电容测试仪的设计
基于单片机的数显电容测试仪的设计
基于单片机的数显电容测试仪的设计
赵巧妮
【期刊名称】《电子质量》
【年(卷),期】2016(0)5
【摘要】基于AT89S51单片机和555定时器芯片设计的数显式电容测量仪,由555芯片和电容电阻组成振荡电路来输出矩形波,通过单片机定时器T0测量其脉冲宽度,从而达到测量其周期的目的,再通过单片机软件编程,对数据进行进一步的计算从而得出被测电容的值,并通过液晶LCD1602显示出其测量的电容值.经过试验验证,该设计的硬件设计和软件设计都相对简单,成本较低.
【总页数】4页(P71-74)
【作者】赵巧妮
【作者单位】湖南铁道职业技术学院,湖南株洲412001
【正文语种】中文
【中图分类】TP319
【相关文献】
1.一种基于单片机智能电容测试仪的设计与实现 [J], 徐思成
2.一种基于MCS-51单片机的电容测试仪 [J], 曲家兴;燕思嘉;苍鹤
3.基于单片机的电阻、电感、电容测试仪的设计 [J], 赵巧妮
4.基于MSP430单片机的电容测试仪 [J], 陈榕福;李建波
5.基于单片机控制的智能电阻电容在线测试仪 [J], 张金敏
因版权原因,仅展示原文概要,查看原文内容请购买。
电阻电感电容测量仪报告
电阻电感电容测试仪的设计与制作论文编号B甲1301参赛题目电阻电感电容测试仪的设计与制作参赛学校山东理工大学学院电气与电子工程指导老师李震梅唐诗参赛队员姓名吴硕刚王鹿鹿张兵联系方式电阻电容电感测试仪的设计与制作摘要:本文设计了一种基于单片机的数字式RCL自动测量仪。
该系统由STC89C52、DDS、自校准电路、分压及R运算电路、频率测量及控制电路、高精度交流/有效值转换电路、DAC、译码控制电路、液晶显示电路等构成,采用AD9850产生高精度的正弦波信号,采用电压比例算法推算出电阻、电容值或者电感值。
测量电路由八级标准电阻、继电器和NEC5532组成,能自动选择相应的标准电阻挡级及标准信号源的频率,完成量程的自动转换。
用单片机控制测量和计算结果,运用自校准电路提高测量精度,采用1602液晶模块实时显示数值。
实验测试结果表明,本设计性能稳定,测量精度高,超过设计要求。
关键词: STC89C52,测量,DDS,显示,频率The Design and Manufacture of Resistance Capacitance & InductanceTest InstrumentThis paper presents a Digital Automatic RCL Meter based on MCU. This system consists of STC89C52, DDS, Self-calibration circuit, V oltage divider and RCL operation circuit, Frequency measurement and control circuit, High Precision AC / RMS conversion circuit, DAC, Decoding control circuit, and LCD display circuit. The high-precision sine wave signal was produced by AD9850, The resistance, capacitance and inductance can be calculated by voltage ratio algorithmThe measurement circuit consists of eight standard resistance, relays and NEC5532. It can automatically select the appropriate level of resistance and frequency of signal source, fulfill the automatic switch of measurement range.The measurement and calculation were controlled by chip microcomputer.The self-calibration circuit was used to improve the measurement accuracy. The real-time values were displayed by 1602 LCD module.The experimental results show that the performance of the system is stable with high accuracy; the capacity of the system is over the design requirements.Keywords: S TC89C52, measurement, DDS, dislay, frequency前言电阻、电容、电感精确测量仪是实验室及工程中经常遇到的常用仪器。
数字电容测试仪课程设计
数字电子技术课程设计报告项目名称:数字电容测试仪班级:1611电子姓名:李瑞(2016111123)程家豪(2016111104)胡焱(2016111115)胡永凯(2016111116)指导老师:王正强1.1引言电容器在电子线路中得到广泛的应用,它的容量大小对电路的性能有重要的影响,此次我们的课程设计就是用数字显示方式对电容进行测量。
它由测试电路和显示电路两部分组成。
通过使用测试电路中555定时器做多谐振荡器,电容配合电阻充放电产生一系列的方波脉冲,再通过计数器记数算出电容的值,从而实现数码管显示被测电容的容值。
该电容测量仪相对比较直观,且误差较小,将在电容测量方面显示出它读数方便,精确的优越性。
1.2设计任务及要求1.2.1基本要求(1)被测电容的容量在0.01μF至100μF范围内。
(2)设计测量量程。
(3)用3位数码管显示测量结果,测量误差小于20%。
1.2.2发挥部分(选做)(1)另增一个测量量程,使被测电容的容量扩大到100PF至100μF范围内。
(2)测量误差小于10%。
1.2.3设计任务及目标(1)根据原理图分析各单元电路的功能;(2)熟悉电路中所用到的各集成块的管脚及其功能;(3)进行电路的装接、调试,直到电路能达到规定的设计要求;(4)写出完整、详细的课程设计报告。
2.1设计原理本设计中用555振荡器产生一定周期的矩形脉冲作为计数器的CP 脉冲也就是标准频率。
同时把待测电容C 转换成宽度为tw 的矩形脉冲,转换的原理是单稳态触发器的输出脉宽tw 与电容C 成正比。
用这个宽度的矩形脉冲作为闸门信号控制计数器计数,合理处理计数系统电路,可以使计数器的计数值即为被测电容值。
或者把此脉冲作为闸门时间和标准频率脉冲相“与”,得到计数脉冲,该计数脉冲送计数—锁存—译码显示系统就可以得到电容量的数据。
外部旋钮控制量程的选择。
用计数器控制电路控制总量程。
2.2单元电路设计分析2.2.1用555定时器构成的多谐振荡器电路图及其输出波形如图2所示,其工作原理如下:由图2所示,可以求得电容C1上的充电时间T 1和放电时间T 2:T 1=(R 1+R 2)C ㏑2≈0.7(R 1+R 2)CT 2=R 2C ㏑2≈0.7R 2C所以输出波形的周期为T=T 1+T 2=(R 1+2R 2)C ㏑2≈0.7(R 1+2R 2)CR 1=4.7k ,R 2=12k ,T≈2ms振荡频率f=1/T≈1.44/[(R 1+2R 2)C]≈500Hz 占空比q=(R 1+R 2)/(R 1+2R 2)≈58.2%定时电路多谐振荡器计数器译码器数码显示器微分电路自动调零图1原理框图被测电容图2多谐振荡电路及输出波形2.2.2用555定时器构成的单稳态电路用555定时器构成的单稳态触发器及其工作波形如图3所示,其工作原理如下:接通电源瞬间,V c=0,输出V o=1,放电三极管T截止。
数字式电容测试仪的设计
寡人猪八戒设计摘要本设计是基于555定时器,连接构成多谐振荡器以及单稳态触发器而测量电容的。
C。
其脉冲输入信号是555定时器构单稳态触发器中所涉及的电容,即是被测量的电容x成的多谐振荡器所产生。
信号的频率可以根据所选的电阻,电容的参数而调节。
这样便C值的可以定量的确定被测电容的容值范围。
因为单稳态触发器的输出脉宽是根据电容x不同而不同的,所以脉宽即是对应的电容值,其精确度可以达到0.1%。
然后在电路中加入一个由LM741以及一个电容和一个电阻构成的阻容平滑滤波器,将单稳态触发器输出v与被测量的电容值呈线性关系。
最后是输出电压的数字的信号滤波,使最终输出电压ov输入到7448译码器中翻译成BCD码,输入到LED数码管中显示出来。
化,将o关键词::电容,555定时器,滤波器,线性,译码器,LED数码管目录引言 (3)第1章毕业设计指标 (4)第2章毕业设计原理 (4)2.1设计原理框图 (4)2.2 方案设计 (5)2.3 模块介绍 (5)2.3.1 控制器电路 (5)2.3.2 时钟脉冲发生器 (6)2.3.3 计数和显示电路 (8)第3章单元电路的设计 (9)3.1 直流稳压电源设计 (9)3.1.1整流电路采用直流稳压电源设计思路 (9)3.1.2直流稳压电源的原理框图分析 (10)3.1.3直流稳压电源特点 (10)3.2 产生波形设计方案 (11)3.2.1 由555定时器搭建多谐振荡器 (11)3.2.2由555定时器搭建单稳态触发器 (12)第4章设计的步骤和过程 (14)4.1 设计制作的过程 (14)4.2 时钟及控制信号的关系等 (14)第5章设计的仿真与运行结果 (15)5.1 电路的调试 (15)5.2 仿真测量 (16)5.2.1 仿真测量实验一 (16)5.2.2 仿真测量实验二 (16)5.3 结果分析 (17)第6章芯片介绍 (18)6.1 555芯片功能介绍 (18)6.2 74LS160芯片介绍 (19)第7章结论 (21)7.1 设计过程中遇到的困难及解决办法 (21)7.2 毕业设计心得体会 (21)第8章参考文献 (22)附录 (23)附录A (23)附录B (24)引言随着电子技术的发展,当前数字系统的设计正朝着速度快、容量大、体积重量轻的方向发展。
毕业设计论文电容测试仪设计
编号毕业设计题目电容测试仪设计学生学号系部专业班级指导教师电容测试仪设计摘要随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,在应用中我们常常要测定电容的大小。
因此,设计可靠,安全,便捷的电容测试仪具有极大的现实必要性。
在系统硬件设计中,以STC89C52RC单片机为核心的电容测试仪,使用对应的振荡电路转化为频率实现参数的测量。
电容是采用555多谐振荡电路产生的,将振荡频率送入STC89C52RC的计数端端口,通过定时并且计数可以计算出被测频率,再通过该频率计算出被测参数。
在系统软件设计中,是以Keil4.0为仿真平台,使用C语言编程编写了运行程序;包括主程序模块、显示模块、电容测试模块。
最后,实际制作了一台样机,在实验室里进行了测试,结果表明该样机的功能和指标得到了设计要求。
关键词:单片机,555多谐振荡电路,1602液晶屏The design of Capacitance testerAbstractWith the development of electronic industry,electronic components rapidly increased the scopeof electronic components widely up gradually,in applications we often measured capacitors size.Therefore,the design of reliable,safe,convenient capacitance tester of great practical necessity.In the system hardware design,take the MCS-51 monolithic integrated circuit as the core resistance,the use correspondence's oscillating circuit transforms for the frequency realizes each parameter survey. And the electric capacity is use 555 multi resonant circuits to produce,the oscillation frequency will send STC89C52RC the counting to be neat,through and fixed time counts may calculate by the frequency measurement rate,figures out again through this frequency meter is measured the parameter.In system's software design is take Keil4.0 as the simulation platform,used the C language programming has compiled the system application software;including master routine module,display module,display module,electric capacity test module and inductance test module.Finally,the actual production of a prototype,tested in the laboratory results show that the prototype of the functions and indicators are the design requirements.Key Words:Single slice of machine;555 multi resonant circuit; 1602 dynamic display module目录摘要 (ⅰ)Abstractⅱ第一章引言 (1)1.1 设计背景及意义 (1)1.2 电容测试仪的发展历史和研究现状 (1)1.3 本设计所做的工作 (1)第二章电容测试仪的系统设计 (3)2.1 电容测试仪设计方案比较 (3)2.2 系统的原理框图 (4)第三章电容测试仪系统的硬件设计 (5)3.1 RC振荡电路的设计 (5)3.1.1 555定时器简介 (5)3.1.2 RC振荡电路的设计 (8)3.2 单片机电路的设计 (9)3.2.1 单片机的选择-STC89C52RC (9)3.2.2 单片机时钟电路设计 (11)3.2.3 单片机复位电路设计 (13)3.2.4 单片机定时器/计数器设置 (15)3.3 显示电路的设计 (16)3.3.1 液晶显示器的选择 (16)3.3.2 显示电路设计 (17)第四章电容测试仪系统的软件设计 (18)4.1 主程序流程图 (18)4.2 频率参数计算的原理 (18)第五章PCB板的设计及系统的调试 (20)5.1 Protel99SE介绍与PCB板的设计 (20)5.2 系统的调试 (22)5.3 系统的测试 (23)第六章总结与展望 (25)6.1 工作总结 (25)6.2 技术展望 (25)参考文献 (27)致 (28)附录 (29)附录系统原理图及PCB (29)第一章引言1.1 设计背景及意义目前,随着电子工业的发展,电子元器件急剧增加,电子元器件的适用围也逐渐广泛起来,在应用中我们常常要测定电容的大小。
简易数字电容测试仪的设计
电平跳变为高电平 , 电路进入暂稳态 , 放 电三极管T 截止。 此后 电容 c 充电, 当 充 电至 = _ 时, 电路的输出端 电压 由高 电平翻 转为低 电平 , 同时T 导通 , 于是电容 c 放 电, 电路返回到稳定状态 。
2
2
如 果 忽 略T的饱 和压 降 , 则 从 零 电平上 升 到 _ 的 时 间 , 即
2系统概述
2 . 1 测 量 系统构 成 该系统主要 由标准脉冲发生器 、 单稳态触发器、 测量控制 电路 、 计数器 、 译码器和显示器等部分组成。 其原理 图如( 图1 ) 所示。 2 . 2系统 的 总体 方 案设 计 利用 NE 5 5 5 电路 的多 谐 振 荡器 或 单 稳 态 电路 来 测量 。 本 方 案 采 用 单 稳 态 触 发 器 或 电容器充放 电规律 等, 可 以 把 被 测 电 容 的大小转换成脉 冲的宽 窄 , 即控 制 脉冲宽 度Tx严格 C X成 正 比。 只要 把 图 1 数 字 电容 测 试 仪 的原 理 框 图 此脉冲 与频率 固定 不变 的方 波 即 时钟 脉冲相 与 , 便 可 得 到计 数脉冲 , 把 计 数脉冲送给计数器 计数 , 然 后 再 送 给 显示 器 显示 。 如果 时 钟 脉 冲 的 频 率 等 参数 合适 , 数字 显 示器 显示 的数字N 便是 C X的大 小 。 简易 数 字 式 电 容测试仪主要分为 六大 板 块 : 由5 5 5 定 时器 构成 的多 谐 振
为输 出电压 的脉宽 t 。
Tw =RCx l n 3 1 . 1 RCx
3 . 2计数 、 译 码 和 显示 电路 ( 1 ) 计 数器 。 计数器主要用来对时钟进行计数并送入显示 电路 显示 。 4 5 1 8 :  ̄ : g T . B C D 码同步十进制计数器 , 每个计数器包含两个时 钟输入端 : C P 和E N。 C P 用于上升沿触 发, 要求E N=1 ; E N用于下降 沿触发 , 要求 C P =O 。 C R是异步复位 端 , 高 电平有效 , 正常计 数时 C R= O 。 这里 , 我们要测量的 电容范围是0  ̄ J 9 9 9 p F, 需要三位十进 制 计数 器 进 行 级联 。 其级联 的方 法 是将 低 位 的Q 3 端 接高 位 的E N端 , 高 位 计 数器 的 C P 端接地。 其 输 出 端Q3 Q 2 Q1 Q O 输出8 4 2 1 B C D 码, 接 显 示译码器 的代码 输入端 。 电路 图比较简单 , 在这里就不再赘述 了。 ( 2 ) 译码 器 电路 。 译 码 显 示 电路 的 设计 比较 简 单 , 选 用4 5 1 1 , 该 译 码器 为B C D一七段 锁存 /译 码 /驱 动 器 , 其 数据 输 入端 接计 数器 Q3 Q 2 Q1 Q O 端输出的B C D 码, 译码器 的输 出端接共 阴极七段半导体 数码 显 示 器 。
基于单片机的电容测试仪论文
目录1 绪论 (1)1.1 设计背景及研究意义 (1)1.2 国内外研究现状 (1)1.3 本设计研究内容 (2)2 系统设计 (2)2.1 系统设计任务及要求 (2)2.2 系统总体方案设计 (2)2.2.1 方案论证 (2)2.2.2 总体方案设计 (3)3 硬件电路设计 (4)3.1 单片机主控电路设计 (4)3.1.1 单片机介绍 (4)3.1.2 单片机最小系统 (5)3.1.3 主控电路的工作原理 (6)3.2 电容测量电路设计 (7)3.2.1 电容测量电路原理及工作过程 (7)3.2.2 电容测量电路原理图 (8)3.3 显示电路设计 (9)3.4 按键电路设计 (11)3.5 电源电路设计 (12)4 软件设计 (13)4.1 主程序设计 (13)4.2 子程序设计 (14)5 总结 (16)附录 (17)参考文献 (26)致谢 (27)1 绪论1.1 设计背景及研究意义电容量是电工电子信息行业中非常关键的一项物理量,在信息、工业、各种高新技术的开发和研究中也是一个非常普遍和常用的测量参数。
目前,随着电子信息技术的发展,智能技术的广泛应用,电容量测量技术已向自动化、智能化方向发展。
基于此,提出了电容量的数字化测量。
随着经济的发展和科技水平的提高,很多智能芯片的制造,使电子测量仪表向数字化、智能化方向发展。
电容量的测量是电子测量中最基本的参数测量,要求有一定的精确度,同时要求测量的量程要宽,测量的速度要快。
因此,设计可靠、安全、便捷的电容测试仪具有极大的现实必要性。
1.2 国内外研究现状近年来测量仪器的可靠性和稳定性问题得到了很多方面的重视,状况有了很大改观。
测试仪器行业目前已经越过低谷阶段,重新回到了快速发展的轨道。
随着模块化和虚拟技术的发展,为测试测量仪器行业带来了新的契机。
电容器作为非常重要的一个电学元件在现代电子技术中有着非常广泛的用途,电容定义为:电容器所带的电荷量Q与电容器两极板间的电势差U的比值,即:QCU。
电容电阻测量实验报告
电容、电阻测量实验报告实验目的:1、掌握电容测量的方案,电容测量的技术指标2、学会选择正确的模数转换器3、学会使用常规的开关集成块4、掌握电阻测量的方案,学会怎样达到电阻测量的技术指标实验原理:一、数字电容测试仪的设计电容是一个间接测量量,要根据测出的其他量来进行换算出来。
1)电容可以和电阻通过555构成振荡电路产生脉冲波,通过测出脉宽的时间来测得电容的值T=kR CK和R是可知的,根据测得的T值就可以得出电容的值2)电容也可以和电感构成谐振电路,通过输入一个信号,改变信号的输入频率,使输入信号和LC电路谐振,根据公式W=1/ √LC就可以得到电容的值。
二、多联电位器电阻路间差测试仪的设计电阻是一个间接测试量,他通过测得电压和电流根据公式R=U/I得出电阻的值电阻测量分为恒流测压法和恒压测流法两种方法这两种方法都要考虑到阻抗匹配的问题1)恒流测压法输入一个恒流,通过运放电路输出电压值,根据运放电路的虚断原理得出待测电阻两端的电压值,就可以得出待测电阻的阻值。
2)恒压测流法输入一个恒压,通过运放电路算出电流值,从而得出电阻值方案论证:数字电容测试仪用555组成的单稳电路测脉宽用555构成多谐振荡器产生触发脉冲多谐振荡器产生一个占空比任意的方波信号作为单稳电路的输入信号。
T1=0.7*(R1+R2)*CT2=0.7*R2*C当R2〉〉R1时,占空比为50%单稳电路是由低电平触发,输入的信号的占空比尽量要大触发脉冲产生电路电容测试电路Tw=R*Cx*㏑3R为7脚和8脚间的电阻和待测电容Cx构成了充放电回路,这个电阻可以用一个拨档开关来选择电容的测试挡位。
当待测电容为一大电容时,选择一个小电阻;当电容较小时,选择一个较大的电阻。
使输出的脉宽不至于太大或者太小,用以提高测量的精度和速度。
R*C不能取得太小,R*C*㏑3≥T2,如果R*C取得太小,使得充放电时间太小,当来一个低电平时,电路迅速充电完毕,此时输入信号仍然处于低电平状态,输出电压为高电平,此时的脉宽就与RC无关,得到的C值就不是所要测的电容值。
电容电感测量仪课题报告
一、课题的开发背景与需求分析在电子电路实验中经常需要测量电容的容量和电感的电感量,特别对一些小容量和小感量的器件,虽然专业测量仪很好,但不是每人都能配备,所以,如果能够自己动手制作,那么既锻炼了动手能力,又解决了问题。
国外有一个网站上出售使用PIC16C622制作的电容电感测试议套件,可以测量电容量或电感量;后来又有人介绍使用AT89C2051制作的同类测量仪。
这里根据上述仪器的原理模仿制作了一个,经试用效果不错,而且电路简单实用,测量范围较宽,测量结果也较准确,完全可以满足一般电子爱好者的需要自制的电容电感测量仪。
二、调研分析经过开题期间的文献查阅和实际情况调研,了解到电容器的参数很多,通常有:电容量、耐压、漏电、等效电感、损耗、频率特性、温度稳定性、等效串联电阻(超大容量电容器)等;电感器的参数有:电感量、漏感、等效电阻、损耗、频率特性、饱和电流、最大功率等。
在故障诊断以及电器维修中更换元器件时,需要对这些参数予以全面考虑。
但是一般条件下,元器件上只会标明电容量或电感量、电容器的耐压值等,普通仪器也能测量到这些基本参数,其他的参数只能靠选用规定类型、规格的电容器或电感器来保证。
电容器的种类很多,依其中使用的绝缘介质材料不同可分为:纸介电容、金属化纸介电容、云母电容、瓷介电容、涤纶薄膜电容、聚本乙烯薄膜电容、钽电解电容、铝电解电容、双电层电容等。
大多数电容器没有正负极之分,容量一般都在1uf 以下,一般适合在较高频率的场合使用;电解电容器的容量可以做到10^4uf,超大容量的双电层电容器(EDLC)其容量以可做到法拉级,但都有级性,适合低频场合使用,容量测量方法与无极性电容器不同。
电感器一般有空心、磁心、铁心之分,但电感的测量方法一般没有区别。
有以下测量方法:1.经典测量方法经典测量方法利用交流电桥的平衡原理,既可以测电容,也可以测量电感。
交流电桥测量电容的原理图如图1所示。
当电桥平衡时,有Rx+1/(jwCx)=R4(R2+1/(jwC2))/R3由上式可求得Cx=R3C2/R4,Rx=R4R2/R3。
毕业设计(论文)基于单片机的电容测量仪设计
2.3.2基于AT89C51电容测量系统复位电路
MCS-51的复位是由外部的复位电路来实现的。MCS-51单片机片内复位,复位引脚RST通过一个斯密特触发器用来抑制噪声,在每个机器周期的S5P2,斯密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。
利用多谐震荡原理测量电容的方案硬件设计比较简单,但是软件实现相对比较复杂,而直接根据充放电时间判断电容值的方案虽然基本上没有用到软件部分,但是硬件却又十分的复杂。而且他们都无法直观的把测量的电容值大小显示出来。
根据上面两种方案的优缺点,本次设计提出了硬件设计和软件设计都相对比较简单的方案:基于AT89C51单片机和555芯片的数显式电容测量。该方案主要是根据555芯片的应用特点,把电容的大小转变成555输出频率的大小,进而可以通过单片机对555输出的频率进行测量。本方案的硬件设计和软件设计都相对简单。
反向器单稳态触发器显示窄脉冲触发器秒脉冲发生器译码器记数器标准记数脉斱案三基亍at89c51单片机和555芯片构成的多谐振荡申路申容测量返种申容测量斱法主要是通过一块555芯片来测量申容让555芯片工作在直接反馈无稳态的状态下555芯片输出一定频率的斱波其频率的大小跟被测量的申只要我仧能够测量出555芯片输出的频率就可以计算出测量的申容
2.面向应用和现代市场营销模式还没有真正建立起来。本土仪器设备厂商只是重研发,重视生产,重视狭义的市场,还没有建立起一套完整的现代营销体系和面向应用的研发模式。传统的营销模式在计划经济年代里发挥过很大作用,但无法满足目前整体解方案流行年代的需求。所以,为了快速缩小与国外先进公司之间的差距,国内仪器研发企业应加速实现从面向仿制的研发向面向应用的研发的过渡。特别是随着国内应用需求的快速增长,为这一过渡提供了根本动力,应该利用这些动力,跟踪应用技术的快速发展。
电容测试仪设计【开题报告】
毕业论文开题报告电子信息工程电容测试仪设计一、课题研究意义及现状目前,随着电子工业时代的发展,电子组件的急剧增加,电子的应用范围也越来越广,在应用中我们常常要用到容量大小不一的电容。
电容的测量仅仅用电容表已经满足不了而且不准确,那种高精度的仪器给在校大学生和普通大众使用又不实用。
因此,要测试电容的大小,设计一个可靠,简单的电容测试仪。
电容的测试发展已经很久,方法众多。
传统的电容测量方法有电桥法和谐振法两种。
前者精度高但速度慢;后者电路简单,速度快但精度低。
选择这个课题主要是想研究出一种高效率高精度的电容测试仪。
比较各种电容的测试方法,我选出了把测试电容的模拟量转化为数字量,这种数字量比较容易处理,使仪表实现智能化,避免由于传统的指针读数引起的误差电容的未来发展趋势为电容测量仪朝着小型化、轻型化方向发展。
全面实现数字化和自动化;参数自设定计术;过程自优化技术;故障自诊断技术;相关配套行业朝着专业化,规模化发展,社会分工更明显。
通过这次的课题研究让我把所学的理论与实际相结合起来,提高自己的动手能力和独立思考能力。
在现实社会中,实际的动手能力至关重要,而这种实际能力的培养单靠教学是远远不够的。
二、课题研究的主要内容和预期目标本课题来源于实验室,通过对本课题的研究,对我们今后相关课程的理论教学改革和实验教学改革可以起到积极的推动作用,并打下坚实的基础。
设计和实现一个电容测试仪-电容表。
将测电容变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
1:通过计算机软件的仿真。
2:能测试电容的范围为1000PF~1000uF,测试精度为10%3:通过3位数码管显示。
4:要搭建硬件电路,并进行实测。
三、课题研究的方法及措施实现一个电容测试仪-电容表。
将测电容转变为测频率,即进行C-F转换,然后设计一个频率计,通过测频率F来显示或计算出电容的大小。
电容转频率的电路是利用555芯片的单稳态触发器或电容的充放电规律等,可以把被测电容的大小转换成脉冲的宽度。
简单电阻,电容和电感检验测试仪设计
课程设计任务书学生姓名:专业班级:指导教师:工作单位:信息工程学院题目: 简易电阻、电容和电感测试仪设计初始条件:LM317 LM337NE555 NE5532STC89C52 TLC549 ICL7660 1602液晶要求完成的主要任务:1、测量范围:电阻100Ω-1MΩ;电容100pF-10000pF;电感100μH-10mH。
2、测量精度:5%。
3、制作1602液晶显示器,显示测量数值,并用发光二级管分别指示所测元件的类别。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:__________ 年月日目录摘要 (4)ABSTRACT (5)1、绪论 (7)2、电路方案的比较与论证 (7)2.1电阻测量方案 (7)2.2电容测量方案 (9)2.3电感测量方案 (11)3、核心元器件介绍 (12)3.1LM317的介绍 (12)3.2LM337的介绍 (13)3.3NE555的介绍 (14)3.4NE5532的介绍 (17)3.5STC89C52的介绍 (18)3.6TLC549的介绍 (20)3.7ICL7660的介绍 (23)3.81602液晶的介绍 (24)4、单元电路设计 (26)4.1直流稳压电源电路的设计 (27)4.2电源显示电路的设计 (28)4.3电阻测量电路的设计 (29)4.4电容测量电路的设计 (30)4.5电感测量电路的设计 (31)4.6电阻、电容、电感显示电路的设计 (32)5、程序设计 (33)5.1中断程序流程图 (33)5.2主程序流程图 (34)6、仿真结果 (34)6.1电阻测量电路仿真 (34)6.2电容测量电路仿真 (35)6.3电感测量电路仿真 (36)7、调试过程 (37)7.1电阻、电容和电感测量电路调试 (37)7.2液晶显示电路调试 (38)8、实验数据记录 (38)心得体会 (40)参考文献 (41)附件 (42)附件1:电路图 (42)附件2:元件清单 (43)附件3:程序代码 (45)附件4:实物图 (64)摘要近几年来,电子行业的发展速度相当快,电子行业的公司企业数目也不断增多。
简易电容测试仪的设计
仪 的 设计 与 实现 【 J ] . 硅谷 , 2 0 l l ( 1 ) : 4 7 .
[ 2 】郝鹏 , 王大明. 基 于5 1 单片机的电阻、 电
容、 电感 测 试仪 [ J ] . 科 技致 富 向导 , 2 0 1 1
( 2 0 ) : 9 6 .
【 3 ]渠艳 霞 . 基 于 单 片 机控 制 的 电阻 电 容 测 试 仪的 设计 [ J 】 . 总裁, 2 0 0 9 ( 4 ) : 1 4 1 —1 4 2 . [ 4 ]徐 思 成 . 一 种 基 于单 片 机 智 能 电 容测 试
大小 , 采用4 位7 段 数 码 管进 行 显 示 。 为 增加
数 码 管 亮度 , 选 取7 4 L S 2 4 5 芯 片 增加 驱 动 电
流。
图1 多谐 振荡 器原 理 图
被
_ . j \ I \ 】 多谐振荡 l :
。
—
I \I : : : 极管指示灯 I
①作者 简 介 : 黄璞( 1 9 8 2 一) , 女, 汉, 湖 北 省宜 昌市 人 , 鄂 东 职 业技 术 学 院 , 讲师 , 主要 从 事 工 业 控 制 与检 测 技 术方 面 研 究 。 黎会 鹏( 1 9 8 1 一) , 男, 汉, 湖北省 荆门 市人 , 鄂东 职业 技术 学院 , 讲师, 主要 从事 嵌入 式 系统设 计方 面研 究 。
圆圆
ห้องสมุดไป่ตู้
动 力 与 电 气 工 程
简易 电容 测 试 仪 的设 计 ①
黄璞 黎会鹏 ( 鄂 东职业 技术 学院机 电系 湖北黄 冈
4 3 8 0 0 0 )
摘 要: 介 绍 了一种基于A T8 9 c 5 1 单 片机的电容测试 仪的硬 件结 构和设计思 想 。 该方案是根. tN E5 5 5 芯 片多谐振 荡电路 的应 用特点 , 把电 容的大小转 变成频率的大 小, 进 而可 以通过 单片机 对输 出的频率进行 测量 , 再通 过该频率计算 出被 测参数 。 该 测量仪具有 结构简单, 成本 低廉, 精度 较 高 , 方便 实 用等特 点 。 ’ 关键 词 : 电 容 A T 8 9 C 5 1 N E5 5 5 中 图分 类号 : TP 3 0 4 文 献标 识码 : A 文 章编 号 : 1 6 7 2 -3 7 9 1 ( 2 0 1 3 ) 0 8 ( b ) -0 1 2 2 —0 2
简易电阻、电容和电感测试仪设计.(DOC)
元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。
2.(基本要求)电阻阻值测量,范围:100欧~1M欧;3.(基本要求)电容容值测量,范围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。
也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。
然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。
所以制作一个简单易用的电抗元器件测量仪是很有必要的。
现在国内外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。
该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。
2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案V CC GNDR x R0图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。
电阻、电容、电感测试仪设计方案与系统的原理框图
电阻、电容、电感测试仪设计⽅案与系统的原理框图电阻、电容、电感测试仪设计⽅案⽐较电阻、电容、电感测试仪的设计可⽤多种⽅案完成,例如利⽤模拟电路,电阻可⽤⽐例运算器法和积分运算器法,电容可⽤恒流法和⽐较法,电感可⽤时间常数发和同步分离法等、使⽤可编程逻辑控制器(PLC)、振荡电路与单⽚机结合或CPLD与EDA相结合等等来实现。
在设计前对各种⽅案进⾏了⽐较:1)利⽤纯模拟电路虽然避免了编程的⿇烦,但电路复杂,所⽤器件较多,灵活性差,测量精度低,现在已较少使⽤。
2)可编程逻辑控制器(PLC) 应⽤⼴泛,它能够⾮常⽅便地集成到⼯业控制系统中。
其速度快,体积⼩,可靠性和精度都较好,在设计中可采⽤PLC对硬件进⾏控制,但是⽤PLC实现价格相对昂贵,因⽽成本过⾼。
3)采⽤CPLD或FPGA实现应⽤⽬前⼴泛应⽤的VHDL硬件电路描述语⾔,实现电阻,电容,电感测试仪的设计,利⽤MAXPLUSII集成开发环境进⾏综合、仿真,并下载到CPLD或FPGA可编程逻辑器件中,完成系统的控制作⽤。
但相对⽽⾔规模⼤,结构复杂。
4)利⽤振荡电路与单⽚机结合利⽤555多谐振荡电路将电阻,电容参数转化为频率,⽽电感则是根据电容三点式电路也转化为频率,这样就能够把模拟量近似的转换为数字量,⽽频率f是单⽚机很容易处理的数字量,⼀⽅⾯测量精度⾼,另⼀⽅⾯便于使仪表实现⾃动化,⽽且单⽚机构成的应⽤系统有较⼤的可靠性。
系统扩展、系统配置灵活。
容易构成各种规模的应⽤系统,且应⽤系统有较⾼的软、硬件利⽤系数。
单⽚机具有可编程性,硬件的功能描述可完全在软件上实现,⽽且设计时间短,成本低,可靠性⾼。
综上所述,利⽤振荡电路与单⽚机结合实现电阻、电容、电感测试仪更为简便可⾏,节约成本。
所以,本次设计选定以单⽚机为核⼼来进⾏。
系统的原理框图本设计中,考虑到单⽚机具有物美价廉、功能强、使⽤⽅便灵活、可靠性⾼等特点,拟采⽤MCS - 51系列的单⽚机为核⼼来实现电阻、电容、电感测试仪的控制。
电容测试仪的设计
电容 测试 仪 的功 能和 框 图
该 电容 测 试 仪 的功 能是 测 试 电容 器 的容 量 ,用 三位数 字 显示 测 量结 果 ,量 程 为 1 F~ 999 ̄F,测 量 时间不 大 于 2s,电源 电压 +9V。
有 的数 字 万用 表没 有 电容档 ,无 法测 量 电容值 ; 有 的数 字万 用表 设 有 电 容 测 量 功 能 ,通 常其 电容 档 的测 量值 最 大 为 20t ̄F,测 量 范 围 较 窄 ;而 用 指 针 式 万用 表 电阻 档 ,只能 判 断电容 的好 坏 ,不 能测量 电容 的 容 量 。
第23卷 第 3期 2011年 9月
武 汉工 程 职 业 技 术 学 院 学 报
Journal ofW uhan Engineering Institute
VO1.23 N o.3 Septem ber 201 1
电容 测 试 仪 的设 计
李 晓虹 ’
(武 汉工程 职 业技 术 学院 湖 北 武汉 :430080)
C
图 I 电 容 测 试 仪 整 机 框 图
2.1 时钟脉 冲产 生 电路
由 NE555定 时器 U1、电容 C1、C2、电阻 R1、R2
组 成 时钟 脉 冲产生 电路 ,电路 接 通 电源后 在 U1的 3 端 产 生 了连续 的 时 钟 脉 冲 Y1,周 期 T≈ 0.693(R1
信 号经 与非 门 U3:B、反 相 器 U3:C(由一 个 与 非 门
连 接而 成)由 U3的 1O端输 出计 数 脉 冲 Y4,波 形 如
一种简易数字式电容测试仪的设计
器
。 -。
f l
C
图 1 数字式 电容测试仪原理框 图 3 电路设计 3 1 控制器 电路 . 控 制器 的主要功能是根 据被 测电容 c 的容量大 小形 x 成与其成正 比的控制脉 冲宽度 T . 2 示为 单稳 态控制 x图 所 电路 的原理 图 . 该电路 的工作原理如下 :
V0 . 3 o 1 1 2 N . F b 2 07 e .0 r
一
种 简易数 字式 电容测试 仪 的设 计
张 立 萍
( 赤峰 学院 物理与电子信息工程 系, 内蒙古 赤峰 040 ) 200
摘
要 :本 文介 绍 了一种 数字式电容测试仪 电路 ,能够测量并显示电容的大小 .
因为时钟周 期 T .( 3 R) 是在 忽略 了 55 07 R +24 5 定 时器 6 脚的输入 电流条件 下得到 的 , 而实际上 6 有 1 脚 0 的电流 流入 . , 了减 小该 电流的影 响 , 使流 过 的电 因此 为 应 流最小值大 于 1 . 因为要求 C = 9t ,x 2, 0 又 99. T = s , v时 所
R
2 r Vc/3 :
/ 3 ,
O
R
I 1
C
O
]. 一 一 厂厂厂 ]]
() b
() a
图 3 时钟脉 冲发生器
振荡 波形 的周期为 :
T=t +t  ̄07 R +2 4C p p - .( 3 R )a l 2
u 达到 2 3 , c V / 时 流过 R 、 4 3R 的电流最小 , 为
至 计数器 时钟 脉 冲端
图 2 单稳态控制 电路 当被测 电容 c 接 到 电路 中之后 , x 只要 按一下 开 关 S , 电源 电压 经微 分电路 c、 l 1R 和反 向器 , 送给 55 时器 5定 的低 电平触发端 2 一个负脉 冲信号使单稳态触发器 由稳态 变为暂稳态 , 其输 出端 3 由低电平变为高 电平 . 高电平控 该
简易电阻、电容和电感测试仪设计原理
简易电阻、电容和电感测试仪设计原理简易电阻、电容和电感测试仪一、任务设计并制作一台数字显示的电阻、电容和电感参数测试仪,示意框图如下:二、要求1.基本要求.基本要求(1)测量范围:电阻100Ω~1M Ω;电容100pF 100pF~~10000pF 10000pF;电感;电感100μH ~10mH 10mH。
(2)测量精度:±5% 。
)测量精度:±5% 。
(3)制作4位数码管显示器,显示测量数值,并用发光二极管分别指示所测元件的类型和单位。
三、设计步骤三、设计步骤1、分模块测量电路的设计原理(1)电阻测量电路的基本原理电阻测量仪的关键技术是电阻测量仪的关键技术是R X /V 转换器,转换器,R R X 即所需测量的电阻,无论电路多么复杂,总可以把与R X 相并联的元件等效为两只互相串联的电阻R 1和R 2。
由此构成三角形电阻网络,其原理图如下所示:上图中R 0为量程电阻,只要使R 1两端呈等电位,此时U R1=0=0,则,则R 1相当于开路,路,R R 2变成运放的负载电阻,变成运放的负载电阻,R R 1和R 2就不起分流作用,这样即可直接测就不起分流作用,这样即可直接测 R R X 的阻值。
的阻值。
E E 为测试电压,为测试电压,I I S 为测试电流,设流过R X 和R 1的电流分别为I X 和I 1,根据基尔霍夫定律可知:,根据基尔霍夫定律可知:I S =I X + I 1又根据“虚地”原理,则又根据“虚地”原理,则U R1= I 1 R 1=0故I 1=0=0,可忽略不计。
由此得到:,可忽略不计。
由此得到:,可忽略不计。
由此得到:I S =I X再考虑到C 点接地,则D 点为“虚地”,因此:点为“虚地”,因此:I S=E/ R0进而推导出:进而推导出: U X= I X R X= I S R X= (E/ R0)·R X显然,只要能得到RX 两端的电压UX,就能求出RX的值,即:的值,即: R X= U X/(E/ R0)= U X R0/ E这就是电阻测量的基本原理。
简易电阻、电容和电感测试仪设计.(DOC)
... . .元器件参数测量仪的设计一、课程目的1.加深对电路分析、模拟电路、数字逻辑电路、微处理器等相关课程理论知识的理解;2.掌握电子系统设计的基本方法和一般规则;3.熟练掌握电路仿真方法;4.掌握电子系统的制作和调试方法;二、设计任务1.设计并制作一个元器件参数测量仪。
2.(基本要求)电阻阻值测量,围:100欧~1M欧;3.(基本要求)电容容值测量,围:100pF~10 000pF;4.(基本要求)测量精度:正负5% ;5.(基本要求)4位显示对应数值,并有发光二极管分别指示所测器件类型;6.(提高要求)增加电感参数的测量;7.(提高要求)增加三极管直流放大倍数的测量;8.(提高要求)扩大量程;9.(提高要求)提高测量精度;10.(提高要求)测量量程自动切换;三、任务说明:电阻电容电感参数测量常用电桥法,该方法测量精度,但是电路复杂。
也可为简化起见,电阻测量也可采用简单的恒流法,电容采用555定时电路;1、绪论在现代化生产、学习、实验当中,往往需要对某个元器件的具体参数进行测量,在这之中万用表以其简单易用,功耗低等优点被大多数人所选择使用。
然而万用表有一定的局限性,比如:不能够测量电感,而且容量稍大的电容也显得无能为力。
所以制作一个简单易用的电抗元器件测量仪是很有必要的。
现在国外有很多仪器设备公司都致力于低功耗手持式电抗元器件测量仪的研究与制作,而且精度越来越高,低功耗越来越低,体积小越来越小一直是他们不断努力的方向。
该类仪器的基本工作原理是将电阻器阻值的变化量,电容器容值的变化量,电感器电感量的变化量通过一定的调理电路统统转换为电压的变化量或者频率的变化量等等,再通过高精度AD采集或者频率检测计算等方法来得到确定的数字量的值,进而确定相应元器件的具体参数。
2、电路方案的比较与论证2.1电阻测量方案方案一:利用串联分压原理的方案图2-1串联分压电路图根据串联电路的分压原理可知,串联电路上电压与电阻成正比关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1、设计指标 (3)2、设计原理 (3)2.1设计原理框图 (3)2.2设计方案 (3)2.3模块介绍 (4)2.3.1 控制电路 (4)2.3.2 时钟脉冲发生器 (4)2.3.3 计数器和显示器 (6)3、单元电路的设计 (6)3.1多谐振荡器 (6)3.2单稳态触发器 (8)3.3.1整流电路采用直流稳压电源设计思路 (9)3.3.2直流稳压电源的原理框图分析 (9)3.3.3直流稳压电源特点 (10)4、设计制作过程及整体电路图 (10)4.1设计制作过程 (10)4.2整体电路图 (11)5、芯片介绍 (11)5.1555芯片功能介绍 (11)5.274LS192芯片介绍 (13)总结 (14)致谢 (15)参考文献 (16)1、设计指标1.1 设计目的(1) 掌握数字电容测试仪的构成、原理和设计方法。
(2) 掌握集成电路的使用方法。
1.2 基本要求(1)电容测量范围为1000pF~10uF,输出应能直接显示其值,误差≤5%,电源电压为+5V。
(2)量程可切换,显示值能够标定。
(3)要求最终正确无误地完成全部电路设计,并具有一定先进性,对电路设计也应提出建议性意见并写出合格的课程设计说明书,圆满完成各项任务。
2、设计原理2.1设计原理框图图1.电容测试仪原理框图2.2 设计方案利用单稳态触发器或电容器充放电规律等,可以把被测电容的大小转换成脉冲宽窄,即控制脉冲宽度Tx 与Cx成正比。
只要把此脉冲与频率固定不变的方波即时钟脉冲相与,便可得到计数脉冲,把计数脉冲送给计数器计数,然后再送给显示器显示。
如果时钟脉冲的频率等参数合适,数字显示器显示的数字N便是电容Cx的大小。
之所以选择该方案是考虑到这个方案不仅设计比较容易实现,而且更重要的是该方案设计出来的数字测试仪测量的结果比较精确。
2.3 模块介绍2.3.1 控制电路控制器的主要功能是根据被测电容Cx的容量大小形成与其成正比的控制脉冲Tx。
图2所示为单稳态控制电路的原理图。
该电路的工作原理如下:图2.单稳态控制电路原理图当被测电容Cx接到电路中之后,只要按一下开关S,电源电压Vcc 经微分电路C、1R和反向器,送给555定时器的低电平触发端2。
一个负脉冲信号使单稳态触发1器由稳态变为暂稳态,其输出端3由低电平变为高电平。
该高电平控制与门使时钟脉冲信号通过,送入计数器计数.暂稳态的脉冲宽度为Tx=1.1RCx。
然后单稳态电路又回到稳态,其输出端3变为低电平,从而封锁与门,停止计数。
可见,控制脉冲宽度Tx与RCx成正比。
如果R固定不变,则计数时钟脉冲的个数将与Cx的容量值成正比,可以达到测量电容的要求。
由于设计要求,Cx的变化范围为1000pF~10uF,且测量的时间小于2s,即Tx<2s,也就是Cx最大(10uF)时,Tx<2s,根据Tx=1.1RCx可求得:R<T X/(1.1C X)=2/(1.1×10×10-6)欧=181.8千欧。
取R3=180K。
微分电路可取1R=1K,2R=10K,1C=l F2.3.2 时钟脉冲发生器这里选用由555定时器构成的多谐振荡器来实现时钟产生功能。
电路原理图如图3所示:振荡波形的周期为:图3.由555定时电路构成的多谐振荡器 T=tp1+tp2≈0.7(R 2+R 1)C 3其中tp1≈ 0.7(R 2+R 1)C 2 ,tp2≈0.7R 1C 2占空比为:q=tp1/T=(R 2+R 1)/(R 2+2R 1)因为时钟周期T ≈0.7(R 2+R 1) 是在忽略了555定时器6脚的输入电流条件下得到的,而实际上 6脚有10F μ的电流流入。
因此,为了减小该电流的影响,应使流过的电流最小值大于10uF 。
又因为要求 Cx =10uF 时,Tx=2s ,所以需要时钟脉冲发生器在 2s 内产生脉冲。
即时钟脉冲周期应为T=2ms .即:122Ttp tp ms =+=。
如果选择占空比q=0.6,即 q=1tp T =0.6 由此可求得: 10.60.62 1.2tp T ms ms ==⨯=21取2C =0.1F μ,则 : 4R =220.7tp C ≈11.43K 3R =120.7tp C -4R 521521100%0%20%521-⨯=<≈5.713K . 取标称值:3R =5.6K ,4R =12K .最后还要根据所选电阻3R 、4R 的阻值,校算流过3R 、4R 的最小电流是否大于10uA 。
从图可以看出,当2C 上电压c U 达到23V 时,流过3R 、4R 的电流最小,为: m I in =2334VCC VCC R R -+≈95uA 振荡周期:3420.7(2) 2.07T R R C ms ≈+=可见所选元件基本满足设计要求,为了调整振荡周期,3可选用5.6K 的电位器。
2.3.3 计数器和显示器由于计数器的技术范围为1uF ~9999uF ,因此需要4个二——十进制加数计数器。
这里用4片74LS192级联起来构成所需的计数器。
四片74LS192和四个数码管的连接如下图4所示:图4.四片74LS192和四个数码管连接的电路图3、单元电路的设计3.1 多谐振荡器由555定时电路构成的多谐振荡器如图5所示,它既为下一级的单稳态触发器提供输入脉冲,又为后面计数器开始计数提供信号脉冲。
其工作原理如下:多谐振荡器只有两个暂稳态。
假设当电源接通后,电路处于某一暂稳态,电容C 上电压UC 略低于cc U 31 ,Uo 输出高电平,V1截止,D1导通,D2截止,电源Ucc 通过R1、R2 给电容C 充电。
随着充电的进行Uc 逐渐增高,但只要cc c cc U U U 3231<<, 输出电压Uo 就一直保持高电平不变,这就是第一个暂稳态。
当电容C 上的电压Uc 略微超过cc U 32 时(即U6和U2均大于等于cc U 32 时), RS 触发器置 0,使输出电压Uo 从原来的高电平翻转到低电平,即Uo=0,V1导通饱和,此时电容C 通过D2、R2和V1放电。
随着电容C 放电,Uc 下降,但只要cc c cc U U U 3132>>, Uo 就一直保持低电平不变,这就是第二个暂稳态。
当Uc 下降到略微低于cc U 31 时,RS 触发器置 1,电路输出又变为Uo=1,V1截止,电容C 再次充电,又重复上述过程,电路输出便得到周期性的矩形脉冲。
其振荡周期为:()2ln 12Rw T 21C Rw +=图5.多谐振荡器工作波形如图6所示:图6.多谐振荡器的工作波形3.2 单稳态触发器由555定时器构成的单稳态触发电路如图7所示,它可以产生占空比一定的脉波,此脉波用来控制计数。
在单稳态触发电路后加反相器用来控制74273锁存计数值。
单稳态触发器的工作原理如下:1、无触发信号输入时电路工作在稳定状态当电路无触发信号时,u i 保持高电平,电路工作在稳定状态,Q=0,即输出端u o 保持低电平,555内放电三极管VT 饱和导通,管脚7“接地”,电容电压u c 为0V 。
图7.单稳态触发器2、充电过程当触发信号到来是时,555触发器输入端2脚由高电平变为低电平,电路被触发,Q=1,u o 由低电平跳变为高电平,因此三极管VT 截止,电路开始有电源Vcc 经电阻R对电容C 充电,电路由稳态转入暂稳态。
当cc c cc U U U 3231<<时,处于中间保持状态,仍有输出u o =1,这个充电过程为电路的暂态过程。
3、放电过程当电容C 的电位u c 由于充电而不断上升,趋势是U (∞)=Vcc ,但当u c 刚刚略大于cc U 32时,此时由于2脚的负尖脉冲早已过去,故R=0,S=1,进而有Q=0,此时输出应为u o =0, 三极管VT 导通,电容上充的电将通过VT 迅速放电,致使6脚的电压为0V ,这进一步保证了输出又回到了u o =0的稳定状态。
4、恢复过程当暂稳态结束后,电容C通过饱和导通的三极管VT放电,经过一段时间后,电容放电完毕,恢复过程结束,恢复过程结束后,电路返回稳定状态,单稳态触发器又可以接收新的触发信号。
3.3 直流稳压电源的设计3.3.1整流电路采用直流稳压电源设计思路(1)电网供电电压为交流220V(有效值),50Hz,要获得低压直流输出,首先须采用电源变压器将电网电压降低获得所需要的交流电压。
(2)降压后的交流电压,通过整流电路变成单向的直流电,但其幅值变化大,与理想的直流电压相差很远。
(3)脉动大的直流电压须经过滤波电路变成平滑的,脉动小的直流电,即将交流成分滤掉,保留其直流成分。
(4)滤波后的直流电压再通过稳压电路,稳压电路利用自动调整的原理,使输出的电压基本不受电网电压或负载电流变化的影响,便可得到基本上不受外界影响的稳定的直流电压输出,供给负载。
3.3.2直流稳压电源的原理框图分析采用电源变压器将电网220V,50Hz交流电降压后送整流电路,整流电路采用桥式整流电路,整流桥选用的二极管需要考虑允许承受的电压和电流值。
图8.直流稳压电源的原理框图滤波器常采用无源元件R,L,C构成的不同类型滤波电路。
由于本电路为小功率电源,故可用电容滤波电路。
稳压电路采用串联反馈式稳压电路。
比较放大单元采用分立三极管组成的差动放大器或者集成运算放大器,可提高电路的稳定性。
过流保护器:串联稳压电路中,调整管与负载串联,当输出电流过大或者输出短路时,调整管会因电流过大或电压过高使管耗过大而损坏,所以须对调整管采取保护措施。
3.3.3直流稳压电源特点采用集成稳压器构成直流稳压电源,具有使用方便,结构简单及性能优良等许多特点,因而得到广泛应用。
图9. 直流稳压电源电路图从电路中我们可看出,此电路多加了一只三极管和几只电阻,R2与D组成BG2的基准电压,R3,Rp,R4组成了输出电压取样支路,T2b点的电位与T2e点的电位进行比较(由于DZ1的存在,所以T2e点的电位是恒定的),比较的结果有T2的集电极输出使T2c点电位产生变化从而控制T1的导通程度(此时的BG1在电路中起着一个可变电阻的作用),使输出电压稳定,Rp是一个可变阻器,调整它就可改变A点的电位(即改变取样值)由于T2e点的变化,T2c点电位也将变化,从而使输出电压也将发生变化。
这种电路其输出电压灵活可变,所以在各种电路中被广泛应用。
4、设计制作过程及整体电路图4.1设计制作过程(1) 查阅资料,了解数字电容测试仪的基本工作原理和工作原理电路图,把整体电路图分解成一个个单独的模块。
(2) 通过查阅集成块的参考书,了解各个模块中的集成块的构造就作用,对集成块的使用方法已经集成块的输入输出端以及集成块的进制有一定得了解。