《高分子物理实验》PPT课件
《高分子物理》ppt课件
PART 03
高分子溶液性质与行为
REPORTING
高分子溶解过程及热力学
溶解过程的描述
高分子在溶剂中的溶解过程包括 溶胀、溶解两个阶段,涉及高分 子链的舒展和溶剂分子的渗透。
热力学参数
溶解过程中的热力学参数如溶解 度参数、混合焓、混合熵等,决 定了高分子与溶剂的相容性。
温度对溶解的影响
区别
高分子化学主要关注高分子的合成和化学反应,而高分子物理则更加关注高分子的结构和性质以及它们之间的关 系。此外,两者的研究方法也有所不同,高分子化学通常采用化学合成和表征的方法,而高分子物理则采用各种 物理手段和理论计算的方法。
PART 02
高分子链结构与形态
REPORTING
高分子链化学结构
可用于制造透明或半透明的制品,如透明塑料、有机玻璃等。
03
耐候性
高分子材料在户外环境下能够保持其光学性能的稳定,不易发生黄变、
老化等现象,因此适用于户外光学器件的制造。
耐热性、耐腐蚀性等其他性能
耐热性
高分子材料通常具有较好的耐热性,能够在高温环境下保持其物理和化学性质的稳定。这 使得高分子材料在高温工作环境中具有广泛的应用,如汽车发动机部件、电子电器部件等 。
特定的高分子结构、温度区间和浓度等。
液晶态性能
液晶态高分子具有优异的光学性能、力学性能(如高强度和高模量 )以及热稳定性等。
PART 05
高分子材料力学性能与增 强机制
REPORTING
拉伸、压缩、弯曲等力学性能
拉伸性能
高分子材料在拉伸过程中,经历弹性变形、屈服、应变硬化和断裂 等阶段,表现出不同的力学行为。
核磁共振法研究分子运动状态
高分子物理(共90张PPT)
收缩与翘曲
高分子制品在成型后,由 于内应力的存在,会发生 收缩和翘曲现象,需通过
工艺控制减少其影响。
高分子加工过程中的物理和化学变化
01 热变化
高分子在加工过程中吸收或放 出热量,引起温度变化,对制 品性能产生影响。
02 力学变化
高分子在加工过程中受到剪切 、拉伸等力的作用,发生力学 状态的变化。
高分子物理(共90张PPT)
CONTENTS
• 高分子物理概述 • 高分子的结构与形态 • 高分子的物理性质 • 高分子的溶液性质 • 高分子的加工与成型 • 高分子物理的应用与发展前景
01
高分子物理概述
高分子的定义与分类
定义
高分子是由大量重复单元通过共价键 连接而成的长链化合物,分子量高达 数千至数百万。
弹性
高分子链的柔顺性和链段运动能力使其具 有弹性,如橡胶的弹性回复。
黏性
高分子链间的缠结和摩擦使其具有黏性, 如聚合物的熔融和溶液行为。
塑性
高分子在一定条件下可发生塑性变形,如 热塑性塑料的加工成型。
强度
高分子材料抵抗外力破坏的能力,如纤维 的强度和韧性。
高分子的热学性质
热容
高分子材料的热容通常较大,吸热和放热 过程中温度变化较小。
物理的研究提供了有力支持。
02
高分子的结构与形态
高分子的链结构
链的近程结构
包括键接方式、支化、交联等
链的远程结构
涉及链的柔顺性、构象和链的尺寸等
链结构的表征方法
如X射线衍射、中子散射、电子显微镜等
高分子的聚集态结构
高分子的分子间相互作用:包括范德华力 、氢键、离子键等
高分子的聚集态类型:如溶液、凝胶、晶 体、非晶态等
《高分子物理》课件
高分子加工技术
探索高分子材料的加工技术,如挤出、注塑、吹塑等,讨论每种技术的优缺点以及在实际生产中的应用。
高分子材料应用范围
展示高分子材料在不同领域的广泛应用,包括医疗、电子、汽车等,并讨论其在可持续发展中的作用。
总结与展望
总结高分子物理的重要概念,并展望未来的发展方向,探讨高分子物理在新材料研究中的前景。
《高分子物理》PPT课件
这份PPT课件将帮助您了解《高分子物理》的重要概念和应用。通过丰富的 内容和精美的图片,让我们一起探索高分子物理的奇妙世界。
高分子物理概述
介绍高分子物理学的基本概念和理论,包括分子结构、分子力学以及高分子 的物理特性。
高分子材料的物理性质
深入了解高分子材料的物理性质,例如强度、弹性、热传导性等,解释其在 不同应用领域中的优势。
高分子物理课件第一章概论优秀课件
以数量为统计权重的数均分子量,定义为: 以重量为统计权重的重均分子量,定义为: 以z值为统计权重的z均分子量,zi定义为wiMi,
定义为:
数均分子量亦可用重量分数表示
M n
ni M i ni
wi (wi / M i )
根据定义式,易证明: 当α=-1时,
1
M
Mn
(Wi / M i )
当α= 1时,
M WiMi M w i
对于多分散试样, M z Mw M M n 对于单分散试样, M z Mw M M n
迈耶霍夫只用一个式子就代表了所有平 均相对分子质量:
wi
M
i
M
i
wi
M
i
1
i
式中:对于数均,β=0;对于重均,β=1; 对于Z均,β=2;对于黏均,β=0.8~1。这 种表达很便于记忆。
各种统计分子量的大小比较
多分散体系 MnMηMwMz
单分散体系 MnMηMwMz
(只有少数象DNA等生物高分子才是单分散的)
对于一般的合成聚合物,可以看成是若干同系物 的混合物,其分子量可看作是连续分布的。这些 相对分子质量也都可以写成积分的形式:
1
wi wi
M i
1
(Wi / M i )
ni
wi Mi
MW
ni
M
2 i
i
ni M i
i
wi=niMi
用黏度法测得稀溶液的平均分子量为黏均分子
量,定义为:
M
Wi
M
i
1/
ni
M
1a i
高分子物理(共90张PPT)
高分子物理(共90张PPT)高分子物理是研究高分子的性质、结构和行为的物理学科。
高分子物理是在20世纪初形成的,它涉及的领域非常广泛,包括高分子合成、高分子材料制备、高分子加工与成型等。
本文将结合90张PPT,对高分子物理的基本概念、研究方法、高分子结构与性质、高分子的加工与成型等方面进行介绍。
第一部分:高分子物理的基本概念1、高分子的定义高分子是由无数个重复单元组成的巨大分子,其分子量通常大于10^3,由于其特殊的结构和物理化学性质,广泛应用于生活、工业等众多领域。
2、高分子物理的研究对象高分子物理的研究对象是大分子化合物。
这些化合物的分子量很大,通常大于10^3,有时甚至可达到10^7。
这就意味着高分子物理不仅涉及到分子级性质的研究,还要考虑宏观级别的物理特性。
3、高分子物理的主要内容高分子物理的主要内容包括高分子的结构、性质、动力学、形态、相变、流变、加工与成型等方面。
4、高分子物理的研究方法高分子物理的研究方法包括实验研究和计算模拟两种,其中实验研究主要包括材料合成与制备、结构表征、物理性质测试等,计算模拟主要包括分子动力学模拟、量子力学计算、有限元分析等。
第二部分:高分子结构与性质1、高分子的结构分类高分子可分为线性高分子、支化高分子、交联高分子、网络高分子等四种结构。
其中,线性高分子的分子结构最为简单,具有线性分子链结构;支化高分子分子链呈树枝状结构;交联高分子中分子链相互交联形成三维网格状结构;网络高分子则形成分子链与交联点间互相交联的巨分子结构。
2、高分子的物理性质由于高分子材料具有特殊的分子结构,因此具有一系列独特的物理性质,例如:高强度、高耐磨性、高耐热性、高透明度、高电绝缘性等。
在高分子加工中,可以通过改变处理条件和添加剂等方式来控制高分子的物理性质。
第三部分:高分子的加工与成型1、高分子的加工方法高分子的加工方法包括:挤出成型、注塑成型、压缩成型、吹塑成型、热模压成型、注液成型等多种方式,其中以挤出成型和注塑成型应用最为广泛。
高分子物理共90张PPT
高分子物理共90张PPT第一部分:高分子物理基础知识1. 高分子物理概述高分子物理是研究高分子材料的构造、力学性质及其在热、电、光等方面的行为规律的一门学科。
高分子物理的主要研究对象是具有大分子结构的聚合物和高聚物。
2. 高分子材料的结构高分子材料的分子结构可以分为线性、支化和交联三种。
其中,线性结构的高分子链是单纯的直线结构,支化结构则是在链上引入支链结构,交联结构则是在高分子链上形成水晶点,使高分子链之间发生交联作用。
3. 高分子材料的物理性质高分子材料的物理性质包括力学性质、热性质、电性质、光学性质和磁性质等。
其中,力学性质是高分子材料最基本的性质之一,包括拉伸、压缩、弯曲、挤压、剪切等方面的力学性能;热性质则包括高分子材料的热干扰系数、热导率、热膨胀系数等;电性质则包括高分子材料的电导率、介电常数、介质损耗等;光学性质包括吸收、散射、透射、反射等方面的反映;磁性质则包括磁导率、磁化率等。
4. 高分子材料的分子运动高分子材料的分子运动是高分子物理学研究的一个重要方面。
高分子分子的运动可分为平动、转动、振动三种类型,其中振动运动通常与分子中的化学键振动相关联。
第二部分:高分子材料的物理加工工艺1. 高分子材料的成型加工高分子材料的成型加工包括挤出、注塑、吹塑、压缩成型、旋压成型等多种技术,其中挤出、注塑和吹塑等工艺技术是广泛应用的成型技术,具有高效、经济绿色等优点。
2. 高分子材料的复合加工高分子材料的复合加工是目前最为关注的技术之一,它将高分子材料与其他材料进行有效的综合利用,并在性能上得到了显著的提高。
高分子复合材料广泛应用于航空航天、汽车、电子、建筑等领域。
3. 高分子材料的改性加工高分子材料的改性加工是指通过添加改性剂来改变高分子材料的属性,以得到更好的性能。
常见的改性剂包括增强剂、塑化剂、光稳定剂、抗氧化剂等。
4. 高分子材料的表面处理高分子材料的表面处理是一种重要的加工技术,它可以提高高分子材料的表面性能和增强其附着力,同时也可以达到美化、防腐蚀等目的。
高分子物理化学全套PPT课件课件
探索新型高分子材料的合成方法
发展新型的高分子合成方法,实现高效、环保、低成本的合成,提高 高分子材料的性能和功能。
拓展高分子材料的应用领域
将高分子材料应用于新能源、生物医学、环保等领域,开发具有创新 性和实用性的高分子材料。
高分子物理化学的发展历程
• 总结词:高分子物理化学的发展历程包括起步阶段、成长阶段和繁荣阶段,其 发展推动了人类社会的进步。
• 详细描述:高分子物理化学的发展历程可以追溯到20世纪初,当时科学家开 始对高分子物质进行研究,并发现了高分子化合物的长链结构和多分散性等特 点。随着研究的深入,人们逐渐认识到高分子物质的结构和性质在不同尺度上 存在差异,并开始从微观到宏观的不同尺度上进行研究。在成长阶段,高分子 物理化学的研究领域不断扩大,涉及的学科也越来越多,如物理学、化学、生 物学等。同时,人们开始将高分子物理化学应用于实际生产和生活中,推动了 相关产业的发展。进入21世纪后,随着科学技术的发展和人类对物质世界的 认识不断深入,高分子物理化学的研究进入繁荣阶段。人们开始深入研究高分 子物质的结构和性质,探索其在不同环境下的变化规律和机制,为解决实际问 题提供更加精准的理论支持。同时,随着计算机技术和数值模拟方法的不断发 展,人们可以更加方便地模拟和预测高分子物质的行为和性能,进一步推动相 关领域的发展。总之,高分子物理化学的发展历程是一个不断创新和发展的过 程,其发展推动了人类社会的进步。
高分子物理化学全套 ppt课件
目录
• 高分子物理化学概述 • 高分子结构与性质 • 高分子合成与制备 • 高分子反应与改性 • 高分子材料性能与应用 • 高分子物理化学前沿研究
高分子物理pptPPT课件演示文稿
态聚合物,玻璃化转变是指其中非晶部分的这 种转变。 发生玻璃化转变的温度叫做玻璃化温度Tg
27
第二十七页,共390页。
Tg的工艺意义
是非晶热塑性塑料(如PS, PMMA)使用温度的上限 是非晶性橡胶(如天然橡胶, 丁苯橡胶)使用温度的下限
41
第四十一页,共390页。
自由体积理论(Fox 、 Flory)
固体和液体总的体积(VT)由两部分组成: 占有
7. 高分子热运动是一个松弛过程,松弛时间的大小取决于(
)。
A、材料固有性质 B、温度 C、外力大小 D、以上三 者都有关系。
40
第四十页,共390页。
5.3 高聚物的玻璃化转变
5.3.2 玻璃化转变理论 The theories of glass transition
等自由体积理论 (半定量) 热力学理论 (定性) 动力学理论 (定性)
T
T
(时温等效原理)
112
对于链段运动,松弛时间与温度的关系遵循WLF方程
第十二页,共390页。
5.2 聚合物的力学状态和热转变
➢ 1. 线形非晶态聚合物的力学状态 ➢ 2. 晶态聚合物的力学状态 ➢ 3. 交联聚合物的力学状态
113 第十三页,共390页。
5.2.1 线形非晶态聚合物的力学状态
流动,但此时已超过Td , 所以已经分解。PTFE就是如此, 所以不能注射成型,只能用烧结法。 PVA和PAN也是如此,所以不能熔融法纺丝所以不能 熔融法纺丝,只能溶液纺丝。
224
第二十四页,共390页。
5.2.3 交联聚合物的力学状态
1. 分子链间的交联限制了整链运动,无Tf 。 2. 交联密度较小时, “网链”较长,外力作用下链
高分子物理--高聚物的粘性流动(粘流态) PPT
h
9
η是常数,与σs或γ无。 关,它仅与流体的分子结构和 T有关。
σs
γ。
牛顿流体的流动曲线
凡符合牛顿运动定律的流体称为牛顿流体。如甘油、 H2O等小分子液体的流动高分子稀溶液的流动。
h
10
三、非牛顿流体 凡不符合牛顿定律的流体就是非牛顿流体。
高分子熔体和高分子浓溶液属于非牛顿流体,恒 温流动时,它们的η随σs或γ的大。小改变。
分子链柔性好,链段短,Tf↓,如PE,PP
分子链刚硬,链段长,Tf↑,如PPO,PC,PSU 分子链极性强,△u↑,分子间作用力强,Tf↑, 如PSU,PC,PPO,PVC,PAN等
h
26
2、分子量的影响 M↑,链段数↑,摩擦力↑, Tf ↑
M↓,Tf ↓,当M↓到与链段尺寸相当时Tf与Tg重 合,这时不出现高弹态,玻璃化转变后直接進入 粘流态。聚合物的M具多分散性,实际上聚合物 往往没有明晰的Tf而是一个较宽温度范围的区域。
σs
假塑性流体
σy
绝大多数聚合物的熔 体都属于此类流体。
牛顿流体
0
γ。
为什么出现切力变稀 ?
h
13
3、膨胀性流体 σs~γ曲。 线通过原点向上弯曲,曲线的斜率(切粘 度)随γ↑而↑(切力增稠),加工困难
σs
膨胀性流体
高聚物的悬浮液, 胶乳或高聚物-填充
体系的流动常表现
牛顿流体
为膨胀性流动
0
γ。
h
14
h
27
3、外力和外力作用时间(t)
外力抵消分子链与外力方向相反的热运动,提 高链段沿外力方向运动的几率—“导向”。这种 作用力可以是重力,也可以是来自外加力,后者 在加工中更重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
实验五 聚合物硬度的测定 一、实验目的
1、掌握邵氏硬度计与巴氏硬度计的使用方法 2、熟悉测定高分子材料硬度的操作规程
和影响测定结果的因素
24
二、基本原理
邵氏硬度计:
将规定形状的压针在标准的弹簧压力下和规定的 时间内,将压针压入试样的深度转换为硬度值
25
三、仪器和试样
Lx-A型邵氏硬度计 橡胶皮
26
➢ 注意事项
温度 时间
27
实验六 溶胀法测定天然橡胶的交联度 一、实验目的
28
二、基本原理
ln1(2)212 2 V c12 1/30
29
三、仪器和试样
恒温水槽一套、溶胀计等 天然橡胶
30
➢ 注意事项
温度 时间 溶剂
31
个人观点供参考,欢迎讨论!
高分子物理实验
实验内容
实验一 实验二 实验三 实验四 实验五 实验六
光学显微镜法观察聚合物的结晶形态 黏度法测定聚合物的黏均分子量 聚合物的热谱分析―差示扫描量热法(DSC) 塑料熔体流动速率的测定 聚合物硬度的测定 溶胀法测定天然橡胶的交联度
1
实验一 光学显微镜法观察聚合物的结晶形态
一、实验目的
一、实验目的
➢通过用差示扫描量热分析仪测定聚合物的 加热及冷却谱图,了解DSC的原理
➢掌握应用DSC测定聚合物的Tg 、Tc 、 Tm 、ΔHf及结晶度的方法
14
二、基本原理
检测程序升降温过程中为保持样品和参比 物温度始终相等所补偿的热流率dH/dt随温 度或时间的变化。
15
三、仪器和试样 ➢差示扫描量热分析仪由美国的TA公司生产,
➢ 掌握偏光显微镜的使用 ➢ 了解偏光显微镜在聚合物聚集态结构研究
中的应用 ➢ 学习一般的实验方法,包括单晶和球晶的
培养,并对聚合物的各种结晶形态进行观 察。
2
二、基本原理
➢聚合物晶体像其他晶体一样,也是对光各 向差异性的 ,会产生双折射现象
➢球晶呈现出特有的黑十字消光图像,黑十 字的两臂分别平行起偏镜和检偏镜的振动 方向。转动工作台,这种消光图像不改变, 其原因在于球晶是由沿半径排列的微晶所 组成,这些微晶均是光的不均匀体,具有 双折射现象
9
实验二 黏度法测定聚合物的黏均分子量
一、实ቤተ መጻሕፍቲ ባይዱ目的
1、掌握黏度法测定聚合物分子量的原理 2、掌握乌氏黏度计的使用方法以及测定结果的数据处 理
10
二、基本原理
11
三、仪器和试样
乌氏黏度计、恒温槽装置一套等 1%聚乙二醇水溶液
12
➢ 注意事项
温度 浓度 时间
13
实验三 聚合物的热谱分析―差示扫描量热法 (DSC)
型号为Q-10 ➢试样: PET 、PEO
16
17
dH/dt, mJ/s
Glass transition
crystallization
exothermic melting
Temperature, K
endothermic
18
➢ DSC 的影响因素
样品量 Polymer : 10mg 扫描速率(升、降温) 气氛
19
实验四 塑料熔体流动速率的测定 一、实验目的
1、了解热塑性塑料熔体流动速率与加工性能的关系 2、掌握熔体流动速率的测定方法
20
二、基本原理
MFR=600m/t
m为5个切割段的平均质量(g) t为每切割段所需时间(s)
21
三、仪器和试样
XRL-350型熔体流动速率测定仪等 聚苯乙烯粒料
22
➢ 注意事项
3
4
球晶形成过程示意图
5
三、实验仪器及药品
偏光显微镜:江南XPT-7 Polymer: PEO (MW=4000)
6
7
8
➢注意事项
切勿在观察时用粗调手轮调节下降,否则物镜有 可能碰到玻片硬物而损坏镜头,特别在高倍时, 被观察面(样品面)距离物镜只有0.2~0.5mm, 一不小心就会损坏镜头。