根轨迹法
根轨迹法
根轨迹法一、定义:〈①〉()()()01111*0=+++=+∏∏==nj imi ip s z s Ks G 。
其中*K 为根轨迹增益。
开环放大倍数∏∏===nj jmi ipzKK 11*闭环特征方程的根随参数*K 而变化的轨迹,称为根轨迹。
其符合两个条件:()()()()⎪⎩⎪⎨⎧=∠+=∠=非最小相位系统或最小相位系统相角条件:幅值条件:,2,121000ππk s G k s G s G〈②〉几条规则:①实轴上的根轨迹〈最小相位系统〉右边有奇数个零极点时,有根轨迹 〈非最小相位系统〉右边有偶数个零极点时,有根轨迹 ②根轨迹条数=Max (n,m ),起点为开环极点(0=g K ),终点为开环零点(∞→g K )③渐进线条数:(n-m )条,与实轴交点坐标:mn --=∑∑零点极点1σ与实轴夹角:()mn k -+±=πϕ121。
④分离点与会合点:使0*=dsdK ,并使*K >0的点 ⑤复数极点出射角:∑∑-+︒=量辐角其他极点至该极点的向零点至极点的向量辐角1801p θ对非最小相位系统∑∑-='量辐角其他极点至该极点的向零点至极点的向量辐角1p θ 复数零点的入射角:∑∑+-︒=角极点至该零点的向量辐量辐角其他零点至该零点的向1801z θ对非最小相位系统∑∑+-='角极点至该零点的向量辐量辐角其他零点至该零点的向1z θ⑥与虚轴交点:(a )用劳斯判据确定,用辅助方程求得(b )ωj s =代入闭环特征方程,由实部=0,虚部=0求得例1:()()()210++=s s s Ks G解:渐进线(3条):()()10321-=--+-=σ,()πππϕ,3312=+±=k由()()0211=+++s s s K,则()()21++-=s s s K ,()()026323223*=++-=++-=s s dsss s d ds dK ,得 ⎩⎨⎧-=-==-=385.0,577.1385.0,423.0*22*11K s K s 与虚轴的交点:方法一02323=+++K s s s ,劳斯阵:Ks K sKs s 0123323021-要与虚轴有交点,则有一行全零,即6032=⇒=-K K辅助方程:j s s 20632,12±=⇒=+ 方法二将ωj s =代入特征方程:()()()02323=+++K j j j ωωω2,60320332==⇒=-=-ωωωωK K 虚部:实部:,则与虚部的交点6,22,1=±=K j s 根轨迹如下图例2:()()32220+++=s s s K s G 解:渐进线一条。
自动控制原理第四章根轨迹法
i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程
第四章根轨迹法
系统得闭环根轨迹图。
j
已知负反馈系统开环零极点 分布如图示。
2 p2
在s平面找一点s1 ,
1
画出各开环零、极点到 z1
s1
1
p1 0
s1点得向量。
3
检验s1就是否满足相角条件: p3
(s1 z1) [(s1 p1) + (s1 p2) + (s1 p3)]
= 1 1 2 3 = (2k+1) ??
点,称为根轨迹得分离点(会合点)。
Kg=0 p1
j
j1
Kg A
Kg z1
0
p2 Kg=0
分离点得性质:
1)分离点就是系统闭环重根; 2)由于根轨迹就是对称得,所以分离点或位于实轴上,或 以共轭形式成对出现在复平面上; 3)实轴上相邻两个开环零(极)点之间(其中之一可为无穷 零(极)点)若为根轨迹,则必有一个分离点;
n
m
(s p j ) K g (s zi ) 0
j 1
i 1
d
ds
n j 1
(s
pj)
Kg
d ds
m
(s zi ) 0
i 1
d n
ds j1
n
(s
pj)
dm
ds i1
m
(s zi )
(s pj ) (s zi )
j 1
i 1
(lnV ) V V
n
m
d ln (s pj ) d ln (s zi )
如果s1点满足相角条件,则就是根轨迹上得一点。寻找
大家学习辛苦了,还是要坚持
继续保持安静
在s 平面内满足相角条件得所有s1 点,将这些点连成光滑曲 线,即就是闭环系统根轨迹。
第四章控制系统的根轨迹法
应掌握的内容
180度,0度根轨迹的绘制 参数根轨迹的绘制 增加开环零、极点对根轨迹和系统性能的影响 分析系统的稳定性 分析系统的瞬态和稳态性能 对于二阶系统(及具有闭环主导共轭复数极点的高阶 系统),根据性能指标的要求在复平面上划出满足这一 要求的闭环极点(或高阶系统主导极点)应在的区域。
10
[例4-1]系统的开环传递函数为:Gk (s)
由根轨迹图可知,当0 k 0.858时,闭环系统有一对
不等的负实数极点,其瞬态响应呈过阻尼状态。当 0.858 k 29.14 时,闭环系统有一对共轭复数极点,其瞬 态响应呈欠阻尼状态。当29.14 k 时,闭环系统又有一 对不等的负实数极点,瞬态响应又呈过阻尼状态。
14
[例4-3]控制系统的结构图如下图所示。试绘制以a为参变 量时的根轨迹。
解得 k 5, 5 由图可知当k 5 时直线OB与圆相切,系统的阻 尼比 1 ,特征根为 5 j5 。
2
13
对于分离点 2.93 ,由幅值条件可知
2.93 5 2.93 k1 10 2.93 0.858
对于会合点17.07 ,有
45
17.07 5 17.0 k2 10 17.07 29.14
论过,利用根轨迹可清楚地看到开环根轨迹增益或其他参 数变化时,闭环系统极点位置及其瞬态性能的改变情况。
利用根轨迹确定系统的有关参数 对于二阶系统(及具有闭环主导共轭复数极点的高阶系 统),通常可根据性能指标的要求在复平面上划出满足 这一要求的闭环极点(或高阶系统主导极点)应在的区 域。如下页图所示,具有实部 和阻尼角 划成的左区域 满足的性能指标为:
17
例4-4(续2)
其分离回合点计算如下:
N(s) s2 3s, N ' (s) 2s 3
自动控制原理第四章根轨迹法
第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)
根轨迹法
根軌跡法根軌跡法概述在時域分析中已經看到,控制系統的性能取決於系統的閉環傳遞函數,因此,可以根據系統閉環傳遞函數的零、極點研究控制系統性能。
但對於高階系統,採用解析法求取系統的閉環特征方程根(閉環極點)通常是比較困難的,且當系統某一參數(如開環增益)發生變化時,又需要重新計算,這就給系統分析帶來很大的不便。
1948年,伊万思根据反馈系统中开、死循环传递函数间的内在联系,提出了求解死循环特征方程根的比较简易的图解方法,这种方法称为根轨迹法。
因为根轨迹法直观形象,所以在控制工程中获得了广泛应用。
根轨迹法的基本概念根轨迹是当开环系统某一参数(如根轨迹增益)从零变化到无穷时,闭环特征方程的根在S平面上移动的轨迹。
根轨迹增益K * 是首1形式开环传递函数对应的系数。
在介绍图解法之前,先用直接求根的方法来说明根轨迹的含义。
控制系统如上图所示。
其开环传递函数为:根轨迹增益。
闭环传递函数为:闭环特征方程为:特征根为:当系统参数K * (或K)从零变化到无穷大时,闭环极点的变化情况见下表:利用计算结果在S平面上描点并用平滑曲线将其连接,便得到K * (或K)从零变化到无穷大时闭环极点在S平面上移动的轨迹,即根轨迹,如下图所示。
图中,根轨迹用粗实线表示,箭头表示K * (或K)增大时两条根轨迹移动的方向。
根轨迹与系统性能依据根轨迹图(见系统根轨迹图),就能分析系统性能随参数(如K * )变化的规律。
1.稳定性开环增益从零变到无穷大时,如系统根轨迹图所示的根轨迹全部落在左半s平面,因此,当K>0时,如图控制系统根所示系统是稳定的;如果系统根轨迹越过虚轴进入右半s平面,则在相应K值下系统是不稳定的;根轨迹与虚轴交点处的K值,就是临界开环增益。
2.稳态性能由系统根轨迹图可见,开环系统在坐标原点有一个极点,系统属于Ⅰ型系统,因而根轨迹上的K值就等于静态误差系数K v。
当r(t)=1(t)时,e ss = 0;当r(t)=t时,3.动态性能由系统根轨迹图可见,当0 <K< 0.5时,闭环特征根为实根,系统呈现过阻尼状态,阶跃响应为单调上升过程;当K=0.5时,闭环特征根为二重实根,系统呈现临界阻尼状态,阶跃响应仍为单调过程,但响应速度较0 <K< 0.5时为快;当K>0.5时,闭环特征根为一对共轭复根,系统呈现欠阻尼状态,阶跃响应为振荡衰减过程,且随K增加,阻尼比减小,超调量增大,但t s基本不变。
根轨迹法(自动控制原理)
i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。
第4章 根轨迹法
时,由根轨迹方程知根轨迹的终点为
,即系统的开环零点。
但是,当
时,
条根轨迹趋向于开环零点(称为有限零点),还有
条根轨迹将趋于无穷远处(称为无限零点)。
如果出现
的情况,必有
条根轨迹的起点在无穷远处。
规则2 根轨迹的分支数、对称性和连续性根轨迹的分支 数等于 , 根轨迹对称于实轴并且连续变化。
由根轨迹的对称性和连续性,根轨迹只需作出上半部分,对称画出另一部分,且根轨迹连续变化。
规则3 根轨迹的渐近线 当开环极点数大于开环零点数时,有n-m条根轨迹 趋于无穷远处,无穷远处的渐近线与实轴的交点为 , 渐近线与实轴正方向的夹角(倾角)为
例4-1单位负反馈系统的开环传递函数为
规则10 根之积 根据特征方程根和系数的关系,得
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
渐近线的倾角为
与虚轴的交点为
第1章 引 论
根轨迹的分会点:
第1章 引 论
第1章 引 论
第1章 引 论
例:系统的开环传递函数为
开环极点为
渐近线于实轴的交点为
4.6 MATLAB绘制系统的根轨迹 对于比较复杂的系统,人工绘制根轨迹十分复杂和困难,MATLAB绘制系统根轨迹是十分方便的。 通常将系统的开环传递函数写成如下形式
分别为分子和分母多项式。
采用MATLAB命令: pzmap(num,den)可以绘制系统的零、极点图; rlocus(num,den)可以绘制系统的根轨迹图; rlocfind(num,den)可以确定系统根轨迹上某些点的增益。
渐近线的倾角为
与虚轴的交点为
第四章:根轨迹法
第四章:根轨迹法第四章根轨迹法本章⽬录4.1 根轨迹的⼀般概念4.2 绘制根轨迹的数学依据及其性质4.3 绘制根轨迹的⼀般规则4.4 *绘制根轨迹的MATLAB函数介绍4.5 例题4.6 参数根轨迹和多回路系统的根轨迹4.7 正反馈回路和⾮最⼩相位系统根轨迹——零度根轨迹⼩结本章简介从前章得知闭环极点在根平⾯上的分布,反映着系统的固有性能。
故为了获得较好性能,就希望极点在根平⾯上有较好的分布。
亦即,为了研究系统的动态性能,就可以通过闭环极点在根平⾯上的分布来进⾏。
闭环极点是系统特征⽅程的根sb。
若其特征⽅程中,各系数变化,则⽆疑,其根sb也在变化。
各系数的变化往往相应着系统的许多实际参数的变化⽽形成。
在根迹中,⼀般总是以增益 (当然也可其它参数,如时间常数 )的变化⽽导致各系数的变化,即sb的变化。
如果连续变化,则sb也连续变化。
相应于由0连续变化到∞时, sb在根平⾯上的连续变化⽽形成的轨迹,即闭环系统特征根的根轨迹--若⼲条曲线。
这样,相应于各个值下的闭环极点在根平⾯上的分布就⼀⽬了然了。
这对系统的分析、设计带来了极⼤的⽅便.。
所谓根轨迹法,就是⽤图解的⽅法确定出闭环特征根的⼀种⽅法。
先在复数平⾯上画出系统某⼀参数的全部数值下的特征⽅程的所有根,即根轨迹。
然后⽤图解的⽅法确定出该参数某⼀特定数值时的闭环特征根。
从⽽分析出系统所具有的性能。
或反之,在根迹上先确定出符合系统性能要求的闭环特征根。
从⽽⽤图解的⽅法求出相应的系统应具有的参数值。
相对时域法,很直观,且避免了求解系统⾼阶特征⽅程的困难。
现在计算机科学有了飞速发展,特别是MATLAB语⾔及其相应⼯具箱,有强⼤的数值计算和图形绘制功能。
所以利⽤MATLAB语⾔相关函数绘制系统根迹及求根等均是轻⽽易举的事。
这就给根迹法的应⽤开辟了更好的前景。
本章在介绍传统的根轨迹法及其⽰例的同时,有机结合介绍MATLAB语⾔相关的根轨迹函数及相应⽰例的解题程序。
第八章 根轨迹法
p3 -2
p2 -1
σα
0
p1
故三条根轨迹趋向无穷远处,其渐近线与实 -60° 轴交点的坐标为 (0) +(1) +(2) (0) σα = =1 3 (2k + 1)π 取 k = 0, α = 60° α = 渐近线与实轴正方向的夹角 3 k = 1, α = 180° k = 1, α = 60° 三条渐近线如图所示。
自动控制原理
利用以上原则求例 8-1 的根轨迹图: 已知开环极点为0,-2。首先应用幅角条件,即
(∠s + ∠(s + 2)) = ±180°(2k + 1)
用试探的方法可找出满足上述条件的 s 点。 由幅角条件分析可知,实轴上根轨迹位于(-2,0)区间,实 轴之外根轨迹为0,-2两点的中垂线。 用幅值条件可算出根轨迹上各点对应的 K* 值。 如对(-1+j) 点,有 K = s i s + 2 / 2 = ( 2i 2)/ 2 = 1 得 K* = 2
自动控制原理
五、根轨迹的渐近线
* 如果开环零点数 m 小于开环极点数 n,则K → ∞ 时,趋向无 穷远处的根轨迹共有 (n-m) 条,这些根轨迹趋向于无穷远处的方向 角可由渐近线决定。
渐近线与实轴交点坐标公式 该式的分子是开环极点之和减零点之 和,分母是开环极点数减零点数。
∑ p ∑z
σα =
i =1 i j =1
∏ (s z )
由根轨迹方程知,
m
∏ (s p )
j =1 i
i =1 n
i
=
1 K*
K * → ∞ 时,s – zi = 0
所以,根轨迹终止于开环零点。 又,若 n>m ,则 s →∞ 时,上式可写成 即有 (n-m) 条根轨迹趋向于无穷远处。
根轨迹法
特征根:为从-2,0开始,经- 1 ( )沿线段变化,到 , 此为根轨迹。
§4-1
根轨迹方程
设传递函数
闭环零点由前向通路零点和反馈通路极点决定 闭环极点由开环零点和极点共同决定
根轨迹方程
特征方程 1+GH = 0 Zj 开环零点“○”,是常数!
m
* 1+K
∏ ( s - zj )
j=1
也是常数! 根轨迹增益K* ,不是定数,从0 ~ ∞变化
∏ ( s -pi) i=1 开环极点“×”, pi
n
=0
这种形式的特征方程就是根轨迹方程
相角条件:
m
根轨迹的模值条件与相角条件 n
∑∠(s-zj) -∑∠(s-pj) = (2k+1) π j=1 i=1
k=0, ±1,
±2, … m 绘制根轨迹的充要条件 i=1 m
模值条件:
1+K K = = -1 0 1 n (s ) ∏︱ -p︱
r 90 0
p1.2 1 j 为复数开极点 p1 180 0 (( p1 z1 ) ( p1 p 2 )) 出射角: 0 0 0 0
180 (45 90 ) 225
法则7:根轨迹与虚轴交点: 根轨迹与虚轴的交点可令 s=jw代入特征方程求得,也 可利用Routh 判据得到。 根轨迹与虚轴有交点,说明系统稳定性是有条件的。 相交时,说明系统处于临界稳定。 例4: G k ( s ) 特征方程
例2: Gk (s)
n3 k* s( s 1)(s 2) m0 有n m条渐近线
开环极点:p1=0,p2=-1,p3=-2
渐近线与实轴交点:-3/3=-1
夹角:
自动控制原理第四章根轨迹法
根轨迹法可用于仿真和实验研究,通过模拟和实验 验证系统的性能和稳定性,为实际系统的设计和优 化提供依据。
根轨迹法的历史与发展
历史
根轨迹法最早由美国科学家威纳于1940年提出,经过多年的 发展与完善,已经成为自动控制领域中一种重要的分析和设 计方法。
发展
随着计算机技术和数值分析方法的不断发展,根轨迹法的应 用范围和精度得到了进一步拓展和提高。未来,根轨迹法有 望与其他控制理论和方法相结合,形成更加完善和高效的控 制系统分析和设计体系。
根轨迹的性能分析
根轨迹的增益敏感性和鲁棒性
通过分析根轨迹在不同增益下的变化情况,可以评估系统的性能和鲁棒性。
根轨迹与性能指标的关系
通过比较根轨迹与某些性能指标(如超调量、调节时间等),可以评估系统的 性能。
04
根轨迹法与其他控制方法的比较
根轨迹法与PID制根轨迹图,直观地分析系统的稳定性、响应速度和超调量等性
特点
根轨迹法具有直观、简便、易于掌握等优点,特别适合用于分析 开环系统的稳定性和性能。
根轨迹法的应用场景
控制系统设计
根轨迹法可用于控制系统设计,通过调整系统参数 ,优化系统的性能指标,如稳定性、快速性和准确 性等。
故障诊断与排除
根轨迹法可用于故障诊断与排除,通过观察系统根 轨迹的变化,判断系统是否出现故障,以及故障的 类型和程度。
在绘制根轨迹时,需要遵循一定 的规则,如根轨迹与虚轴的交点 、根轨迹的分离点和汇合点等。
03
根轨迹分析方法
根轨迹的形状分析
根轨迹的起点和终点
根轨迹的起点是开环极点的位置,而 终点是闭环极点的位置。通过分析起 点和终点的位置,可以判断根轨迹的 形状。
根轨迹的分支数
根轨迹法
m n 长除 s pi z j s nm1 K j 1 渐近线与实轴的交点 i 1 nm
K*≦时,s≦,取前两项
改写为模和相角的形式
n m
s
nm
p z 两边开(n-m)次方
a=
i 1 i
k 1)180 (2 j 1 p a z K e n=m s n m 1+
四个开环极点: 一个开环零点:
p1 0, p2 1 j, p3 1 j, p4 4
z 1
n-m=4-1=3
渐近线与实轴交点:
(0) (1 j ) (1 j ) (4) (1) 5 i 1 j 1 a= nm 4 1 3 渐近线与实轴正方向的夹角:
法则1 根轨迹的起点和终点: 根轨迹起始于开环极点,终止于开环零点;若开环零点数 少于开环极点个数,则有 n-mn条根轨迹终止于无穷远处。 m 根轨迹方程
K
起点:K*=0
n
(s z ) (s p )
i 1 i j 1 n j
m
( s pi ) K (s z j ) 0
z
i 1 n j 1
m
i
p
j
4.3 绘制根轨迹的基本法则
1、根轨迹的起点和终点 2、根轨迹的分支数、连续性和对称性 3、实轴上的根轨迹 4、根轨迹的渐近线 5、根轨迹的分离点 6、根轨迹的起始角和终止角 7、根轨迹与虚轴的交点 8、闭环特征方程根之和与根之积
4.3.1绘制根轨迹的基本法则
s
1 nm
j (2 k 1) nm
பைடு நூலகம்
第四章 根轨迹法
m
(s p )
i i 1
n
1
K*从0 到无穷大变化
由于s为复数,所以根轨迹方程的另一种表示方法:
模值方程:
K
*
sz
i 1 i
m
i
s p
i 1
n
1
相角方程:
(s z ) (s p ) (2k 1) , k 0,1,2
i 1 i i 1 i
m
n
绘制根轨迹利用相角方程,求根轨迹上某 点对应的K*值则用模值方程。
4-2 常规根轨迹的绘制法则
一、绘制根轨迹的基本法则
1.根轨迹的起点与终点 K*=0时对应的根轨迹点称根轨迹的起点, K* =∞时对应的根轨迹点称根轨迹的终点
根轨迹起于开环极点,终于开环零点。若开 环零点数m小于开环极点数n,则有n-m条根 轨迹终于无穷远处(无限零点)。
s 4s 4 K 0
2
s2 2 2 1 - K
由 s1 2 2 1 K s2 2 2 1 - K 可得闭环极点的变化情况:
K=0 0 < K <1 K=1 K=2 1<K<∞ K= ∞ s1=0 s2=-4 s1 s2为不等的负实根 s1=-2 s2=-2 s1=-2+2j s2=-2-2j s1 s2 实部均为-2 s1=-2+j ∞ s2=-2-j ∞
K=0 0 < K <1 K=1 1<K<∞
s1=0 s2=-4 s1 s2为不等的负实根 s1=-2 s2=-2 s1 s2 实部均为-2
由根轨迹可知: 1)当K=0时,s1=0,s2=-1,这两点恰是开环传递 函数的极点,同时也是闭环特征方程的极点. 2)当0<K< 1 时,s1,2都是负实根,随着k的增 长,s1从s平面的原点向左移,s2从-1点向右移。 3) 当K= 1时, s1,2 = -2,两根重合在一起, 此时系统恰好处在临界阻尼状态。 4) 1 <K<∞,s1,2为共轭复根,它们的实部恒等于2,虚部随着K的增大而增大,系统此时为欠阻 尼状态。
第四章 根轨迹法
s1 s2 a
。
第四章 根轨迹法
§4-1 根轨迹的基本概念
当 a 2 K1 时,两根成为共轭的复数 根,其实部为
a
,这时根轨迹与实
j
轴垂直并相交于 ( a, j0) 点。
(s+2a)
K1由0向∞变化时的根轨迹,如图4-2 所示。箭头表示K1增大方向。 由图可见: 1) 此二阶系统的根轨迹有两条, K1 0 时分别从开环极点 p1 0 和 p2 2a 出发。
m
| s pi |
i 1
j
1
或
K1
| s pi | | s z j |
j 1 i 1 m
n
(s z
j 1
m
) ( s pi ) 180 (2q 1)
i 1
n
q 0, 1, 2,
在s平面上满足相角条件的点所构成的图形就是闭环系统的根轨迹。 因此,相角条件是决定闭环系统根轨迹的充分必要条件,而幅值条件
D' (s) A' (s) K1B(s) 2(s s1 ) p(s) (s s1 ) 2 p(s) 0
将
A( s ) K1 代入上式,得 B( s)
图4-3 反馈控制系统
G(s) H (s) 1 和 G(s) H (s) 180 (2q 1) q 0, 1, 2,
以上两式是满足特征方程的幅值条件和相角条件,是绘制根轨迹的重 要依据。在s平面的任一点,凡能满足上述幅值条件和相角条件的,就是
系统的特征根,就必定在根轨迹上。
s p1=0 O a
p2=2a
根 轨迹法
第三章
(五) 《礼记》中说:“入境而问禁,入国而问
俗,入门而问讳。”俗话说“十里不同风、 百里不同俗”“到什么山唱什么歌”,这 些对劳动人民有益的格言都说明尊重各地 不同风俗与禁忌的重要性。尊重习俗原则
上一页 下一页 返回
第三章
1. 仪表是指人的容貌,是一个人精神面貌的
外观体现。一个人的卫生习惯、服饰与形 成和保持端庄、大方的仪表有着密切的关 系。清洁卫生是仪容美的关键,是礼仪的
上一页 下一页 返回
第三章
3. 放松。女性应两膝并拢;男性膝部可分开 一些,但不要过大,一般不超过肩宽。双 手自然放在膝盖上或椅子扶手上。在正式 场合,入座时要轻柔和缓,起座要端庄稳 重,如古人所言的“坐如钟”。若坚持这 一点,那么不管怎样变换身体的姿态,都 会优美、自然。不可随意拖拉椅凳,从椅 子的左侧入座,沉着安静地坐下。女士着
角均等于π。 四、根轨迹的渐近线 五、根轨迹的分离点
当K*由零至无穷大变化过程中,几条根轨迹在s平面某一点 相遇后立即分开,这一点称为分离点。最常见的分离点出现在 实轴上,实轴上的分离点有两种情况:i)实轴上的根轨迹相向 运动,在某一点相遇后进入复数平面,如图4-7的A点;ⅱ)复数 平面内的一对共轭复数根轨迹在实轴上相遇,然后趋向实轴上
上一页 下一页 返回
第三章
2. 服饰是一种文化,反映一个民族的文化素
养、精神面貌和物质文明发展的程度;着 装是一门艺术,能体现个人良好的精神面 貌、文化修养和审美情趣。既要自然得体, 协调大方,又要遵守某种约定俗成的规范 或原则。不但要与自己的具体条件相适应, 还必须时刻注意客观环境和场合上一,页与下时一页间、返回
上一页 返回
§4-3 根轨及草图绘制举例
例4-7 若开环系统传递函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与虚轴交点求法(续)
方法二:利用劳斯表,令相应行所有元素值 为0解得kc值,代入辅助方程求得值。 例6.5负反馈系统开环传递函数如下,求根轨 迹与虚轴的交点及kc 。 k G( s) 2 s( s 2.73)(s 2s 2) 解:由G(s)知系统特征方程为 2 s(s 2.73)(s 2s 2) k 0
连续与离散控制系统
第6章 根轨迹法
主要内容
• • • • • • • 基本概念 绘制根轨迹图的基本规则 绘制根轨迹图 参数根轨迹 开环零极点对根轨迹的影响 利用根轨迹法进行系统性能分析 利用根轨迹法校正
6.1基本概念
• 美国人W.R.EVANS于1948年提出根轨迹法。 它利用图解法而不是代数法求解控制系统 的闭环特征方程的根即闭环极点。 • 当控制系统的某一参数变化时,根据已知 的开环传递函数的极点和零点,利用几条 简单规则,绘制闭环系统的特征根的轨迹。 • 根轨迹法的最重要的价值在于它的图解思 想、控制系统整体感及隐藏在绘制规则背 后的规律,使控制工程师能够对控制系统 有深入的理解。
– 如果两端点为异性奇点。
• 如果没有与实轴的交点,则它为一个完整的分支, 即起始于开环极点,沿实轴运动直至该零点。 • 如果存在会合点,那么一定要有一个分离点也存在。
求根轨迹分离(会合)点的方法
方法一:
k ( s 1)
1 1 方法二: d P d Z j i j 1 i 1
Z 135
2
规则八:与虚轴的交点及临界值kc
• 根轨迹与虚轴的交点是为了研究是否有不 稳定的情况发生。与虚轴有交点就说明当k 值变化到这个值(称为临界k值,记为kc)时 将有一对共轭虚闭环极点存在,将产生等 幅振荡。 求与虚轴交点有两种方法:
方法一:令s=jω,带入系统特征方程 Re[1 G ( j )] 0 1 G ( j ) 0 Im[1 G ( j )] 0
G (s) s ( s 1)
2
解:令s=jω带入系统特征方程 3 2.1k 0 (1) 2 (2) (1 k ) 0.2k 0
由(1)得 由(2)得
2.1k
2
kc -0.9
由于k由0→+∞,故根轨 迹与虚轴无交点。
规则九:根轨迹系数k的求取
根轨迹的渐近线(续)
只要系统的n-m相同,其夹角是相同的,只是 不同的系统σ不同。下面给出常见情况的渐近 线形式。
规则五:实轴上的根轨迹
如果实轴上有开环零点或极点,则要研究根 轨迹在实轴上的情况,称为实轴上的根轨迹。 实轴上的奇点将整个实轴分割成若干段,每 段作一个开区间,记为 (a,b)(包括实轴上无 穷远点),则: 区间(a,b)右侧实轴上奇点总数若为奇数则该区 间在根轨迹上。若为偶数,则该区间上无闭环 极点。
满足角条件,故s1在根轨迹上,则k为:
3 2 2 3 12
6.3绘制根轨迹图
1. 2. 3. 4. 5. 6. 7. 8. 9. 获取系统的开环传递函数; 将开环零、极点绘于S平面; 确定实轴上的根轨迹; 确定有无与实轴交点,有则求出; 确定渐近线条数及渐近线交点,渐近线与实轴夹角 并绘出渐近线; 确定是否需要求取出射角和入射角,需要则求出; 求与虚轴交点及kc; 画出根轨迹各分支图; 需要求出的k值给予求取。
• • • • • • • • • 规则一:根轨迹的分支 规则二:根轨迹的连续性和对称性 规则三:根轨迹的起点和终点 规则四:根轨迹的渐近线 规则五:实轴上的根轨迹 规则六:根轨迹与实轴的交点 规则七:根轨迹的出射角与入射角 规则八:根轨迹与虚轴的交点及临界值kc 规则九:根轨迹系数k的求取
规则一:根轨迹的分支
规则三证明(续)
将特征方程改写为如下形式 m 1 n s Pj s Zi 0 k j 1 i 1 当根轨迹增益k=∞时,有
s Zj
j 1, 2,
, m
所以根轨迹终于开环零点。 一般系统总有n>m,只有s→∞时原式→0,故 在无穷远处为零点。
规则四:根轨迹的渐近线
设sl是根轨迹上的点,则对应的k值记为
例6.7负反馈系统开环传递函数如下,复平面 上点s1 1 j 3 是闭环极点吗?若是其对 k 应k值为何? G (s) ( s 1)( s 2)( s 4)
根轨迹系数k的求取举例
解:画零极点分布图 求s1与开环零极点的 幅角代数和
[(s1 P 1 ) (s1 P 2 ) (s1 P 3 )] [90 60 30] 180
(Z
i 1 ih
h
Z i ) (2l 1)
先异后同再反相!
入射角与出射角的计算举例
例6.4已知开环传递函数,求出射角和入射角。
G( s) k ( s 1)( s 4s 5) s( s 4)( s 2 s 9)
2
解:由G(s)知:Z 1 1, Z2 2 j, Z3 2 j
与虚轴交点求法举例一(续1)
Re[1 G(s)] 4 7.46 2 k 0 3 Im[ 1 G ( s )] 4 . 73 5.46 0
5.46 1.07 解得 2 4.73
(1) (2)
kc 7.28
1 4.73 7.46 5.46 k
(-∞, P4)
(P4, Z1)
规则六:根轨迹与实轴的交点
• 如果某区间是实轴上的根轨迹,则有三种 运动情况:
– 如果两端点为同性奇点,又分为两种情况。
• 同为开环极点,两个分支在k=0时分别从两个端点 出发,然后相向运动。他们只能在某一点相遇且自 此分开进入复平面去找零点,故称该点为分离点。 • 第二种情况是同为开环零点,一定有一个会合点。
• 根轨迹在s平面上的分支数等于控制系统特 征方程式的阶次,即等于闭环极点数目, 也等于开环极点数目。
规则二:连续性和对称性
• 连续性:由于k从0→∞连续变化时,特征方 程式根的变化也必然是连续的,故根轨迹 必然是连续的。 • 对称性:因为闭环特征方程式的根只有实 根和复根两种,实根位于实轴上,复根必 共轭,因此根轨迹对称于实轴。
模条件和角条件
设控制系统的开环传递函数为G(s),则其特 征方程为: 1+ G(s)=0 ,则G(s)= -1=ej(2l+1)π 模条件 | G ( s) | 1 角条件 G(s) (2l 1) , l为整数
G (s)
k (s Zi ) ( s Pj )
j 1
标准形式
明规则五
2
P2
j
3 0
Z3
4 0
P4 s0
2 1 1
Z2 P1 Z1
3
P3
s0 是实轴上的任意测试点;φ 是开环零点到s0 的相角;θ 是开环极点到s0的相角,所有角度 都是以水平线开始,逆时针方向测得的。
实轴上根轨迹举例
例6.1某负反馈系统实轴上的开环零、极点如 图所示,试确定其实轴上的根轨迹。 解:注意原点处为两 个开环极点。 (P1,+∞) (P2, P1) (Z1, P2)
(d 1)(d 1 j 3 d 1 j 3) (d 1 j 3)(d 1 j 3)
(d 1)(2d 2) d 2d 4
解得相同结果
根轨迹与实轴交点举例二
例6.3已知开环传递函数,求其与实轴的交点。
k ( s 6) G (s) s ( s 2)( s 60)
n
m
例6.2已知开环传递函数,求其与实轴的交点。
G (s) s 2 2s 4
解:依据G(s)将开环零、 极点画于S平面如图
例6.2(续1)
根据方法一得:
d 2 2d 4 (d 1)(2d 2) 0
解得 d1,2 1 3
舍去不在根轨迹上的点 1 1 1 根据方法二得: d 1 j 3 d 1 j 3 d 1
1 35 1 35 P1 0, P2 4, P3 j , P4 j 2 2 2 2
由于存在复极点P3,P4故应求出射角。由于存 在复零点Z2,Z3故应求入射角。
入射角与出射角的举例(续1)
( P3 Z1 ) 80.4
( P3 Z 2 ) 52.5
根轨迹和根轨迹图
• 根轨迹:特征方程的根(闭环极点)随参 数变化的运动轨迹。 • 根轨迹图:根轨迹的图像。 • 根轨迹法:根据根轨迹图对系统进行分析 和综合的一种近似方法。 • 标准根轨迹图:以根轨迹系数k为参数,以 开环传递函数为依据所绘制的根轨迹图。 • 参数根轨迹图:以k以外的参数(如时间常 数T)绘制的根轨迹图 。
规则三:根轨迹的起点和终点
根轨迹的一个分支一定起始于某个开环极点 而终止于某个开环零点。 证明:设闭环控制系统的特征方程为
s P k s Z 0
j 1 j i 1 i
n
m
当根轨迹增益k=0时,有
s Pj
j 1,2,
, n
可见,闭环特征方程的根就是开环极点,所 以根轨迹起于开环极点。
根轨迹的渐近线是当开环零点数目m小于开环 极点数n时,确定(n-m)条根轨迹沿什么方向趋 于[s]平面的无穷远处。渐近线是指向无穷远 n m 处的射线。
j i
渐近线与实轴的交点:
Re( P ) Re(Z )
j 1 i 1
nm
渐近线与实轴正方向的夹角:
(2l 1) , l 0,1,, (n m) 1 nm
k和K的关系
开环传递函数为时间常数表达形式:
( s 1) ( G (s) (T s 1) (T s K