第六章6.1.3平方根教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.1.3平方根
凤台六中 孙长敏 【教学目标】 知识与技能
了解平方根的概念,会用根号表示正数的平方根; 了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根
过程与方法
通过学习平方根,进一步建立数感和符号感,发展抽象思维。通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。
情感、态度与价值观
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。
教学重点: 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。 教学难点:平方根与算术平方根的区别和联系。
教学方法: 自主探究、启发引导、小组合作
教学过程
一、情境导入
如果一个数的平方等于9,这个数是多少?
讨论:这样的数有两个,它们是3和-3.注意()932
=-中括号的作用. 又如:25
42=x ,则x 等于多少呢? 二、探索归纳:
1、平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:如果2x =a ,那么x 叫做a 的平方根.
求一个数的平方根的运算,叫做开平方.
例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.
2、观察:课本P73的图14.1-2.
图14.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.
例4 求下列各数的平方根。
(1) 100 (2) 16
9 (3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题:
正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?
一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示.
例5 求下列各式的值。
(1)144, (2)-81.0, (3)196121
± (4)256,()2
56 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
三、
课本P 46小练习1、2、3
四、小结:
1、什么叫做一个数的平方根?
2、正数、0、负数的平方根有什么规律?
3、怎样求出一个数的平方根?数a 的平方怎样表示?
五、作业
P 47-48习题6、1第4、7、8题。
教学反思