利用均值不等式求最值

合集下载

均值不等式及其应用详解

均值不等式及其应用详解

解:设DQ长为y(m),则
x 4 xy 200
2
A
M
N
B
故:
200 x y 4x
2
E
F
(2)解: x 0
s 4200x 210 4xy 80 2 y 400000 2 38000 4000 x x2
2
2
400000 S 38000 4000 x x2
分析二、 挖掘隐含条件
∵3x+1-3x=1为定值,且0<x<1 则1-3x>0; 3 1 可用均值不等式法 ∵0<x< ,∴1-3x>0 3 1 1 3 x 1 3 x 1 2 ∴y=x(1-3x)= 3x(1-3x)≤ ( ) 3 12 当且仅当 3x=1-3x 即x=1 时 y
3
2
x 4000 当且仅当 200吨时,每吨的平均成本最低
不等式定理及其重要变形:
(定理) a b 2ab(a, b R)
2 2
ab ab (推论) 2
( a, b R )


ab
ab 2 ( ) 2
1 例1、已知:0<x< ,求函数y=x(1-3x)的最大值 3 分析一、 原函数式可化为:y=-3x2+x, 利用二次函数求某一区间的最值
y 2x 3 x y 3 2 2
当且仅当
y 2 x 即: y 2 x 时取“=”号 x y
即此时
1 y 2x x 而 2 2 2 x y 1 2 y 2 2
ymin 3 2 2
本题小结: 用均值不等式求最值时,要注意检验最值存在的 充要条件,特别地,如果多次运用均值不等式求
最值,则要考虑多次“≥”(或者“≤”)中取

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法
均值不等式,又称数学期望不等式,它的应用非常的广泛,可以帮助人们处理各种计算问题。

当我们对一组数据或一组变量进行统计分析时,常常要求知道它们出现的最小值及最大值。

而利用均值不等式求最值的方法,可以满足这一要求。

均值不等式是数学期望不等式的一种,它表达的是某一随机变量的数学期望,英文名叫Markov inequality,它的概念很简单。

均值不等式可以描述为:若X是随机变量,E(X)是其期望,那么X≥E (X)/a,a为任意正数。

均值不等式求最值的方法可以0简单分为三个步骤:
(1)首先确定X是一个随机变量,并计算出它的期望值E(X)。

如果X是一组数据,那么E(X)可以使用求平均值的方法计算出来;
(2)在均值不等式中,把任意正数a定为2;
(3)用E(X)/a的结果做X的上界,那么小于等于这一上界的X的最大值就可以确定有效而且较为优良的最大值了。

因此,利用均值不等式求最值的方法,可以有效地快速得到一组数据或变量的最值。

它的使用可以节省人们的精力,提高效率。

当然,均值不等式求最值的方法也存在着局限性。

它仅适用于求数学期望,对于其他类型的变量,则无法使用。

此外,均值不等式求最值的方法只能提供一个估计值,并不能保证得到的结果恰好是最值。

以上就是均值不等式求最值的方法的相关介绍,它是一种简单又实用的方法,可以有效地求出一组数据或变量的最值,在许多计算问
题中都有着重要的作用。

使用均值不等式求最值

使用均值不等式求最值

使用均值不等式求最值均值不等式是解决最值问题的有效工具。

运用均值不等式求最值要同时满足条件:一正、二定、三相等,缺一不可。

多数求最值的问题具有隐蔽性,需要进行适当地变形才能用均值不等式求解。

掌握一些常见的变形技巧,可以更好地使用均值不等式求最值。

1. 凑系数例1 当时,求的最大值。

利用均值不等式求最值,必须和为定值或积为定值,本题是积的形式,但其和不是定值。

注意到为定值,故需将“x”项凑上一个系数即可。

解:由,知,当且仅当时取等号。

其最大值是8。

点评:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。

2. 凑项例2 求的最值。

分析:由题意知,首先要调整符号,而不是定值,需对进行凑项才能得到定值,然后用均值不等式。

解:∵,∴,即。

,当且仅当,即时等号成立。

∴函数有最大值。

3. 分离例3 经过长期观测可知,在交通繁忙的时段内,某路段汽车的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间的函数关系式为。

在该时段内,当汽车的平均速率为多大时车流量最大?最大车流量为多少?(精确到0.1千辆/小时)分析:只要把分子上的变量分离出来,转化到分母上就可以用均值不等式求解。

解:依题意得:。

当且仅当,即时,上式等号成立。

∴当时,(千辆/小时)。

4. 平方例4 求函数的最大值。

分析:注意到与的和为定值,只要对解析式两边取平方,即可用均值不等式求解。

解:。

当且仅当,即时取等号。

又,可知,故。

5. 统一例5 已知正数,满足,求的最大值。

分析:把所求式的变量x都移到根号里,同时凑系数满足已知条件使和为常数,用均值不等式求积的最大值。

解:∵,∴。

∴。

当且仅当且时等号成立,又因,为正值,可解得,时等号成立。

故有最大值为。

6. 代换例6 已知正数、满足,求的最小值。

分析:将看作,1用已知条件整体代换,可用均值不等式求解。

解:。

由题意知,当且仅当且时等号成立,又因、为正数,解得,,故最小值是18。

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧

例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。

本文将介绍几种利用均值不等式求函数最值的常用技巧。

1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。

例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。

2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。

如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。

如果是,那么函数值将成为该区间的最大值。

对于凹函数来说,与凸函数类似,只是方向相反。

3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。

例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。

我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。

同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。

4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。

当函数的导数为0时,函数可能取得最大值或最小值。

我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。

5.多元函数:均值不等式也可以应用于多元函数的情况。

在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。

综上所述,利用均值不等式求函数最值是一个实用的方法。

通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法均值不等式是数学中一种重要的不等式,它的适用范围十分广泛,可以用于求最值。

均值不等式可以有效地帮助我们找出变量的最大值或最小值,在工程和科学方面都有着广泛的应用。

均值不等式包含不同的类型,其中常用的有欧几里德均值不等式,黎曼均值不等式,拉格朗日均值不等式等。

这些形式的均值不等式可以求解各种复杂的变量最值问题,提供了关于变量最大值或最小值的重要依据。

例如,欧几里德均值不等式的表达式为:S = (x1 + x2 + ... + xn)/n (x1 x2...× xn)^1/n,其中x1,x2,...,xn是n个实数,S 表示均值。

欧几里德均值不等式表明,当x1,x2,...,xn的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。

除了欧几里德均值不等式,黎曼均值不等式也是一种常用的均值不等式。

它的表达式为:S = (x1+ x2 + ... + xn)/n (x1 x2...×xn)^1/n,其中x1,x2,...,xn是n个实数,S表示均值。

与欧几里德均值不等式相比,黎曼均值不等式需要计算变量的平方和。

当x1,x2,...,xn的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。

此外,拉格朗日均值不等式也是一种常用的均值不等式,其表达式为:S = (x1^m+ x2^m + ... + xn^m)/n (x1 x2...× xn)^1/n,其中x1,x2,...,xn是n个实数,m是一个正整数,S表示均值。

拉格朗日均值不等式需要计算变量的m次方和。

当x1,x2, (x)的乘积大于均值的n次方时,变量x1,x2,...,xn中至少有一个大于均值,此时可求出变量x1,x2,...,xn中的最大值。

利用均值不等式求最值的方法

利用均值不等式求最值的方法

利用均值不等式求最值的方法均值不等式是数学中常见的一种不等式形式,可以用于求解各种最值问题。

该不等式提供了一种有效的方法来估算函数的最大值和最小值。

均值不等式最常见的形式是算术平均数和几何平均数之间的关系,即对于任意一组非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$\sqrt[n]{x_1x_2...x_n} \leq \frac{x_1+x_2+...+x_n}{n}$其中,算术平均数是$x_1,x_2,...,x_n$的和除以$n$,而几何平均数是$x_1,x_2,...,x_n$的乘积开$n$次方。

均值不等式的证明可以通过数学归纳法和对数函数的单调性来完成,具体证明过程超出本文篇幅,不过可以查阅相关数学教材进行学习。

步骤1:确定题目要求求解的最值问题,明确自变量和因变量。

一般来说,最值问题都是求解一些函数的最大值或最小值。

步骤2:将问题转化为均值不等式的形式。

利用均值不等式,可以将函数中的一些项转化为均值的形式,进而简化问题求解过程。

步骤3:确定均值的形式。

根据函数中的项,可以选择合适的均值形式,如算术平均数、几何平均数、调和平均数等。

步骤4:利用均值不等式进行变换。

将问题中的需要求解的部分,利用均值不等式进行变换,得到简化后的表达式。

步骤5:求解均值不等式中的最值问题。

根据均值不等式,可以得到简化后的表达式的最值。

具体求解方法,根据实际问题采取不同的手段,如求导法、取等法等。

步骤6:将最值结果回代到原始问题中。

将得到的最值结果回代到原始问题中,得到最终的结果。

下面通过一个简单的例子来说明利用均值不等式求最值的方法。

例题:已知$a,b,c$满足$a^2+b^2+c^2=1$,求$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。

解答:步骤1:确定题目要求求解的最值问题。

题目要求求解函数$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。

应用均值不等式求最值的几种技巧

应用均值不等式求最值的几种技巧

当且 仅 5 4 — x
即x 时 等 号成 立 。 =l
分 析 : <x 知 8 2 >0 利 用 均 值不 等 式 求最 值 , 由O <4 - x , 必须 和 为
定值 , 或积 为 定 值 , 此题 为 两 个 式 子 的积 的 形 式 , 其 和不 是 定 值 , 但
故 当 x= 1 . 数 fx) 得 最 大 值 1 时 函 ( 取
“ = "


当 = 3时

当 且仅 当x 时 取 “ 号 =1 =”



函 数取得 最大值2 √。
当+ Ox一 , 5 、+( = xIR<l y 一/ 4 l <p 时 ≤ ( ) ) f
当 且仅 当X=-3 取 “ 号 时 =”
总 之 利 用 均 值 不 等 式 求 最 值 时 , 定 要 注 意 “ 正 二 定 三 相 一 一
a 十 D 广 _

要: 均值不 等式 — ≥ 4 b( >0 b , a a , >0 当且仅 当 = 时等号成立) a b 是一个重要 的不 等式, 利用它可以求解函数最值及 值域 的问题 。
但是 , 有些题 目必 须进行必要 的 变形 才能利 用均不 等式 求解 , 本文将 讨论 均值 不等式 的应用技, 供 广大师生参考 。 现 , 关 键词 : 均值不 等式 最值 技巧 中 图分类号 : 7 G 1 2 文献标 识 码 : A 文章 编号 : 9 9 ( 0 2o () 0 9 - 1 1 7 - 7 5 2 1 ) 3 a一 0 8 0 63
均 值 不等 式 + a b≥

/ (> ,> , 2 a 0b 0 当且仅当 : 时等号成立) / ab

利用均值不等式求最值问题

利用均值不等式求最值问题
利用均值不等式求最值问题
均值不等式: ab 如果 a , b R , 那么 ab (当且仅当 a b 时 , 取 " " 号) 2 1. 利用均值不等式求最值结论:积一定,和有最小值;和一定, 积有最大值。 2. 利用均值不等式求最值的条件:一正,二定,三相等。 练习: 3 1.若x>0,当x= 3 时,函数 y x 的最小值是 2 3 . x 2 4 2.若x>0,当x= 时,函数 y 9 x 有最 小 值 12 . 3 x 1 3.若x>4,函数 y x 当x= 5 时,函数有最 大 值是 6 . 4 x 3 1 4.已知 0 x 1,则 3x(1 x) 的最大值为 4 ,此时x= . 5 25 2 5 5.若 0 x ,当x = 时, y = x(5 – 2x)有最大值 . 4 2 8 x 2 y 2 6.若x>0,则 最大值为 . 书:练习,习题6.2 x 2 4
4800 4800 l 150 120(2 3x 2 3 ) 3 3x 1600 240000 720( x ) x
1600 x 240000 720 2 40 297600 4800 1600 40 时, l 有最小值297600. 当 x ,即x = 40, x 3x 因此,当水池的底面是边长为40m的正方形时,水池的总造 价最低,最低总造是297600元. 240000 720 2 x
下列函数中,最小值为 的是C 4
4 A. f ( x) x x
4 B. f ( x) x , ( x (0,1]) x
C. f ( x) 3 4 3
x
x
D. f ( x) lg x logx 10

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧

用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。

它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。

下面,我将详细介绍均值不等式的方法和技巧。

1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。

这个不等式常常被用于证明其他数学结论的基础。

2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。

对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。

使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。

3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。

对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。

4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。

对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。

均值不等式求值的十种方法

均值不等式求值的十种方法

均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值。

(2) 已知01x <<,求函数321y x x x =--++的最大值。

解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=”。

故max 3227y =。

评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。

例2 求函数()22101y xx x =-<<的最大值。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧均值不等式是数学中常用的一种求最值的方法和技巧,它通过将数列中各个数的和与它们的平均值相比较,从而得到最值的估计。

本文将详细介绍均值不等式的定义、性质、应用以及解题步骤,以帮助读者更好地理解和运用这一重要的不等式求解问题。

一、均值不等式的定义均值不等式是数学中一类关于平均值的不等式,通常用来对一组具有其中一种关系的数值进行比较。

假设有n个非负实数a1、a2、…、an,则它们的平均值和它们的几何平均值之间存在以下关系:(a1+a2+…+an)/n ≥ √(a1*a2*…*an) 或(a1+a2+…+an)/n ≥(a1+a2+…+an)/n ≥ ∛(a1*a2*…*an)其中,等号当且仅当a1=a2=…=an时成立。

二、均值不等式的性质1.单变量均值不等式:对于任意n个非负实数a1、a2、…、an,有(a1^p+a2^p+…+an^p)/n ≥ [(a1+a2+…+an)/n]^p其中,p为实数且p≥12.双变量均值不等式:对于任意两个非负实数a和b以及实数p≥1,有[(a^p+b^p)/2]^1/p≥[(a^q+b^q)/2]^1/q其中,p≥q且p、q均不等于0。

3.形式化均值不等式:设f(x)是定义在[a,b]上的连续函数,则对于任意无穷个非负实数a1、a2、…,有f(∫(a1→∞)f(x)dx) ≤ ∫(a1→∞)f(x)dx/lna1其中,a1为自然对数的底数。

三、均值不等式的应用均值不等式在数学中有着广泛的应用,特别是在求最值、证明不等式和优化问题中。

以下是几个常见的应用场景:1.证明不等式:通过应用均值不等式,可以证明很多重要的不等式,如柯西不等式、霍尔德不等式和克劳斯不等式等。

2.求极值:通过应用均值不等式,可以求解一些极值问题,如求最大面积、最小周长和最优化问题等。

3.优化设计:在工程和经济学中,均值不等式可以帮助优化设计,如在材料使用、成本控制和资源分配等方面。

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法均值不等式是基本不等式之一,常用于寻找函数最值。

一般来说,使用均值不等式求最值的方法可以分为以下几种类型。

一、切分法:切分法的思路是将原函数分割成若干个子函数,并通过均值不等式来确定这些子函数的最值,最后通过求和或求积的方式得到原函数的最值。

常用的方法有以下几种:1.等量切割法:将原函数的定义域分割为若干等距的小区间,然后对每个小区间内的子函数应用均值不等式,求得每个小区间的函数最值,最后通过求和或求积得到原函数的最值。

2.不等量切割法:将原函数的定义域按照实际情况进行分割,使得函数在每个小区间上的性质较为简单,然后对每个小区间内的子函数应用均值不等式,求得每个小区间的函数最值,最后通过求和或求积得到原函数的最值。

二、二次函数法:二次函数法的思路是将原函数通过二次函数的形式进行逼近,然后使用二次函数的性质求得原函数的最值。

常用的方法有以下几种:1.利用平均值定理:原函数的图像与二次函数的图像在一点处相切,通过求解相切点的横坐标,可以得到原函数的最值。

2.利用顶点性质:原函数的图像与二次函数的图像的顶点相对应,通过求解顶点的横坐标,可以得到原函数的最值。

三、积分法:积分法的思路是将原函数表示为一个积分的形式,然后利用积分的性质和均值不等式求得原函数的最值。

常用的方法有以下几种:1.利用积分的几何意义:将原函数表示为一个曲线的长度或面积,然后利用均值不等式求得原函数的最值。

2.利用积分的均值定理:将原函数表示为一个函数在一定区间上的平均值与变化量之积,然后利用均值不等式求得原函数的最值。

四、极限法:极限法的思路是将原函数表示为一个极限的形式,然后利用极限的性质和均值不等式求得原函数的最值。

常用的方法有以下几种:1.利用函数极限的定义:通过对原函数的极限进行变形,然后利用均值不等式求得变形后函数的最值,再通过极限的性质得到原函数的最值。

2.利用函数导数的定义:通过对原函数的导数进行变形,然后利用均值不等式求得变形后函数的最值,再通过导数的性质得到原函数的最值。

利用均值不等式求最值常用技巧

利用均值不等式求最值常用技巧

(2) a b c 3 abc , (a, b, c R ) , abc a b c 3 。当且仅当 a=b=c 时,取等号。
3
3
6、熟悉一个重要的不等式链:
2 11
ab a b 2
ab
a2 b2 。 2
7、利用均值不等式求最值的条件: 一正、二定、三相等 ①各项必须为正; ②含变数的各项和或积必须为定值(和定积最大,积定和最小); ③必须有自变量值能使函数取到等号. 二、利用均值不等式求最值常用解题技巧
x
0,y
4x
9 x2
2x
2x
9 x2
3
3
2x 2x
9 x2
33 36
当且仅当 2x
9 x2
,即 x
3
36 2
时等号成立,所以当 x
3
36 2
时, ymin
33
36

技巧五:换元
例 1、求 y x2 7x 10 (x 1) 的值域。 x 1
解:令 t=x+1, y (t 1)2 7(t 1)+10 = t2 5t 4 t 4 5
例 1:求函数 y x2 5 的值域。 x2 4
解:令 x2 4 t(t 2) ,则 y x2 5 x2 4 1 t 1 (t 2)
x2 4
x2 4
t
因 t 0, t 1 1 ,但 t 1 解得 t 1不在区间2, ,故等号不成立,考虑单调性。
t
t
因为 y t 1 在区间1, 单调递增,所以在其子区间2, 为单调递增函数,故 y 5 。
C.3 =,
D.3
∴a+2b=(s﹣1)+2(t﹣1)=s+2t﹣3,

均值不等式求最值的十种方法

均值不等式求最值的十种方法

用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等";② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。

一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。

例1 (1) 当时,求(82)y x x =-的最大值.(2) 已知01x <<,求函数321y x x x =--++的最大值.解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。

当且仅当112x x +=-,即13x =时,上式取“=".故max 3227y =。

评注:通过因式分解,将函数解析式由“和"的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积"的最大值。

例2 求函数)2101y xx x =-<<的最大值。

解:()()2242214122x x y x x x =-=•••-。

均值不等式求最值的6种常用方法-高一数学(人教B版2019必修第一册)(解析版)

均值不等式求最值的6种常用方法-高一数学(人教B版2019必修第一册)(解析版)

均值不等式求最值的6种常用方法一、均值不等式常用的结论1、如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、如果0a >,0b >,则2a b ab +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、2220,0)1122a b a b ab a b a b++≤≤≤>>+ 二、利用均值不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用均值不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 三、利用均值不等式求最值的方法1、直接法:条件和问题间存在均值不等式的关系2、配凑法:凑出“和为定值”或“积为定值”,直接使用均值不等式。

3、代换法:代换法适用于条件最值中,出现分式的情况类型1:分母为单项式,利用“1”的代换运算,也称乘“1”法; 类型2:分母为多项式时方法1:观察法 适合与简单型,可以让两个分母相加看是否与给的分子型成倍数关系; 方法2:待定系数法,适用于所有的形式,如分母为34+a b 与3+a b ,分子为2+a b ,设()()()()2343343+=+++=+++a b a b a b a b λμλμλμ∴31432+=⎧⎨+=⎩λμλμ,解得:1525⎧=⎪⎪⎨⎪=⎪⎩λμ4、消元法:当题目中的变元比较多的时候,可以考虑削减变元,转化为双变量或者单变量问题。

5、构造不等式法:寻找条件和问题之间的关系,通过重新分配,使用均值不等式得到含有问题代数式的不等式,通过解不等式得出范围,从而求得最值。

均值不等式求最值的方法

均值不等式求最值的方法

均值不等式求最值的方法均值不等式是数学中常用的一种方法,用于求解最值问题。

它基于一组数的算术平均数和几何平均数之间的关系,通过比较大小来确定最大值或最小值。

接下来,我将详细介绍均值不等式及其应用方法,并给出几个实际问题的解析。

一、均值不等式的基本形式在介绍具体的应用方法之前,我们首先来看一下均值不等式的基本形式。

对于一组非负实数a1, a2, …, an,均值不等式可以表示为:1.算术平均数(AM)和几何平均数(GM)之间的关系:AM≥GM其中,AM = (a1 + a2 + … + an)/n,GM = (a1 * a2 * … *an)^(1/n)。

2.算术平均数(AM)和谐均值(HM)之间的关系:AM≥HM其中,HM = n/(1/a1 + 1/a2 + … + 1/an)。

二、均值不等式的应用方法1.求最小值:如果我们需要求解一组非负实数的最小值,可以利用均值不等式中的几何平均数和谐均值。

根据AM≥GM和AM≥HM的关系,我们可以得到以下不等式:GM≤AM≤HM即,几何平均数不大于算术平均数不大于谐均值。

因此,当我们需要求解最小值时,可以通过计算几何平均数和谐均值,然后将这两个值与给定的实数进行比较,取其中较小的值作为最小值。

2.求最大值:类似地,如果我们需要求解一组非负实数的最大值,可以利用均值不等式中的几何平均数和算术平均数。

根据AM≥GM的关系,我们可以得到以下不等式:AM≥GM即,算术平均数不小于几何平均数。

因此,当我们需要求解最大值时,可以通过计算几何平均数和算术平均数,然后将这两个值与给定的实数进行比较,取其中较大的值作为最大值。

三、均值不等式的实际应用以下是几个实际问题,利用均值不等式进行求解的示例。

问题一:求证面积最大假设有一个固定的周长为2l的矩形,我们需要求解矩形的面积最大值。

解析:设矩形的长和宽分别为a和b,根据题意,有2(a+b)=2l,即a+b=l。

我们需要求解面积S=a*b的最大值。

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧

用均值不等式求最值的方法和技巧-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。

二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。

例1、求函数21(1)2(1)y x x x =+>-的最小值。

解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。

评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。

通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。

2、求几个正数积的最大值。

例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。

均值不等式在求最值中的运用

均值不等式在求最值中的运用

均值不等式在求最值中的运用
关于均值不等式在求最值中的运用,首先应该了解它是对一个变量约束范围内
的最大最小值的确定方法。

它利用最值性质来断定一个未知点的值,即一个变量既有最大值又有最小值。

下面我们就来看一看均值不等式在求最值过程中具体是如何运用的。

首先,要求解变量的最值,需要先把变量有限之内的约束条件都明确出来,这些约束条件可以包含于均值不等式中。

当已经得出变量的约束条件时,我们可以将其放入到均值不等式中,得出均值不等式的表达式的两端的数值之差,称为“差值”。

然后,我们便可以判断出变量的最值,差值越大,则变量的最值越大,反之,则变量的最值越小,从而有效解决变量最值问题。

总之,均值不等式在求最值中的运用是一种有效的方法,其目的是为了找出一
个变量的最值,从而实现该变量的有效解决。

均值不等式可以根据变量的约束条件,求出变量的最值,使得变量的最值处于最佳状态,从而达到其求最值的目的。

利用均值不等式求最值的技巧

利用均值不等式求最值的技巧

利用均值不等式求最值的技巧
利用均值不等式求最值的技巧是一种常用的数学技巧,它可以帮助我们在解决数学问题时给出一个最优解。

均值不等式是一个基本的数学定理,它表明任何一个序列的平均值大于或等于它的最小值。

因此,可以利用这个定理来求解最大值或最小值。

首先,要使用均值不等式求最值,我们需要确定问题中的变量。

通常情况下,均值不等式求最大值或最小值时,有两个变量:最大值x和最小值y。

确定变量之后,我们需要根据题目给出的信息确定均值不等式的右侧。

对于求最大值的情况,右侧的值将是最小值y;而求最小值的情况下,右侧的值将是最大值x。

接下来,需要计算左侧的值,也就是均值。

计算均值的方法是:将所有数字相加,然后除以总数。

有时,问题中会给出一些数字,我们也可以将它们相加再除以总数算出均值。

有时,问题中会给出一些表达式,我们可以将它们计算出来,再把结果相加得出均值。

接下来,我们可以将左右两边的值代入均值不等式,解出最大值x或最小值y。

如果题目中有多个变量,我们可以分别解出每个变量,然后将它们带入原来的数学表达式,求出最终的最大值和最小值。

最后,要注意的是,均值不等式只能求出最大值或最小值,而不能求出其他值。

因此,在使用均值不等式求最值的时候,要确保问题中的变量正确,并且计算出来的均值也是正确的。

总之,利用均值不等式求最值的技巧是一种有效的数学技巧,能够帮助我们解决许多有关最大值和最小值的问题,提高我们解决问题的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:利用均值不等式求最值
基本公式:
1.x ,y ∈R +,x+y ≥2xy (当且仅当x =y 时取“=”号)
2.x ,y ∈R +,xy ≤2()2x y +(当且仅当x =y 时取“=”号)
3. 222()22x y x y ++≤(当且仅当x =y 时取“=”号) 题型1:和型b ax x +的最值 例1.⑴若x >3,求函数1y x =+的最小值; ⑵若x >3,求函数231x y x +=-的最小值; 解:
⑴11333533y x x x x =+=-++≥=-- 当且仅当133x x -=-,即4x =时,等号成立. ⑵223134411261111
x x y x x x x x x +-+===++=-++≥---- 当且仅当411x x -=-,即3x =时, 等号成立. 点评:用均值求最值时,要注意“一正..,二定..,三相等...
” 练习:若0x <,求函数133y x x
=+的最大值. 例2.
求函数2y 的最小值. 解
:2y
设2)t t ≥,则1y t t =+在[2,)+∞上单调递增, ∴当2t =,即0x =时,y 有最小值52 练习:该题不能使用均值不等式求最值(等号不成立)
错解:
22y 【练习】若k θπ≠,求函数24
sin sin y θθ=+的最小值. 题型2:积型()ax c dx -的最值 例3.⑴若0<x <1,求函数2(1)y x x =-的最大值; ⑵若0<x <12
,求函数(23)y x x =-的最大值; 解:⑴∵0<x <1,∴x >0,1-x >0. ∴2(1)12(1)2[]22x x y x x +-=-≤= ∴当1x x =-,即12x =时, y 有最小值12
⑵∵0<x <23,∴x >0,230x ->. ∴23(23)111(23)(3)(23)[]3323x x y x x x x +-=-=⋅⋅-≤⋅= ∴当323x x =-,即1x =时, y 有最小值1 点评:利用均值不等式求函数最值,要注意构造“定值..
”, 口诀:“和定积最大”,“积定和最小”。

题型3:分式型a b +的最值 例4.⑴若,x y R +∈且1x y +=,求12x y +的最小值;
⑵若,x y R +∈且191+=,求x y +的最小值; 解:
⑴12122()()33y x x y x y x y x y +=++=++≥+当且仅当2y x x y =,
即1x
,2y =,等号成立. ⑵199()()1016y x x y x y x y x y +=++=++≥ 当且仅当9y x =,即4x =,12y =,等号成立. 点评:解题时,必须先展开再利用均值不等式求最值. 例5.已知正数a ,b 满足a b=a +b+3,求a b 的最小值。

解法1:
∵a b +≥,
∴33ab a b =++≥.
∴30ab -≥
⇒3,即9ab ≥ 解法2:∵a b=a +b+3,∴3(0,0,1)1a b a b a a +=>>>-由可知 ∴23444159111a a ab a a a a a +==++=-++≥--- 当且仅当41a -=,即3a =时, 等号成立. 练习:已知正数a ,b 满足a b=a +b+1,求a+b 的最小值。

题型4:根式型的最值 例6.已知,a b R +∈且1a b +=, 求:
解:⑴方法1:由222()22x y x y ++≤,可得
2122a b +≤=,
即12a b ==时
方法2:
122a +
122b +.
1122122a b +++=

即1a b ==时
11()22a ++≤
11()22b ++≤.
111()1()22222a b +++++= 当且仅当12a b ==时,
有最大值2. 【易错题】 已知正数x ,y ,m ,n 满足22x y a +=,22m n b +=, 那么mx ny +的最大值为 ( ) A.2a b + B。

相关文档
最新文档