论:组织学生讨论核酸在生命活动中的作用,引导学生思考和表达自己的观点。

5. 总结:对本节课的内容进行总结,强调核酸的重要性和作用。

五、教学评价1. 过程评价:观察学生在实验过程中的操作和表现,了解学生对实验方法和步骤的掌握情况。

2. 结果评价:通过课堂提问、小组讨论等方式,了解学生对核酸基本概念、结构和功能的理解程度。

3. 综合评价:结合学生的学习表现、实验结果和讨论内容,对学生的核酸知识掌握情况进行综合评价。

六、教学反思1. 优点:本节课采用了多种教学方法,既有讲授又有实验和讨论,使学生在多方面得到了锻炼和提高。

生物化学第三章核酸

生物化学第三章核酸

第三节 RNA的结构与功能
Structure and Function of RNA
• DNA和RNA的区别
不同点 戊糖 碱基 二级结构 碱基互补配对 种类 RNA 核糖 G C A U 单链 忠实性较低 多 (mRNA,rRNA, tRNA 等) DNA 脱氧核糖 G C A T 双链 忠实性高 少

碱基互补配对: 腺嘌呤/胸腺嘧啶(A-T)
4.双螺旋表面存在大沟和小沟
小沟
大沟
(二) DNA二级结构的多样性
• 三种DNA构型的比较
螺距 旋向 (nm) 每圈碱 基数 螺旋直径 (nm) 骨架 走行
存在条件
A型 右手 B型 右手
2.3 3.54
11 10.5
2.5 2.4
平滑 平滑
体外脱水 生理条件
(二)碱基
碱基(base)是含氮的杂环化合物。
腺嘌呤
嘌呤 碱基 嘧啶 鸟嘌呤 存在于DNA和RNA中
胞嘧啶
尿嘧啶 胸腺嘧啶 仅存在于RNA中 仅存在于DNA中
NH2
嘌呤(purine,Pu)
N 7 8 9 NH
N
N
NH
5 4
6 3 N
1N 2
腺嘌呤(adenine, A)
O N
N
NH
NH
鸟嘌呤(guanine, G)
(二) 原核生物DNA的环状超螺旋结构
原核生物DNA多为环状,以负超螺旋的形 式存在,平均每200碱基就有一个超螺旋形成。
DNA超螺旋结构的电镜图象
(三) DNA在真核生物细胞核内的组装
真核生物染色体由DNA和蛋白质构成
基本单位是核小体
DNA染色质呈现出的串珠样结构。 染色质的基本单位是核小体(nucleosome)。

核酸的结构和功能

核酸的结构和功能
目录
一、核酸的化学组成
1. 元素组成 C、H、O、N、P(9~10%)
2. 分子组成
碱基(base):嘌呤碱,嘧啶碱
核苷
核苷酸
戊糖(ribose):核糖,脱氧核糖
磷酸(phosphate)
目录
碱基
N 7
8 9 NH
5 6 1N
43 2 N
嘌呤(purine)
NH2 N
N
NH
N
腺嘌呤(adenine, A)
"for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material"
Francis Harry Compton Crick
James Dewey Watson
Maurice Hugh Frederick Wilkins
(二) DNA双螺旋结构模型要点
(Watson, Crick, 1953)
DNA分子由两条相互平行但走 向相反的脱氧多核苷酸链组成, 两链以”脱氧核糖-磷酸” 为 骨架,以右手螺旋方式绕同一 公共轴盘。螺旋直径为2nm, 形成 大沟 (major groove) 及小 沟(minor groove)相间。
60S
4718个核苷酸 160个核苷酸 120个核苷酸
占总重量的35%
三种RNA内容小结
mRNA
tRNA
结 单链
局部双链
构 5'—m7GpppNm、 三叶草形、倒L形
NNHHN22H2
N
NNN

生物化学之核酸化学

生物化学之核酸化学

第三章核酸化学(Nucleic Acids Chemistry )第一节概述一、核酸的发现与发展二、核酸的类别和分布脱氧核糖核酸(deoxyribonucleic acid DNA)核糖核酸(ribonucleic acid RNA)DNA在生物体内的存在部位和方式:–原核细胞中DNA集中在核区;–真核细胞中DNA集中在核内,组成染色体。

–线粒体和叶绿体等细胞器也含有少量DNA。

–原核生物染色体DNA、质粒DNA、真核生物细胞器DNA都是环状双链DNA。

–真核生物染色体是线性双链DNA,末端具有高度重复序列形成的端粒(telomere)结构。

染色体(Chromosomes)、基因(Gene)、DNA–染色体:是细胞核内能被碱性染料着色物质的螺旋聚集体,是遗传信息的载体。

–基因:是存在于染色体上的遗传信息–DNA:是遗传信息的载体RNA(核糖核酸)∶–主要分布在细胞质中,与蛋白质合成密切相关Ribosomal RNAs (rRNA,核糖体RNA)占80%以上:与蛋白质构成核糖体,是合成蛋白质的场所Messenger RNAs (mRNA,信使RNA) 占5%:合成蛋白质的模板Transfer RNAs (tRNA ,转运RNA)占15%:在蛋白质合成中运输氨基酸应用与生产:在食品方面∶强力助鲜剂,如肌苷酸和鸟苷酸。

在医药方面∶ATP、COA等。

第二节核酸的组成核酸的化学组成:除含C、H、O、N外,还含有较多的磷和少量的硫,含磷量在9-10%一、磷酸(phosphate)OHHO-P=OOH二、戊糖(pentose)三、碱基(nitrogenous base碱基∶是一类含氮的有机小分子嘌呤(purine):腺嘌呤adenine (A)鸟嘌呤guanine (G)嘧啶(pyrimidine ):胞嘧啶cytosine (C).尿嘧啶uracil (U)胸腺嘧啶thymine (T)(1)含酮基的嘧啶和嘌呤碱都有酮和烯醇式互变异构现象,且处于平衡状态。

5’-磷酸基团

5’-磷酸基团

5’-磷酸基团
5’-磷酸基团是核酸分子中的一个重要组成部分,它位于核酸链的5’末端,是连接相邻两个碱基的重要组成部分之一。

核酸是由核苷酸分子组成的,每个核苷酸分子由一个五碳糖、一个碱基和一个磷酸基团组成。

在核酸链中,磷酸基团通过磷酸二酯键的形式将相邻的两个碱基连接在一起,形成了稳定的核酸链结构。

在核酸的合成过程中,5’-磷酸基团是新合成的核苷酸的第一个部分,它由ATP分子的第一个磷酸基团和核糖或脱氧核糖分子组成。

在核酸的降解过程中,核酸降解酶可以作用于5’-磷酸基团,将其从核酸链上切除,从而降解核酸分子。

5’-磷酸基团在核酸的生物学功能中也起着重要的作用。

例如,在转录和翻译过程中,mRNA分子的5’-末端需要加上一个启动子序列才能被转录和翻译。

此外,5’-磷酸基团还可以参与一些生物学过程,如DNA复制、转录和RNA加工等。

在这些过程中,5’-磷酸基团可以与其他分子相互作用,从而调节核酸的结构和功能。

总之,5’-磷酸基团是核酸分子中的一个重要组成部分,它在核酸的合成、降解和生物学功能中都起着重要的作用。

核酸化学知识点总结

核酸化学知识点总结

核酸化学知识点总结一、核酸的化学结构1. 核酸的基本结构核酸是由核苷酸组成的,核苷酸又由碱基、糖和磷酸组成。

碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)或尿嘧啶(U)。

糖分为核糖和脱氧核糖,其中RNA中的糖为核糖,DNA中的糖为脱氧核糖。

核苷酸是由碱基和糖组成的核苷,再与磷酸结合形成核苷酸。

2. 核酸的二级结构核酸的二级结构是指单条核酸链上碱基序列所具有的空间结构。

DNA分子具有双螺旋结构,由两条互补的DNA链通过氢键相互缠绕形成。

RNA分子没有固定的二级结构,但在一些情况下也可以形成双链结构。

3. 核酸的三级结构核酸的三级结构是指单条核酸链在立体空间上所呈现的结构。

DNA分子呈现出右旋的螺旋结构,RNA分子则可以形成各种复杂的结构。

4. 核酸的四级结构核酸的四级结构是指多条核酸链相互作用所形成的更为复杂的结构。

在一些特定情况下,核酸分子可以形成四级结构,并参与到一些生物学过程中。

二、核酸的功能1. 遗传信息的储存与传递核酸是生物体内遗传信息的携带者,DNA分子储存着生物体的遗传信息,RNA分子则在转录和翻译过程中参与到遗传信息的传递和表达中。

2. 蛋白质合成核酸通过转录和翻译的过程,参与到蛋白质的合成过程中。

DNA分子在转录过程中产生mRNA,mRNA再通过翻译过程将基因信息翻译成蛋白质。

3. 调节基因表达在一些生物学过程中,核酸可以通过转录调控、剪接调控和甲基化调控等方式来参与到基因的表达调节中。

4. 氧化磷酸化核酸分子参与到细胞内氧化磷酸化过程中,通过释放出磷酸来提供细胞内化学能量,并维持细胞内正常生理活动。

三、核酸的合成1. DNA的合成(DNA合成)DNA的合成是DNA聚合酶在DNA模板的引导下,将合适的脱氧核苷酸三磷酸酶与新合成的核甙核苷酸通过磷酸二酯键连接,使DNA链不断延长的过程。

DNA合成是细胞分裂前的准备工作,也是基因工程和分子生物学研究中的重要技术手段。

04 核酸化学

04 核酸化学

DNA的超螺旋结构
原核生物DNA的高级结构 DNA在真核生物细胞核内的组装Fra bibliotek赵丹丹
第4章 核酸化学
37
1、DNA的二级结构
1953年,James.Watson和Francis.Crick 提出了DNA二级结构模型——双螺旋 结构模型。 主要有三方面的依据: 一是已知核酸化学结构和核苷酸键长 与键角的数据; 二是Chargaff发现的DNA碱基组成规律, 显示碱基间的配对关系; 三是对DNA纤维进行X射线衍射分析 获取的精确结果。
赵丹丹
第4章 核酸化学
47
(2)DNA双螺旋结构的稳定因素
氢键(hydrogen bond) ,重要因素 ; 碱基堆积力(base stacking action) ,主要因素。 碱基堆积使双螺旋内部形成疏水核心,从而有利于碱基间 形成氢键; 离子键,磷酸基团在生理条件下解离,使DNA成为一种 多阴离子,这有利于与带正电荷的组蛋白或介质中的阳离 子之间形成静电作用,能减少双链间的静电排斥,有利于 双螺旋的稳定 。
赵丹丹
第4章 核酸化学
49
Comparison of the A、B and Z forms of DNA The B form is the most stable structure for a random-sequence of DNA molecule under physiological conditions, and is therefore the standard point of reference in any study of the properties of DNA.
赵丹丹
胞嘧啶脱氧核苷
第4章 核酸化学 16

核酸的组成和分类

核酸的组成和分类

核酸的组成和分类核酸的基本结构单位是核苷酸,核苷酸由核苷和磷酸组成,核苷由碱基和戊糖组成。

DNA 中戊糖为 D-2-脱氧核糖 (D-2-deoxyribose ) ,碱基为腺嘌呤、 鸟嘌呤、 胞嘧啶和胸腺嘧啶; RNA 中戊糖为 D-核糖 (D-ribose ) ,碱基为腺嘌呤、鸟嘌呤、胞嘧啶和尿嘧啶。

碱基和戊糖的化学结构 组成核酸的碱基主要为嘌呤衍生物和嘧啶衍生物,核酸中的嘌呤衍生物都是腺嘌呤和 鸟嘌呤。

嘌呤碱基由母体化合物嘌呤衍生而来。

DNA :嘧啶衍生物为胞嘧啶和胸腺嘧啶, RNA : 嘧啶碱为胞嘧啶和尿嘧啶,但 核酸中还发现一些修饰碱基,也称稀有碱基,它们绝大部分也都是嘌呤和嘧啶类化合 物。

稀有碱基含量很少,种类却很多,以甲基化的碱基居多。

核酸中, tRNA 含稀有碱基最 多,含量可高达 10%。

(自己画结构) DNARNA嘧啶碱基是母体化合物嘧啶的衍生物,tRNA 中含有少量胸腺嘧核酸根据戊糖的种类分类,构成DNA 的戊糖是D-2- 脱氧核糖,RNA 链的戊糖是D- 核糖。

此外, 还发现有D-2-O- 甲基核糖。

糖环上的 C 原子编号为1',2',3',4',5'。

核苷戊糖与碱基缩合而成的化合物称为核苷。

1、核苷的分类 按照戊糖种类的不同:核糖核苷,脱氧核糖核苷, 2-O-甲基核苷;按照碱基的不同:嘌呤核苷和嘧啶核苷2、核苷的结构特点 核苷结构中糖基与碱基以 β-糖苷键相连,称为 N-糖苷键,核苷中戊糖 均为呋喃型环状结构。

在空间结构上碱基与糖环平面互相垂直,在 DNA 双螺旋中碱基配对 是以反式定位的,碱基上的氨基或酮基可以互变异构为亚氨基或烯醇基。

不同 pH 条件下核 苷有不同的解离态。

核苷酸1、种类 核苷的磷酸酯叫核苷酸,分为核糖核苷酸和脱氧核糖核苷酸两大类。

核糖核苷 的戊糖分别可形成 2'、 3'、5'三种核苷酸;脱氧核糖核苷只能形成 3'和 5'-核苷酸; 2'-O-甲基核苷也只有两种核苷酸。

核酸的化学式

核酸的化学式

核酸的化学式核酸是生命的基础分子之一,是构成基因的重要物质。

其化学式为C10H12N5O3,是由核苷酸组成的长链分子。

核苷酸是核酸的单体,由糖、碱基和磷酸组成。

糖和碱基是核苷酸的基本结构单元,磷酸则是连接核苷酸的桥梁。

核酸的化学式的研究对于了解其结构和功能具有重要意义。

核酸的化学结构核酸由核苷酸组成,核苷酸是由糖、碱基和磷酸三个部分组成的。

糖是核苷酸的主要组成部分之一,有两种,分别是脱氧核糖和核糖。

核糖的化学式为C5H10O5,脱氧核糖的化学式为C5H10O4。

在核酸中,DNA中的糖为脱氧核糖,而RNA中的糖为核糖。

碱基是核苷酸的另一个组成部分,是核酸中最为重要的化学结构之一。

碱基有两类,分别是嘌呤和嘧啶。

嘌呤有两个环,其化学式为C5H4N4,包括腺嘌呤和鸟嘌呤;嘧啶有一个环,其化学式为C4H4N2,包括胸腺嘧啶和尿嘧啶。

在DNA中,碱基有四种,分别为腺嘌呤、鸟嘌呤、胸腺嘧啶和鸟嘌呤;在RNA中,碱基有三种,分别为腺嘌呤、鸟嘌呤和尿嘧啶。

磷酸是连接核苷酸的桥梁,其化学式为PO4。

在核苷酸中,磷酸连接糖和碱基,形成核苷酸的长链结构。

核酸中的磷酸基团是负电荷,因此,核酸的结构呈现出负电的特性。

核酸的功能核酸是生命的基础分子之一,其功能非常重要。

DNA是生命的遗传物质,可以传递父母亲的遗传信息给下一代,因此,DNA是生命的基础。

RNA则是DNA的转录产物,可以将DNA中的遗传信息转化为蛋白质的合成指令,因此,RNA是生命的重要组成部分。

除了遗传功能外,核酸还具有调节基因表达、参与细胞分裂等重要功能。

在细胞周期中,DNA需要不断地复制,以保证细胞的正常分裂。

RNA则参与蛋白质的合成,调节细胞的代谢活动。

结语核酸是生命的基础分子之一,其化学式为C10H12N5O3。

核酸由核苷酸组成,核苷酸是由糖、碱基和磷酸三个部分组成的。

核酸的化学结构对于了解其功能具有重要意义,对于生命科学领域的研究有着重要的意义。

第6章核酸的化学ppt课件

第6章核酸的化学ppt课件
❖ 主要核苷酸: 生物体中游离的核苷酸多为5′-核苷酸。
常见的核苷酸
核糖核酸(在RNA中)
脱氧核糖核酸(在DNA中)
全称
简称 代号
全称
简称 代号
腺嘌呤核苷酸 腺苷酸 AMP 腺嘌呤脱氧核苷酸 脱氧腺苷酸 dAMP 鸟嘌呤核苷酸 鸟苷酸 GMP 鸟嘌呤脱氧核苷酸 脱氧鸟苷酸 dGMP 胞嘧啶核苷酸 胞苷酸 CMP 胞嘧啶脱氧核苷酸 脱氧胞苷酸 dCMP 尿嘧啶核苷酸 尿苷酸 UMP 胸腺嘧啶脱氧核苷酸 脱氧胸苷酸 dTMP
尿嘧啶 尿嘧啶核苷 尿苷 U



胸腺嘧啶

- - 胸腺嘧啶脱氧核苷 脱氧胸苷 dT
2.核苷酸〔nucleotide〕
❖ 核苷酸:是核苷中戊糖环上的羟基与磷酸脱水生成的核苷磷 酸酯。
❖ 类型:核糖核苷酸和脱氧核糖核苷酸,它们是RNA和DNA 的根本组成单位。
❖ 核苷酸:核苷+磷酸,戊糖+碱基+磷酸
5´ p
p
p
p
OH 3´
5´ 3´
线条式
5´ ACTGCATAGCTCGA 3´
字母式
构造式
〔二〕DNA的一级构造
❖ 概念:是指DNA分子中脱氧核苷酸的陈列顺序。由于不同 的脱氧核苷酸只是碱基的不同,所以DNA的一级构造也是 指脱氧核苷酸中碱基的陈列顺序。
❖ DNA碱基组成所遵照的规律:〔查加夫规律〕 ❖ A.具有生物物种的特异性。即不同物种的DNA有其特有的
呤碱的第9位N原子或嘧啶碱的第1位N原子经过N-糖苷键相 连,这种糖与碱基之间的连键是C-N糖苷键。
1.核苷
NH2
OH
N
NN
N
NH2 N

组成核酸的主要元素

组成核酸的主要元素

组成核酸的主要元素
嘿,朋友们!今天咱来聊聊组成核酸的主要元素呀!这可真是神奇又重要的玩意儿呢!
你想想看,核酸就像是生命的密码本,而组成它的主要元素那就是编写密码的关键字符啦!核酸里有碳、氢、氧、氮、磷这几个小家伙。

碳啊,那可是基础中的基础呀!就好比是盖房子的砖头,没有它,这房子可就没法建起来啦。

它无处不在,是构建生命大厦的重要基石呢!
氢呢,就像个小跟班,总是和碳一起出现,不离不弃的。

它就像那默默无闻但又不可或缺的小助手,虽然不显眼,但是作用大着呢!
氧呀,那可是个活跃分子!我们呼吸都离不开它呢。

在核酸里,它也是重要的一份子,让整个结构更加灵动起来。

氮呢,嘿,这可是个厉害角色!它就像是给密码本增添独特标记的神秘符号,让核酸变得独一无二。

最后说说磷,这可是个特别的存在呀!它就像是连接各个部分的桥梁,把所有元素都紧紧地联系在一起,让核酸变得稳定又强大。

你说这几个元素神奇不神奇?它们组合在一起,就创造出了核酸这么个对生命至关重要的东西。

没有它们,那生命的故事可就没法展开啦!就好像一辆汽车,少了哪个零件都跑不起来呀!我们的身体里,到处都有核酸的身影,它们在默默地工作着,维持着我们的生命和健康。

所以呀,可别小看了这些小小的元素哦!它们虽然不起眼,但却有着大大的能量。

它们就像是一群小精灵,在我们的身体里跳着奇妙的舞蹈,编织着生命的华章。

我们应该对它们心怀敬畏和感激呢!不是吗?这组成核酸的主要元素,真的是太了不起啦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
色5min 3.PBS漂洗lmin 4.用0.1mol/L氯化钙溶液分பைடு நூலகம்lmin 5.PBS冲洗、封片,荧光显微镜下观察
吖啶橙染色注意事项
1.吖啶橙浓度过高(>1:500)或过低 (<1:105),影响准确性和可信性
2.甲醛固定的石蜡切片效果不理想 3.PH6.0,DNA结合染料的聚合加速,
PH低于3.8,DNA结合染料的聚合抑 制
Hoechst33258染色步骤
1.培养细胞或细胞悬液, PBS漂洗5min 2.Hoechst33258工作液室温染色
15min 3.PBS漂洗 4.水溶性封片剂封片,荧光显微镜下观察
碘化丙啶(PI)染色
不能透过完整的细胞膜 正常细胞和凋亡细胞PI拒染 坏死细胞核染红色
PI染色
应用:区分凋亡和坏死细胞
吖啶橙染色
应用:
区分活细胞和死细胞,活细胞核呈黄 绿色荧光,死细胞呈红色荧光(溶酶体 酶释放所致) 原位区分组织细胞DNA和RNA
吖啶橙染色 应用:
恶性肿瘤普查: 非典型增生:荧光增强 增生细胞:强荧光 恶性肿瘤细胞:橘红色或火焰
吖啶橙染色步骤
1.95%酒精固定 2.滴加0.01%浓度的吖啶橙荧光染液染
改变GRP78水平对突变Htt细胞毒性的影响
DAPI染色
150Q
GRP78
DAPI
* 较多单转150Q细胞胞核凋亡, 多数共转150Q和GRP78细胞胞 核正常
DAPI染色优点
1.荧光稳定性优于Hoechst 2.特异性较EB,PI高
Hoechst33258染色
非嵌入性的荧光染料 与DNA小沟富集AT的区域结合 活细胞或固定细胞 亮蓝色荧光
DAPI染色
4,6二脒基-2苯吲哚 与DNA特异性结合的荧光染料 可以穿透活细胞胞膜,无明显细胞 毒性 与双链DNA结合,荧光强度增强20 倍,与单链DNA结合,无荧光增强
DAPI染色步骤
1.培养细胞或组织冰冻切片, PBS漂洗 5min
2.DAPI工作液室温染色5-20 min 3.PBS漂洗 4.水溶性封片剂封片,荧光显微镜下观察
AnnexinV-FITC/PI双染流式细胞 术:
细胞膜内侧的磷脂酰丝氨酸(PS)迁 移至细胞外侧,AnnexinV和PS具 极强的结合力,坏死细胞和凋亡细 胞绿色
坏死细胞核被PI染成红色
双变量FCM的散点图
左下象限显示正常活细胞,为FITC-, PI-;
右上象限为坏死细胞,为FITC+,PI+ ;
右下象限为凋亡细胞,呈现FITC+/ PI-
核酸组织化学
核酸: 1.核糖核酸(RNA):核仁和核糖体
2.脱氧核糖核酸(DNA):核内的染 色质或染色体
吖啶橙染色
三环芳香类阳离子型碱性荧光染料 嵌入核酸双链的碱基对 与单链核酸的磷酸发生静电相互作 用
吖啶橙染色
与DNA结合,525nm,绿色荧光 与RNA结合,650nm,橙红色荧光与 单链核酸的磷酸发生静电相互作用
相关文档
最新文档