优化设计习题

合集下载

优化设计复习题(原)

优化设计复习题(原)

word 教育资料优化设计复习题一、单项选择题(在每小题列出的选项中只有一个选项是符合题目要求的)1.多元函数F(X)在点X *附近偏导数连续, F ’(X *)=0且H(X *)正定,则该点为F(X)的( ) ①极小值点 ②极大值点 ③鞍点 ④不连续点 2.F(X)为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数,若H(X)正定,则称F(X)为定义在凸集D 上的( ) ①凸函数 ②凹函数 3.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( ) ①0.382 ②0.186 ③0.618 ④0.816 4.在单峰搜索区间[x 1,x 3](x 1<x 3)内,取一点x 2,用二次插值法计算得x 4(在[x 1,x 3]内),若x 2>x 4,并且其函数值F (x 4)<F(x 2),则取新区间为( ) ①[x 1,x 4] ②[x 2,x 3] ③[x 1,x 2] ④[x 4,x 3] 5.用变尺度法求一n 元正定二次函数的极小点,理论上需进行一维搜索的次数最多为( ) ①n 次 ②2n 次 ③n+1次 ④2次6.下列特性中,梯度法不具有的是( ) ①二次收剑性 ②要计算一阶偏导数 ③对初始点的要求不高 ④只利用目标函数的一阶偏导数值构成搜索方向 8.对于极小化F(X),而受限于约束g μ(X)≤0(μ=1,2,…,m)的优化问题,其内点罚函数表达式为( ) ① Ф(X,r (k))=F(X)-r(k)11/()gX u u m=∑② Ф(X,r (k))=F(X)+r(k)11/()gX u u m =∑③ Ф(X,r (k))=F(X)-r(k)max[,()]01gX u u m=∑④ Ф(X,r (k))=F(X)-r (k)min[,()]01g X u u m=∑9.外点罚函数法的罚因子为( ) ①递增负序列 ②递减正序列 ③递增正序列 ④递减负序列 10.函数F (X )为在区间[10,20]内有极小值的单峰函数,进行一维搜索时,取两点13和16,若F (13)<F (16),则缩小后的区间为( ) ①[10,16] ②[10,13] ③[13,16] ④[16,20] 11.多元函数F (X )在X *处存在极大值的充分必要条件是:在X *处的Hesse 矩阵( ) ①等于零 ②大于零 ③负定 ④正定 12.对于函数F (x )=x 21+2x 22,从初始点x (0)={1,1}T 出发,沿方向s (0)={-1,-2}T进行一维搜索,最优步长因子为( )①10/16 ②5/9 ③9/34 ④1/213.目标函数F (x )=x 21+x 22-x 1x 2,具有等式约束,其等式约束条件为h(x)=x 1+x 2-1=0,则目标函数的极小值为( ) ①1 ②0.5 ③0.25 ④0.1 14. 优化设计的自由度是指( )① 设计空间的维数 ② 可选优化方法数 ③ 所提目标函数数 ④ 所提约束条件数 15. 在无约束优化方法中,只利用目标函数值构成的搜索方法是( ) ①梯度法 ② Powell 法 ③共轭梯度法 ④变尺度法 17. 利用0.618法在搜索区间[a,b ]内确定两点a 1=0.382,b 1=0.618,由此可知区间[a,b ]的值是( ) ①[0,0.382] ② [0.382,1] ③ [0.618,1]④ [0,1]18. 已知函数F(X)=x 12+x 22-3x 1x 2+x 1-2x 2+1,则其Hesse 矩阵是( ) ① ⎥⎦⎤⎢⎣⎡--2332 ② ⎥⎦⎤⎢⎣⎡2332③ ⎥⎦⎤⎢⎣⎡2112 ④ ⎥⎦⎤⎢⎣⎡--3223 19. 对于求minF(X)受约束于g i (x)≤0(i=1,2,…,m)的约束优化设计问题,当取λi ≥0时,则约束极值点的库恩—塔克条件为( )①()i i 1F X g (X)mi λ=∇=∇∑,其中λi 为拉格朗日乘子② ()i i 1F X =g (X)mi λ=-∇∇∑,其中λi 为拉格朗日乘子③ ()i i 1F X g (X)qi λ=∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数④()i i 1F X g (X)qi λ=-∇=∇∑,其中λi 为拉格朗日乘子,q 为该设计点X 处的约束面数20. 在共轭梯度法中,新构造的共轭方向S (k+1)为( ) ① S (k+1)= ∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数② S (k+1)=∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 ③ S (k+1)=-∇F(X (k+1))+β(k)S (K),其中β(k)为共轭系数④ S (k+1)=-∇F(X (k+1))-β(k)S (K),其中β(k)为共轭系数 21. 用内点罚函数法求目标函数F(X)=ax+b 受约束于g(X)=c-x ≤0的约束优化设计问题,其惩罚函数表达式为( ) ① (k)1ax b r c-x+-,r (k)为递增正数序列② (k)1ax b r c-x +-,r (k)为递减正数序列 ③ (k)1ax b r c-x ++,r (k)为递增正数序列word 教育资料④ (k)1ax b r c-x++,r (k)为递减正数序列22. f(x)在区间[x 1,x 3]上为单峰函数,x 2为区间中的一点,x 4为利用二次插值法求得的近似极值点,若x 4-x 2<0,且f(x 4)≥f(x 2),则新的搜索区间为( )① [x 1,x 4] ② [x 2,x 3] ③ [x 1,x 2] ④[x 4,x 3]23. 已知F(X)=x 1x 2+2x 22+4,则F(X)在点X (0)=⎭⎬⎫⎩⎨⎧-11的最大变化率为( )① 10 ② 4 ③ 2 ④ 1024.试判别矩阵1111⎡⎣⎢⎤⎦⎥,它是( )矩阵 ①单位 ②正定矩 ③负定 ④不定 ⑤半正定 ⑥半负定 25.约束极值点的库恩——塔克条件为:-∇=∇=∑F X g Xii qi()()**λ1,当约束函数是g i (X)≤0和λi>0时,则q 应为( )①等式约束数目 ②不等式约束数目 ③起作用的等式约束数目 ④起作用的不等式约束数目26.在图示极小化的约束优化问题中,最优点为( ) ①A ②B ③C ④D27.内点罚函数(X,r (k))=F(X)-r (k)101g X g X u u u m(),(())≤=∑,在其无约束极值点X ·(r (k))逼近原目标函数的约束最优点时,惩罚项中( ) ①r (k)趋向零,11g X u u m()=∑不趋向零 ②r (k)趋向零,11g X u u m()=∑趋向零 ③r (k)不趋向零,11g X u u m()=∑趋向零 ④r (k)不趋向零,11g X u u m()=∑不趋向零 29.0.618法在迭代运算的过程中,区间的缩短率是( )①不变的 ②任意变化的 ③逐渐变大 ④逐渐变小 30.对于目标函数F(X)受约束于g u (X) ≤0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表达式是( )①()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递增正数序列②()()(k)(k)2()1X,M F X M {max[(),0]},mk u u g X M =Φ=+∑为递减正数序列③()()(k)(k)2()1X,M F X M {min[(),0]},mk u u g x M =Φ=+∑为递增正数序列 ④()()(k)(k)2()1X,MF X M {min[(),0]},mk uu g x M=Φ=+∑为递减正数序列31.对于二次函数F(X)=12X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( )①零 ②无穷大 ③正值 ④负值 32.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( )①可行方向法 ②复合形法 ③内点罚函数法 ④外点罚函数法33.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00⎧⎨⎩⎫⎬⎭处的梯度为( )①∇=⎧⎨⎩⎫⎬⎭F X ()()000 ②∇=-⎧⎨⎩⎫⎬⎭F X ()()020 ③∇=⎧⎨⎩⎫⎬⎭F X ()()040 ④∇=-⎧⎨⎩⎫⎬⎭F X ()()04034.Powell 修正算法是一种( )①一维搜索方法②处理约束问题的优化方法③利用梯度的无约束优化方法④不利用梯度的无约束优化方法 二、多项选择题(在每小题列出的多个选项中有两个以上选项是符合题目要求的,多选、少选、错选均无分) 35.下列矢量组中,关于矩阵A=105051--⎡⎣⎢⎤⎦⎥..共轭的矢量组是( )①s 1={0 1} ,s 2={1 0}T②s 1={-1 1}T ,s 2={1 1}T③s 1={1 0}T ,s 2={1 2}T④s 1={1 1}T ,s 2={1 2}T⑤.s 1={1 2}T ,s 2={2 1}T36. 对于只含不等式约束的优化设计问题,可选用的优化方法有( )① Powell 法 ② 变尺度法 ③ 内点罚函数法 ④ 外点罚函数法E. 混合罚函数法37. 根据无约束多元函数极值点的充分条件,已知驻点X*,下列判别正确的是( )①若Hesse矩阵H(X*)正定,则X*是极大值点②若Hesse矩阵H(X*)正定,则X*是极小值点③若Hesse矩阵H(X*)负定,则X*是极大值点④若Hesse矩阵H(X*)负定,则X*是极小值点⑤若Hesse矩阵H(X*)不定,则X*是鞍点38.下述Hesse矩阵中,正定矩阵为()①3335⎡⎣⎢⎤⎦⎥②313153337⎡⎤⎢⎥-⎢⎥-⎢⎥⎣⎦③3445⎡⎣⎢⎤⎦⎥④245434542⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⑤523222327⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦39.F(X)在区间[a,b]上为单峰函数,区间内函数情况如图所示:F1=F2。

优化设计习题

优化设计习题

1. 设函数5084442)(21222121+++++=x x x x x x x f ,将)(x f 写成矩阵形式,并求其梯度矢量和Hesse 矩阵,并证明该函数为凸函数。

矩阵形式:f TT 1(X)=X AX +B X +C 2式中⎡⎤⎢⎥⎣⎦12x X =x ,⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦11122122a a 44A ==aa 48,⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦12b 4B ==b 8,C =50。

在点(k)X 处的梯度矢量为 ()f ∇(k)(k)X =AX +B ,式中⎡⎤⎢⎥⎣⎦12x X =x ,⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦11122122a a 44A ==a a 48,⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦12b 4B ==b 8。

因为 411=''x x f ,421=''x x f ,412=''x x f ,822=''x x f 所以 原函数的Hessian 矩阵为()⎥⎦⎤⎢⎣⎡=8444X H因为 原函数的定义域是实数集,属于非空凸集,在其定义域内,对于任意自变量都有041>=∆,01684441>==∆,即原函数Hessian 矩阵的各阶顺序主子式均大于零,可以说明Hessian 矩阵是正定矩阵,所以原函数为凸函数。

2. 约束优化问题的数学模型为2212221122231min ()(2)(2)..()10()0()0f x x x s tg x x x g x x g x x =-+-=+-≤=-≤=-≤用作图法求该问题的极小点*x ,并验证该点满足Kuhn – Tucker 条件。

(1) 该数学模型的可行域如图 1阴影(包括边界)所示以点(2,2)为圆心以R 为半径做圆, 2R 的值即为)(x f 的值,可见其最小值产生于与可行域边缘相切的圆,其切点⎪⎪⎭⎫⎝⎛*22,22x 即为最小值点。

图 1 第二题图(2) 因为()00*1≤=x g ,()022*2≤-=x g ,()022*3≤-=x g ,所以极值点⎪⎪⎭⎫⎝⎛*22,22x 是可行点;又因为()01≤x g 是该模型的紧约束,而()()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=∇4242420402)(***x x x f ,()()⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=∇222002)(***1x x x g ,可以看出())(221)(*1*x g x f ∇-=∇,即极值点⎪⎪⎭⎫⎝⎛*22,22x 的目标函数梯度是所有紧约束梯度的线性组合,所以该点满足Kuhn – Tucker 条件。

优化设计初二英语练习题

优化设计初二英语练习题

优化设计初二英语练习题Part 1: 选择题1. — ______ are you going on vacation?— Next week, I think.A. WhenB. WhatC. WhereD. How2. I often go to the library ______ Sundays.A. forB. onC. atD. in3. — ______ is your mother from?— She is from Mexico.A. WhereB. HowC. WhatD. Why4. Could you please bring me ______ water?A. someB. anC. anyD. a5. You should ______ the street when the light is green.A. stopB. goC. crossD. wait6. We ______ on the playground yesterday afternoon.A. playB. playedC. playsD. playing7. — ______ do you go shopping?— Every Saturday.A. WhatB. WhenC. WhereD. Why8. My sister ______ in a school near our house.A. teachB. teachesC. teachingD. taught9. I'm sorry, but I ______ to lend you my camera.A. forgetB. forgotC. forgettingD. forgotten10. ______ do you go to the movies?Twice a month.A. How longB. How soonC. How oftenD. How farPart 2: 完成句子1. Lucy ______ (be) late for school today.2. We ______ (not have) a chemistry class yesterday.3. Steve ______ (not go) to the park last weekend.4. ______ your father ______ (read) a book every night?5. They ______ (not listen) to music at the moment.Part 3: 阅读理解ASam: Can you help me with my math homework, Lily?Lily: Sure, what do you need help with?Sam: I don't understand this problem. It says, "If a bus travels at 60 kilometers per hour, how far can it go in 3 hours?"Lily: To solve this problem, you can use the formula: distance = speed ×time.Sam: Oh, so the distance is 60 × 3, which is 180 kilometers. Thank you, Lily!Lily: You're welcome, Sam!根据对话内容,选择正确答案。

优化设计练习题 (1)

优化设计练习题 (1)

要求根据目标函数和约束函数采用适合的MATLAB 优化函数求解优化问题,即线性规划问题、无约束非线性规划、约束非线性规划问题、二次规划问题。

1—21、⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤+-⋅--=0,31232424min 2121212121x x x x x x x x t s x x f2、72220:min 321321≤++≤⋅-=x x x t s x x x f 答案:310456.3]12,12,24[⨯-==**f x3、022:)1()2(min 212221=-+⋅-+-=x x t s x x f答案:8.0]2.0,6.1[==**f x4、2221)3(min x x f +-=⎪⎩⎪⎨⎧≥-≥≥--⋅05.000412221x x x x t s答案:1]0,2[==**f x5、求函数42121122(,)32(15)f x x x x x x =+++的极小点。

答案:[0.3287,0.2131]0.1008x f **=-=-6、求表面积为2150m 的体积最大的长方体体积。

125]5,5,5[150)(2min 313221321-===++-=**f x x x x x x x x x x f7、某车间生产甲(如轴)、乙(如齿轮)两种产品。

生产甲种产品每件需要用材料9㎏,3个工时、4kw 电,可获利60元;生产乙种产品每件需要用材料4㎏、10个工时, 5kw 电,可获利120元。

若每天能供应材料360㎏,有300个工时,能供电200kw 电,问每天生产甲、乙两种产品各多少件,才能够获得最大的利润。

min F(x )=-60x 1-120x 2 S.T g 1(x)=-360+9x 1+4x 2≤0 g 2(x)=-300+3x 1+10x 2≤0g 3(x )=-200+4x 1+5x 2≤0 g 4(x )=-x 1≤0 g 5(x)=-x 2≤0答案:3[20,24]4.080010x f **==⨯8、已知:轴一端作用载荷 p=1000N/ cm ,扭矩 M=100N·m ;轴长不得小于8cm ;材料的许用弯曲应力 [σw]=120MPa ,许用扭剪应力 [τ]= 80MPa ,许用挠度 [f] = 0.01cm ;密度[ρ] = 7.8t /m ,弹性模量E=2×105MPa 。

优化设计 孙靖民 课后答案第6章习题解答-3

优化设计 孙靖民 课后答案第6章习题解答-3

9.图6-39所示为一对称的两杆支架,在支架的顶点承受一个载荷为2F=300000N , 支架之间的水平距离2B=1520mm ,若已选定壁厚T=2.5mm 钢管,密度/1083-6mm Kg ⨯=.7ρ,屈服极限700=s σMpa ,要求在满足强度与稳定性条件下设计最轻的支架尺寸。

[解] 1.建立数学模型 设计变量:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 21目标函数:221422577600101.2252)(x x HB D T x f +⨯=+=πρ 约束条件: 1)圆管杆件中的压应力σ应小于或等于y ο,即y TDHHB F σπσ≤+=22于是得2122157760019098.59)(x x x x g +=2)圆管杆件中的压应力α应小于或等于压杆稳定的临界应力c σ,由欧拉公式得钢管的压杆温度应力c σ222152222225776006.25102.6)8()(x x H B T D E AL EIC ++⨯=++==ππσ2式中 A ――圆管的截面积;L ――圆管的长度。

于是得0)6006.25)/(577(102.657760019098.59)(2221521222≤++⨯-+=-=x x x x x x g c σσ3) 设计变量的值不得小于或等于0于是得)(0)(2213≤-=≤-=x x g x x g2.从以上分析可知,该优化设计问题具有2个设计变量,4个约束条件,按优化方法程序的规定编写数学模型的程序如下:subroutine ffx(n,x,fx) dimension x(n) fx=1.225e-4*x(1)*sqrt(577600.0+x(2)*x(2)) endsubroutine ggx(n,kg,x,gx) dimension x(n),gx(kg)gx(1)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))-700.0 gx(2)=19098.59*sqrt(577600.0+x(2)*x(2))/(x(1)*x(2))- 1 2.6e5*(x(1)*x(1)+6.25)/(577600.0+x(2)*x(2)) gx(3)=-x(1) gx(4)=-x(2) end3.利用惩罚函数法(SUMT 法)计算,得到的最优解为:============== PRIMARY DATA ============== N= 2 KG= 4 KH= 0 X : .7200000E+02 .7000000E+03 FX: .9113241E+01GX: -.3084610E+03 -.8724784E+03 -.7200000E+02 -.7000000E+03 PEN = .9132947E+01R = .1000000E+01 C = .4000000E+00 T0= .1000000E-01 EPS1= .1000000E-05 EPS2= .1000000E-05=============== OPTIMUM SOLUTION ============== IRC= 18 ITE= 39 ILI= 39 NPE= 229 NFX= 0 NGR= 57 R= .1717988E-06 PEN= .6157225E+01 X : .4868305E+02 .6988214E+03 FX: .6157187E+01GX: -.1204029E+03 -.1266042E-01 -.4868305E+02 -.6988207E+0310.图6-40所示为一箱形盖板,已知长度L=6000mm ,宽度b=600mm ,厚度mm t s 5承受最大单位载荷q=0.01Mpa ,设箱形盖板的材料为铝合金,其弹性模量MPa E 4107⨯=,泊松比3.0=μ,许用弯曲应力[]MPa 70=σ,许用剪应力[]MPa 45=τ,要求在满足强度、刚度和稳定性条件下,设计重量最轻的结构方案。

《机械优化设计》习题及答案

《机械优化设计》习题及答案

机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。

在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。

求设计变量向量[]12Tn x x x x =使 ()min f x →且满足约束条件()0(1,2,)k h x k l == ()0(1,2,)j g x j m ≤=2-1.何谓函数的梯度梯度对优化设计有何意义答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。

(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。

(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。

梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。

负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。

2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。

解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ∇。

求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x fx f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。

《机械优化设计》习题及答案

《机械优化设计》习题及答案

机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。

在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。

求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。

(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。

(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。

梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。

负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。

2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。

解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。

求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。

优化设计习题题目练习

优化设计习题题目练习

一、 填空题1. 用最速下降法求()()2211f x =100)1x x -+-(x 最优解时,设()[]00.5,0.5T x =-,第一步迭代的搜索方向为 T 100]- [103。

2. 机械优化设计采用数学的规划法,其核心一是最佳步长,二是搜索方向。

3. 当优化问题是凸规划的情况下,在任何局部最优解就是全域最优解。

4. 应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点,中间点和终点,他们的函数值形成趋势高--低--高。

5. 包含n 个设计变量的优化问题,称为 n 维优化问题。

6. 函数12TT x Hx B x c ++的梯度为_________。

7. 设G 为n n ⨯对称正定矩阵,若n 维空间中有两个非零向量0d ,1d ,满足()010d Gd=,则0d ,1d 之间存在共轭关系。

8. 与负梯度成锐角的方向为函数值下降 方向,与梯度成直角的方向为函数值的 不变方向。

9. 设计变量、目标函数、约束条件是优化设计问题的数学模型的基本要素。

10. 对于无约束二元函数()12,f x x ,若在()01234,x x x =点处取得极小值,其必要条件是在0x 点的梯度为0,充分条件是在0x 点的海赛矩阵正定。

11. K-T 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12. 用黄金分割法求一元函数()21036f x x x =-+的极值点,初始搜索区间[][],10,10a b =-,经第一次区间消去后得到新区间【-2.36,10】。

13. 优化设计问题的数学模型的基本要素有设计变量,目标函数,约束条件。

14. 牛顿法搜索方向k d =()()21()k k f x f x --∇∇,其计算是 大,且要求初始在级极小点附近位置。

15. 将函数()2112121210460f x x x x x x x =+---+表示成12TT x Hx B x c ++的形式为 。

最优化设计习题

最优化设计习题

1. 用薄钢板制造一体积等于1m3的货箱,各边的长度不小于0.5m,要求确定货箱的长、宽、高尺寸,以使钢板的用量最省。

试写出该问题的数学模型。

2. 有宽0.5m、长50m的钢带一条,欲做成高0.5m、直径分别为0.22m、0.35m和0.5m的三种圆柱形筒料。

要求每种筒料不少于10件,三件总数不少于30件,问:如何下料,最节省材料?试写出该问题的数学模型。

3. 用图解法求解(1)min f(x1,x2)=(x1-1)2 +(x2-1)2s.t. g1(x1,x2)=x1 +x2=1(2)min f(x1,x2)=x12 +x22 - 4x1+2x2+5s.t. g1(x1,x2)=x12+x2 -2≤0g2(x1,x2)=2x1 -x2 -1≤0(3)min f(x1,x2)=x12 +x22 - 12x1-4x2+40s.t. g1(x1,x2)=x12+x22-9≤0g2(x1,x2)=-x1 -x2 +2≤0g3(x1,x2)=x1 ≥0g4(x1,x2)=x2 ≥0(4)min f(x1,x2)=-x1-2x2s.t. g1(x1,x2)=x1+x22-2≤0g2(x1,x2)=-x1 -x2 +2≤0g3(x1,x2)=x1 ≥0g4(x1,x2)=x2 ≥0(5)min f(x1,x2)=2 x12+x22s.t. g1(x1,x2)=-x1 -x2 +2≤0g2(x1,x2)=-x1 +5≤0g3(x1,x2)=-x2 +3≤0(6)min f(x1,x2)=(x1-2)2 +(x2-1)2s.t. g1(x1,x2)=x12+x2 -2≤0g2(x1,x2)=-x1 -x2 +1≤0g3(x1,x2)=-x1≤0(7)min f(x1,x2)=-x1 -x2s.t. g1(x1,x2)=x12-x2≤0g2(x1,x2)=-x1 +x2 -1≤0g3(x1,x2)=-x1≤01. 求下列函数在点[]T X 11)1(=,[]T X 21)2(=,[]T X 12)3(-=的梯度及其模。

优化设计方案习题答案

优化设计方案习题答案

第一、填空题1.组成优化设计数学模型的三要素是设计变量 、 目标函数 、 约束条件。

2.函数()22121212,45f x x x x x x =+-+在024X ⎡⎤=⎢⎥⎣⎦点处的梯度为120-⎡⎤⎢⎥⎣⎦,海赛矩阵 为2442-⎡⎤⎢⎥-⎣⎦3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数。

4.建立优化设计数学模型的基本原则是确切反映工程实际问题,的基础上力求简洁。

5.约束条件的尺度变换常称规格化,这是为改善数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按加速步长法来确定,此法是指依次迭代的步 长按一定的比例递增的方法。

7.最速下降法以负梯度方向作为搜索方向,因此最速下降法又称为梯度法,其收敛速度较 慢 。

8.二元函数在某点处取得极值的充分条件是()00f X ∇=必要条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是通过增加变量将等式约束优化问题变成无 约束优化问题,这种方法又被称为升维法。

10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩11坐标轮换法的基本思想是把多变量 的优化问题转化为单变量的优化问题 12.在选择约束条件时应特别注意避免出现相互矛盾的约束,,另外应当尽量减少不必要的约束。

13.目标函数是n 维变量的函数,它的函数图像只能在n+1,空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用目标函数等值面的方法。

14.数学规划法的迭代公式是1k k k k X X d α+=+,其核心是建立搜索方向,和计算最佳步长15协调曲线法是用来解决设计目标互相矛盾的多目标优化设计问题的。

16.机械优化设计的一般过程中,建立优化设计数学模型是首要和关键的一步,它是取得正确结果的前提。

二、名词解释1.凸规划对于约束优化问题()min f X..s t ()0j g X ≤(1,2,3,,)j m =⋅⋅⋅若()f X 、()j g X (1,2,3,,)j m =⋅⋅⋅都为凸函数,则称此问题为凸规划。

习题

习题

[a, b] [ x1 , b] [0.582,0.746]
b a 0.18 ,所以得到了极小点和极小值。 0.2
x* 0.5 * (0.584 0.746) 0.674, f * 0.222
9
9
2.4.1 梯度法(最速下降法)
2 例:用梯度法求目标函数 f ( X ) x12 25x2 的最 优解。取初始点 X 2 2T , 迭代精度 0.005 .
由于 f1
f 2,故新区间
[a, b] [a, x2 ] [0,1.236]
因为
b a 0.746 ,所以应该继续缩小区间 0.2
7
7
2.3.3 黄金分割法
第三次缩小区间得到:
[a, b] [0.472,0.944]
不满足收敛条件,继续搜索; 第四次缩小区间得到:
[a, b] [0.472,0.764]
第二章优化设计
2-2 某工厂生产一批金属工具箱,要求工具箱的体积 为0.5m3,高度不低于0.8m,试写出耗费金属板面积 为最小的优化设计数学模型。
设生产的金属工具箱的长度为
X [ x1 x2 ]T
解: 则该问题的数学模型为
x1 ,高度为 x2 ,
min f ( X ) 2( x1 x2
不满足收敛条件,继续搜索;
8
8
2.3.3 黄金分割法
(2)用黄金分割法缩小区间 第五次缩小区间:
x2 x1 0.652, f 2 f1 0.223 x1 0.472 0.382 (0.746 0.472) 0.584, f1 0.262
由于 因为
f1 ,故新区间 f2
由于 f1 f 2 ,应加大步长继续向前探测,令

最新实验优化设计-练习题

最新实验优化设计-练习题

实验优化设计 练习题误差理论2-5 在容量分析中,计算组分含量的公式为W =V ⋅c ,其中V 是滴定时消耗滴定液的体积,c 是滴定液的浓度。

今用浓度为 (1.000±0.001) mg/mL 的标准溶液滴定某试液,滴定时消耗滴定液的体积为 (20.00±0.02) mL ,试求滴定结果的绝对误差和相对误差。

2-6 测定一种铬硅钢试样中的铬含量(%),6次测定结果为20.48,20.55,20.58,20.60,20.53, 20.50。

① 计算这组数据的平均值,平均偏差,相对平均偏差,标准偏差;② 如果此试样为标准试样,铬含量为20.46%,求测定的绝对误差和相对误差。

2-7 通过查表及计算求下列概率。

① P[-2.50,2.50];② P [-2.00,2.50];③ P[-∞,-2.00];④ P [-∞,2.00]。

2-8 如果平行测量3次,求3次测量值都出现在P[μ-1.96σ,μ+1.96σ]内的概率。

2-10 一般常用碘量法测定铜合金中铜的含量(%),已知某年级的110个分析结果基本符合正态N (60.78,0.362)。

试求分析结果出现在区间[60.06,61.59]内的概率及出现在此区间以外可能的个数。

2-13 在测定某溶液的密度ρ的实验中,需要测量液体的体积和质量,已知质量测量的相对误差≤0.02%,欲使测定结果的相对误差≤0.1%,测量液体体积所允许的最大相对误差为多大?参数估计和一般检验3-7 用碘量法测定铜合金中铜,7次测定结果为60.52, 60.61, 60.50, 60.58, 60.35, 60.64, 60.53(%)。

分别用4 法、Q 法、Grubbs 法检验该测定结果中有无应舍弃的离群值(P =95%)?3-8 某铁矿石试样中铁含量(%)的4次测定结果为70.14,70.20,70.04,70.25。

如果第5次测定结果不为Q 检验法舍弃,它应该在什么范围内(P =95%)?3-9 用分光光度法测定某种水样中的铁含量,5次测定结果为0.48,0.37,0.47,0.40,0.43(⨯10-6),估计该水样中铁的含量范围(P =95%)。

优化设计习题

优化设计习题

《机械优化设计》复习题一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X(0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 。

2、机械优化设计采用数学规划法,其核心一是 ,二是 。

3、当优化问题是________的情况下,任何局部最优解就是全域最优解。

4、应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 趋势。

5、包含n 个设计变量的优化问题,称为 维优化问题。

6、函数 C X B HX X T T ++21的梯度为 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在______关系。

8、与负梯度成锐角的方向为函数值 方向,与梯度成直角的方向为函数值方向。

将函数f(X)=x 12+2x 22-3x 1x 2 -10x 1-5x 2+60用矩阵和向量的形式表示9、 、 、 是优化设计问题数学模型的基本要素。

10、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 。

11、 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 。

13、优化设计问题的数学模型的基本要素有 、 、 。

14、牛顿法的搜索方向d k = ,其计算量 ,且要求初始点在极小点 位置。

15、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。

16、存在矩阵H ,向量 d 1,向量 d 2,当满足 ,向量 d 1和向量 d 2是关于H 共轭。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X附近偏导数连续;则该点位极小值点的充要条件为A .()*0F X ∇= B. ()*0F X ∇=;()*H X 为正定 C .()*0H X = D. ()*0F X ∇=;()*H X 为负定2.为克服复合形法容易产生退化的缺点;对于n 维问题来说;复合形的顶点数K 应A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数Fx=4x 21+5x 22;具有等式约束;其等式约束条件为hx=2x 1+3x 2-6=0;则目标函数的极小值为A .1B . 19.05C .0.25D .0.14.对于目标函数FX=ax+b 受约束于gX=c+x ≤0的最优化设计问题;用外点罚函数法求解时;其惩罚函数表达式ΦX;M k 为 .. A. ax+b+M k {min0;c+x}2;M k 为递增正数序列 B. ax+b+M k {min0;c+x}2;M k 为递减正数序列 C. ax+b+M k {maxc+x;0}2;M k 为递增正数序列hn D. ax+b+M k {maxc+x;0}2;M k 为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 0.186 C6.FX 在区间x 1;x 3上为单峰函数;x 2为区间中一点;x 4为利用二次插值法公式求得的近似极值点..如x 4-x 2>0;且Fx 4>Fx 2;那么为求FX 的极小值;x 4点在下一次搜索区间内将作为 ..A.x 1B.x 3C.x 2D.x 47.已知二元二次型函数FX=AX X 21T ;其中A=⎥⎦⎤⎢⎣⎡4221;则该二次型是 的.. A.正定 B.负定 C.不定 D.半正定 8.内点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列9.多元函数FX 在点X 附近的偏导数连续;∇FX=0且HX 正定;则该点为FX 的 ..A.极小值点B.极大值点C.鞍点D.不连续点10.FX 为定义在n 维欧氏空间中凸集D 上的具有连续二阶偏导数的函数;若HX 正定;则称FX 为定义在凸集D 上的 ..A.凸函数B.凹函数C.严格凸函数D.严格凹函数1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A11.在单峰搜索区间x 1 x 3 x 1<x 3内;取一点x 2;用二次插值法计算得x 4在x 1 x 3内;若x 2>x 4;并且其函数值Fx 4<Fx 2;则取新区间为 .. A. x 1 x 4 B. x 2 x 3 C. x 1 x 2 D. x 4 x 312.用变尺度法求一n 元正定二次函数的极小点;理论上需进行一维搜索的次数最多为A. n 次B. 2n 次C. n+1次D. 2次 13.在下列特性中;梯度法不具有的是 ..A.二次收剑性B.要计算一阶偏导数C.对初始点的要求不高D.只利用目标函数的一阶偏导数值构成搜索方向14.外点罚函数法的罚因子为 ..A.递增负数序列B.递减正数序列C.递增正数序列D.递减负数序列15.内点惩罚函数法的特点是 ..A .能处理等式约束问题 B.初始点必须在可行域中C.初始点可以在可行域外D.后面产生的迭代点序列可以在可行域外16.约束极值点的库恩—塔克条件为∇FX=)X (g i q1i i ∇λ-∑=;当约束条件g i X ≤0i=1;2;…;m 和λi ≥0时;则q 应为 ..A.等式约束数目;B.不等式约束数目;C.起作用的等式约束数目D.起作用的不等式约束数目17 已知函数FX=-1222121x 2x x x 2x 2+-+;判断其驻点1;1是 ..A.最小点B.极小点C.极大点D.不可确定18.对于极小化FX;而受限于约束g μX ≤0μ=1;2;…;m 的优化问题;其内点罚函数表达式为 A. ФX; r k=FX-rk11/()gX u u m=∑ B. ФX; r k =FX+rk11/()gX u u m=∑C. ФX; r k =FX-rkmax[,()]01gX u u m=∑ D. ФX; r k =FX-rkmin[,()]01gX u u m=∑19. 在无约束优化方法中;只利用目标函数值构成的搜索方法是A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 1.B 2.C 3.B 4.B 5.A 6.B 7.D 8.B 9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A20. 利用0.618法在搜索区间a;b 内确定两点a 1=0.382;b 1=0.618;由此可知区间a;b 的值是A. 0;0.382B. 0.382;1C. 0.618;1D. 0;1 21. 已知函数FX=x 12+x 22-3x 1x 2+x 1-2x 2+1;则其Hessian 矩阵是 A. ⎥⎦⎤⎢⎣⎡--2332 B. ⎥⎦⎤⎢⎣⎡2332 C. ⎥⎦⎤⎢⎣⎡2112 D. ⎥⎦⎤⎢⎣⎡--3223 22. 对于求minFX 受约束于g i x ≤0i=1;2;…;m 的约束优化设计问题;当取λi ≥0时;则约束极值点的库恩—塔克条件为 A. ∇FX=∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子B. -∇F X= ∑=∇λm1i i i (X)g ;其中λi 为拉格朗日乘子C. ∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数D. -∇FX= ∑=∇λq1i i i (X)g ;其中λi 为拉格朗日乘子;q 为该设计点X 处的约束面数23. 在共轭梯度法中;新构造的共轭方向S k+1为 A. S k+1= ∇FX k+1+βk S K ;其中βk 为共轭系数 B. S k+1=∇FX k+1-βk S K ;其中βk 为共轭系数C. S k+1=-∇FX k+1+βk S K;其中βk为共轭系数D. S k+1=-∇FX k+1-βk S K;其中βk为共轭系数24. 用内点罚函数法求目标函数FX=ax+b受约束于gX=c-x≥0的约束优化设计问题;其惩罚函数表达式为A. ax+b-r kx-c1;r k为递增正数序列B. ax+b-r kx-c1;r k为递减正数序列C. ax+b+ r kx-c1;r k为递增正数序列D. ax+b+r kx-c1;r k为递减正数序列25. 已知FX=x1x2+2x22+4;则FX在点X0=⎭⎬⎫⎩⎨⎧-11的最大变化率为A. 10B. 4C. 2D. 1026.在复合形法中;若映射系数α已被减缩到小于一个预先给定的正数δ仍不能使映射点可行或优于坏点;则可用A.好点代替坏点B.次坏点代替坏点C.映射点代替坏点D.形心点代替坏点1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A27. 优化设计的维数是指A. 设计变量的个数B. 可选优化方法数C. 所提目标函数数D. 所提约束条件数28.在matlab软件使用中;如已知x=0:10;则x有______个元素..A. 10B. 11C. 9D. 1229.如果目标函数的导数求解困难时;适宜选择的优化方法是 ..A. 梯度法B. Powell 法C. 共轭梯度法D. 变尺度法 30.在0.618法迭代运算的过程中;迭代区间不断缩小;其区间缩小率在迭代的过程中 ..A .逐步变小B 不变C 逐步变大D 不确定二 填空1.在一般的非线性规划问题中;kuhn-tucker 点虽是约束的极值点;但 是全域的最优点..2.判断是否终止迭代的准则通常有 . 和 三种形式..3.当有两个设计变量时;目标函数与设计变量关系是 中一个曲面..4.函数在不同的点的最大变化率是 ..5.函数()2212144f x x x x =+-+;在点()[]132TX = 处的梯度为 ..6.优化计算所采用的基本的迭代公式为 .. 7.多元函数Fx 在点x 处的梯度▽Fx =0是极值存在的 条件.. 8.函数Fx=3x 21+x 22-2x 1x 2+2在点1;0处的梯度为 .. 9.阻尼牛顿法的构造的迭代格式为 .. 10.用二次插值法缩小区间时;如果p x x <2;p f f >2;则新的区间a;b 应取作 ;用以判断是否达到计算精度的准则是 .. 11.外点惩罚函数法的极小点是从可行域之 向最优点逼近;内点惩罚函数法的极小点是从可行域之 向最优点逼近.. 12.罚函数法中能处理等式约束和不等式约束的方法是 罚函数法..13.Powell 法是以 方向作为搜索方向..14.当有n 个设计变量时;目标函数与n 个设计变量间呈 维空间超曲面关系..1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1三 问答题1. 变尺度法的基本思想是什么2. 梯度法的基本原理和特点是什么3.什么是库恩-塔克条件 其几何意义是什么4. 在内点罚函数法中;初始罚因子的大小对优化计算过程有何影响5. 选择优化方法一般需要考虑哪些因素6. 满足什么条件的方向是可行方向 满足什么条件的方向是下降方向 作图表示..7. 简述传统的设计方法与优化设计方法的关系.. 8. 简述对优化设计数学模型进行尺度变换有何作用.. 9. 分析比较牛顿法.阻尼牛顿法和共轭梯度法的特点 10.为什么选择共轭方向作为搜索方向可以取得良好的效果11.多目标问题的解与单目标问题的解有何不同 如何将多目标问题转化为单目标问题求解12.黄金分割法缩小区间时的选点原则是什么 为何要这样选点四.计算题1.用外点法求解此数学模型2 将()22121212262233f x x x x x x x =+++++写成标准二次函数矩阵的形式..3 用外点法求解此数学模型 :()()()12211221min ..00f X x x s tg X x x g X x =+=-≤=-≤4 求出()221122262420f x x x x x =-+-+的极值及极值点..5 用外点法求解此数学模型 :()()()()31211221min 13..100f X x x s tg X x g X x =++=-+≤=≥6.用内点法求下列问题的最优解:提示:可构造惩罚函数 []∑=-=21)(ln )(),(u u x g r x f r x φ;然后用解析法求解....7.设已知在二维空间中的点[]T x x x 21=;并已知该点的适时约束的梯度[]T g 11--=∇;目标函数的梯度[]T f 15.0-=∇;试用简化方法确定一个适用的可行方向..8. 用梯度法求下列无约束优化问题:Min FX=x 12+4x 22;设初始点取为X 0=2 2T ;以梯度模为终止迭代准则;其收敛精度为5..9. 对边长为3m 的正方形铁板;在四个角处剪去相等的正方形以制成方形无盖水槽;问如何剪法使水槽的容积最大 建立该问题的优化设计的数学模型.. 10. 已知约束优化问题: 试以[][][]T T T x x x 33,14,1230201===为复合形的初始顶点;用复合形法进行一次迭代计算..机械优化设计综合复习题参考答案一.单项选择题1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16D 17.D 18.A 二 填空1.不 2..距离.目标函数改变量.梯度 3..三维空间 4..不同的 5..[]T 42 6.k k k k d x x α+=+1 7..必要条件 8..][T 26- 9..()[]()k k k k x f x f x ∇∇--12α10.[]b x 2 ;ε<-a b 11.外.内 12...混合 13...逐次构造共轭 14...n+1 三 问答题1.变尺度法的基本思想是:通过变量的尺度变换把函数的偏心程度降低到最低限度;显着地改进极小化方法的收敛性质..2.梯度法的基本原理是搜索沿负梯度方向进行;其特点是搜索路线呈“之”字型的锯齿路线;从全局寻优过程看速度并不快..3.库恩-塔克条件是判断具有不等式约束多元函数的极值条件..库恩—塔克条件的几何意义是: 在约束极小值点*X 处;函数()x F 的负梯度一定能表示成所有起使用约束在该点梯度法向量的非负线性组合..4.初始罚因子0r ;一般来说0r 太大将增加迭代次数;0r 太小会使惩罚函数的性态变坏;甚至难以收敛到极值点..5.选择优化方法一般要考虑数学模型的特点;例如优化问题规模的大小;目标函数和约束函数的性态以及计算精度等..在比较各种可供选用的优化方法时;需要考虑的一个重要因素是计算效率.. 6.可行条件应满足第二式: 7.下降条件应满足第一式:搜索方向应与起作用的约束函数在k x 点的梯度及目标函数的梯度夹角大于或等于900..8.数学模型的尺度变换是一种改善数学模型性态;使之易于求解的技巧..一般可以加速优化设计的收敛;提高计算过程的稳定性.. 9.牛顿法的迭代关系式为:阻尼牛顿法的迭代关系式为: 共轭梯度法的迭代关系式为:牛顿法适合二次型问题;阻尼牛顿法有防止目标函数值上升的阻尼因子;适合非二次型问题;两者均需计算海森矩阵及其逆矩阵;计算量大..共轭梯度法用梯度构造共轭方向;仅需梯度计算且具有共轭性质;收敛速度快;不必计算海森矩阵;使用更加方便..10.根据共轭方向的性质:从任意初始点出发顺次沿n 个G 的共轭方向进行一维搜索;最多经过n 次迭代就可找到二次函数的极小点;具有二次收敛性.. 11.单目标问题的解一般是唯一理想解;多目标的解一般是相对理想解..多目标问题转成单目标问题的常用方法有:主要目标法.线性加权法.理想点法.平方和加权法.分目标乘除法.功率系数法和极大极小法..12.选点原则是插入点应按0.618分割区间..因为这样选点可以保持两次迭代区间的相同比例分布;具有相同的缩短率.. 四.计算题1.提示:先转化为惩罚函数形式 答案1=x 2.二次函数的矩阵标准形式为C x B Gx x T T++21 答案为121[()]()(0,1,2,)k k kk f fk +-=-∇∇=x x x x⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1222421T x x +[]32x +3 3.参考第六章复习题提示 结果为][T x 00= 4. 用梯度计算极值点 答案为][T 15.1 5. 先构造外点罚函数 答案为][T 01- 6. 先构造内点罚函数 答案为][T 317. 用图解法;先画出约束函数梯度及目标函数梯度;做两者的垂线;与两梯度夹角均大于900的任意方向均可..8. 以负梯度为搜索方向进行迭代计算 答案为[]T 00 9. 设剪掉的正方形边长为1x数学模型为 Min []12)23()(x x x F -=10. 提示 先算三点的目标函数值并排序;将最差点沿其余点中心进行反射;计算反射点函数值并判断可行性.. 答案为][T 5.31。

有机合成练习题(优化设计)

有机合成练习题(优化设计)

有机合成练习题1、 用乙醇为主要原料合成乙二醇,无机材料可以任意选择,请写出各步反应的化学方程式,并注明反应条件。

2、 以苯为原料生产苯酚,请设计出合理的途径,并写出反应的化学方程式。

3、 已知乙烯与氯水反应时,可以与次氯酸发生加成反应:CH 2==CH 2+HO —C l →C l —CH 2—CH 2OH 请利用上述信息,以乙烯为主要原料合成化合物HO —CH 2COOH 。

4、 卤代烃可以在AlCl 3等化合物的催化作用下,与苯环作用,形成甲基苯,如:以苯、甲烷为主要原料,任选无机试剂,合成对硝基苯甲酸,给出合成的线路。

(不必写出合成路线)5、 写出以CH 2ClCH 2CH 2CH 2OH 为原料制备的各部反应方程式(必要的无机试剂自选)6、 已知从环己烷制备1,4-环己二醇醋酸酯。

下面是有关的8步反应:(无机产物已略去)⑴写出A 、B 、C 、D 的结构简式。

⑵反应①属于 反应,反应的化学方程式是⑶反应⑤属于 反应,反应⑦属于 反应。

⑷反应⑦的化学方程式是7、下列物质中,可以在一定条件下发生消去反应得到烯烃的是( )A.B.一氯甲烷C.2-甲基-2-氯丙烷D.2,2-二甲基-1-氯丙烷8、 化合物丙(C 4H 8Br 2)由如下反应得到:C 4H 10O −−−→−∆浓硫酸、C 4H 8−−−→−42CC B lr 、丙(C 4H 8Br 2) 则丙的结构不可能是( )A.CH 3CH 2CHBrCH 2BrB. CH 3CH (CH 2Br )2C.CH 3CHBrCHBrCH 3D.(CH 3)2CBr CH 2Br9、酯A水解可生成酸X和醇Y,若Y氧化可得酸X,则A不可能是()10、已知卤代烃可与金属钠反应,生成碳链较长的烃:R—X+2Na+R,—X→R—R,+2Na X现有碘乙烷和碘丙烷的混合物,使其与金属钠反应,不可能生成的烃是()A.戊烷B.丁烷C.2-甲基己烷D. 己烷11、有机物A为茉莉香型香料。

《机械优化设计》习题与答案

《机械优化设计》习题与答案

《机械优化设计》习题与答案机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。

答:优化问题的数学模型是实际优化设计问题的数学抽象。

在明确设计变量、约束条件、⽬标函数之后,优化设计问题就可以表⽰成⼀般数学形式。

求设计变量向量[]12Tn x x x x =L 使 ()min f x →且满⾜约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:⼆元函数f(x 1,x 2)在x 0点处的⽅向导数的表达式可以改写成下⾯的形式:??=??+??=??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ??=????=?21]21[)0(,则称它为函数f (x 1,x 2)在x 0点处的梯度。

(1)梯度⽅向是函数值变化最快⽅向,梯度模是函数变化率的最⼤值。

(2)梯度与切线⽅向d 垂直,从⽽推得梯度⽅向为等值⾯的法线⽅向。

梯度)0(x f ?⽅向为函数变化率最⼤⽅向,也就是最速上升⽅向。

负梯度-)0(x f ?⽅向为函数变化率最⼩⽅向,即最速下降⽅向。

2-2.求⼆元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最⼤的⽅向和数值。

解:由于函数变化率最⼤的⽅向就是梯度的⽅向,这⾥⽤单位向量p表⽰,函数变化率最⼤和数值时梯度的模)0(x f ?。

求f (x1,x2)在x0点处的梯度⽅向和数值,计算如下:()-=??+-==?120122214210x x x x f x f x f 2221)0(??+ =x f x f x f =5-=??????-=??=5152512)0()0(x f x f p ?2-3.试求⽬标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降⽅向,并求沿着该⽅向移动⼀个单位长度后新点的⽬标函数值。

优化设计习题答案

优化设计习题答案

第一、填空题1.构成优化设计数学模型的三因素是设计变量、目标函数、拘束条件。

2.函数 f x1 , x2 x12x224x1x2 5 在 X02点处的梯度为12 ,海赛矩阵40为24 423.目标函数是一项设计所追求的指标的数学反应,所以对它最基本的要求是能用来评论设计的好坏,,同时一定是设计变量的可计算函数。

4.成立优化设计数学模型的基来源则是切实反应工程本质问题,的基础上力争简短。

5.拘束条件的尺度变换常称规格化,这是为改良数学模型性态常用的一种方法。

6.随机方向法所用的步长一般按加快步长法来确立,此法是指挨次迭代的步长按必定的比率递加的方法。

7.最速降落法以负梯度方向作为搜寻方向,所以最速降落法又称为梯度法,其收敛速度较慢。

8.二元函数在某点处获得极值的充足条件是 f X 00 必需条件是该点处的海赛矩阵正定9.拉格朗日乘子法的基本思想是经过增添变量将等式拘束优化问题变为无拘束优化问题,这类方法又被称为升维法。

10改变复合形形状的搜寻方法主要有反射,扩充,缩短,压缩11坐标轮换法的基本思想是把多变量的优化问题转变为单变量的优化问题12 .在选择拘束条件时应特别注意防止出现相互矛盾的拘束,,此外应当尽量减少不用要的拘束。

13 .目标函数是 n 维变量的函数,它的函数图像只好在n+1,空间中描绘出来,为了在 n 维空间中反应目标函数的变化状况,常采纳目标函数等值面的方法。

14. 数学规划法的迭代公式是X k 1X k k d k,其中心是成立搜寻方向,和计算最正确步长15 协调曲线法是用来解决设计目标相互矛盾的多目标优化设计问题的。

16. 机械优化设计的一般过程中,成立优化设计数学模型是首要和重点的一步,它是获得正确结果的前提。

二、名词解说1.凸规划关于拘束优化问题min f Xst..g j X0( j1,2,3,,m)若 f X 、g j X( j1,2,3,, m) 都为凸函数,则称此问题为凸规划。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械优化设计》复习题一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X(0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 。

2、机械优化设计采用数学规划法,其核心一是 ,二是 。

3、当优化问题是________的情况下,任何局部最优解就是全域最优解。

4、应用外推法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 趋势。

5、包含n 个设计变量的优化问题,称为 维优化问题。

6、函数 C X B HX X T T ++21的梯度为 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在______关系。

8、与负梯度成锐角的方向为函数值 方向,与梯度成直角的方向为函数值方向。

将函数f(X)=x 12+2x 22-3x 1x 2 -10x 1-5x 2+60用矩阵和向量的形式表示9、 、 、 是优化设计问题数学模型的基本要素。

10、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 ,充分条件是 。

11、 条件可以叙述为在极值点处目标函数的负梯度为起作用的各约束函数梯度的非负线性组合。

12、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 。

13、优化设计问题的数学模型的基本要素有 、 、 。

14、牛顿法的搜索方向d k = ,其计算量 ,且要求初始点在极小点 位置。

15、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 。

16、存在矩阵H ,向量 d 1,向量 d 2,当满足 ,向量 d 1和向量 d 2是关于H 共轭。

17、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有 特点。

18、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 。

二、选择题1、下面 方法需要求海赛矩阵。

A 、最速下降法B 、共轭梯度法C 、牛顿型法D 、DFP 法2、对于约束问题()()()()2212221122132min 44g 10g 30g 0f X x x x X x x X x X x =+-+=--≥=-≥=≥根据目标函数等值线和约束曲线,判断()1[1,1]T X=为 ,()251[,]22T X =为 。

A .内点;内点B. 外点;外点C. 内点;外点D. 外点;内点 3、内点惩罚函数法可用于求解__________优化问题。

A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、拉格朗日乘子法是求解等式约束优化问题的一种经典方法,它是一种___________。

A 、降维法B 、消元法C 、数学规划法D 、升维法5、对于一维搜索,搜索区间为[a ,b],中间插入两个点a 1、b 1,a 1<b 1,计算出f(a 1)<f(b 1),则缩短后的搜索区间为___________。

A [a 1,b 1]B [ b 1,b]C [a 1,b]D [a ,b 1]6、_________不是优化设计问题数学模型的基本要素。

A 设计变量B 约束条件C 目标函数D 最佳步长7、变尺度法的迭代公式为x k+1=x k -αk H k ▽f(x k ),下列不属于H k 必须满足的条件的是________。

A. H k 之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定8、函数)(X f 在某点的梯度方向为函数在该点的 。

A 、最速上升方向B 、上升方向C 、最速下降方向D 、下降方向9、下面四种无约束优化方法中,__________在构成搜索方向时没有使用到目标函数的一阶或二阶导数。

A 梯度法B 牛顿法C 变尺度法D 坐标轮换法10、设)(X f 为定义在凸集R 上且具有连续二阶导数的函数,则)(X f 在R 上为凸函数的充分必要条件是海塞矩阵G(X)在R 上处处 。

A 正定B 半正定C 负定D 半负定11、通常情况下,下面四种算法中收敛速度最慢的是A 牛顿法B 梯度法C 共轭梯度法D 变尺度法12、 一维搜索试探方法——黄金分割法比二次插值法的收敛速度 。

A 、慢B 、快C、一样D、不确定13、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是,假设要求在区间[a,b]插入两点α1、α2,且α1<α2。

A、其缩短率为0.618B、α1=b-λ(b-a)C、α1=a+λ(b-a)D、在该方法中缩短搜索区间采用的是外推法。

14、与梯度成锐角的方向为函数值方向,与负梯度成锐角的方向为函数值方向,与梯度成直角的方向为函数值方向。

A、上升B、下降C、不变D、为零15、二维目标函数的无约束极小点就是。

A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点16、最速下降法相邻两搜索方向d k和d k+1必为向量。

A 相切B 正交C 成锐角D 共轭17、下列关于共轭梯度法的叙述,错误的是。

A 需要求海赛矩阵B 除第一步以外的其余各步的搜索方向是将负梯度偏转一个角度C 共轭梯度法具有二次收敛性D 第一步迭代的搜索方向为初始点的负梯度18、下列关于内点惩罚函数法的叙述,错误的是。

A 可用来求解含不等式约束和等式约束的最优化问题。

B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点。

D 初始点必须在可行域内三、问答题1、试述两种一维搜索方法的原理,它们之间有何区别?2、共轭梯度法是利用梯度求共轭方向的,那共轭方向与梯度之间有什么关系?3、惩罚函数法求解约束优化问题的基本原理是什么?4、与最速下降法和牛顿法比较,试述变尺度法的特点。

5、在变尺度法中,为使变尺度矩阵k H 与1-k G 近似,并具有容易计算的特点,k H 必须附加哪些条件?6、试述数值解法求最佳步长因子的基本思路。

7、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点。

8、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义。

9、变尺度法的搜索方向是什么?变尺度矩阵应满足什么条件?变尺度矩阵在极小点处逼近什么矩阵?并写出其初始形式。

10、什么是共轭方向?满足什么关系?共轭与正交是什么关系?11、请写出应用MATLAB 优化工具箱处理约束优化设计问题的基本步骤。

四、解答题1、试用梯度法求目标函数f(X)=1.5x 12+0.5x 22- x 1x 2-2x 1的最优解,设初始点x (0)=[-2,4]T ,选代精度ε=0.02(迭代一步)。

将函数f(X)=x 12+2x 22-3x 1x 2 -10x 1-5x 2+60用矩阵和向量的形式表示2、试用牛顿法求f( X )=(x 1-2)2+(x 1-2x 2)2的最优解,设初始点x (0)=[2,1]T 。

3、设有函数 f(X)=x 12+2x 22-2x 1x 2-4x 1,试利用极值条件求其极值点和极值。

4、求目标函数f( X )=x 12+x 1x 2+2x 22 +4x 1+6x 2+10的极值和极值点。

5、试证明函数 f( X )=2x 12+5x 22 +x 32+2x 3x 2+2x 3x 1-6x 2+3在点[1,1,-2]T 处具有极小值。

6、给定约束优化问题min f(X)=(x 1-3)2+(x 2-2)2s.t. g 1(X)=x 12+x 22-5≤0g 2(X)=x 1+2x 2-4≤0g 3(X)=-x 1≤0g 4(X)=-x 2≤0验证在点T X ]2[,1=Kuhn-Tucker 条件成立。

7、设非线性规划问题1)(0)(0)(..)2()(min2221322112221≤-+-=≤-=≤-=+-=x x X g x X g x X g t s x x X f 用K-T 条件验证[]T X 0,1*=为其约束最优点。

8、用共轭梯度法求函数12122212122123),(x x x x x x x f --+=的极小点。

9、已知目标函数为f(X)= x 1+x 2,受约束于:g 1(X)=-x 12+x 2≥0g 2(X)=x 1≥0写出内点罚函数。

10、已知目标函数为f(X)=( x 1-1)2+(x 2+2)2受约束于:g 1(X)=-x 2-x 1-1≥0g 2(X)=2-x 1-x 2≥0g 3(X)=x 1≥0g 4(X)=x 2≥0试写出内点罚函数。

11、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法(x 取何值)才能获得最大容器的箱子。

试写出这一优化问题的数学模型以及用MA TLAB 软件求解的程序。

12、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MA TLAB 软件求解的程序。

13、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MA TLAB 软件求解的程序。

14、求表面积为300m 2的体积最大的圆柱体体积。

试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序。

15、薄铁板宽20cm ,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大。

写出这一优化设计问题的数学模型,并用matlab 软件的优化工具箱求解(写出M 文件和求解命令)。

16、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1。

管道内液体的流速与管道截面的周长s的倒数成比例关系(s只包括底边和两侧边,不计顶边)。

试按照使液体流速最大确定该管道的参数。

写出这一优化设计问题的数学模型。

并用matlab软件的优化工具箱求解(写出M文件和求解命令)。

17、某电线电缆车间生产力缆和话缆两种产品。

力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元。

若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用。

如要获得最大利润,每天应生产力缆、话缆各多少米?写出该优化问题的数学模型以及用MATLAB软件求解的程序。

相关文档
最新文档