土壤重金属污染进展论文
土壤重金属污染修复技术及其研究进展

土壤重金属污染修复技术及其研究进展一、本文概述随着工业化和城市化的快速发展,土壤重金属污染问题日益严重,对生态环境和人体健康构成严重威胁。
因此,研究和发展有效的土壤重金属污染修复技术具有重要的现实意义和深远的社会影响。
本文旨在综述当前土壤重金属污染修复技术的研究进展,包括物理修复、化学修复、生物修复等多种方法,并分析各种技术的优缺点、适用范围和未来发展前景。
本文还将探讨土壤重金属污染修复技术的研究热点和难点,以期为推动该领域的科技进步和实际应用提供有益的参考。
二、土壤重金属污染概述土壤重金属污染是指由于人类活动,如工业排放、农业活动、城市垃圾处理等,将重金属元素引入土壤,导致土壤中的重金属含量超过其自然背景值,进而对土壤生态系统和人类健康造成潜在危害的现象。
重金属元素,如铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)、砷(As)等,具有生物毒性和环境持久性,难以被微生物降解,且能在食物链中累积,对人类和动物健康构成严重威胁。
土壤重金属污染的来源多种多样,主要包括工业废水排放、固体废弃物堆放、农药和化肥的滥用、大气沉降等。
这些污染源导致重金属在土壤中积累,破坏土壤结构,降低土壤肥力,影响农作物的生长和产量,甚至通过食物链进入人体,造成各种健康问题。
土壤重金属污染的特点是隐蔽性、长期性和不可逆性。
由于重金属在土壤中的迁移转化过程复杂,不易被察觉,往往在被发现时已经造成了严重的生态和健康问题。
重金属在土壤中的半衰期长,不易降解,治理难度大,需要长期持续的修复工作。
针对土壤重金属污染问题,全球范围内已经开展了大量的研究和实践工作。
研究内容包括重金属在土壤中的迁移转化规律、污染风险评估、修复技术研发等。
目前,已经开发出一系列土壤重金属污染修复技术,如物理修复、化学修复、生物修复等,这些技术在不同程度上对土壤重金属污染进行了有效的治理。
然而,由于土壤重金属污染的复杂性和多样性,现有的修复技术仍面临诸多挑战,需要进一步的研发和完善。
土壤污染中重金属的来源及危害论文

土壤污染中重金属的来源及危害论文土壤污染中重金属的来源及危害论文摘要:土壤重金属污染是当今最严峻的环境问题之一, 越来越受到相关科学研究者的重视和关注。
本文分析了土壤重金属污染的来源及危害, 并提出了相应的防治措施, 着重探讨了当前土壤重金属污染修复技术, 以期为相关人员提供参考。
关键词:土壤; 重金属污染; 修复技术;随着我国城市化建设的快速推进, 土壤污染问题日益突出, 特别是重金属污染问题, 一直是环境问题的难点。
土壤重金属污染主要关注的是生物毒性较为显着的铬、铅、汞、镉、铜5种重金属以及类重金属砷[1]。
土壤重金属污染不仅影响经济发展, 还严重危害人类健康。
本文分析了土壤重金属污染的来源和危害, 着重探讨了当前土壤重金属污染修复技术, 以期为科学研究者提供参考。
1 土壤重金属污染的来源土壤重金属污染来源分为自然来源和人类活动来源。
自然来源包括2个方面, 一是土壤自身的来源, 土壤成土母质中重金属元素含量不同最终形成的土壤环境背景值也有差异, 如矿床附近形成的土壤, 其背景值要远高于普通土壤;二是大气尘降, 森林火灾、火山爆发等过程产生的重金属灰尘漂浮在空气中, 随着雨水等最后沉降到土壤中引起土壤重金属污染。
人类活动造成的污染主要有以下3个来源, 一是工业生产造成的污染, 主要是开采矿、冶金、炼油、电子制造等产生的工业“三废”对土壤带来的严重的污染;二是农业生产污染, 农业生产中使用的农药、化肥、污水灌溉以及农业废弃物也带来了较大的重金属污染;三是交通运输业带来的污染, 交通运输过程中会产生大量的含有重金属的粉尘和气体, 最后逐渐转移到周边的土壤中造成污染[2]。
2 土壤重金属污染的危害土壤重金属污染带来的危害主要有以下4个方面。
一是对农作物的危害。
农作物在生长过程中如果吸收了土壤中过量的重金属元素, 会对植物细胞膜系统造成损坏, 表现为植物生长受到抑制, 从而导致农作物产量降低, 造成重大经济损失。
土壤重金属污染现状及其治理进展

土壤重金属污染现状及其治理进展摘要:土壤作为人类赖以生存的关键资源,在人类的生产生活中占据着至关重要的位置。
然而,现阶段我国土壤重金属污染问题日渐严重,引起社会各界的广泛关注。
毋庸置疑,土壤重金属污染一方面严重影响农作物的正常产量,另一方面对人类的身体健康造成了严重的威胁。
因此,怎样合理治理土壤重金属污染问题成为当前重点研究的对象。
本文针对现阶段我国土壤重金属污染现状加以分析,并提出相应的解决策略,希望能够保护我国土壤资源的良性发展。
关键词:土壤;重金属污染;污染现状;治理方法1、何为重金属污染重金属污染指由重金属或其化合物造成的环境污染。
重金属指比重大于 5 的金属,(一般指密度大于 4.5 克每立方厘米的金属),约有 45 种,如铜、铅、锌、铁、钴、镍、钒、铌、钽、钛、锰、镉、汞、钨、钼、金、银等。
尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒,汞,镉,铅,砷,铬称为“五毒”元素,含有汞、镉、铬、铅及砷等生物毒性显著的重金属元素及其化合物对环境的污染较大。
2 重金属污染的特点2.1重金属污染的特点重金属产生毒性的浓度范围较低;一般情况下,重金属不能被微生物降解,只能发生形态的转化;毒性与存在的形态和价态有关;重金属污染多为复合污染,来源较为复杂,常以无机和有机混合物的形式进入环境,同时含有多种金属,共同产生一定的协同作用或拮抗作用,对生物和生态系统产生影响;重金属通过食物链进行生物放大,进入人体,对人体产生慢性中毒。
2.2 重金属污染在土壤中的特点在土壤环境中重金属污染特点可以分为两部分:一是土壤环境中重金属自身的特点,二是区别与水体和大气等介质中的特点。
重金属在土壤中形态变换较为复杂,多为过渡元素,有着较多的价态变化,且随环境 Eh,pH 配位体[2]的不同呈现不同的价态、化合态和结合态,毒性与价态和化合物的种类有关,有机态比无机态的毒性大;重金属在土壤环境不易被察觉,不会降解和消除,迁移转化形式多样化,分布呈区域性;在生物体内积累和富集,在人体内呈慢性毒性过程。
土壤重金属污染与修复措施研究进展(环境生态学课程论文)

土壤重金属污染与修复措施研究进展学生姓名:王继宇学号: 201172136班级:作物(zyxw)S111学院:农学院课程:环境生态学指导教师:周建利二○一二年六月土壤重金属污染与修复措施研究进展摘要:本文首先综述了国内外土壤重金属污染的现状,揭示了目前土壤重金属污染问题日益严重,然后论述了土壤重金属污染的内涵、污染物的来源,以及土壤重金属污染的特点和危害,最后阐述了土壤重金属污染的修复措施。
关键字:土壤污染重金属来源特点修复措施近年来随着社会经济的快速发展,土壤中重金属含量不断增加,土壤重金属污染已成为普遍的环境问题,越来越受到人们的关注。
据统计,1980年我国工业三污染耕地面积266.7万公顷,1988年增加到666.7万公顷,1992年增加到1000万公顷。
目前,全国遭受不同程度污染的耕地面积已接近2000万公顷,约耕地面积的1/5。
我国每年因重金属污染导致的粮食减产超过1000万吨,被重金属污染的粮食多达1200万吨,合计经济损失至少200亿元[1]。
据农业部环监测系统近年的调查,我国24个省(市)城郊、污水灌溉区、工矿等经济发展快地区的320个重点污染区中,污染超标的大田农作物种植面积为60.6万公顷,占调查总面积的20%。
其中重金属含量超标的农产品产量与面积约占污染物超标农产品总量与总面积的80%以上,尤其是Pb、Cd、Hg、Cu及其复合污染最为突出。
当前我国大多数城市近郊土壤都受到了不同程度的污染,其中Cd污染较普遍,污染面积近1000万公顷,其次是Pb、Zn、Cu、Hg等。
有许多地方粮食、蔬菜水果等食物中Cd、Cr、As、Pb等重金属含量超标和接近临界值。
据粗略统计,过去50年中,排放到全球环境中的Cd达到2.2万吨、Cu 93.9万吨、Pb78.3万吨、Zn13.5 万吨。
其中有相当部分进入了土壤,对土壤造成严重污染[2]。
1、土壤重金属污染的内涵重金属系指密度4.0以上约60种元素或密度在5.0以上的45种元素。
土壤重金属污染农业生态论文

近年来,随着城市化和工业化的发展,工业废水、废气和废渣的排放量增加,固体废弃物处理不善,农业自身污染的加剧,致使全球农田土壤中重金属含量迅速增加,部分农田土壤重金属污染状况严重。
作为一个农业大国,我国部分耕地和很多城市近郊农田都受到了不同程度的重金属污染。
农田土壤的重金属污染是随着化学农药与化肥的使用进入环境,污染土壤。
当前,我国大约超过六分之一的耕地被重金属污染,其中Cd、As、Pb、Hg、Zn等重金属污染的耕地达2000×104t,这也造成每年因重金属而被污染的粮食超过1200×104t,粮食减产约1000×104t,既不利于我国粮食的安全,也会严重威胁人体健康,造成大量经济损失,农田土壤重金属污染的治理迫在眉睫。
本文关于农田土壤重金属污染中农业生态修复技术的应用探讨具有了深刻的现实意义和政策指导作用。
1科学实施秸秆还田秸秆还田就是利用土壤微生物分解秸秆,生成腐殖质类物质,丰富土壤有机含量,改善土壤紧实板结性状,并对土壤的水肥气热等生态条件进行改善,提高其微生物的生物量,增加土壤酶的活性,让农作物根系有更好的土壤环境[1]。
还田的秸秆能够明显影响重金属的'环境行为,转变生物的有效性。
腐熟分解秸秆可以产生氨基酸、胡敏酸等有机酸,甚至还富含糖类与硫杂环化合物,可与金属氧化物、矿物金属离子形成络合反应,进而产生化学及生物稳定性不同的金属有机络合物。
当土壤重金属形态被改变后,其生物有效性也降低了,重金属对土壤及农作物的毒害也会减少。
秸秆还田对两种镉污染土壤pH值就很好的提升作用。
酸性土中pH值上升可以让土壤里的镉更稳定,降低它的生物有效性。
另外,在秸秆还田中再施有机(无机)肥能够让土壤里的动植物与微生活活性更高,并使其分泌胞外酶,提高土壤酶的活性,使有机物质化更明显,最终土壤有机碳含量随土壤养分含量的增加而增加,实现作物增产。
不过,新鲜秸秆腐熟时会带来很多有机酸,能毒害作物根系,所以还需要加入适量的石灰,即根据Ca(OH)2+H2SO4=CaSO4+2H2O或者Ca(OH)2+2HCI=CaCI2+2H2O这两种熟石灰改良酸性土壤的化学方式中和有机酸。
土壤重金属污染处理课程论文

土壤重金属污染现状及治理进展摘要:由于工业“三废”的排放,使土壤遭受不同程度重金属的污染,重金属通过在作物体内富集进入食物链,对人畜健康构成了威胁。
本文章对土壤重金属的污染现状、治理途径等进行了简单的总结归纳,希望为实现重金属污染土壤的有效生态整治与安全高效益的利用提供可参考价值。
关键词:土壤污染;重金属;治理方法the present situation and managerial progress of Soil's heavymetals pollutionStudent majoring in Materials Chemistry Jing YanjunTutor:Shi JinshengAbstract:With the industrial "three wastes" emissions, soil is suffering from various degrees of heavy metals pollution.Heavy metals in the crop gather, then via the food chain become a threat to human health. This article on the soil heavy metals pollution present situation as well as managerial ways in a brief summary, hoping that can provide referential value for realizating soil effective ecological improvement of heavy metals pollution together with making the utmost of it safely and effectively.Key words:soil pollution;heavy metals;managerial ways引言:土壤是人类赖以生存的自然环境和农业生产的重要资源。
土壤重金属污染修复技术论文

土壤重金属污染修复技术论文随着工业化和城市化进程的加快,土壤重金属污染问题日益凸显,严重影响了社会经济发展和人民健康。
土壤重金属污染修复技术的研究及应用,已成为当前环境保护领域的热点话题。
本文将就土壤重金属污染的成因、危害与修复技术等方面的内容进行探讨。
一、土壤重金属污染的成因1. 工业排放的污染物:工业生产是造成土壤重金属污染的主要原因之一,工业废气和工业废水中含有大量的重金属污染物,经过长期排放,很容易进入土壤并扩散到周边地区。
2. 农业活动:农业生产中广泛使用的化肥、农药等农业化学品,又容易造成土壤中重金属污染。
3. 城市化的进程:土地利用的变化以及城市集中化的趋势也是造成土壤重金属污染的因素之一,扩大了工业和农业环境的闲置领域,导致污染物在空气内比较容易向土地进行沉降,这样也就直接影响到了土壤的品质。
二、土壤重金属污染的危害土壤重金属污染直接影响到土地资源的利用,对人类及其他生物的健康产生不良的影响,主要体现在以下方面:1. 影响农产品质量:由于农业化学品以及汽车尾气等形式所形成的污染物对产品的影响,正在影响到农产品的产量和质量。
2. 抑制植物的生长:土壤重金属污染会影响水稻、小麦、玉米等作物的正常生长发育,增加了农民的生产成本。
3. 影响食品安全:重金属会在植物中累积,最终形成可能对人体健康产生影响的“禁食区”。
三、土壤重金属污染的修复技术1. 土壤修复剂修复:污染土壤用于修复的土壤修复剂主要从物理方法和化学方法两方面进行研究,如石灰、煤灰、氨基酸修复剂等等。
2. 土壤生物修复:该方法通过微生物、植物和土壤动物等介入生态过程,达到土壤修复的目的,如利用根菌、细菌、病毒等对有害重金属进行吸附、转化和分解。
3. 土壤热解修复:该方法用高温烘烤,使有机物和重金属转化成粉末状物质,从而减少其对生态环境的影响。
四、结语现阶段,土壤重金属污染是环境反应造成的,虽然难以避免,却不应该被忽视,需要我们付出更多的努力和时间,在不断探索和应用的方法中,对于人类的环境及健康予以更好的保护和支持。
重金属污染土壤污染状况调查与修复工程实例分析论文

重金属污染土壤污染状况调查与修复工程实例分析论文重金属污染土壤污染状况调查与修复工程实例分析论文重金属污染因其毒性大,在土壤中不易被微生物降解、滞留时间长等原因成为土壤污染修复工程中的难点,也引起我国政府和相关部门的高度重视。
《国家环境保护“十二五”规划》中提出推进重点地区污染场地和土壤修复,以重金属污染防治重点区域等为重点,开展污染场地、土壤污染治理与修复试点示范,并对责任主体灭失等历史遗留场地土壤污染要加大治理修复的投入力度。
湖北省武汉市硚口区古田化工企业搬迁场地污染调查及土壤修复工程列入了湖北省重金属污染综合防治规划项目表(历史遗留解决试点项目)中。
武汉市某化工厂地处古田化工区,因长期化工生产导致场地内土壤重金属污染严重,在重新利用前急需进行土壤修复工作。
1污染现状工程前期,工程人员在收集了大量该场地化工生产服役期间的相关资料后,对该场地污染物进行了识别,确定了监测指标:镉、铬、铜、铅、锌、汞、砷、镍。
调查方案确定采取网格布点与重点区域加密布点相结合的方式。
结合生产工艺和实地勘察情况,以40×40m网格进行监测取样,在认可的范围内共布设98个有效网格,在每个网格中心点取样(取样点编号为S1-S98),每个点位分三层取样,深度分别为0.5m、1.5m和3m,共计294个土壤分析样品。
此外根据现场采样的需要,对部分点位酌情取深层样品,具体采样深度和样品数量由现场确定,实际取样时利用全站仪将各点放样到场地,有点位无法放样时,记录调整后的坐标值。
土壤采样采用直接贯入式设备Geoprobe连续无间断取样,对于部分点位因场地回填物较厚,导致Geoprobe无法采样的,辅助了挖掘机或30钻机。
最终本期采集样品256个,钻探总深度496m。
同时,对于第一期样品分析检测后,对部分点位进行了补充采样,采集样品主要为部分点位深度0.5m的样品,还有部分指标的部分点位因污染浓度较高,需要加深确定污染深度的样品,本次补充采样采集样品总数87个。
关于土壤中重金属污染的研究

关于土壤中重金属污染的研究
目前,土壤中重金属污染成为全球关注的环境问题之一。
重金属污染对于土壤质量和生态系统健康带来严重威胁,同时也会对人类健康产生重大影响。
研究土壤中重金属污染的形成原因、迁移转化规律以及防治措施具有重要的理论和实践意义。
土壤中重金属污染主要来源于工业排放、农业废弃物和城市废弃物的浸出、使用含重金属的化肥和农药等。
这些重金属包括铅(Pb)、镉(Cd)、汞(Hg)、铬(Cr)、铜(Cu)等,它们在土壤中长时间积累,会对土壤的物理、化学和生物特性产生不可逆转的影响。
研究显示,重金属在土壤中的迁移转化过程受到许多因素的影响,包括土壤性质、重金属的形态和浓度、土壤酸碱度、氧化还原条件等。
土壤pH值是影响重金属迁移转化的主要因素之一。
酸性土壤环境下,重金属容易与土壤颗粒结合形成团聚体,稳定存在于土壤中。
而在碱性土壤环境下,重金属的溶解度会增加,容易向土壤水溶液中释放。
重金属污染不仅对土壤质量和生态系统健康造成危害,也对人类健康产生潜在风险。
重金属在土壤中通过植物进入食物链,最终进入人体。
部分重金属如镉和汞对人体的神经系统、呼吸系统和生殖系统等造成严重损害,甚至会导致癌症等疾病的发生。
采取有效的防治措施对于减少土壤中重金属污染具有重要意义。
目前,常用的防治措施包括土壤修复和土壤管理。
土壤修复主要包括物理、化学和生物修复等方法,通过改变土壤环境,减少重金属的有效性和生物有效性。
而土壤管理则包括选择适宜的作物和植物种类、科学施肥和合理农药使用等,以减少重金属在农业生产中的输入。
关于土壤中重金属污染的研究

关于土壤中重金属污染的研究土壤中的重金属污染是当前环境污染领域中备受关注的一个问题。
重金属污染不仅直接影响了土壤的肥力和植物生长,还对地下水和生态系统造成了严重的威胁。
对土壤中重金属污染的研究显得尤为重要。
本文将介绍一些关于土壤中重金属污染的研究成果,并探讨相关的解决方案。
土壤中重金属的来源非常广泛,主要来自于人类活动和自然界的地质过程。
人类活动包括工业排放、农药施用、化肥使用、废弃物处理等。
而自然界的地质过程则包括岩石风化、土壤侵蚀、火山活动等。
这些因素导致了土壤中重金属含量的增加,从而形成了重金属污染的现象。
研究土壤中重金属的来源是理解和解决重金属污染问题的关键。
对土壤中重金属的分布和迁移机制的研究也是非常重要的。
研究表明,土壤中的重金属可以通过水分、植物根系、土壤微生物等途径迁移,并在不同的土壤层中发生富集或转移。
这种迁移和富集现象可能导致农作物和饮用水中的重金属含量超标,对人体健康造成危害。
了解土壤中重金属的分布和迁移规律对相关行业的规范和管理具有重要的指导意义。
针对土壤中重金属污染问题,科学家们也进行了一系列的解决方案的研究。
一方面,他们通过土壤修复技术,包括植物修复、化学修复、微生物修复等手段,来减轻土壤中重金属的污染程度。
他们也研究了土壤中重金属的生物和地球化学循环规律,以期找到更加有效的治理和管理方法。
这些研究成果为解决土壤中重金属污染问题提供了重要的科学依据。
近年来,随着重金属污染问题的加剧,越来越多的研究者开始关注土壤中重金属的环境行为和生物效应。
他们通过实验研究和野外观测,揭示了重金属在土壤-植物系统中的转移和富集规律,以及重金属对土壤微生物和土壤动物的生态毒性效应。
这些研究成果不仅为研究土壤中重金属的环境效应提供了数据支撑,也为土壤环境监测和土壤生态系统保护提供了科学依据。
关于土壤中重金属污染的研究已经取得了一定的进展,但仍然存在许多未解之谜和挑战。
如何准确评估土壤中重金属的污染程度,如何在不同类型土壤中开展有效的修复和治理,如何制定符合当地实际情况的土壤环境管理政策等问题亟待解决。
土壤重金属污染防治措施论文

土壤重金属污染防治措施分析【摘要】:国家对重金属污染防治非常重视,应该采取预防为主,综合治理的环保措施,减轻或消除重金属污染;目前四种治理措施中,属于生物治理法的植物修复治理法是近年发展起来的土地污染原位修复技术,是一种治理效果好、费用低和治理周期较短的优选治理方法。
重金属一般以天然浓度广泛存在于自然界中,但由于人类对重金属的开采、冶炼、加工及商业制造活动日益增多,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤中,引起严重的环境污染。
而底泥往往是重金属的储存库和最后的归宿。
当环境变化时,底泥中的重金属形态将发生转化并释放造成污染。
重金属不能被生物降解,但具有生物累积性,可以直接威胁高等生物包括人类,底泥重金属污染问题日益受到人们的重视。
重金属污染,指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。
重金属具有不易移动溶解的特性,进入生物体后不能被排出,会造成慢性中毒。
重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害,例如,日本发生的水俣病(汞污染)和骨痛病(镉污染,等公害病,都是由重金属污染引起的。
重金属污染的主要特点:污染范围广、持续时间长、污染隐蔽性、无法被生物降解,并可能通过食物链不断地在生物体内富集,甚至可转化为毒害性更大的甲基化合物,对食物链中某些生物产生毒害,或最终在人体内蓄积而危害健康。
广西是全国重金属污染防治重点省区;广西土壤中砷、镉、锰、锌元素含量高,结合广西土壤环境保护和污染防治的重点区域有:矿区及周边、工业集中区等。
根据全区土壤污染调查结果,我区土壤重金属超标区域集中分布在矿产开发区。
如南丹大厂矿区刁江流域、大新铅锌矿区、环江铅锌矿区、大新下雷锰矿区、恭城栗木矿区、贺州平桂矿区等矿区周边土壤重金属超标较为明显,已不适宜种植农作物。
浅谈我国土壤重金属污染现状及修复技术论文

浅谈我国土壤重金属污染现状及修复技术论文浅谈我国土壤重金属污染现状及修复技术论文在日复一日的学习、工作生活中,大家都接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。
一篇什么样的论文才能称为优秀论文呢?以下是小编为大家收集的浅谈我国土壤重金属污染现状及修复技术论文,希望对大家有所帮助。
土壤是一个开放的缓冲动力学系统,承载着环境中50%~90%的污染负荷[1-2]。
随着矿产资源开发、冶炼、加工企业等规模的扩大以及农业生产中农药、化肥、饲料等用量的增加和不合理的使用,致使土壤中重金属含量逐年累积,明显高于其背景值,造成生态破坏和环境质量恶化,对农业环境和人体健康构成严重威胁。
重金属在土壤中移动性差、滞留时间长、难降解,可以通过生物富集作用和生物放大作用进入到农牧产品中[3],从而影响产出物的生长、产量和品质,潜在威胁人体健康[4]。
本文对我国土壤重金属污染现状进行了简要分析,概述了土壤中重金属的来源,简单介绍了物理修复、化学修复和生物修复技术在土壤重金属污染修复方面的研究进展,以期为土壤重金属污染修复提供参考。
1我国土壤重金属污染现状随着矿山开采、冶炼、电镀以及制革行业的蓬勃发展,一些企业盲目追逐经济利益,轻视环境保护,再加上农药、化肥、地膜、饲料添加剂等的大量使用,我国土壤中Pb、Cd、Zn等重金属的污染状况日益严重,污染面积逐年扩大,危害人类和动物的生命健康。
据报道,2008年以来,全国已发生100余起重大污染事故,其中Pb、Cd、As 等重金属污染事故达30多起。
据2014年国家环境保护部和国土资源部发布的全国土壤污染状况调查公报显示,全国土壤环境总状况体不容乐观,部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。
全国土壤总的点位超标率为16.1%,其中轻微、轻度、中度和重度污染点位比例分别为11.2%、2.3%、1.5%和1.1%。
据农业部对我国24个省市、320个重点污染区约548万hm2土壤调查结果显示,污染超标的大田农作物种植面积为60万hm2,其中重金属含量超标的农产品产量与面积约占污染物超标农产品总量与总面积的80%以上,尤其是Pb、Cd、Hg、Cu及其复合污染尤为明显[5]。
《2024年我国农田土壤重金属污染现状·来源及修复技术研究综述》范文

《我国农田土壤重金属污染现状·来源及修复技术研究综述》篇一我国农田土壤重金属污染现状、来源及修复技术研究综述一、引言随着工业化和城市化的快速发展,我国农田土壤面临着日益严重的重金属污染问题。
重金属污染不仅对农产品质量安全构成威胁,而且对生态环境和人类健康造成潜在危害。
因此,了解我国农田土壤重金属污染的现状、污染来源以及修复技术的研究进展,对于保护农田生态环境、保障农产品质量安全具有重要意义。
二、我国农田土壤重金属污染现状我国农田土壤重金属污染问题日益严重,主要污染元素包括镉、铅、汞、砷等。
这些重金属元素主要来源于工业排放、农业活动、城市生活垃圾等。
污染范围广泛,涉及多个省份和地区,给农业生产和生态环境带来严重影响。
三、农田土壤重金属污染来源农田土壤重金属污染的来源主要包括以下几个方面:1. 工业排放:工业生产过程中产生的重金属废水、废气、废渣等,通过排放和降雨等途径进入农田土壤。
2. 农业活动:过度使用化肥、农药等农业投入品,以及污水灌溉等农业活动,导致重金属在土壤中积累。
3. 城市生活垃圾:城市生活垃圾中的重金属通过降雨、地下水等途径进入农田土壤。
四、农田土壤重金属污染修复技术研究进展针对农田土壤重金属污染问题,学者们提出了多种修复技术,包括物理修复、化学修复和生物修复等。
1. 物理修复技术:主要包括客土法、排土法等。
通过将受污染的土壤去除或替换,达到修复目的。
该技术适用于污染较为严重的地区,但成本较高。
2. 化学修复技术:包括淋洗法、钝化法等。
通过向土壤中添加化学物质,使重金属元素发生沉淀、吸附或转化等作用,降低其在土壤中的活性。
该技术具有一定的效果,但需谨慎选择化学物质,避免引发二次污染。
3. 生物修复技术:包括植物修复、微生物修复等。
利用植物或微生物的吸收、转化等作用,降低土壤中重金属的含量。
该技术具有成本低、环保等优点,是目前研究的热点。
五、结论与展望当前,我国农田土壤重金属污染问题亟待解决。
土壤重金属污染现状与治理途径研究进展

二、研究成果与不足
化学治理方法虽然可以在短时间内有效降低土壤中的重金属含量,但可能会 对土壤生态造成破坏,且需要大量的化学物质,可能带来二次污染。生物治理方 法具有环保性和可持续性,但植物、微生物和动物等生物体的生长繁殖速度较慢, 治理周期较长。物理治理方法虽然可以直接去除土壤中的重金属,但工程量大, 成本较高,可能破坏土壤结构。
土壤重金属污染现状与治理途 径研究进展
目录
01 一、土壤重金属污染 现状与问题
03
三、未来研究方向与 建议
02
二、治理途径研究进 展
04 参考内容
内容摘要
随着工业化和农业现代化的快速发展,土壤重金属污染问题日益凸显。重金 属是指密度大于5 g/cm3的金属元素,包括汞、铅、铜、锌、钴、镍、镉等。这 些金属在工业生产、农业生产、城市废弃物处置等过程中可能释放到土壤中,导 致土壤污染。本次演示将围绕土壤重金属污染现状和治理途径研究进展进行阐述。
三、未来研究方向与建议
2、深入研究生物修复机理:深入探究植物、微生物等生物修复机理,发掘更 高效的生物修复方法。
三、未来研究方向与建议
3、联合修复优化:进一步优化联合修复技术,提高治理效果,降低成本,减 少对环境的影响。
三、未来研究方向与建议
4、考虑环境因素影响:气候变化、土壤类型、水文条件等环境因素对治理效 果的影响,提高治理措施的针对性和有效性。
四、结论
四、结论
土壤重金属污染的治理是一个复杂而重要的课题。单一的治理方法往往难以 达到理想的治理效果,因此需要综合运用物理、化学、生物和联合治理等多种手 段。随着科技的发展,新的治理技术如纳米材料和基因工程的应用为土壤重金属 污染治理提供了新的思路和方向。
四、结论
重金属污染研究进展

重金属土壤污染研究进展摘要:重金属污染以成为举世瞩目的问题,全世界各国的土壤都存在着不同程度的重金属污染,其危害之大,之广是当今社会所不能忽视的。
本文章重在对重金属土壤污染地区,污染程度以及土壤重金属污染的相关和最新治理方法进行综合概括,希望能提高对重金属污染的认识并引起相关人员的足够重视。
1 土壤重金属污染随着工农业生产的迅速发展,进入土壤环境中的有毒有害物质日益增多,重金属和有机物是2种主要的污染源【1】。
重金属作为一类危害很大的土壤污染物,具有移动性小,周期长,易积累,毒性大等特点。
目前,世界各国土壤存在不同程度的重金属污染,全世界平均每年排放Hg约1.5万t、Cu为340万t、Pb为500万t、Mn为1500万t、Ni为100万t【2】,其中,镉以移动性大、毒性高、污染面积最大被称为“五毒之首”【3,4】。
据报道,我国土壤镉污染面积约为13300 hm2,土壤镉含量达1~10 mg·kg,致使生产的农产品镉超标率约10.2%,对动物和人类的健康造成了严重威胁【5,6】。
我国农田土壤中的重金属主要是随农药、化肥和地膜等重要的农用物资和用未经处理或处理不达标的工业废水或城市生活污水等进行农业灌溉所引起的。
农药、化肥和地膜是重要的农用物资,对农业生产的发展起着重大的推动作用,但长期不合理施用,也可以导致土壤重金属污染。
绝大多数的农药为有机化合物,个别农药在其组成中含有Hg、As、Cu、Zn等重金属。
近年来,农业中广泛使用地膜,但由于地膜生产过程中加入了含有Cd、Pb的热稳定剂,增加了土壤重金属污染【7】。
在我国,局部、小规模利用城市工业和生活污水进行农田灌溉已经有近百年的历史,大规模的污灌始于20世纪50年代,近年来污水灌溉已成为农业灌溉用水的重要组成部分,污灌面积迅速扩大,以北方旱作地区污灌最为普遍,约占全国污灌面积的90%以上,南方地区的污灌面积仅占6%,其余在西北和青藏【8】。
城市表层土壤重金属污染论文(原创)

城市表层土壤重金属污染分析摘要随着城市经济的快速发展和城市人口的不断增加, 人类活动对城市环境质量的影响日显突出. 本文针对这一问题, 根据获得的数据资料开展城市环境质量的评价, 研究人类活动影响下城市地质环境的演变模型.针对问题1, 本文根据已给出的样点数据对城区进行分块, 并运用Griddata 函数对原有数据进行差值操作,绘制三维地形图. 采用Muler地积指数法对各区表层土壤中8种重金属污染程度划分级别, 分析该城市各功能区的重金属污染程度. 根据重金属污染指数, 运用MATLAB软件画出8种主要重金属元素在该城区的空间分布, 并针对污染程度将8种主要重金属元素在该城区的污染程度进行排序.针对问题2, 本文运用MATLAB软件对8种重金属进行相关性比较, 依据重金属的污染分布规律将其分为四类. 从四类中分别筛选出具有代表性的元素进行研究. 采用层次分析法, 定性的找到4大污染原因. 再通过对数据的分析处理,得到各类重金属污染的主要原因,寻找异同点.针对问题3, 本文将问题1中得到的各样点的8种重金属的Muler地积指数值进行累加得到样点的综合污染指标, 用MATLAB软件绘制等高图. 颜色的深浅反映出各区重金属的污染程度, 运用统计知识寻找到两个污染源. 建立高斯分布模型,分析得到重金属污染物的传播特征, 并利用已有数据对模型进行校正,绘制模拟图与实际图进行拟合比较,通过模型可以计算出除污染源外各点的近似污染值.针对问题4,为了更好地研究城市地质环境的演变模式,还应收集“地质环境系统特征”、“产业结构分布特征”以及“不同时间下的各样点重金属含量”的具体数据,对已有模型进行推广与改进, 并根据污染源的传播衍射特征, 构建了地质环境演变的动态模型.根据数据的分析与所建立的模型, 可以一定程度上拟合出较符合事实的重金属污染分布特征.关键字:重金属污染地积指数高斯分布等高图问题重述随着人类生活水平的提高,人们更加关注周围的环境问题,,十二五规划中也提出要加强环境治理与污染预防. 土壤是生存之本,必须提高对土壤污染的监测与治理力度. 随着工业化在全球范围内的飞速发展,以及人口的不断增加,城市逐渐划分为五大功能区:生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,且不同的区域环境受人类活动影响的程度不同. 人类活动对城市环境质量的影响日显突出,对城市异常环境的研究,以及如何查证获取相关资料开展城市环境评价,研究人类影响下城市地质的演变模式,日益成为人们关注的焦点.通过上述分析,运用数学建模的方法解决如下问题:●通过对已知数据的整理画出该城区的平面图,分析附表所给数据,得出8种主要重金属因素在该城区的空间分布,并以不同的颜色表示该城区内不同区域重金属的污染程度.●对所给数据进行处理,分析出不同功能区对重金属的污染权重,并得出重金属污染的主要原因.●根据上两题得出的结论,画出污染区域图,并结合图表来分析重金属污染物的传播特征,并建立模型求得污染源的位置.●从各角度分析所建立模型的优缺点,以及收集相关信息来更好地研究城市地质环境的演变模式,并讨论如何通过这些信息来建立模型解决问题.模型假设1. 海拔因素在考虑城功能区分布时认为是暂时不变量, 且对于土壤中重金属的传播属于次要因素.2. 采样点附近地区的功能属性与样点相同.3. 污染的扩散满足正态分布.4. 污染强度是均匀连续变化的, 不存在突变的现象.5. 研究污染传播途径时,考虑主要污染源,对次要污染源的影响可以忽略不计.6. 重金属污染程度可以用地积指数计算得到的eolg值来反映.7. 多个污染源对于研究点的污染彼此独立,且满足叠加效应.符号说明lg地积累指数eoφ地区级数和ϕ金属级数和α方案层第i个元素对于目标层的权重iβ方案层第i个元素所占的比例iλ最大特征值maxγ方案层第i个元素特征向量iCn元素在采样点的含量Bn元素在土壤中的背景值O目标层P方案层CI一致性指标RI随机一致性指标模型建立1问题一:1.1地区划分:按照功能划分城区, 分为5类(生活区、工业区、山区、主干道路区及公园绿地区),分析附件1中的相关数据,运用MATLAB进行处理. 发现样点所属的区域类别在城区里的综合分布并不完全具有规律性, 但从统计角度来说, 存在一定的概率性分布. 各城区的大致地理分布如图1-1所示:图1-1由图看出, 虽然某些样点是孤立存在的, 但样点的分布总体上存在统计意义. 如:图中点附近多为, 此区域为山区;点附近多为, 此区域为交通区, 依次类推. 根据点的分布及城区的划分, 运用统计知识, 我们做出各区域在该城区的大致地理位置直观图. 并运用MATLAB 拟合出“三维地形图”:图1-2 三维地形图该图运用差值法, 将离散的点近似成一个可以预见的平面, 其中X, Y 表示平面坐标值, 纵向Z 轴表示海拔, 且在坐标中, 原点所处地势较为平缓, 随着X 、Y 值的增加, 可以发现Z 值也随之增加, 由“三维地形图”可以发现图1-1中“山区”的划定较为合理, 符合实际地形特征.1.2污染指标:为研究该城区不同区域的重金属污染程度, 我们采用“地积指数”对城市土壤表层中重金属污染浓度进行等级划分. Muller 指数的表达式为2lg log [/]eo Cn k Bn =⨯, 式中, Cn 是元素n 在土壤中的含量, Bn 是土壤中该金属元素在土壤中的背景值, k 为系数, 取1.5. 定义如表1-1:表1-1 地积指数eo lg 分级表“地积指数” eo lg 的引入, 能够较为直观地观察出该地区的污染程度, 通过污染程度等级的划分, 为下文讨论各区域重金属污染程度给出了明确的评定标准.1.3功能区污染程度评价:我们对数据按采集点的所属区域进行整理, 求出不同功能区各重金属浓度的平均值, 并将各重金属平均浓度与背景值进行比较. 如表1-2:表1-2 各功能区重金属平均浓度从表格中可以比较出不同功能区的各项重金属元素浓度的差别, 运用地积指数:]/[log lg 2Bn k Cn eo ⨯=对浓度整理, 划分等级, 得到分级表格1-3:通过比较不同重金属元素在各功能区的地积指数与级别, 可以非常直观地看出不同功能区各重金属的污染程度的差异. 定义“功能区综合污染程度”为φ:∑==81i i n φ对各功能区进行级数求和可以得到表1-4:比较8种重金属级数和的数值,发现工业区的综合污染指数最大, 为15. 交通区的综合污染指数为12, 生活区的综合污染指数略高于公园区为9, 公园区的综合污染指数为7. 山区的综合污染指数最小, 为0.将各金属元素的纵向相加, 求纵向级数. 定义“金属级数和”为ϕ:∑==51j j n ϕ运用相同的方法可以得到:Hg 的级数和为11, Cu 的级数和为8, Zn 的级数和为7, Cd 的级数和为5, As 的级数和为4, Pb 的级数和为4, Cr 的级数和为3, Ni 的级数和为1. 从金属级数和角度可以发现, Hg 在该城市的污染程度较大. 污染最为严重, Ni 金属在该城市的污染程度最小.1.4单金属元素污染分布:首先, 我们针对同一种金属对各采样点进行地积指数计算. 以金属Cr 为例, 运用eo lg 计算可以得到197个无污染的采样点, 103个轻度污染点, 11个中度污染点, 3个中强度污染点, 2个严重污染点. 按等级绘制图1-3图1-3 Cr 元素城区污染程度分布由图看出: 污染程度较为严重的点主要集中在工业区和交通区, 且污染程度成发散状. 从中不难推断出:污染并不是单独存在一个区域的, 它对周围的环境也会产生影响, 存在向周围扩散的趋势. 为进一步研究, 我们结合图1-1, 得到一个复合图1-4, 从图中可以观察得到相关信息:较为严重的污染样点大多集中在工业区和交通区, 且在工业区的左下方, 受工业区的污染影响, 公园也受到一定污染.图1-4从图1-4中可以发现Cr在生活区与山区的污染程度较轻, 在工业区的污染分布不太均匀, 交通区也有较严重的Cr污染, 但主要分布在工业区的左下角,且分布集中在坐标(45.0⨯)附近, 由此可大致推断出污染的主要原10104.0⨯, 4因为工业生产, 同时土壤重金属污染也会传播至其它地区.运用相同的方法,分别对As、Cd、Cu、Hg元素依据浓度级数绘制分布图.如图1-5, 1-6, 1-7,1-8所示:图 1-5 图1-6图1-7 图1-8从不同种金属元素的分布图中可得到相同的结果:污染较严重的点集中于坐标(4105.0⨯)附近. 若用地区划分可以得到污染最严重的为工业区,4.0⨯, 410且传播方向为以最严重点为中心, 向外发散. 且比较不同金属的污染程度, 可以得出不同种金属的污染范围不同, 但都呈现出坐标右上角点的污染程度小于坐标左下角点. 与1.1中的地区划分相联系, 可以得到山区的综合污染程度普遍低于工业区和交通区.1.5各金属的主要污染分别选取了各金属元素中污染级数较高的样点, 对其进行处理与绘图, 得到各金属的综合污染分布,如图1-9所示:图1-9工业区有多处不同金属污染级数较高的点出现, 且有多个点重合. 从此发现重金属污染的源头主要集中在工业区, 且对周围地区存在一个辐射影响: 越远离工业区污染程度越弱. 不同金属的污染分布不相同, 但在总体上而言存在集中与分散关系. 重金属污染的传播方式将在第三问的模型中给出.2问题二:2.1各金属元素相关性比较由第一问的数据处理结果和图1-3得到:不同的金属在该区域污染度上存在着较高的相似性. 为深入研究不同金属之间存在的污染相关性, 我们将8种金属的分布以及其污染程度作为研究对象, 运用MATLAB软件进行相关性分析, 得到相关系数矩阵如下:通过相关系数矩阵的比较我们可以将相关性较高的几种金属进行组合归类,结果如下:Cr、Cu、Ni为一类, Cd、Pb、Zn为一类, 此外As、Hg与其他金属的相关性均不高, 独立归为一类. 下面运用置信矩阵对其相关性进行验证, MAC模态置信矩阵如下:表2-2若置信矩阵中数值05.0说明两者的相似性较高, 可以说明归类是可行的. 从置信矩阵对金属元素的分类进行验证, 从置信矩阵中可以发现分类是满足分类要求的.综上, 我们根据相关性分析与置信矩阵的检验将8种金属根据样点的污染程度分布规律得到以下分类:表2-32.2污染原因模型功能区共有5类, 分别为:生活区、交通区、山区、公园区、工业区. 从这五个功能区出发并分析重金属的元素属性, 可以得到以下4个污染原因, 分别为:工业污染、交通污染、生活污染、农业污染. 在此, 五个功能区受这四个污染原因的影响具有十分明显的差异性. 工业区—工业污染较严重, 生活区—生活污染较严重, 交通区—交通污染较严重, 山区—农业污染较严重. 构建模型如下:图2-1模型中, 研究的目标为:重金属污染的原因. 重金属污染的原因有4种, 为了进一步定量分析, 我们需要确定这4种污染的权重.(1)根据2.1中对于相关性分析, 我们将8种金属归为4类, 在这4类中分别选取一种金属, 对其研究, 不妨选取(第一类:As, 第二类Hg, 第三类Cr, 第四类Pb)做为研究对象. (2)依据假设, 工业区污染所代表的为工业污染, 交通区污染所代表的为交通污染, 生活区污染所代表的为生活污染, 山区污染所代表的为农业污染. 将不同地区污染程度的均值来反映不同类型的污染状况,将浓度的数值量纲统一, 得到表2-4:以As 为例71=α, 62=α, 63=α, 44=α, 根据ij j i a ⇒αα:可以得到正互反矩阵A :⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=13/23/27/42/3117/62/3117/64/76/76/71A 对矩阵A 求最大特征值4max =λ 一致性检验:N 阶正互反矩阵最大特征值max λ=n 时, 为一致性矩阵. 一致性指标1--=n nCI λ, 当CI 值越小, 不一致越严重, 随机一致性指标RI,RI 满足表2-5数据:经计算, 一致性比例CR =0=RI CI , 认为是一致性矩阵. 根据最大特征值计算特征向量:)0.34,0.51,0.51,.600(1=γ根据特征向量算出重金属As 的污染原因:=污染As 山区生活交通工业PP P P 34.051.051.060.0+++ 运用相同的方法对Cr 、Hg 和Pb 进行求解, 得到各重金属污染原因结构函数: =污染Hg 山区生活交通工业PP P P 14.014.054.081.0+++ =污染Cr 山区生活交通工业PP P P 36.062.053.044.0+++ =污染Pb 山区生活交通工业PP P P 30.052.044.067.0+++ 通过观察可以看出, Hg 、Pb 和As 受工业影响最为严重, 影响系数分别为0.81, 0.67, 0.60;而Cr 受生活污染最为严重, 影响系数为0.62. 我们还发现, As 与Pb 受各类污染影响的比例系数相近, 据报道和相关资料得到, Pb 与As 主要受工业三废(废气, 废水, 废渣)的影响, 同时在交通发达地区, 汽车尾气排放和轮胎磨损也是造成污染的相关原因. Hg 受工业污染最为严重, 一个重要的原因是燃煤污染, 其次是工业三废污染, 大气中含Hg 污染物的干湿对城市土壤Hg 的污染也有很大影响. Cr 污染受各功能区影响比例系数都较高, 主要来源于城市居民生活累加到土壤中的Cr 、交通污染、工业三废以及一些商业活动等.3问题三3.1污染源位置对样点的各金属计算各自的eo lg 值, 例计算样点A 的8中金属的eo lg 值, 分别为:1lg eo 、2lg eo ……n eo lg 计算样点A 的综合污染eo lg 值为:=综合eo lg 81lg i i eo =∑ 运用MATLAB 软件, 根据各个样点的综合污染eo lg 值, 绘制等高图:图3-1红色等高线为污染最严重的区域, 其次为黄色等高线. 图中红色区域较小, 且位于点(2000,3000)附近, 在红色等高线附近依次为黄色等高线、青色等高线、蓝色等高线, 即指污染程度逐渐降低并有向外扩散的趋势. 将图中红色等高线近似为圆形, 画出圆心, 近似将其作为污染源, 截取局部图加以说明:图3-2取出红色区域, 画出范围图,求出圆心(污染源), 从图中的颜色分布可知,圆心色彩最重, 随着圆半径的增加, 颜色逐渐变浅, 可以从图中推测出重金属的污染呈扩散的趋势. 从图中看出圆心A 位于坐标(2400,3200)且红色区域涵盖了20个网格. 运用相同的方法,求出另一个圆心B 的坐标(6000,8500). 如图3-3所示.图3-3综上所述, 通过数据处理以及MATLAB 绘图可以从中选择出两个污染源A 与B, 其坐标分别为(2400,3200), (6000,8500). 且A 点为主要污染源, B 点为次要污染源. 但两者在污染传播的总体方式相近, 可以运用相同的模型, 但需要选取不同的权重值.3.2传播特征模型通过3.1的研究可以确定两个污染源A(2400,3200), B(6000,8500). 确定了污染源之后, 通过建立模型研究传播特征, 并运用模型推断出周围地区的污染程度.3.2.1单个污染源传播模型污染源为0H (000z y x ,,),研究点为)(z y x G ,,, 研究点距离污染源的距离为d (km), 距离污染源为d 的点处污染程度为P(d).G 与H 之间的距离202020)()()(z z y y x x d -+-+-=如图3-4所示, H 为污染源, G 为研究点, H 与G 点的距离为d , 在H 点的污染程度为P(0),在G 点的污染程度为P(d),为研究G 点的污染程度, 需要建立以d 为自变量的函数.依据假设, 污染源的污染扩散满足中心极限, 即以P(O)为峰值, 0=X 为对称轴, 做正态分布.图3-4]2)(exp[2122σμσπ--=d P ◎μ为均数即X=μ为对称轴, 令污染源的位置在Y 轴上可以得到μ=0. ◎峰值的大小为σπ21对模型进行校正, 将峰值的大小转化为H 点的污染程度. ◎ σ为标准差, 即满足公式:∑=--=ni i x n 122)(11μσ. 标准差σ决定正态曲线的陡峭或扁平程度, 即代表了扩散能力.不同的重金属的扩散能力并不相同,也就是说σ值的大小由于金属本身与环境所共同作用, 在确定了金属的属性与环境后, σ是一个定值,对于数据的处理可以计算得到σ的值.图3-5经过校正后得到单个污染源传播模型:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=--=--=-+-+-=∑=0)(11]2)(exp[)0()()()(12222202020μμσσμn i i x n d p P z z y y x x d 此模型建立在正态分布的基础上, 利用已有数据对正态模型进行校正, 得到单污染源的传播模型. 它满足正态分布的基本性质, P 值所代表的值为研究点在污染源的影响下, 按照正态的传播方式所得到的污染值.3.2.2多个污染源的传播模型依据假设, 在传播时, 每个污染源独立传播互不影响, 但对于作用点而言存在叠加的效应. 如图3-6所示, 建立模型如下:图3-6i 22221()()()(0)exp[]21()10i i i i i i n i i i i i d P P d d P d p x n μσσμμ=⎧=⎪⎪=⎪⎪--⎪=⎨⎪⎪=-⎪-⎪⎪=⎩∑∑总 模型解释:第一个函数为研究点距离污染源的距离.第二个函数为综合考虑多个污染源对于研究点的污染效果, 为叠加的效应. 第三个函数为考虑单个污染源时, 对研究点的污染效果.第四、五个函数为正态分布中标准差与均值的求解.在模型3.2.1中已论述σ与金属属性及环境有关, 为定值. 因此可通过带值计算得到.针对第二个函数, 给出图像解释与说明, 如图3-7图3-7图中蓝色与红色的曲线分别代表了由不同污染源作用下产生的污染传播图像, 虚线代表两种污染作用叠加后的综合污染数值分布图. 从图像中可较为直观地得出污染的叠加效应. 此叠加效应符合正常的传播逻辑.3.2.3模型检验根据模型, 针对污染源A 点, 计算单污染源的传播模型的各个系数, 对数值取整, 得到以下较为简单的式子:)32exp(33)(211d d P -= 同样地,对于污染源B 点,计算单污染源的传播模型,可以得到以下近似的式子)32exp(21)(222d d P -=. 根据∑=)(i i d P P 总可以列出研究点的综合污染的函数: ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-+-=-+-+-=-+-=222222212221)040.0()5.8()0.6()007.0()2.3()4.2()32exp(21)32exp(33z y x d z y x d d d P 总(1)绘制出)(1d P 的图像,见图3-8图3-8由图可知)(1d P 取5、10、15、20、25、30时依次对应的d 值为6.1811、5.0230、4.0031、2.9806、1.7464. 数据解释:当eo lg =5时,与污染源的距离为d =6.1811km. 根据数值可以绘制半径为6.1811km,此圆上点eo lg 均为5.(2)绘制)(2d P 的图像,如图3-9图3-9由图可知)(2d P 取5、10、15、20时依次对应的d 值为6.7766、4.8726、3.2813、1.2495数据解释:当eo lg =5时,与污染源的距离为d =6.7766km ,根据数值可以绘制半径为6.7766km,此圆上点eo lg 均为5. 将根据)(1d P 与)(2d P 得出的数据,绘制等高图3-10.图3-10通过与图3-1的比较,可以发现所建立的模型得到的污染源位置与实际污染源位置大致符合,污染扩散对周边地区的影响也与实际污染传播特征相类似,契合度较高,表明我们的模型建立是科学的、合理的.4问题四4.1收集的相关信息地质环境系统特征(即收集的相关信息):我们从地质灾害、气候、资源、产业结构变化等方面分析该城市地质环境的演变模式. 下面是各因素对地质环境的具体影响:1.地质灾害对地质环境的影响:人类一些不合理、不科学的活动将加剧地质灾害的影响, 导致地质环境恶化:如火山对地质环境的影响:各沉积环境火山作用产物及火山岩风化产物的充填;各沉积相被当地多期(次)火山岩控制并埋藏于其下的火山沉积相组合由下至上“螺旋式”规律性变化;引起地表抬升与构造地形的变化, 从而影响排流模式的变化.2.气候的影响:如盛行风.温度的高低、湿度的差异对当地地质环境的影响.3.资源对地质环境的影响:考虑地下水资源, 一方面, 人类大肆开采地下水资源, 导致地下松散地层固结压缩, 引发地面沉降;另一方面, 人类活动产生的地下水漏斗加速了污染物的渗透, 导致了地质环境的进一步恶化.5.产业结构变化对地质环境的影响:产业结构与地质环境有息息相关, 人类产业的过度发展也会产生相关污染, 导致地质环境恶化, 而地质环境的恶化也将抑制有关产业的发展. 因此, 如何调整产业结构才能对城市地质环境产生积极影响显得尤为重要.综合上述影响因素, 我们采用地质环境质量指数来研究城市地质环境的演变模式, 考虑各因素的影响权重, 运用题二中的层次分析法得出地质环境质量指数α与各因素之间的函数关系, 可以根据α的数值大小将城市地质环境的演变划分1-4个模式, 1为地质强恶化城市(α范围待定同下)、2为地质中恶化城市、3为地质轻恶化城市、4为地质优良城市. 根据每隔一定时间段采集的该地区数据, 将该城市地质环境进行划分, 并根据统计理论, 预测之后该城市的地质环境演变模式. (比如每隔10年该地区模式演变为1-2-3-2-3-4, 并对此模式提出评价及相关建议)4.1.1对重金属污染模型深入探讨图4-1若要深入研究重金属污染原因,则需分析了解该地区的布局,并收集到更多工业废水、废渣、废气的成分、汽车尾气排放数据、轮胎磨损概率、生活垃圾与生活污水排放数据,对这些数据进行量纲统一整理,可以得到较为精确的模型,更加细致地分析该地区的土壤中金属污染的各个因素的权重,寻找出最大的污染原因.4.1.2地质演变模型的探讨由于重金属的污染以及其它类型物质的污染均具有一定的演变与扩散特征,所以研究演变扩散的方法与模型具有一定的实际价值. 但扩散是一个动态的过程,需要构建一个动态模型. 对于动态模型,需要收集各样点的各种重金属浓度随时间的变化值,通过分析各金属浓度随时间的变化规律得到金属的扩散速度扩散v , 随着污染的扩散可以知道污染面积将逐步增大, 且污染源周边地区土壤中重金属的含量将有明显增加, 假设污染源以恒定排放速度排放v 造成土壤中重金属的污染.从问题3单污染源污染模型可得到以下高斯式模型:⎪⎪⎩⎪⎪⎨⎧--=--=∑=n i i x n d p P 12222)(11]2)(exp[)0(μσσμ 由于污染源)0(p 点以恒定的速度造成土壤中重金属的污染,则在时间t 后的污染源的土壤重金属值将以一定的速度增加,即满足:)0()0('p v t p +⋅=排放 重金属的扩散速度定义为扩散v则在一维坐标系中扩散的距离扩散v t m ⋅=在二维坐标系中扩散的面积2020)(r v t r S ⋅-⋅+=ππ扩散 在三维坐标系中扩散的体积303034-)(34r v t r V ⋅⋅+=ππ扩散 研究演变的性质:污染的传播性质与波的传播存在一定程度上的相似性,可以运用波的衍射理论来解释污染的传播现象,并能通过波的衍射理论描述土壤中污染物的演变规律. 波的衍射是指波在传播的过程中产生了很多子波源,子波源彼此独立传播,作用效果互相叠加图解4-2.图4-2 图4-3污染模型存在一定的衍射现象,此现象在现实生活中也容易被理解,通常情况下污染物质会以圆形的扩散向外传递,当遇到障碍物时,随着时间的增长,障碍物的另一侧也会被污染,即在圆形扩散受到破坏时污染的传播仍旧存在,如图解4-3.综上,研究地质演变时,需要收集各样点随时间变化的数值,计算污染扩散速度与污染源恒定排放速度,通过扩散模型与衍射模型可以得到地质环境演变的动态模型.模型的优缺点分析优点:1.建立的模型简单明了, 可操作性强.2.对所给数据进行充分分析, 准确性高.3.适用范围广泛, 对于类似的问题, 运用该模型也可以得到很好的解决.4.本模型充分考虑单污染源与多污染源对不同区域引起的污染程度及其扩散不同, 基于高斯点源模型做了改进, 更符合实际情况, 确保了结果的可行性.5.我们运用差值法,对有限的数据进行充分利用,绘制三维图形.缺点:1.未对海拔因素进行充分的考虑.2.本模型没有考虑气体污染扩散的影响, 可能会对结果造成一定的误差.3.数据不够多,差值计算存在偏差,对于模型结果产生一定的影响.参考文献[1]卓金武,魏永生,秦建,李必文. MATLAB在数学建模中的运用,北京:北京航空航天大学出版社,2011[2]柴世伟,温琰茂,张亚雷,赵建夫.地积累指数法在土壤重金属污染评价中的应用,同济大学学报(自然科学版),第34卷第12期:1657-1661,2006年. [3]王雄军,赖健清,鲁艳红,李德胜,周继华,王建武.基于因子分析法研究太原市土壤重金属污染的主要来源,生态环境,第17卷第2期:671-676,2008年.[4]张斌才,赵军.大气污染扩散的高斯烟羽模型及其GIS集成研究,环境监测管理与技术,第20卷第5期:17-19, 2008.。
《2024年矿区重金属污染对土壤氮损失的影响及微生物学机制研究》范文

《矿区重金属污染对土壤氮损失的影响及微生物学机制研究》篇一一、引言随着全球工业化的迅猛发展,尤其是采矿和金属冶炼等重工业活动,矿区重金属污染问题日益突出。
这些重金属如铜、铅、锌等在土壤中积累,不仅对生态环境造成严重破坏,而且对土壤中的氮循环和微生物活动产生了深远影响。
本篇论文旨在探讨矿区重金属污染对土壤氮损失的影响及微生物学机制,为后续的污染治理和生态修复提供理论依据。
二、矿区重金属污染现状矿区由于长期开采和冶炼活动,导致大量重金属进入土壤环境,形成严重的重金属污染。
这些重金属不仅对土壤的物理化学性质产生影响,还对土壤中的生物活动产生负面影响。
其中,氮损失是矿区土壤质量下降的重要表现之一。
三、矿区重金属污染对土壤氮损失的影响矿区重金属污染对土壤氮损失的影响主要体现在以下几个方面:1. 抑制土壤氮的固定:重金属会与土壤中的微生物发生作用,影响其活性,从而降低土壤氮的固定能力。
2. 改变氮循环途径:重金属的存在会影响土壤中氮的转化过程,导致氮素损失。
3. 影响植物生长与氮素吸收:植物在重金属污染的土壤中生长受限,影响其对氮素的吸收利用。
四、微生物学机制研究在矿区重金属污染对土壤氮损失的过程中,微生物起着关键作用。
具体机制如下:1. 微生物群落结构变化:重金属污染会导致土壤中微生物群落结构发生变化,一些耐重金属的微生物成为优势种群,而原本参与氮循环的微生物活性受到抑制。
2. 酶活性影响:重金属污染会降低参与氮循环的酶的活性,如硝化细菌和反硝化细菌的活性受到抑制,从而影响氮的转化过程。
3. 代谢途径改变:在重金属压力下,部分微生物会改变其代谢途径,以适应环境变化,这可能导致土壤中氮的转化和固定发生改变。
五、研究方法与结果本研究采用野外调查、实验室分析和分子生物学技术相结合的方法进行研究。
通过对矿区土壤样品的分析,发现重金属污染严重的区域,土壤中的氮损失量明显增加。
同时,通过分子生物学技术分析发现,土壤中参与氮循环的微生物群落结构发生了显著变化,耐重金属的微生物成为优势种群。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤重金属污染研究进展
土壤重金属污染来源广、毒性大,隐蔽性强,是我国目前面临的重大环境问题之一。
对土壤重金属污染的来源、重金属对人体和环境的危害以及土壤重金属污染的治理途径等进行了探讨。
土壤重金属污染研究进展
重金属有多种不同的定义。
在环境化学领域中,重金属是指比重大于4或5的金属。
重金属污染物不但包括生物毒性显著的汞、镉、铅、铬和类金属砷,还包括毒性较弱的重金属锌、铜、钴、镍、锡、钒等重金属元素。
土壤重金属污染隐蔽性强、毒性大、难降解且能沿食物链富集,是人们优先考虑去除的污染物。
1污染来源
土壤重金属污染来源大体可以分为工业来源、农业来源、交通来源。
1.1工业来源。
煤和石油等化石燃料燃烧释放大量含有重金属的有害气体和粉尘,工厂排放的烟气、粉尘等气体污染物经大气环流扩散,以干、湿的沉降方式进入到水体与土壤中,造成土壤重金属污染。
工业生产过程如采矿、选矿、矿物加工等排放的废水、废气、废渣是土壤中汞、铅、镉、砷等重金属污染的主要来源。
1.2农业来源。
主要来源于农田污水灌溉、污泥利用,化肥、有机肥、农药和杀虫剂的滥用以及塑料薄膜的大量使用等。
农用物资施用和农业污灌是农田土壤中汞、铬、砷、铜、锌等重金属污染的重要来源。
1.3城市交通来源。
主要来源于汽车排放的尾气及轮胎磨损产生的粉尘。
汽油、润滑油的燃烧和发动机及其他镀金部件磨损可释放出铅、镉、铜、锌等重金属粉尘。
2污染危害
重金属一旦进入土壤,就很难被微生物降解或者从土壤中去除,因此重金属对土壤的理化性质、生物特性和微生物群落结构都产生重大危害。
受到重金属污染的土壤,其物理结构和化学性质都会发生变化,危害极大。
2.1导致经济损失。
土壤的重金属污染会造成耕地面积持续减少、土壤质量下降和生物毒害增多,导致农作物大幅度减产,从而影响到粮食供给、农业可持续发展和区域经济增长。
2.2危害人体健康。
酸雨、土壤添加剂等外界环境条件的变化,提高了土壤中重金属的活性和生物有效性,使得重金属较易被植物吸收利用,重金属污染物难以降解,直接或间接地危害到处于食物链顶端的人类的身体健康,引发骨痛病、儿童血铅、高血压、心脑血管,癌症等疾病。
2.3导致其他污染。
土壤受到污染后,含重金属浓度较高的污染表土容易在水力和风力的作用下分别进入到水体和大气中,导致水污染、大气污染和其他衍生环境问题。
3治理途径
重金属污染土壤的治理途径主要有两种:一种是将重金属污染物清除,削减土壤重金属总量;另一种是固化土壤重金属,降低其
迁移性和生物可利用性,削减有效态重金属含量。
具体来讲包括工程措施,化学措施,农业措施和生态措施。
3.1工程措施。
工程措施包括排土、客土和淋洗等方法。
排土法剥离表层受污染的土壤,客土法是在被污染的土壤上覆盖未被污染的土壤,淋洗法是通过清水灌溉稀释或洗去重金属离子。
工程措施效果较为彻底,能使耕作层土壤中重金属的浓度降至临界浓度以下,或减少重金属污染物与植物根系的接触来控制危害。
3.2化学措施。
第一,通过添加表面活性剂、有机螯合剂等一系列调控措施,改良土壤的理化性状,提高土壤重金属的生物有效性,使其易于被其他植物吸收,以达到修复土壤的目的。
第二,通过添加固化材料,降低重金属的迁移性和生物有效性。
3.3农业措施。
农业措施是因地制宜的修正和完善耕作管理制度来减轻重金属的危害,或者在受污染土壤上种植不进入食物链的植物。
农业措施适合治理中、轻度受污染土壤。
3.4生物措施。
生物措施:一是通过生物作用改变重金属在土壤中的化学形态,使重金属固定或解毒,降低其在土壤环境中的移动性和生物可利用性;二是通过生物吸收、代谢达到对重金属的削减、净化与固定作用。
通过一些特殊的微生物与植物、动物去除或者转化土壤中的重金属,降低重金属的毒性。
3.4.1微生物修复。
微生物修复技术主要有两种:原位修复技术和异位修复技术。
受到重金属污染的土壤,往往富集多种耐重金属的真菌和细菌,微生物可通过多种作用方式降低土壤中重金属的毒
3.4.2植物修复。
植物修复是利用植物吸收、富集、降解或固定土壤中重金属离子或其他污染物,以降低或消除污染程度,修复土壤。
3.4.3动物修复。
动物修复是利用土壤中的某些鼠类等低等动物吸收土壤中的重金属。
例如在受重金属污染的土壤中放养蛆虫,待其富集重金属后,采用电激、灌水等方法驱出蛆虫集中处理。
4展望
土壤重金属污染来源趋于多样化、综合性,对人类的危害也日趋严重。
在未来很长时间内重金属污染仍将是我国所面临的重大环境问题之一,迫切需要解决。
但对于不同种类、不同性质的重金属污染事件,应将物理、化学、生物等修复手段综合应用以便更好地治理土壤重金属污染,同时研制复合材料,已解决土壤重金属复合污染的问题。
参考文献:
[1]milen kovicn,damjanovic m.study of heavymetal pollution in sedimentsfrom the irongate(danuberiver),serbia and montenegro[j].polish journal ofenvironmental studies,2005,14(6):781-787.
[2]赵学茂.土壤重金属污染的防治办法[j].甘肃农业,2006,(2):228.
[3]李兵.土壤中重金属污染与危害[j].金属世界,2005,(5):
[4]张志红,杨文敏.汽油车排出颗粒物化学组分分析[j].中国公共卫生,2001,17(7):623-624.
[5]章明奎.污染土壤重金属的生物有效性和移动性评价:四种方法比较[j].应用生态学报,2006,(8):1501-1504.
[6]祖艳群,李元昆明市蔬菜及其土壤中铅、镉、铜和锌含量水平及污染评价[j].云南环境科学,2003,(8):35.
[7]胡文.土壤-植物系统中重金属的生物有效性及其影响因素的研究[d].2008.
[8]夏家淇.土壤环境质量标准详解[m].北京:中国环境科学出版社,1998.70-75.
[9]高翔云.国内土壤环境污染现状与防治措施[j].环境保护,2006,(2):50-53.
[10]李想,王延松.土壤污染现状及风险评价研究进展[c].中国环境科学学会学术年会优秀论文集,2007.1798-1801.。