精选题库高一习题4-4. 数学 数学doc
高一数学训练习题参考答案
数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。
高一数学必考知识点基础题库练习
高一数学必考知识点基础题库练习一、整式的定义和运算整式:只包含加法、减法和乘法运算,并且没有除法运算和无理式的代数式称为整式。
1. 计算以下整式的值:(1) 3x - 2y,当x = 4,y = 5时的值;(2) 2a^2b - 3ab^2 + 4a^2b,当a = 2,b = -3时的值。
二、二次根式二次根式:含有平方根的代数式称为二次根式。
1. 化简以下二次根式:(1) √(12);(2) √(18x^2y^4)。
三、整式的乘除法1. 计算以下整式的乘积:(1) (2x + 3)(x - 4);(2) (3a^2b - 5ab^2)(a - 2b)。
2. 计算以下整式的商:(1) (6x^3 - 9x^2 + 12x) ÷ 3x;(2) (9y^4 - 12y^3 + 15y^2) ÷ 3y^2。
四、一次函数一次函数:形如y = kx + b(k和b为常数,k ≠ 0)的函数称为一次函数。
1. 已知一次函数f(x) = 2x + 3,求:(1) f(-2)的值;(2) 使得f(x) = 0的x值;(3) 函数f(x)在x = 4处的函数值。
五、二次函数二次函数:形如f(x) = ax^2 + bx + c(a、b、c为常数,a ≠ 0)的函数称为二次函数。
1. 对于二次函数f(x) = 2x^2 - 5x + 3,求:(1) 函数f(x)的对称轴;(2) 函数f(x)的顶点;(3) 函数f(x)的零点或根。
2. 判断以下二次函数的开口方向,并指出其顶点所在的坐标:(1) y = -3x^2 + 4x - 1;(2) y = 2x^2 - 5x + 2。
六、立体几何1. 计算以下几何体的表面积:(1) 半径为5cm的球的表面积;(2) 边长为3cm的正方体的表面积;(3) 高为8cm,底边长为6cm的四棱锥的表面积。
2. 计算以下几何体的体积:(1) 半径为4cm的球的体积;(2) 边长为5cm的立方体的体积;(3) 高为10cm,底面积为20cm²的三棱柱的体积。
精选题库高一 数学选修4-4-1北师大版
选修4-4 第1节[知能演练]一、选择题1.点M (ρ,θ)关于极点对称的点的坐标为( )A .(-ρ,-θ)B .(ρ,π+θ)C .(ρ,π-θ)D .(ρ,-θ)答案:B2.将曲线y =12sin3x 变为y =sin x 的伸缩变换是( )A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12y C.⎩⎪⎨⎪⎧x =3x ′y =2y ′D.⎩⎪⎨⎪⎧x ′=3x y ′=2y 答案:D3.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( )A .(2,π3,3)B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)解析:ρ=(-1)2+(-3)2=2, tan θ=3,∴θ=4π3,z =3,∴选C.答案:C4.在极坐标系中,与圆ρ=4sin θ相切的一条直线方程为( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4解析:圆ρ=4sin θ的圆心为(2,π2),半径r =2,对于选项A ,方程ρsin θ=2对应的直线(y =2)与圆相交;对于选项B ,方程ρcos θ=2对应的直线(x =2)与圆相切;选项C ,D 对应的直线与圆都相离.答案:B 二、填空题5.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________. 解析:∵点M 的极坐标为(6,11π6),∴x =6cos 11π6=6cos π6=6×32=33,y =6sin 11π6=6sin(-π6)=-6×12=-3,∴点M 的直角坐标为(33,-3),∴点M 关于y 轴对称的点的直角坐标为(-33,-3). 答案:(-33,-3)6.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.解析:在相应直角坐标系中,P (0,-2),直线l 方程:3x -4y -3=0,所以P 到l 的距离:d =|3×0-4×(-2)-3|32+42=1.答案:1 三、解答题7.说出由曲线y =tan x 得到曲线y =3tan2x 的变换过程,并求满足其图形变换的伸缩变换.解:y =tan x 的纵坐标不变,横坐标缩短为原来的12,得到y =tan2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan2x .设y ′=3tan2x ′,变换为⎩⎪⎨⎪⎧x ′=λ·x λ>0y ′=μ·y μ>0,将其代入y ′=3tan2x ′,得μy =3tan2λx与y =tan x 比较,可得⎩⎪⎨⎪⎧ μ=3λ=12,∴⎩⎪⎨⎪⎧x ′=12xy ′=3y.8.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求RP 的最小值. 解:(1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12,∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得RP 的最小值为1.[高考·模拟·预测]1.极坐标方程ρ=cos θ化为直角坐标方程为( )A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14解析:由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x .选D. 答案:D2.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.解析:直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得2r 2-d 2=242-(222)2=4 3.答案:4 33.在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2的距离为________.解析:直线ρ(cos θ+sin θ)=2可化为x +y -2=0,故点(1,0)到直线距离d =|1+0-2|2=22.答案:224.两直线ρsin(θ+π4)=2008,ρsin(θ-π4)=2009的位置关系是________.(判断垂直或平行或斜交)解析:两直线方程可化为x +y =20082,y -x = 20092,故两直线垂直. 答案:垂直5.圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过圆O 1,圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ.所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程. 同理,x 2+y 2+y =0为圆O 2的直角坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.6.求经过极点O (0,0),A (6,π2),B (62,9π4)三点的圆的极坐标方程.解:将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6),故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0,即ρ=62cos(θ-π4).。
高一精选题库习题 数学选修4-4-1
选修4-4 第1节[知能演练]一、选择题1.点M (ρ,θ)关于极点对称的点的坐标为( )A .(-ρ,-θ)B .(ρ,π+θ)C .(ρ,π-θ)D .(ρ,-θ)答案:B2.将曲线y =12sin3x 变为y =sin x 的伸缩变换是( )A.⎩⎪⎨⎪⎧x =3x ′y =12y ′B.⎩⎪⎨⎪⎧x ′=3x y ′=12yC.⎩⎪⎨⎪⎧x =3x ′y =2y ′D.⎩⎪⎨⎪⎧x ′=3x y ′=2y 答案:D3.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( )A .(2,π3,3)B .(2,2π3,3) C .(2,4π3,3)D .(2,5π33) 解析:ρ=(-1)2+(-3)2=2, tan θ=3,∴θ=4π3,z =3,∴选C. 答案:C4.在极坐标系中,与圆ρ=4sin θ相切的一条直线方程为( )A .ρsin θ=2B .ρcos θ=2C .ρcos θ=4D .ρcos θ=-4解析:圆ρ=4sin θ的圆心为(2,π2),半径r =2,对于选项A ,方程ρsin θ=2对应的直线(y =2)与圆相交;对于选项B ,方程ρcos θ=2对应的直线(x =2)与圆相切;选项C ,D 对应的直线与圆都相离.答案:B 二、填空题5.已知点M 的极坐标为(6,11π6),则点M 关于y 轴对称的点的直角坐标为________.解析:∵点M 的极坐标为(6,11π6),∴x =6cos 11π6=6cos π6=6×32=33,y =6sin11π6=6sin(-π6)=-6×12=-3, ∴点M 的直角坐标为(33,-3),∴点M 关于y 轴对称的点的直角坐标为(-33,-3). 答案:(-33,-3)6.在极坐标系中,点P (2,3π2)到直线l :3ρcos θ-4ρsin θ=3的距离为________.解析:在相应直角坐标系中,P (0,-2),直线l 方程:3x -4y -3=0,所以P 到l 的距离:d =|3×0-4×(-2)-3|32+42=1.答案:1 三、解答题7.说出由曲线y =tan x 得到曲线y =3tan2x 的变换过程,并求满足其图形变换的伸缩变换.解:y =tan x 的纵坐标不变,横坐标缩短为原来的12,得到y =tan2x ,再将其纵坐标伸长为原来的3倍,横坐标不变,得到曲线y =3tan2x .设y ′=3tan2x ′,变换为⎩⎪⎨⎪⎧x ′=λ·x λ>0y ′=μ·y μ>0,将其代入y ′=3tan2x ′,得μy =3tan2λx与y =tan x 比较,可得⎩⎪⎨⎪⎧ μ=3λ=12,∴⎩⎪⎨⎪⎧x ′=12xy ′=3y.8.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求RP 的最小值. 解:(1)设动点P 的坐标为(ρ,θ), M 的坐标为(ρ0,θ),则ρρ0=12,∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程.(2)由(1)知P 的轨迹是以(32,0)为圆心,半径为32的圆,易得RP 的最小值为1.[高考·模拟·预测]1.极坐标方程ρ=cos θ化为直角坐标方程为( )A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -122+y 2=14解析:由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x .选D. 答案:D2.在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为________.解析:直线ρsin(θ+π4)=2可化为x +y -22=0,圆ρ=4可化为x 2+y 2=16,由圆中的弦长公式得2r 2-d 2=242-(222)2=4 3.答案:4 33.在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2的距离为________.解析:直线ρ(cos θ+sin θ)=2可化为x +y -2=0,故点(1,0)到直线距离d =|1+0-2|2=22.答案:224.两直线ρsin(θ+π4)=2008,ρsin(θ-π4)=2009的位置关系是________.(判断垂直或平行或斜交)解析:两直线方程可化为x +y =20082,y -x = 20092,故两直线垂直. 答案:垂直5.圆O 1和圆O 2的极坐标方程分别为ρ=4cos θ,ρ=-sin θ. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程. (2)求经过圆O 1,圆O 2两个交点的直线的直角坐标方程.解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x =ρcos θ,y =ρsin θ,由ρ=4cos θ得ρ2=4ρcos θ.所以x 2+y 2=4x .即x 2+y 2-4x =0为圆O 1的直角坐标方程. 同理,x 2+y 2+y =0为圆O 2的直角坐标方程.(2)由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x 2+y 2+y =0,相减得过交点的直线的直角坐标方程为4x +y =0.6.求经过极点O (0,0),A (6,π2),B (62,9π4)三点的圆的极坐标方程.解:将点的极坐标化为直角坐标,点O ,A ,B 的直角坐标分别为(0,0),(0,6),(6,6),故△OAB 是以OB 为斜边的等腰直角三角形,圆心为(3,3),半径为32,圆的直角坐标方程为(x -3)2+(y -3)2=18,即x 2+y 2-6x -6y =0,将x =ρcos θ,y =ρsin θ代入上述方程,得ρ2-6ρ(cos θ+sin θ)=0,即ρ=62cos(θ-π4.。
高一数学考试题库及答案
高一数学考试题库及答案一、选择题(每题4分,共40分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x答案:B2. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B等于:A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {1, 2, 3, 4}答案:B3. 函数y=2x+3的图像是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆答案:A4. 已知等差数列{an}的首项a1=2,公差d=3,则a5的值为:A. 14B. 17C. 20D. 23答案:A5. 下列哪个选项是正确的不等式?B. 3x < 6C. 5x ≤ 10D. 7x ≥ 14答案:D6. 已知函数f(x)=x^2-4x+3,求f(2)的值:A. -1B. 1C. 3D. 5答案:A7. 函数y=x^2-6x+8的顶点坐标是:A. (3, -1)B. (-3, 1)D. (-3, -1)答案:C8. 已知向量a=(1, 2),向量b=(3, 4),则向量a+b的坐标为:A. (4, 6)B. (-2, -2)C. (2, 6)D. (4, 2)答案:A9. 已知圆的方程为(x-2)^2+(y-3)^2=9,该圆的半径为:A. 3B. 6C. 9D. 12答案:A10. 函数y=sin(x)的值域是:A. (-1, 1)B. (-∞, +∞)C. [0, +∞)D. (-∞, 0]答案:A二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-6x+8,求该函数的对称轴方程为:__________。
答案:x=312. 已知等比数列{bn}的首项b1=2,公比q=2,则b3的值为:__________。
答案:813. 函数y=cos(x)的周期为:__________。
答案:2π14. 已知向量a=(2, -1),向量b=(-1, 3),则向量a·b的值为:__________。
人教A版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷含答案解析(18)
人教A 版高一数学必修第一册第四章《指数函数与对数函数》章末练习题卷(共22题)一、选择题(共10题)1. 下面关于函数 f (x )=log 12x ,g (x )=(12)x和 ℎ(x )=x −12 在区间 (0,+∞) 上的说法正确的是( ) A . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越慢 B . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越快 C . f (x ) 的递减速度越来越慢,g (x ) 的递减速度越来越慢,ℎ(x ) 的递减速度越来越慢 D . f (x ) 的递减速度越来越快,g (x ) 的递减速度越来越快,ℎ(x ) 的递减速度越来越快2. 甲用 1000 元人民币购买了一手股票,随即他将这手股票卖给乙,获利 10%,而后乙又将这手股票卖给甲,但乙损失了 10%,最后甲又按乙卖给甲的价格的九成将这手股票卖给了乙.在上述股票交易中 ( ) A .甲刚好盈亏平衡 B .甲盈利 9 元 C .甲盈利 1 元D .甲亏本 1.1 元3. 若 a =0.32,b =log 20.3,c =20.3,则 a ,b ,c 三者的大小关系是 ( ) A . b <c <a B . b <a <c C . a <c <b D . a <b <c4. 已知当 x ∈[0,1] 时,函数 y =(mx −1)2 的图象与 y =√x +m 的图象有且只有一个交点,则正实数 m 的取值范围是 ( ) A . (0,1]∪[2√3,+∞) B . (0,1]∪[3,+∞) C . (0,√2]∪[2√3,+∞) D . (0,√2]∪[3,+∞)5. 已知函数 f (x )={15x +1,x ≤1lnx,x >1,则方程 f (x )=kx 恰有两个不同的实根时,实数 k 的取值范围是 ( ) A . (0,1e )B . (0,15)C . [15,1e )D . [15,1e ]6. 若函数 f (x )=2x +a 2x −2a 的零点在区间 (0,1) 上,则 a 的取值范围是 ( ) A . (−∞,12)B . (−∞,1)C . (12,+∞)D . (1,+∞)7. 已知定义在 R 上的函数 f (x )={x 2+2,x ∈[0,1)2−x 2,x ∈[−1,0),且 f (x +2)=f (x ).若方程 f (x )−kx −2=0 有三个不相等的实数根,则实数 k 的取值范围是 ( )A . (13,1)B . (−13,−14)C . (−1,−13)∪(13,1)D . (−13,−14)∪(14,13)8. 定义域为 R 的偶函数 f (x ),满足对任意的 x ∈R 有 f (x +2)=f (x ),且当 x ∈[2,3] 时,f (x )=−2x 2+12x −18,若函数 y =f (x )−log a (∣x∣+1) 在 R 上至少有六个零点,则 a 的取值范围是 ( ) A . (0,√33) B . (0,√77) C . (√55,√33)D . (0,13)9. 方程 log 3x +x =3 的解所在的区间是 ( ) A . (0,1) B . (1,2) C . (2,3) D . (3,+∞)10. 函数 f (x )=√1−x 2lg∣x∣的图象大致为 ( )A .B .C .D .二、填空题(共6题)11. 已知函数 f (x )={√4−x 2,x ∈(−2,2]1−∣x −3∣,x ∈(2,4],满足 f (x −3)=f (x +3),若在区间 [−4,4] 内关于x 的方程 3f (x )=k (x −5) 恰有 4 个不同的实数解,则实数 k 的取值范围是 .12. 已知关于 x 的一元二次方程 x 2+(2m −1)x +m 2=0 有两个实数根 x 1 和 x 2,当 x 12−x 22=0时,m 的值为 .13. 已知 A ={x∣ 3x <1},B ={x∣ y =lg (x +1)},则 A ∪B = .14. 已知函数 f (x )={x 2+4x −1,x ≤02x −3−k,x >0,若方程 f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解,则实数 k 的取值范围是 .15. 设函数 f (x )={−4x 2,x <0x 2−x,x ≥0,若 f (a )=−14,则 a = ,若方程 f (x )−b =0 有三个不同的实根,则实数 b 的取值范围是 .16. 设函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]= ,若方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 .三、解答题(共6题)17. 如图,直角边长为 2 cm 的等腰直角三角形 ABC ,以 2 cm/s 的速度沿直线向右运动.(1) 求该三角形与矩形 CDEF 重合部分面积 y (cm 2)与时间 t 的函数关系(设 0≤t ≤3). (2) 求出 y 的最大值.(写出解题过程)18. 已知函数 f (x )=a x +k 的图象过点 (1,3),它的反函数的图象过点 (2,0).(1) 求函数 f (x ) 的解析式; (2) 求 f (x ) 的反函数.19. 已知函数 g (x )=log a x ,其中 a >1.(注:∑∣m (x i )−m (x i−1)∣n i=1=∣m (x 1)−m (x 0)∣+∣m (x 2)−m (x 1)∣+⋯+∣m (x n )−m (x n−1)∣) (1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,求 a 的取值范围;(2) 设 m (x ) 是定义在 [s,t ] 上的函数,在 (s,t ) 内任取 n −1 个数 x 1,x 2,⋯,x n−2,x n−1,且 x 1<x 2<⋯<x n−2<x n−1,令 x 0=s ,x n =t ,如果存在一个常数 M >0,使得 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,则称函数 m (x ) 在区间 [s,t ] 上具有性质 P . 试判断函数 f (x )=∣g (x )∣ 在区间 [1a ,a 2] 上是否具有性质 P ?若具有性质 P ,请求出 M的最小值;若不具有性质 P ,请说明理由.20. 已知函数 g (x )=ax 2−2ax +1+b (a ≠0,b <1),在区间 [2,3] 上有最大值 4,最小值 1,设f (x )=g (x )x.(1) 求常数 a ,b 的值;(2) 方程 f (∣2x −1∣)+k (2∣2x −1∣−3)=0 有三个不同的解,求实数 k 的取值范围.21. 已知函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2.(1) 求实数 m ,n 的值;(2) 若不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,求实数 k 的取值范围.22. 已知函数 f (x )=(12)ax,a 为常数,且函数的图象过点 (−1,2).(1) 求 a 的值;(2) 若 g (x )=4−x −2,且 g (x )=f (x ),求满足条件的 x 的值.答案一、选择题(共10题)1. 【答案】C【解析】观察函数f(x)=log12x,g(x)=(12)x和ℎ(x)=x−12在区间(0,+∞)上的图象(图略),由图可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.同样,函数g(x)的图象在区间(0,+∞)上递减较慢,且递减速度越来越慢.函数ℎ(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上递减较慢,且递减速度越来越慢.【知识点】对数函数及其性质、指数函数及其性质2. 【答案】C【解析】由题意知甲两次付出为1000元和(1000×1110×910)元,两次收入为(1000×1110)元和(1000×1110×910×910)元,因为1000×1110+1000×1110×910×910−1000−1000×1110×910=1,所以甲盈利1元.【知识点】函数模型的综合应用3. 【答案】B【解析】因为0<a=0.32<0.30=1,b=log20.3<log21=0,c=20.3>20=1,所以b<a<c.【知识点】指数函数及其性质、对数函数及其性质4. 【答案】B【解析】应用排除法.当m=√2时,画出y=(√2x−1)2与y=√x+√2的图象,由图可知,两函数的图象在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x−1)2与y=√x+3的图象,由图可知,两函数的图象在[0,1]上恰有一个交点.【知识点】函数的零点分布5. 【答案】C【解析】因为方程f(x)=kx恰有两个不同实数根,所以y=f(x)与y=kx有2个交点,又因为k表示直线y=kx的斜率,x>1时,y=f(x)=lnx,所以yʹ=1x;设切点为(x0,y0),则k=1x0,所以切线方程为y−y0=1x0(x−x0),又切线过原点,所以y0=1,x0=e,k=1e,如图所示:结合图象,可得实数k的取值范围是[15,1e ).【知识点】函数零点的概念与意义6. 【答案】C【解析】因为f(x)单调递增,所以f(0)f(1)=(1−2a)(2+a2−2a)<0,解得a>12.【知识点】零点的存在性定理7. 【答案】C【知识点】函数的零点分布8. 【答案】A【解析】当x∈[2,3]时,f(x)=−2x2+12x−18=−2(x−3)2,图象为开口向下,顶点为(3,0)的抛物线.因为函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,令g(x)=log a(∣x∣+1),因为f(x)≤0,所以g(x)≤0,可得0<a<1.要使函数y=f(x)−log a(∣x∣+1)在(0,+∞)上至少有三个零点,如图要求g(2)>f(2).log a(2+1)>f(2)=−2⇒log a3>−2,可得3<1a2⇒−√33<a<√33,a>0,所以 0<a <√33.【知识点】函数的零点分布9. 【答案】C【解析】把方程的解转化为函数 f (x )=log 3x +x −3 对应的零点.令 f (x )=log 3x +x −3,因为 f (2)=log 32−1<0,f (3)=1>0,所以 f (2)f (3)<0,且函数 f (x ) 在定义域内是增函数,所以函数 f (x ) 只有一个零点,且零点 x 0∈(2,3),即方程 log 3x +x =3 的解所在的区间为 (2,3). 故选C .【知识点】零点的存在性定理10. 【答案】B【解析】(1)由 {1−x 2≥0,∣x ∣≠0且∣x ∣≠1, 得 −1<x <0 或 0<x <1,所以 f (x ) 的定义域为 (−1,0)∪(0,1),关于原点对称.又 f (x )=f (−x ),所以函数 f (x ) 是偶函数,图象关于 y 轴对称,排除A ; 当 0<x <1 时,lg ∣x ∣<0,f (x )<0,排除C ;当 x >0 且 x →0 时,f (x )→0,排除D ,只有B 项符合. 【知识点】对数函数及其性质、函数图象、函数的奇偶性二、填空题(共6题) 11. 【答案】 (−2√217,−38)∪{0}【知识点】函数的零点分布12. 【答案】 14【解析】由题意得 Δ=(2m −1)2−4m 2=0,解得 m ≤14. 由根与系数的关系,得 x 1+x 2=−(2m −1),x 1x 2=m 2.由 x 12−x 22=0,得 (x 1+x 2)(x 1−x 2)=0. 若 x 1+x 2=0,即 −(2m −1)=0,解得 m =12. 因为 12>14,可知 m =12 不合题意,舍去;若 x 1−x 2=0,即 x 1=x 2,由 Δ=0,得 m =14.故当 x 12−x 22=0 时,m =14.【知识点】函数零点的概念与意义13. 【答案】 R【解析】由 3x <1,解得 x <0,即 A =(−∞,0). 由 x +1>0,解得 x >−1,即 B =(−1,+∞). 所以 A ∪B =R .【知识点】对数函数及其性质、交、并、补集运算14. 【答案】 (−2,−32]∪(−1,2)【解析】当 x ≤0 时,f (x )−k ∣x −1∣=x 2+4x −1−k (1−x )=x 2+(4+k )x −k −1, 当 0<x <1 时,f (x )−k ∣x −1∣=2x −3−k −k (1−x )=(k +2)x −3−2k ,当 x ≥1 时,f (x )−k ∣x −1∣=2x −3−k −k (x −1)=(2−k )x −3,设 g (x )=f (x )−k ∣x −1∣,则 g (x )={x 2+(4+k )x −k −1,x ≤0(k +2)x −3−2k,0<x <1(2−k )x −3,x ≥1,f (x )−k ∣x −1∣=0 有且只有 2 个不相等的实数解等价于g (x ) 有且仅有 2 个零点, 若 g (x ) 一个零点位于 (0,1),即 0<2k+3k+2<1⇒k ∈(−32,−1),若 g (x ) 一个零点位于 [1,+∞),即 {2−k >0,22−k≥1⇒k ∈[−1,2),可知 g (x ) 在 (0,1),[1,+∞) 内不可能同时存在零点,即当 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点;当 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, ① 当 g (x ) 在 (−∞,0] 上有且仅有一个零点时,(1)当 Δ=(4+k )2+4(k +1)=0 时,k =−2 或 k =−10, 此时 g (x ) 在 (0,+∞) 上无零点, 所以不满足 g (x ) 有两个零点;(2)当 Δ=(4+k )2+4(k +1)>0,即 k <−10 或 k >−2 时, 只需 g (0)=−k −1<0,即 k >−1,所以当 k >−1 时,g (x ) 在 (−∞,0] 上有且仅有一个零点, 因为 k ∈(−32,2) 时,g (x ) 在 (0,+∞) 上有一个零点, 所以 k ∈(−1,2) 时,g (x ) 有且仅有 2 个零点;② 当 g (x ) 在 (−∞,0] 上有两个零点时,只需 {Δ=(4+k )2+4(k +1)>0,−4+k 2<0,g (0)=−k −1≥0⇒k ∈(−2,−1],因为 k ∈(−∞,−32]∪[2,+∞) 时,g (x ) 在 (0,+∞) 上无零点, 所以 k ∈(−2,−32] 时,g (x ) 有且仅有 2 个零点, 综上所述:k ∈(−2,−32]∪(−1,2).【知识点】函数的零点分布15. 【答案】 −14或 12; (−14,0)【解析】若 −4a 2=−14,解得 a =−14; 若 a 2−a =−14,解得 a =12,故 a =−14或12;当 x <0 时,f (x )<0;当 x >0 时,f (x )=(x −12)2−14,f (x ) 的最小值是 −14,若方程 f (x )−b =0 有三个不同的实根,则 b =f (x ) 有 3 个交点,故 b ∈(−14,0).【知识点】函数的零点分布、分段函数16. 【答案】 14; (14,12)【解析】函数 f (x )={e x ,x ≤0−x 2+x +14,x >0,则 f [f (0)]=f (e 0)=f (1)=14.x ≤0 时,f (x )≤1;x >0,f (x )=−x 2+x +14,对称轴为 x =12,开口向下;函数的最大值为 f (12)=12,x →0 时,f (0)→14.方程 f (x )=b 有且仅有 3 个不同的实数根,则实数 b 的取值范围是 (14,12).【知识点】函数的零点分布、分段函数三、解答题(共6题) 17. 【答案】(1) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6,综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.(2) 依题意:当 0≤t ≤1 时,重合部分为边长为 2t cm 的直角等腰三角形, 此时:y =12×2t ×2t =2t 2(cm 2),当 1<t <2 时,重合部分为边长为 2 cm 的等腰直角三角形, 此时:y =12×2×2=2(cm 2),当 2≤t ≤3 时,重合部分为边长为 2 的等腰直角三角形, 去掉一个边长为 (2t −4)cm 的等腰直角三角形, 此时:y =12×2×2−12×(2t −4)2=−2t 2+8t −6, 综上:y ={2t 2,0≤t ≤12,1<t <2−2t 2+8t −6,2≤t ≤3.当 0≤t ≤1 时,y max =2×12=2,当 1<t <2 时,y max =2,当 2≤t ≤3 时,对称轴 t 0=2,则 t =2 时,y max =2,综上:y max =2.【知识点】函数模型的综合应用、建立函数表达式模型18. 【答案】(1) f (x )=2x +1.(2) f −1(x )=log 2(x −1)(x >1).【知识点】反函数、指数函数及其性质19. 【答案】(1) 当 x ∈[0,1] 时,g (a x +2)>1 恒成立,即 x ∈[0,1] 时,log a (a x +2)>1 恒成立,因为 a >1,所以 a x +2>a 恒成立,即 a −2<a x 在区间 [0,1] 上恒成立,所以 a −2<1,即 a <3,所以 1<a <3,即 a 的取值范围是 (1,3).(2) 函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P .因为 f (x )=∣g (x )∣ 在 [1,a 2] 上单调递增,在 [1a ,1] 上单调递减,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,当存在某一个整数 k ∈{1,2,3,⋯,n −1},使得 x k =1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (1a )−f (1)]+[f (a 2)−f (1)]=1+2= 3. 当对于任意的 k ∈{1,2,3,…,n −1},x k ≠1 时,则存在一个实数 k 使得 x k <1<x k+1 时,∑∣f (x i )−f (x i−1)∣n i=1=[f (x 0)−f (x 1)]+[f (x 1)−f (x 2)]+⋯+[f (x k−1)−f (x k )]+[f (x k+1)−f (x k )]+[f (x k+2)−f (x k+1)]+⋯+[f (x n )−f (x n−1)]=[f (x 0)−f (x k )]+∣f (x k )−f (x k+1)∣+f (x n )−f (x k+1). ⋯⋯(∗)当 f (x k )>f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k+1)=3−2f (x k+1)<3,当 f (x k )<f (x k+1) 时,(∗)式=f (x n )+f (x 0)−2f (x k )=3−2f (x k )<3,当 f (x k )=f (x k+1) 时,(∗)式=f (x n )+f (x 0)−f (x k )−f (x k+1)=3−f (x k )−f (x k+1)<3,综上,对于 (1a ,a 2) 内的任意一个取数方法 1a =x 0<x 1<x 2<⋯<x n−1<x n =a 2,均有 ∑∣m (x i )−m (x i−1)∣n i=1≤3,所以存在常数 M ≥3,使 ∑∣m (x i )−m (x i−1)∣n i=1≤M 恒成立,所以函数 f (x ) 在区间 [1a ,a 2] 上具有性质 P ,此时 M 的最小值为 3.【知识点】函数的单调性、指数函数及其性质、函数的最大(小)值、对数函数及其性质20. 【答案】(1) 因为 a ≠0,所以 g (x ) 的对称轴为 x =1,所以 g (x ) 在 [2,3] 上是单调函数,所以 {g (2)=1,g (3)=4 或 {g (2)=4,g (3)=1,解得 a =1,b =0 或 a =−1,b =3(舍). 所以 a =1,b =0.(2) f (x )=x 2−2x+1x =x +1x −2.令 ∣2x −1∣=t ,显然 t >0, 所以 t +1t −2+k (2t −3)=0 在 (0,1) 上有一解,在 [1,+∞) 上有一解.即 t 2−(2+3k )t +1+2k =0 的两根分别在 (0,1) 和 [1,+∞) 上.令 ℎ(t )=t 2−(2+3k )t +1+2k ,若 ℎ(1)=0,即 1−2−3k +1+2k =0,解得 k =0,则 ℎ(t )=t 2−2t +1=(t −1)2,与 ℎ(t ) 有两解矛盾.所以 {ℎ(0)>0,ℎ(1)<0,即 {1+2k >0,−k <0, 解得 k >0. 所以实数 k 的取值范围是 (0,+∞).【知识点】函数的最大(小)值、函数的零点分布21. 【答案】(1) 由函数 f (x )=x 2−3mx +n 的两个零点分别为 1 和 2,可得 {1−3m +n =0,4−6m +n =0, 解得 {m =1,n =2.(2) 由(1)可得 f (x )=x 2−3x +2,由不等式 f (x )−k >0 在 x ∈[0,5] 上恒成立,可得不等式 f (x )>k 在 x ∈[0,5] 上恒成立,可将 f (x )=x 2−3x +2 化为 f (x )=(x −32)2−14,所以 f (x )=x 2−3x +2 在 x ∈[0,5] 上的最小值为 f (32)=−14,所以 k <−14.【知识点】函数的最大(小)值、函数的零点分布22. 【答案】(1) 由已知得 (12)−a=2,解得 a =1.(2) 由(1)知 f (x )=(12)x,又 g (x )=f (x ),所以 4−x −2=(12)x,即 (14)x −(12)x−2=0,即 [(12)x ]2−(12)x−2=0,令 (12)x=t (t >0),则 t 2−t −2=0,所以 t =−1 或 t =2,又 t >0,所以 t =2,即 (12)x=2,解得 x =−1.【知识点】指数函数及其性质。
高一精选题库习题4-2. 数学 数学doc
第4模块 第2节[知能演练]一、选择题1.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn等于( )A .-12B .2 C.12D .-2解析:m a +n b =(2m,3m )+(-n,2n ) =(2m -n,3m +2n ),a -2b =(2,3)-(-2,4)=(4,-1). 由m a +n b 与a -2b 共线, 则有2m -n 4=3m +2n-1∴n -2m =12m +8n ,∴m n =-12.答案:A2.已知向量OM →=(3,-2),ON →=(-5,-1),则12MN →等于( )A .(8,1)B .(-8,1)C .(4,-12D .(-4,12)解析:∵OM →=(3,-2),ON →=(-5,-1), ∴12MN →=12(ON →-OM →) =12[(-5,-1)-(3,-2)] =12×(-8,1)=(-4,12). 答案:D3.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 不共线,则四边形ABCD 是( )A .梯形B .矩形C .菱形D .正方形解析:∵AB →+BC →+CD →=a +2b -4a -b -5a -3b =-8a -2b ,∴AD →=2(-4a -b )=2BC →,∴AD →∥BC →且|AD →|=2|BC →|,故四边形是梯形. 答案:A4.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x ,y )满足OC →=αOA →+βOB →,其中α、β∈R ,且α+β=1,则x ,y 满足的关系式为( )A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0解析:由OC →=αOA →+βOB →, ∴(x ,y )=(3α-β,α+3β).∴⎩⎪⎨⎪⎧x =3α-β,y =α+3β.∴⎩⎨⎧α=3x +y10,β=-x +3y10.∵α+β=1,∴x +2y -5=0. 答案:D 二、填空题5.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c = (-4,-7)共线,则λ=________. 解析:由题意得λa +b =(2+λ,2λ+3), 又λa +b 与c 共线,因此有(λ+2)×(-7)-(2λ+3)×(-4)=0, ∴λ=2. 答案:26.已知点A (1,-2),若向量AB →与a =(2,3)同向,|AB →|=213,则点B 的坐标为________. 解析:∵向量AB →与a 同向, ∴设AB →=(2t,3t )(t >0).由|AB →|=213,∴4t 2+9t 2=4×13.∴t 2=4. ∵t >0,∴t =2.∴AB →=(4,6). 设B 为(x ,y ), ∴⎩⎪⎨⎪⎧x -1=4,y +2=6.∴⎩⎪⎨⎪⎧x =5,y =4. 答案:(5,4) 三、解答题7.已知A (-2,4),B (3,-1),C (-3,-4). 设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b , (1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n . 解:由已知得a =(5,-5), b =(-6,-3),c =(1,8). (1)3a +b -3c=3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1n =-1. 8.在▱ABCD 中,A (1,1),AB →=(6,0),点M 是线段AB 的中点,线段CM 与BD 交于点P .(1)若AD →=(3,5),求点C 的坐标; (2)当|AB →|=|AD →|时,求点P 的轨迹. 解:(1)设点C 坐标为(x 0,y 0), 又AC →=AD →+AB →=(3,5)+(6,0)=(9,5), 即(x 0-1,y 0-1)=(9,5), ∴x 0=10,y 0=6,即点C (10,6). (2)由三角形相似,不难得出PC →=2MP →设P (x ,y ),则BP →=AP →-AB →=(x -1,y -1)-(6,0)=(x -7,y -1),AC →=AM →+MC →=12AB →+3MP →=12AB →+3(AP →-12AB →) =3AP →-AB →=(3(x -1),3(y -1))-(6,0) =(3x -9,3y -3),∵|AB →|=|AD →|,∴▱ABCD 为菱形,∴AC ⊥BD . ∴AC →⊥BP →,即(x -7,y -1)·(3x -9,3y -3)=0. (x -7)(3x -9)+(y -1)(3y -3)=0, ∴x 2+y 2-10x -2y +22=0(y ≠1). ∴(x -5)2+(y -1)2=4(y ≠1).故点P 的轨迹是以(5,1)为圆心,2为半径的圆去掉与直线y =1的两个交点.[高考·模拟·预测]1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线解析:a +b =(0,1+x 2),由1+x 2≠0及向量的性质可知,C 正确.故选C. 答案:C2.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →等于( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解析:在平行四边形ABCD 中,AC →=AB →+AD →,BD →=AD →-AB →, ∴BD →=(AC →-AB →)-AB →=(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5). 答案:B3.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( )A.14a +12bB.23a +13C.12a +14bD.13a +23b 解析:由已知得DE =13EB ,则DF =13DC ,∴CF =23CD ,∴CF →=23CD →=23(OD →-OC →)=23(12b -12a )=13b -13a , ∴AF →=AC →+CF →=a +13b -13a=23a +13b . 答案:B4.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________. 解析:3-k 1=-63⇒k =5.故填5.答案:55.已知向量a =(1,2),b =(-2,1),k ,t 为正实数,x =a +(t 2+1)b ,y =-1k a +1t b ,问是否存在k 、t ,使x ∥y ,若存在,求出k 的取值范围;若不存在,请说明理由.解:x =a +(t 2+1)b=(1+2)+(t 2+1)(-2,1)=(-2t 2-1,t 2+3) y =-1k a +1t b =-1k (1,2)+1t (-2,1)=(-1k -2t ,-2k +1t,假设存在正实数k ,t ,使x ∥y ,则 (-2t 2-1)(-2k +1t )-(t 2+3)(-1k -2t )=0,化简得t 2+1k +1t=0,即t 3+t +k =0,∵k ,t 是正实数,故满足上式的k ,t 不存在. ∴不存在这样的正实数k ,t ,使x ∥y .[备选精题]6.已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin2θ+4sin 2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.。
高一数学练习题及答案
高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。
下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。
高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。
高一数学必修1第四章测试题及答案
A B C D
5 若函数 在区间 上的图象为连续不断的一条曲线:则下列说法正确的是()
A 若 :不存在实数 使得 :
B 若 :存在且只存在一个实数 使得 :
C 若 :有可能存在实数 使得 :
D 若 :有可能不存在实数 使得 :
6 方程 根的个数为()
。。。。7分
<1:β>2.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14分
300 (0x1000)
21.(1) y =
0.04x+260 (x>1000)。。。。。。。。。。。10分
(2) 1660元。。。。。。。。。。。。。。。。。。。。。。。。。。。16分
1000元以下(包括1000元)部分征收300元:
超过部分的税率为4%
(1)写出每月征收的税金y(元)与营业额x(元)之间的函数关系式:
(2)某饭店5月份的营业额是35000元:这个月该饭店应缴纳税金多少?
22.某商品进货单价为 元:若销售价为 元:可卖出 个:如果销售单价每涨 元:
销售量就减少 个:为了获得最大利润:则此商品的最佳售价应为多少?
命题意图
本试卷意在考察学生对如下要求的掌握程度:
1、正确认识函数与方程之间的关系:求 的实数解就是求函数的零点。体会函数的核心作用。
2、能够利用函数的性质判断解的存在性。
3、能够利用二分法求方程的近似解:认识求方程近似解方法的意义。
4、尝试用函数刻画实际问题。通过研究函数的性质解决实际问题。通过体验数学建模的数学基本思想:能初步运用函数的思想和方法去理解和处理其他学科与现实生活中的简单问题。
高一数学化简题
一、选择1.的值为( ).A. B. C. D.答案:B..2.已知,则( ).A. B. C. D.答案:C.解析:由,得,∴.∵,∴,∴.3.若,则的值为( ).A. B. C. D.答案: C.解析:∵,得,∴4.化简的结果是( ).A. B. C.4 D.8.答案:D.原式5.已知,,则的值等于( ).A. B. C. D.答案:C.由得,化简得,∴,即.∵,∴,即.6.函数的值域为( ).A. B. C. D.答案:B.解析:∵,∴..7.若直线平行于直线,则实数等于( ).A.-2B.-1C.1D.2答案:D.解析:利用两条直线平行斜率相等,或一般式方程表示的直线平行的条件来求.8.直线的倾斜角为.A. B. C. D.答案:C.解析:∵直线可化为,∴它的斜率,倾斜角.9.若直线过点(-1,2)且与直线垂直,则直线的方程是( ).A. B. C. D.答案:A.解析:由直线的斜率为得,直线的斜率为,∴直线的方程为,整理得.二、填空题1.计算: .答案:.解析:.2.化简: .原式.3.已知是的最小内角,则函数的值域为.答案:.解析:,∵,∴,∴,∴.4.当函数取得最大值时, .答案:.∵,∴当且仅当时,函数取得最大值2.5.若,,,,则.解析:∵,,,,∴,.∵,∴三、解答题1.在中,,试判断的形状.答案:钝角三角形.解析:由得.又∵,∴,∴,∴为钝角三角形.2.已知,且,,求的值.答案:.解析:∵,∴,.又∵,,∴,,∴.3.若直线平行于直线,则实数等于( ).A.-2B.-1C.1D.2 答案:D4.化简:.答案:.解析:.5.求函数的单调区间.解析:∵,令得,∴的单调增区间为,单调递减区间为.6.已知函数,,且.⑴求的值;⑵设,,,求的值.答案:⑴2;⑵.解析:⑴∵,∴;⑵∵,∴.由得.∵,∴,,∴.7.已知函数.⑴求函数的最大值;⑵求函数零点的集合.解析:⑴∵,∴当且仅当时,有最大值1;⑵令,得,∴或,∴或.∴函数零点的集合为.8.已知函数.⑴求函数的最小正周期;⑵求函数在区间上的最大值和最小值.解析:⑴∵,∴函数的最小正周期.⑵∵,∴,∴,∴,∴函数在区间上的最大值为,最小值为.9.已知函数.⑴求的值;⑵求的最大值和最小值.解析:⑴;⑵∵,∴当时,,当时,.1.已知,则与方向相同的单位向量为.答案:.解析:∵,∴与方向相同的单位向量.2..已知:,与的夹角为,则在方向上的投影为.答案:.解析:在方向上的投影为.3.已知,若,试求实数的值.解析:∵,∴,即,得.4.若向量,满足条件,则=( ).A.6B.5C.4D.3 解析:∵,∴.5.已知向量,若,则实数的值为________.解析:由题意得,,∴,∴.1.已知,则的值是( ).A. B. C. D.或解析:∵,∴,∴.2.若,则的值为( ).A. B. C. D.1答案:C.解析:∵,∴,∴. 3..已知,计算的值.解析:对分子、分母同时除以得,. 4.已知的值为()A.-2 B.2 C. D.-答案:D5.若,则( ).A. B. C. D.解析:∵,∴,又∵,,∴,解得,由得,.6.若满足,则的值为.解析:由得,∴,而,∴,∴.7.已知,.⑴求的值;⑵求的值.解析:⑴∵,∴,∴.⑵.8.已知,则( ).A. B. C. D.答案:A.解析:.9.已知,则等于( ).A. B. C. D.解析:∵,又∵,∴,∴.10.若,那么的值为( ).A.0B.1C.D.答案:C.解析:.11.=解析:.12.= .解析:利用倒序相加可得:上式=.13.函数在上既是奇函数又是周期函数,若的最小正周期为,且当时,,则的值为( ).A. B. C. D.解析:.14.已知函数,,则 .解析:∵,,∴.15.函数的一个对称中心是( ).A. B. C. D.解析:的零点是,即,∴选C.16.函数的定义域是解析:由得,.17.函数,,若对任意,都有,则解析:依题意知,是的对称轴,∴,即,∴.18.下图是()的一段图象,则函数的解析式为答案:.解析:依题意得,∵,∴.又∵,∴.19.已知是三角形的一个内角,且,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形 C.不等腰的直角三角形 D.等腰直角三角形答案:B20.已知,那么的值为()A. B.- C.或- D.以上全错答案:C 21.已知则22.已知,则=23.已知,则 ( )A. B. C. D.答案:B24.若函数,则下列等式恒成立的是()A. B.C. D.答案:D25.已知, 则 ( )A. B. C. D.答案:B26.已知,则 ( )A.0B.2C.D.答案:D27..化简的结果为 ( )A. B. C. D.答案:D28.ABC中,已知,则ABC的形状为 ( )A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形答案:C29.函数R部分图象如图,则函数的表达式为 ( )A. B.C. D. 答案:C30.将函数图象上的所有点的横纵坐标都伸长到原来的2倍,再按向量平移后得到的图象与的图象重合,则函数的解析式为 (B)A. B. C. D.1.求函数的最大值和最小值解:当时,有最大值当时,有最小值-4.2.求函数的定义域、最小正周期及单调增区间.解:由得.故的定义域为,故最小正周期为由得故单调增区间为、3.的值为( ).A. B. C. D.答案:B.解析:原式.4.已知,,则等于( ).A. B. C. D.答案:C.解析:由得5.函数的最小值是( ).A. B. C. D.答案:B.解析:∵,∴的最小值为.6.若,,则.解析:.7.已知均为锐角,且,则 1解析:∵,∴,∴,∴.8.若的内角满足,则( ).A. B. C. D.答案:A.解析:∵,又∵,,∴.9.若则的值为( ).A.2B.C.D.答案:B.解析:由得,解得,∴.10.若,则的值为( ).A. B. C. D.答案:C.解析:.11.已知,则等于( ).A. B. C. D.答案:D.解析:两式平方得,两式相加得,∴.12.函数的最小值是.答案:.解析:.13.函数的最大值为.答案:.解析:14.若,则.解析:∵,∴..15.已知是两个不共线的向量,而与是两个共线向量,则实数=或.解析:由题设知,∴,解得或.16.已知向量满足,且,则与的夹角为解析:由得,即,∴.17.已直线与圆O:相交于A、B两点,且,则=.解析:∵,∴,∴.18.在平面直角坐标中,已知点和点,其中,若,求的值.答案:或.解析:∵,∴,即,整理得,∴或0.又∵,∴或.19.已知,则.解析:由得,.20.在中,,则这个三角形的形状是等腰三角形或直角三角形.解析:由题意得,或,∴为等腰三角形或直角三角形.21.函数的定义域是.解析:由题意得,根据图象可得.22..ABC中,已知则下列正确的结论为 ( )A. B. C. D.答案:C23.已知函数,则的值域为 ( )A.[-4,4]B.[-5,5]C.[-4,5]D.[-5,4]答案:C24.已知.(1)求的值; (2) 求的值.解: (1) .(2)原式25.若为锐角,求.解:且,否则,若而则与条件不符26. 已知.(Ⅰ)求的值;(Ⅱ)求的值.解:(Ⅰ)由得,即,又,所以为所求.(Ⅱ)====.1.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域面积等于2,则的值为( ).A.-5B.1C.2D.3. 答案:D.解析:直线的斜率为,恒过定点(0,1),由作图可知,只有当时,不等式组表示的平面区域才是封闭的,如图,可求得点坐标为(1,),∴,解得.2.已知,则的最小值是( ).A.2B.C.4D.5 答案:C.解析:,当且仅当,且,即时取“=”号.3.若正数满足,则的最小值是( ).A. B. C.5 D.6 答案:C.解析:∵,,∴,∴,当且仅当时取“=”号.4.已知,则( ).A. B. C. D.答案:A.解析:∵,且函数在上是减函数,∴.又∵指数函数在是是增函数,∴,∴答案应选A.5.不等式对任意实数恒成立,则实数的取值范围是( ).A. B. C. D.答案:A.解析:∵表示数轴上坐标为的点到坐标分别为的两点的距离之差,∴对,,当时,. ∵不等式对任意实数恒成立,∴,解得,或.6.若的三个内角满足,则的形状( ).A.一定是锐角三角形.B.一定是直角三角形.C.一定是钝角三角形.D.可能是锐角三角形,也可能是钝角三角形答案:C 解析:由及正弦定理得;由余弦定理得,∴角C为钝角,∴是钝角三角形.7.若的内角所对的边满足,且,则的值为( ).A. B. C. D.答案:A.解析:由得,由余弦定理得,∴,∴.8.在中,,则的取值范围是( ).A. B. C. D.答案:C.解析:由已知条件及正弦定理得,∴,即,∴.9.在中,角所对的边分别为,且满足,若.则的面积为( ).A. B. C. D.答案:C.解析:∵,∴,又∵,∴,而,∴,∴的面积为.10. 方程有两个不相等的实数根,则实数m的取值范围是()A. B. C. D.答案:D11. 若0<a<1,则不等式的解是()A. B. C. D. 答案:D12. 一元二次不等式ax+bx+20的解集是(-, ),则a+b的值是( )A.10B.-10C.14D.-14 答案:A13. a,b是正数,则三个数的大小顺序是()A.B.C.D.答案:C14. 设的最小值是( )A. 10B.C.D. 答案:D15.如果,那么的最小值是()A.4 B. C.9 D.18 答案:D16.若不等式和不等式的解集相同,则、的值为()A.=﹣8 =﹣10 B.=﹣4 =﹣9 C.=﹣1 =9 D.=﹣1 =2 答案:B 17.△ABC中,若,则△ABC的形状为()A.直角三角形 B.等腰三角形 C.等边三角形 D.锐角三角形答案:B18.设变量、满足约束条件,则的最大值为1819.△ABC中,是A,B,C所对的边,S是该三角形的面积,且(1)求∠B的大小;(2)若=4,,求的值。
高等数学大一试题库
〔一〕函数、极限、连续一、选择题:1、 在区间(-1,0),由( )所给出的函数是单调上升的。
(A);1+=x y (B);2x x y -=(C)34+-=x y (D)25-=x y2、 当+∞→x 时,函数f (x )=x sin x 是( )〔A 〕无穷大量 〔B 〕无穷小量 〔C 〕无界函数〔D 〕有界函数 3、 当x →1时,31)(,11)(x x xxx f -=+-=ϕ都是无穷小,那么f (x )是)(x ϕ的( ) 〔A 〕高阶无穷小 〔B 〕低阶无穷小 〔C 〕同阶无穷小 〔D 〕等阶无穷小 4、 x =0是函数1()arctanf x x=的( ) 〔A 〕可去连续点〔B 〕跳跃连续点; 〔C 〕振荡连续点〔D 〕无穷连续点 5、 以下的正确结论是〔 〕〔A 〕)(lim x f xx →假设存在,那么f (x )有界;〔B 〕假设在0x 的某邻域内,有()()(),g x f x h x ≤≤且),(lim 0x g x x →),(lim 0x h x x →都存在,那么),(lim 0x f x x →也存在;〔C 〕假设f(x)在闭区间[a ,b ]上连续,且f (a ),f (b )<0那么方程f (x )=0,在(a ,b )内有唯一的实根;(D ) 当∞→x 时,xx x x x a sin )(,1)(==β都是无穷小,但()x α与)(x β却不能比.二、填空题:1、 假设),1(3-=x f y Z且x Zy ==1那么f (x )的表达式为 ;2、 数列n x n 1014-=的极限是4, 对于,1011=ε满足n >N 时,总有ε<-4n x 成立的最小N 应是 ;3、 3214lim 1x x ax x b x →---+=+(b 为有限数) , 那么a =,b = ; 4、 设,)(ax ax x f --=那么x =a 是f (x )的第类连续点; 5、,0,;0,)(,sin )(⎩⎨⎧>+≤-==x n x x n x x g x x f 且f [g (x )]在R 上连续,那么n = ; 三、 计算题:1、计算以下各式极限:〔1〕xx x x sin 2cos 1lim0-→; 〔2〕x xx x -+→11ln 1lim 0;〔3〕)11(lim 220--+→x x x 〔4〕xx x x cos 11sinlim30-→ 〔5〕x x x 2cos 3sin lim 0→ 〔6〕xx xx sin cos ln lim0→2、确定常数a ,b ,使函数⎪⎩⎪⎨⎧-<<∞---=<<-+=1,11,11,arccos )(2x x x b x x a x f 在x =-1处连续.四、证明:设f (x )在闭区间[a ,b ]上连续,且a <f (x )<b , 证明在(a ,b )内至少有一点ξ,使()f ξξ=.〔二〕导数与微分一、填空题:1、 设0()f x '存在,那么tt x f t x f t )()(lim 000+--+→= ;2、 ,1,321,)(32⎪⎩⎪⎨⎧≤>=x x x x x f 那么(1)f '= ; 3、 设xey 2sin =, 那么dy = ;4、 设),0(sin >=x x x y x 那么=dxdy ; 5、 y =f (x )为方程x sin y +y e 0=x确定的隐函数, 那么(0)f '= .二、选择题:1、)0(),1ln()(2>+=-a a x f x 那么(0)f '的值为( )(A) –ln a (B) ln a (C)a ln 21 (D) 21 2、 设曲线21x ey -=与直线1x =-相交于点P , 曲线过点P 处的切线方程为( )(A)2x -y -2=0 (B)2x +y +1=0 (C)2x +y -3=0 (D)2x -y +3=03、 设⎪⎩⎪⎨⎧>-≤=0),1(0)(2x x b x e x f ax处处可导,那么( )(A)a =b =1 (B)a =-2,b =-1 (C)a =0,b =1 (D)a =2,b =14、 假设f (x )在点x 可微,那么xdyy x ∆-∆→∆0lim的值为( )(A)1 (B)0 (C)-1 (D) 不确定5、设y =f (sin x ),f (x )为可导函数,那么dy 的表达式为( ) (A)(sin )f x dx ' (B)(cos )f x dx '(C)(sin )cos f x x '(D)(sin )cos f x xdx '三、计算题:1、 设对一切实数x 有f (1+x )=2f (x ),且(0)0f '=,求(1)f '2、假设g(x)=⎪⎩⎪⎨⎧=≠0,00,1cos 2x x x x 又f (x )在x =0处可导,求))((=x x g f dx d3、 求曲线⎩⎨⎧=++=-+010)1(y te t t x y 在t =0处的切线方程4、 f (x )在x =a 处连续,),()sin()(x f a x x -=ϕ求)('a ϕ5、 设3222()x y y u x x =+⋅=+, 求.dudy 6、设()ln f x x x =, 求()()n fx . 7、计算.〔三〕中值定理与导数的应用一、填空题:1、 函数f (x )=arctan x 在[0 ,1]上使拉格朗日中值定理结论成立的ξ= ;2、 假设01lim sin 22ax x e b x →-=那么a = ,b = ; 3、 设f (x )有连续导数,且(0)(0)1f f '==那么)(ln )0()(sin lim 0x f f x f x -→= ;4、x e y x sin =的极大值为 ,极小值为 ;5、 )10(11≤≤+-=x xxarctgy 的最大值为,最小值为 . 二、选择题:1、 如果a,b 是方程f(x)=0的两个根,函数f(x)在[a,b]上满足罗尔定理条件,那么方程f ’(x)=0在(a,b)〔 〕〔A 〕仅有一个根; 〔B 〕至少有一个根; 〔C 〕没有根; 〔D 〕以上结论都不对。
《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)
第四章微分中值定理和导数的应用[单选题]1、曲线的渐近线为()。
A、仅有铅直渐近线B、仅有水平渐近线C、既有水平渐近线又有铅直渐近线D、无渐近线【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】本题考察渐近线计算.因为,所以y存在水平渐近线,且无铅直渐近线。
[单选题]2、在区间[0,2]上使罗尔定理成立有中值为ξ为()A、4B、2C、3D、1【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]3、,则待定型的类型是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]4、下列极限不能使用洛必达法则的是().A、B、C、D、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.[单选题]5、在区间[1,e]上使拉格朗日定理成立的中值为ξ=().A、1B、2C、eD、【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】本题考察中值定理的应用。
[单选题]6、如果在内,且在连续,则在上().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在内,说明为单调递增函数,由于在连续,所以在上f(a)<f(x)<f(b).[单选题]7、的单调增加区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]8、().A、-1B、0C、1D、∞【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]9、设,则().A、是的最大值或最小值B、是的极值C、不是的极值D、可能是的极值【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】由,我们不能判断f(0)是极值点,所以选D. [单选题]10、的凹区间是().A、(0,+∞)B、(-1,+∞)C、(-∞,+∞)D、(1,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】若求凹区间则就是求的区间,即6x+6>0,即x>-1.[单选题]11、的水平渐近线是().A、x=1,x=-2B、x=-1C、y=2D、y=-1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.[单选题]12、设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().A、-8B、7C、8D、-7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】,当P=4时,Q=-8.[单选题]13、设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】由弹性定义可知,[单选题]14、设函数在a处可导,,则().A、B、5C、2D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】因为f(x)可导,可用洛必达法则,用导数定义计算.所以[单选题]15、已知函数(其中a为常数)在点处取得极值,则a=().A、1B、2C、0D、3【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】在点处取得极值,[单选题]16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().A、9.5B、9C、8.5D、7【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】设销量为Q,则Q=120+20(10-P)·2=520-40P利润此时即取得最大值.[单选题]17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()A、增加且凹的B、减少且凹的C、增加且凸的D、减少且凸的【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】[单选题]18、求极限=().A、2B、C、0D、1【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】[单选题]19、函数在区间上的极大值点=().A、0B、C、D、【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】令,当时,当时,当时,函数有极大值.[单选题]20、设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().A、B、C、D、【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】[单选题]21、某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0B、C、1D、2【从题库收藏夹删除】【正确答案】 D【您的答案】您未答题【答案解析】,q=1200时的边际成本为2.[单选题]22、已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】,得到a=1.[单选题]23、极限=()A、-B、0C、D、1【从题库收藏夹删除】【正确答案】 C【您的答案】您未答题【答案解析】首先利用洛必达法则,分子分母分别求导,.[单选题]24、曲线y=x3的拐点为().A、(0,0)B、(0,1)C、(1,0)D、(1,1)【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】y"=6x,当y"=0时,x=0,将x=0代入原函数得y=0,所以选择A.参见教材P108~109.(2015年4月真题)[单选题]25、曲线的水平渐近线为().A、y=0B、y=1C、y=2D、y=3【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题因为,所以直线y=1为曲线的水平渐近线.参见教材P110~111.(2015年4月真题)[单选题]26、函数y=x3-3x+5的单调减少区间为().A、(-∞,-1)B、(-1,1)C、(1,+∞)D、(-∞,+∞)【从题库收藏夹删除】【正确答案】 B【您的答案】您未答题【答案解析】y'=3x2-3y'=0时,x=±1.在(-∞,-1)上,y'>0,为增函数;在(-1,1)上,y'<0,为减函数;在(1,+∞)上,y'>0,为增函数.因此选B.参见教材P100~101.(2015年4月真题)[单选题]27、已知函数(其中a为常数)在处取得极值,则a=().A、0B、1C、2D、3【从题库收藏夹删除】【正确答案】 A【您的答案】您未答题【答案解析】∵在处,取得极值点,∴参见教材P102~104。
高一精选题库习题3-4. 数学 数学doc
第3模块 第4节[知能演练]一、选择题1.下列函数中,图象的一部分如下图所示的是( )A .y =sin ⎝⎛⎭⎫x +π6 B .y =sin ⎝⎛⎭⎫2x -π6C .y =cos ⎝⎛⎭⎫4x -π3D .y =cos ⎝⎛⎭⎫2x -π6解析:由图知T =4×⎝⎛⎭⎫π12+π6=π, ∴ω=2,排除A 、C.∵图象过(π12,1)代入B 项,∴f (π12)=sin ⎝⎛⎭⎫2×π12-π6=0≠1. 排除B ,选D. 答案:D2.为得到函数y =cos(2x +π3)的图象,只需将函数y =sin2x 的图象( )A .向左平移5π12个单位长度 B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度解析:y =cos ⎝⎛⎭⎫2x +π3=sin ⎣⎡⎦⎤π2+⎝⎛⎭⎫2x +π3 =sin ⎝⎛⎭⎫2x +5π6. 由题意知要得到y =sin(2x +5π6)的图象只需将y =sin2x 向左平移5π12个单位长度. 答案:A3.设f (x )=sin(ωx +φ),其中ω>0,则f (x )是偶函数的充要条件是( )A .f (0)=1B .f (0)=0C .f ′(0)=1D .f ′(0)=0解析:∵f (x )=sin(ωx +φ)是偶函数, ∴sin(ωx +φ)=sin(-ωx +φ). ∴sin ωx cos φ=0,∴cos φ=0. ∴φ=kπ+π2k ∈Z),∴f (0)=sin φ=±1.又f ′(x )=ωcos(ωx +φ),∴f ′(0)=ωcos φ=0. 答案:D4.若函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0解析:由f (π6+x )=f (π6-x )可知x =π6是f (x )的一条对称轴.又∵y =2sin(ωx +φ)在对称轴处取得最值,故选B.答案:B 二、填空题5.已知f (x )=sin(ωx +π3)(ω>0),f (π6)=f (π3),且f (x )在区间(π6,π3)上有最小值,无最大值,则ω=________.解析:如下图所示,∵f (x )=sin(ωx +π3),且f (π6)=f (π3),又f (x )在区间(π6,π3)内只有最小值、无最大值,∴f (x )在π6+π32=π4处取得最小值.∴π4ω+π3=2kπ-π2(k ∈Z). ∴ω=8k -103(k ∈Z).∵ω>0,∴当k =1时,ω=8-103=143;当k =2时,ω=16-103=383,此时在区间(π6,π3)内已存在最大值.故ω=143.答案:1436.函数y =|sin x |cos x -1的最小正周期与最大值的和为________. 解析:y =|sin x |cos x -1=⎩⎨⎧12sin2x -1, 2kπ≤x ≤(2k +1)π,k ∈Z ,-12sin2x -1, (2k +1)π<x ≤(2k +2)π,k ∈Z.其图象如下图所示:函数最小正周期T =2π,最大值y max =-12,故最小正周期与最大值之和为2π-12.答案:2π-12三、解答题7.已知函数f (x )=cos(2x -π3)+2sin(x -π4)·sin(x +π4).(1)求函数f (x )的最小正周期和图象的对称轴方程; (2)求函数f (x )在区间⎣⎡⎦⎤-π12,π2上的值域. 解:(1)∵f (x )=cos(2x -π3+2sin(x -π4)sin(x +π4)=12cos2x +32sin2x +(sin x -cos x )(sin x +cos x ) =12cos2x +32sin2x +sin 2x -cos 2x =12cos2x +32sin2x -cos2x =sin(2x -π6). ∴周期T =2π2=π.由2x -π6=kπ+π2(k ∈Z),得x =kπ2+π3(k ∈Z).∴函数图象的对称轴方程为x =kπ2+π3(k ∈Z).(2)∵x ∈⎣⎡⎦⎤-π12,π2,∴2x -π6∈⎣⎡⎦⎤-π3,5π6. ∵f (x )=sin(2x -π6)在区间⎣⎡⎦⎤-π12,π3上单调递增,在区间⎣⎡π3,π2上单调递减,∴当x =π3时,f (x )取得最大值1,又∵f (-π12)=-32<f (π2)=12,∴当x =-π12时,f (x )取得最小值-32.∴函数f (x )在⎣⎡⎦⎤-π12,π2上的值域为⎣⎡⎦⎤-32,1.8.已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx2,x ∈R(其中ω>0).(1)求函数f (x )的值域;(2)若对任意的a ∈R ,函数y =f (x ),x ∈(a ,a +π]的图象与直线y =-1有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数y =f (x ),x ∈R 的单调增区间.解:(1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2⎝⎛⎭⎫32sin ωx -12cos ωx -1 =2sin ⎝⎛⎭⎫ωx -π6-1.由-1≤sin ⎝⎛⎭⎫ωx -π6≤1,得-3≤2sin(ωx -π6)-1≤1.可知函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π,又由ω>0,得2πω=π,即得ω=2.于是有f (x )=2sin(2x -π6-1,再由2kπ-π2≤2x -π6≤2kπ+π2(k ∈Z),解得kπ-π6≤x ≤kπ+π3(k ∈Z).所以y =f (x )的单调增区间为⎣⎡⎦⎤kπ-π6,kπ+π3(k ∈Z).[高考·模拟·预测]1.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是( )解析:当a =0时,f (x )=1,图象即为C ;当0<a <1时,三角函数的最大值为1+a <2,图象即为A ;当a >1时,三角函数的周期为T =2πa<2π,图象即为B.故选D.答案:D2.已知函数f (x )=3sin ωx +cos ωx (ω>0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是( )A .[kπ-π12kπ+5π12,k ∈Z B .[kπ+5π12,kπ+11π12],k ∈ZC .[kπ-π3kπ+π6],k ∈ZD .[kπ+π6,kπ+2π3],k ∈Z解析:∵y =3sin ωx +cos ωx =2sin(ωx +π6),且由函数y =f (x )与直线y =2的两个相邻交点间的距离为π知,函数y =f (x )的周期T =π,∴T =2πω=π,解得ω=2, ∴f (x )=2sin(2x +π6).令2kπ-π2≤2x +π6≤2kπ+π2(k ∈Z),得kπ-π3≤x ≤kπ+π6(k ∈Z),故选C.答案:C3.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是( )A.π2B.3π8 C.π4D.π8 解析:由最小正周期为π得ω=2,于是f (x )=sin(2x +π4),其图象向左平移|φ|个单位长度后所对应的函数的解析式为y =sin(2x +π4+2|φ|),由于该函数的图象关于y 轴对称,所以它是偶函数,所以π4+2|φ|=kπ+π2,k ∈Z ,所以|φ|=kπ2+π8,k ∈Z ,故选D.答案:D4.函数y =A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)在闭区间[-π,0]上的图象如下图所示,则ω=________.解析:观察函数图象可得周期T =2π3,又由函数y =A sin(ωx +φ)得T =2πω,则T =2π3=2πω,所以ω=3.答案:35.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如下图所示.(1)求函数f (x )的解析式.(2)如何由函数y =2sin x 的图象通过适当的变换得到函数f (x )的图象,写出变换过程. 解:(1)由图象知A =2.f (x )的最小正周期T =4×(5π12-π6)=π,故ω=2πT=2.将点(π6,2)代入f (x )的解析式得sin(π3+φ)=1,又|φ|<π2,∴φ=π6,故函数f (x )的解析式为f (x )=2sin(2x +π6).(2)变换过程如下:[备选精题]6.如右图,某市拟在长为8 km 的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数y =A sin ωx (A >0,ω>0),x ∈[0,4]的图象,且图象的最高点为S (3,23);赛道的后一部分为折线段MNP .为保证参赛运动员的安全,限定∠MNP =120°.(Ⅰ)求A ,ω的值和M ,P 两点间的距离; (Ⅱ)应如何设计,才能使折线段赛道MNP 最长? 解:(Ⅰ)依题意,有A =23,T4=3,又T =2πω,∴ω=π6.∴y =23sin π6x .当x =4时,y =23sin2π3=3,∴M (4,3), 又P (8,0),∴MP =42+32=5.(Ⅱ)在△MNP 中,∠MNP =120°,MP =5. 设∠PMN =θ,则0°<θ<60°.由正弦定理得MP sin120°=NP sin θ=MN sin(60°-θ)∴NP =1033sin θ,MN =1033sin(60°-θ). 故NP +MN =1033sin θ+1033sin(60°-θ)=1033(12θ+32cos θ)=1033sin(θ+60°).∵0°<θ<60°,∴60°<θ+60°<120°, ∴当θ=30°时,折线段赛道MNP 最长.亦即,将∠PMN 设计为30°时,折线段赛道MNP 最长.。
高中数学题库-高中数学题库百度网盘
迄今为止最全,最适用的高一数学试题(必修 1、4)(特别适合按 14523 顺序的省份) 必修 1 第一章 集合测试A.学校篮球水平较高的学生A .{ (1,1)} M N{0}加自由泳又参加蛙泳的运动员”用集合运算表示为 A.A ∩BB.A BC.A ∪B7.集合 A={x x 2k,k Z } ,B={ x x 2k 1,k Z } ,C={ x x 4k 1,k Z }D.A B)D. (a+b) A 、B 、C 任一个={1,2,3,4,5},则 x=(C. 4D. 5A.(a+b ) AB. (a+b)BC.(a+b)CA B 9.满足条件{1,2,3} M {1,2,3,4,5,6}的集合 M 的个数是10.全集 U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 A. B. A B11.设集合M {m Z | 3 m 2}, N {n Z | 1 n 3}, M I N ( C. C A C BD. C AC BA BUUUU≤ ≤ A . 0,1B . 1,0 1,C . 0,1,2D . 1,01,,2A .0{xba ,又可表示成{a ,ab ,0} ,则2 aa200316.已知集合U {x | 3 x 3} ,M {x | 1 x 1},C N {x | 0 x 2}那么集合UNU,集合 B {x a 1 x 2a 5},若满足 A B {x 3 x 7},求实数 aA {x1 x 7} 的值.19. 已知方程 x 2 ax b 020. 已知集合 A {x 1 x 3},, C {y y 2x a , x A}B22x 22.函数f(x)=4x-mx+5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函2D.25A.(3,8)ax1x211D.(-∞,-1)∪(1,+∞)222aD{a|1a2}B.f(13)<f(9)<f(-1)D.f(13)<f(-1)<f(9)9.函数f(x)|x|和g(x)x(2x)的递增区间依次是在区间,4上是减函数,则实数a的取值范围(f x x22a1x2A.a≤311. 函数y x4x c,则2B f(1)c f(2)D c f(2)f(1)f(x),且在区间[0,4]上是减函数则f(x4)B.f(13)f(10)f(15)D.f(15)f(13)f(10)-214.函数 f(x)=2x -mx+3,当 x∈-2,+时是增函数,当 x∈-,-2时是减函2f(x)(k2)x 2(k1)x3是偶函数,则f(x)的递减区间是_____________.217.证明函数 f(x)=在(-2,+)上是增函数3在[3,5]上单调递减,并求函数在[3,5]的最大值和最小值。
高一数学题库3篇
高一数学题库第一篇:函数1.什么是函数?2.函数的符号表示和含义是什么?3.什么是定义域、值域和像?4.如何判断一个点是否在函数的图象上?5.什么是奇函数和偶函数?6.如何判断一个函数的奇偶性?7.如何求函数的反函数?8.什么是复合函数?9.如何求复合函数的值?10.如何求反函数的导数?函数是指从一个集合到另一个集合的一种映射关系。
在数学中,函数是指在每一种可能的输入值上,都能够确定一个唯一的输出值的规则。
函数可以用符号表示,它们的符号表示通常是y=f(x),其中x是输入,y是输出,f是规则。
定义域指函数自变量的取值范围,值域指函数因变量的取值范围,像是函数的所有可能取值的集合。
判断一个点是否在函数的图象上,可以用这个点的坐标值带入函数的方程中计算,如果结果等于y,则该点在函数图象上。
函数被称为奇函数,当且仅当f(−x)=−f(x),即函数的图象以原点对称;函数被称为偶函数,当且仅当f(−x)=f(x),即函数的图象以y轴为对称轴。
判断一个函数的奇偶性,可以用f(x)与f(−x)的关系来判断。
如果f(x)=f(−x),则函数为偶函数;如果f(−x)=−f(x),则函数为奇函数。
反函数是指与原函数互相操作,使得两个函数的输出与输入对调。
反函数可以用f(x)=y表示,并且f的反函数可以表示为y=f−1(x)。
求反函数的导数的公式是(f−1)′(x)=1/f′(f−1(x))。
复合函数是指一个函数作为另一个函数的输入,即一个函数的输出作为另一个函数的输入。
例如,当f(x)=x+2,g(x)=x−3时,复合函数为(f◦g)(x)=f(g(x))=x-1。
对于复合函数的求值,可以先计算内部函数g(x)的值,将其结果代入到外部函数f(x)中进行计算。
复合函数的求导规则是(g◦f)′(x)=g′(f(x))×f′(x)。
第二篇:极限1.什么是极限?有什么作用?2.什么是数列极限?3.数列极限的收敛性和发散性有什么区别?4.什么是函数的极限?5.如何用极限定义函数的连续性?6.什么是夹逼定理?如何应用夹逼定理?7.如何用极限证明函数性质?8.什么是无穷小?如何判断一个函数是否为无穷小?9.什么是无穷小的等价无穷小?在数学中,极限是指一个值趋近于一个特定值的过程。
高一数学必修1习题及答案5篇
高一数学必修1习题及答案5篇高一数学必修1习题及答案1一、选择题:(在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合,则m∩p= ( )a. b. c. d.2.下列函数与有相同图象的一个函数是( )a. b. c. d.3. 设a={x|0≤x≤2},b={y|1≤y≤2},在下列各图中,能表示从集合a到集合b的映射的是( )4设,,,则,,的大小关系为( ). . . . .5.定义为与中值的较小者,则函数的值是( )6.若,则的表达式为( )a. b. c. d.7.函数的反函数是( )a. b.c. d.8若则的值为( )a.8b.c.2d.9若函数在区间上的图象为连续不断的一条曲线,则下列说法正确的是( )a.若,不存在实数使得;b.若,存在且只存在一个实数使得;c.若,有可能存在实数使得;d.若,有可能不存在实数使得;10.求函数零点的个数为( ) a. b. c. d.11.已知定义域为r的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )a.f(-1)f(9)f(13) p=""b.f(13)f(9)f(-1)c.f(9)f(-1)f(13) p=""d.f(13)f(-1)f(9)12.某学生离家去学校,由于怕迟到,一开始就跑步,等跑累了再步行走完余下的路程,若以纵轴表示离家的距离,横轴表示离家后的时间,则下列四个图形中,符合该学生走法的是( )二、填空题:本大题共6小题,每小题4分,共24分.把答案直接填在题中横线上.13、,则的取值范围是14.已知实数满足等式,下列五个关系式:(1) ,(2) ,(3) ,(4) ,(5)其中可能成立的关系式有.15.如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的下方,那么函数的图象给我们向上凸起的印象,我们称函数为上凸函数;反之,如果在函数的图象上任取不同的两点、,线段(端点除外)总在图象的上方,那么我们称函数为下凸函数.例如:就是一个上凸函数.请写出两个不同类型的下凸函数的解析式:16.某批发商批发某种商品的单价p(单位:元/千克)与一次性批发数量q(单位:千克)之间函数的图像如图2,一零售商仅有现金2700元,他最多可购买这种商品千克(不考虑运输费等其他费用).三、解答题:.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知全集u=r,集合,,求,,。
2019-2020学年人教版高一数学新教材全套题库含答案详解
人教版高一数学新教材全套题库含答案详解目录专题01 集合及其表示方法专题02 集合的基本关系专题03 集合的基本运算专题04 《集合》单元测试卷专题05 命题与量词专题06 全称量词命题与存在性量词命题的否定专题07 充分条件、必要条件专题08 《常用逻辑用语》单元测试卷专题09 《集合与常用逻辑用语》综合测试卷专题10 等式的性质与方程的解专题11 一元二次方程的解集及其根与系数的关系专题12 方程组的解集专题13 《等式》单元测试卷专题14 不等式及其性质专题15 不等式的解集专题16 一元二次不等式的解法专题17 均值不等式及其应用专题18《不等式》单元测试卷专题19《等式与不等式》综合测试卷专题01 集合及其表示方法一、选择题1.下列给出的对象中,能表示集合的是( ).A .一切很大的数B .无限接近零的数C .聪明的人D .方程的实数根2.已知集合A={x ∈N|-1<x <4},则集合A 中的元素个数是( )A .3B .4C .5D .6 3.用列举法表示集合正确的是( )A. −2,2B. {−2}C. {2}D. {−2,2}4.已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .9B .5C .3D .1 5.下列说法正确的是( )A .我校爱好足球的同学组成一个集合B .是不大于3的自然数组成的集合 C .集合和表示同一集合 D .数1,0,5,,,,组成的集合有7个元素6.集合{x |x ≥2}表示成区间是 A .(2,+∞) B .[2,+∞) C .(–∞,2) D .(–∞,2]7.集合A ={x ∈Z|y =,y ∈Z}的元素个数为( )A .4B .5C .10D .128.不等式的解集用区间可表示为A .(–∞,)B .(–∞,]C .(,+∞)D .[,+∞)9.下列说法正确的是( )A .0与{}0的意义相同B .高一(1)班个子比较高同学可以形成一个集合{}2|40A x x =-=C .集合(){},|32,A x y x y x N =+=∈是有限集 D .方程2210x x ++=的解集只有一个元素10.方程组的解集不可以表示为( ) A .{(x ,y)|} B .{(x ,y)|}C .{1,2}D .{(1,2)} 11.下列选项中,表示同一集合的是A .A={0,1},B={(0,1)}B .A={2,3},B={3,2}C .A={x|–1<x≤1,x ∈N},B={1}D .A=∅,12.若集合A 具有以下性质:(Ⅰ)0∈A,1∈A ;(Ⅱ)若x ∈A ,y ∈A ,则x -y ∈A ,且x≠0时,∈A. 则称集合A 是“好集”.下列命题正确的个数是( )(1)集合B ={-1,0,1}是“好集”;(2)有理数集Q 是“好集”;(3)设集合A 是“好集”,若x ∈A ,y ∈A ,则x +y ∈A.A .0B .1C .2D .3二、填空题13.用区间表示数集{x |2<x ≤4}=____________.14.若[a,3a -1]为一确定区间,则a 的取值范围是________.15.下列所给关系正确的个数是________.①π∈R ;② Q ;③0∈N +;④|-4|N +. 16.在数集{}0,1,2x -中,实数x 不能取的值是______.三、解答题17.在数轴上表示集合{x |x <-2或x ≥1},并用区间表示该集合.18.用适当的方法表示下列集合.(1)小于5的自然数构成的集合;(2)直角坐标系内第三象限的点集;(3)偶数集.19.已知,用列举法表示集合.20.已知, ,求实数的值.21.用区间表示下列数集:(1);(2);(3);(4)R;(5);(6).22.设数集由实数构成,且满足:若(且),则.(1)若,试证明中还有另外两个元素;(2)集合是否为双元素集合,并说明理由;(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.答案解析一、选择题1.下列给出的对象中,能表示集合的是( ).A .一切很大的数B .无限接近零的数C .聪明的人D .方程的实数根 【答案】D【解析】选项,,中给出的对象都是不确定的,所以不能表示集合;选项中方程的实数根为或,具有确定性,所以能构成集合. 故选.2.已知集合A={x ∈N|-1<x <4},则集合A 中的元素个数是( )A .3B .4C .5D .6 【答案】B【解析】集合A={x ∈N|-1<x <4}={0,1,2,3}.即集合A 中的元素个数是4.故选:B .3.用列举法表示集合正确的是( )A. −2,2B. {−2}C. {2}D. {−2,2}【答案】D【解析】由x 2−4=0,解得:x=±2,故A={−2,2},本题选择D 选项.4.已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( )A .9B .5C .3D .1 【答案】B【解析】因为集合A ={0,1,2},所以集合{2,1,0,1,2}B =--,所以集合B 中共有5个元素,故选B. {}2|40A x x =-=5.下列说法正确的是()A.我校爱好足球的同学组成一个集合B.是不大于3的自然数组成的集合C.集合和表示同一集合D.数1,0,5,,,,组成的集合有7个元素【答案】C【解析】选项A,不满足确定性,故错误选项B,不大于3的自然数组成的集合是,故错误选项C,满足集合的互异性,无序性和确定性,故正确选项D,数1,0,5,,,,组成的集合有5个元素,故错误故选C6.集合{x|x≥2}表示成区间是A.(2,+∞)B.[2,+∞)C.(–∞,2)D.(–∞,2]【答案】B【解析】集合{x|x≥2}表示成区间是[2,+∞),故选B.点睛:(1)用区间表示数集的原则有:①数集是连续的;②左小右大;③区间的一端是开或闭不能弄错;(2)用区间表示数集的方法:区间符号里面的两个数字(或字母)之间用“,”隔开;(3)用数轴表示区间时,要特别注意实心点与空心点的区别.7.集合A={x∈Z|y=,y∈Z}的元素个数为()A.4 B.5 C.10 D.12【答案】D【解析】由题意,集合{x∈Z|y=∈Z}中的元素满足x是正整数,且y是整数,由此可得x=﹣15,﹣9,﹣7,﹣6,﹣5,﹣4,﹣2,﹣1,0,1,3,9;此时y 的值分别为:﹣1,﹣2,﹣3,﹣4,﹣6,﹣12,12,6,4,3,3,1,符合条件的x 共有12个,故选:D .8.不等式的解集用区间可表示为A .(–∞,)B .(–∞,]C .(,+∞)D .[,+∞)【答案】D【解析】解不等式2x–1≥0,得x ≥,所以其解集用区间可表示为[,+∞).故选D . 9.下列说法正确的是( )A .0与{}0的意义相同B .高一(1)班个子比较高的同学可以形成一个集合C .集合(){},|32,A x y x y x N =+=∈是有限集 D .方程2210x x ++=的解集只有一个元素【答案】D【解析】因为0是元素, {}0是含0的集合,所以其意义不相同;因为“比较高”是一个不确定的概念,所以不能构成集合;当x N ∈时, y N ∈,故集合(){},|32,A x y x y x N =+=∈是无限集;由于方程2210x x ++=可化为方程()210x +=,所以1x =-(只有一个实数根),即方程2210x x ++=的解集只有一个元素,应选答案D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4模块 第4节
[知能演练]
一、选择题
1.复数z =(a 2
-2a )+(a 2
-a -2)i (a ∈R )对应的点在虚轴上,则
( )
A .a ≠2或a ≠1
B .a ≠2且a ≠1
C .a =2或a =0
D .a =0
解析:由题意知a 2-2a =0,∴a =2或a =0. 答案:C
2.设z 的共轭复数是z ,若z +z =4,z ·z =8,则
z z 等于
( )
A .i
B .-i
C .±1
D .±i
解析:设z =x +yi (x ,y ∈R ),z =x -yi . 由z +z =4,z ·z =8得
⎩
⎪⎨⎪⎧
x +yi +x -yi =4(x +yi )(x -yi )=8, ∴⎩
⎪⎨⎪⎧
x =2x 2+y 2=8, 解得⎩⎪⎨
⎪
⎧ x =2y =2或⎩
⎪⎨⎪
⎧
x =2y =-2,
∴z
z =x -yi x +yi =x 2-y 2-2xyi x 2+y 2=±i . 答案:D
3.如果实数b 与纯虚数z 满足关系式(2-i )z =4-bi (其中i 为虚数单位),那么b 等于
( )
A .8
B .-8
C .2
D .-2
解析:设z =ai (a ≠0),
由(2-i )z =4-bi ,得(2-i )×ai =4-bi , 即a +2ai =4-bi ,
∴⎩⎪⎨⎪⎧ a =42a =-b ,解得⎩
⎪⎨⎪⎧
a =4
b =-8. 答案:B
4.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数为
( )
A .1-2i
B .-1+2i
C .3+4i
D .-3-4i
解析:向量AB →对应的复数是2+i ,则BA →对应的复数为-2-i ,∵CA →=CB →+BA →
. ∴CA →
对应的复数为(-1-3i )+(-2-i )=-3-4i . 答案:D 二、填空题
5.已知z =(2+2i )2(4+5i )
(5-4i )(1-i ),则|z |=________.
解析:|z |=|(2+2i )2
(4+5i )
(5-4i )(1-i )|
=|2+2i |2|4+5i ||5-4i ||1-i |
=22×4141×2
=2 2.
答案:2 2
6.若复数z =(a 2
-3)-(a +3)i ,(a ∈R )为纯虚数,则a +i 2007
3-3i
=________.
解析:∵z =(a 2
-3)-(a +3)i 为纯虚数,
∴⎩⎨⎧
a 2
-3=0a +3≠0
,解得a =3, ∴a +i 20073-3i =3-i 3-3i =3-i 3(3-i )=33. 答案:
3
3
三、解答题
7.若复数z 1与z 2在复平面上所对应的点关于y 轴对称,且z 1(3-i )=z 2(1+3i ),|z 1|=2,求z 1.
解:设z 1=a +bi ,则z 2=-a +bi ,
∵z 1(3-i )=z 2(1+3i ),且|z 1|=2, ∴⎩⎪⎨
⎪
⎧
(a +bi )(3-i )=(-a +bi )(1+3i )a 2
+b 2
=2
解得⎩⎪⎨⎪⎧ a =1b =-1或⎩⎪⎨⎪⎧
a =-1
b =1
, 则z 1=1-i 或z 1=-1+i .
8.已知z 是复数,z +2i 、z 2-i 均为实数(i 为虚数单位),且复数(z +ai )2
在复平面上对应
的点在第一象限,求实数a 的取值范围.
解:设z =x +yi (x 、y ∈R ),
∴z +2i =x +(y +2)i ,由题意得y =-2.
z 2-i =x -2i 2-i =15(x -2i )(2+i )=15(2x +2)+15(x -4)i . 由题意得x =4,∴z =4-2i .
∵(z +ai )2
=(12+4a -a 2
)+8(a -2)i ,
根据条件,已知⎩
⎪⎨⎪⎧
12+4a -a 2
>0
8(a -2)>0,解得2<a <6,
∴实数a 的取值范围是(2,6).
[高考·模拟·预测]
1. i 是虚数单位,若1+7i
2-i
=a +bi (a ,b ∈R ),则乘积ab 的值是
( )
A .-15
B .-3
C .3
D .15
解析:1+7i 2-i =(1+7i )(2+i )
(2-i )(2+i )=-1+3i ,所以a =-1,b =3,故选B.
答案:B
2.复数3+2i 2-3i -3-2i
2+3i
=
( )
A .0
B .2
C .-2i
D .2i
解析:3+2i 2-3i -3-2i 2+3i =(3+2i )(2+3i )-(2-3i )(3-2i )(2+3i )(2-3i )=26i
13=2i ,答案为D.
答案:D
3.已知
z
1+i
=2+i ,则复数z = ( )
A .-1+3i
B .1-3i
C .3+i
D .3-i
解析:依题意得z =(1+i )(2+i )=1+3i ,故z =1-3i .选B. 答案:B
4.设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=
( )
A .8
B .6
C .4
D .2
解析:∵α(z )表示满足z n =1的最小正整数n ,∴α(i )表示满足i n =1的最小正整数n ,∵i 2
=-1,∴i 4
=1,∴α(i )=4.
答案:C
5.已知复数z 1=a +2i ,z 2=a +(a +3)i ,且z 1z 2>0,则实数a 的值为
( )
A .0
B .-5
C .0或-5
D .0或5
解析:由已知条件可得z 1z 2=(a +2i )·[a +(a +3)i ]=a 2-2(a +3)+(a 2+5a )i ,又z 1z 2>0,
所以⎩
⎪⎨⎪⎧
a 2-2(a +3)>0a 2+5a =0,解得a =-5,故选B.
答案:B
6.若z =sin θ-35+i (cos θ-4
5
)是纯虚数,则tan θ的值为
( )
A .±3
4
B .±43
C .-34
D.34
解析:由纯虚数定义知,sin θ=35,cos θ≠45,∴cos θ=-45,∴tan θ=-3
4.
答案:C
7.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________. 解析:因为(z 1-z 2)i =(-2+20i )i =-20-2i ,所以可知复数(z 1-z 2)i 的实部为-20. 答案:-20
8.若
2
1-i
=a +bi (i 为虚数单位,a ,b ∈R ),则a +b =________. 解析:∵2
1-i
=a +bi ,∴1+i =a +bi ,∴a =b =1,∴a +b =2. 答案:2
9.若复数m +2i
1-i (m ∈R ,i 是虚数单位)为纯虚数,则m =________.
解析:因为m +2i 1-i =(m +2i )(1+i )
(1-i )(1+i )
=
m -2+(m +2)i
2
为纯虚数,所以m =2.
答案:2 10.复数1-3i
2+i
-(1+i )2在复平面内的对应点位于第________象限. 解析:
1-3i 2+i -(1+i )2=(1-3i )(2-i )5-2i =-1-7i 5-2i =-1-17i
5
,所以其对应点位于第三象限.
答案:三。