《现代分析测试技术》复习知识点
现代分析测试技术-SIMS
俄歇电子能谱(AES)—大本讲义
AES分析方法原理 AES谱仪基本构成 AES谱仪实验技术 AES谱图分析技术 SIMS基本结构及技术特点 XPS/AES/SIMS方法比较
离子溅射与二次 离子质谱
离子溅射过程:一定能量的离子打到固体表面→ 引起表面原子、分子或原子团的二次发射—溅射 离子;溅射的粒子一般以中性为主,有<1%的 带有正、负电荷—二次离子;
质量分析器
添加标题
检测器
添加标题
二次离子深度分析
添加标题
二次离子分布图像
添加标题
二次离子质谱系统 结构示意图
添加标题
二次离子质谱
二次离子质谱仪基本部件
• 初级离子枪:热阴极电离型离子源,双等离子体离子源,液态金属场离子源;离子束的纯度、电 流密度直接影响分析结果;
• 二次离子分析器:分析质荷比→磁偏式、四极式(静态SIMS )、飞行时间式(流通率高,测量 高质量数离子)质度剖面分析 微区分析 软电离分析
动态SIMS—深度剖面分析
分析特点:不断剥离下进行SIMS分析—获得 各种成分的深度分布信息;
深度分辨率:实测的深度剖面分布与样品中真 实浓度分布的关系—入射离子与靶的相互作用、 二次离子的平均逸出深度、入射离子的原子混 合效应、入射离子的类型,入射角,晶格效应 都对深度分辨有一定影响。
可以在超高真空条件下得到表层信息;
可检测正、负离子;
可检测化合物,并能给出原子团、分 子性离子、碎片离子等多方面信息; 对很多元素和成分具有ppm甚至ppb 量级的高灵敏度;
可检测包括H在内的全部元素; 可检测同位素; 可进行面分析和深度剖面分析;
二次离子质谱 分析技术
表面元素定性分析 表面元素定量分析
材料现代分析与测试技术-各种原理及应用
材料现代分析与测试技术-各种原理及应用XRD :1.X 射线产生机理:(1)连续X 射线的产生:任何高速运动的带电粒子突然减速时,都会产生电磁辐射。
①在X 射线管中,从阴极发出的带负电荷的电子在高电压的作用下以极大的速度向阳极运动,当撞到阳极突然减速,其大部分动能变为热能都损耗掉了,而一部分动能以电磁辐射—X 射线的形式放射出来。
②由于撞到阳极上的电子极多,碰撞的时间、次数及其他条件各不相同,导致产生的X 射线具有不同波长,即构成连续X 射线谱。
(2)特征X 射线:根本原因是原子内层电子的跃迁。
①阴极发出的热电子在高电压作用下高速撞击阳极;②若管电压超过某一临界值V k ,电子的动能(eV k )就大到足以将阳极物质原子中的K 层电子撞击出来,于是在K 层形成一个空位,这一过程称为激发。
V k 称为K 系激发电压。
③按照能量最低原理,电子具有尽量往低能级跑的趋势。
当K 层出现空位后,L 、M 、N……外层电子就会跃入此空位,同时将它们多余的能量以X 射线光子的形式释放出来。
④K 系:L, M, N, ...─→K ,产生K α、K β、K r ... 标识X 射线L 系:M, N, O,...─→L ,产生L α、L β... 标识X 射线特征X 射线谱M 系: N, O, ....─→M ,产生M α... 标识X 射线特征谱Moseley 定律2)(1αλ-?=Z Z:原子序数,、α:常数2.X 射线与物质相互作用的三个效应(1)光电效应?当X 射线的波长足够短时,X 射线光子的能量就足够大,以至能把原子中处于某一能级上的电子打出来,?X 射线光子本身被汲取,它的能量传给该电子,使之成为具有一定能量的光电子,并使原子处于高能的激发态。
(2)荧光效应①外层电子填补空位将多余能量ΔE 辐射次级特征X 射线,由X 射线激发出的X 射线称为荧光X 射线。
②衍射工作中,荧光X 射线增加衍射花样背影,是有害因素③荧光X 射线的波长只取决于物质中原子的种类(由Moseley 定律决定),利用荧光X 射线的波长和强度,可确定物质元素的组分及含量,这是X 射线荧光分析的基本原理。
现代分析与测试技术优选全文
析
相干散射——电子衍射分析—— 显微结构分析
技
激发被测物质中原子发出特种X射线
术
——电子探针(电子能(波)谱分析,电子
探针X射线显微分析)
——显微化学分析(Be或Li以上元素分析)
1.材料现代分析技术绪论
材 料 现 代 分 析 技 术
1.材料现代分析技术绪论
材
材料现代分析的任务与方法
料
材料组成分析
1.材料现代分析技术绪论
材
料
直接法的局限
现 代
采用高分辨电子显微分析等直接分析技术并不能有效、 直观地反映材料的实际三维微观结构;高分辨电子
分
显微结构像是直接反映晶体的原子分辨率的投影结
析
构,并不直接反映晶体结构。
技 尽管借助模型法,通过对被测晶体拍摄一系列不同离
术
焦条件的显微像,来分析测定材料的晶体结构,但
性能和使用性能间相互关系的知识及这些知识的应用,是一门应用
基础科学。材料的组成、结构,工艺,性能被认为是材料科学与工
程的四个基本要素。
1.材料现代分析技术绪论
材 料
组成 (composition) 组成是指材料的化学组成及其所占比例。
现 工艺 (process)
代
工艺是将原材料或半成品加工成产品的方法、技术等。
2. 多晶相各种相的尺寸与形态、含量与分布、位向 关系(新相与母相、孪生相、夹杂物)
微观,0.1nm尺度(原子及原子组合层次)
结构分析:原子排列方式与电子构型
1. 各种相的结构(即晶体类型和晶体常数)、晶体缺 陷(点缺陷、位错、层错)
2. 分子结构与价键(电子)结构:包括同种元素的不 同价键类型和化学环境、高分子链的局部结构(官 能团、化学键)和构型序列等
现代分析测试技术复习题答案篇
现代分析测试技术复习题答案篇⼀、问答题:1、试述塔板理论的基本关系式及理论要点。
2、利⽤范⽒⽅程说明HPLC中如何选择实验条件?①采⽤粒径⼩⽽均匀的球形固定相,⾸选化学键合相,⽤匀浆法装柱.②采⽤低黏度流动相,低流量(1mL/min),⾸选甲醇.③采⽤柱温箱,避免室温波动,增加实验重复性,柱温以25~30℃为宜.3、⾼效液相⾊谱仪包括哪些主要部件?各部件的作⽤是什么?⾼效液相⾊谱仪由五⼤部分组成:⾼压输液系统,进样系统、分离系统、检测系统和⾊谱⼯作站。
由于⾼效液相⾊谱所⽤固定相颗粒极细,因此对流动相阻⼒很⼤,为使流动相较快流动,必须配备有⾼压输液系统。
⾼压输液系统由储液罐、过滤器、⾼压输液泵、梯度洗脱装置等组成。
流动相在进⼊⾼压泵之前,应先进⾏过滤和脱⽓处理。
⾼压输液泵是核⼼部件,其密封性好,输出流量恒定,压⼒平稳,可调范围宽,便于迅速更换溶剂及耐腐蚀等。
进样系统是将被分离的样品导⼊⾊谱柱的装置。
要求密封性、重复性好,死体积⼩,便于实现⾃动化。
进样系统包括取样、进样两个功能。
分离系统主要是指⾊谱柱,⾊谱柱是⾼效液相⾊谱仪的核⼼部件,要求分离度要⾼、柱容量⼤、分析速度快。
检测器是HPLC仪的三⼤关键部件之⼀。
⽤来连续监测经⾊谱柱分离后的流出物的组成和含量变化的装置。
其作⽤是把洗脱液中组分的量转变为电信号。
并由⼯作站(或记录仪)绘出谱图来进⾏定性、定量分析。
⾊谱⼯作站是⾊谱仪的⾃动化控制包括⾃动进样系统的进样⽅式、输液泵系统中的溶剂流速、梯度洗脱程序、检测系统的各项参数、数据记录和处理等。
4、什么是锐线光源?为什么空⼼阴极灯发射线是锐线?答:锐线光源是能发射出谱线半宽度远⼩于吸收线半宽度的光源。
锐线光源发射线半宽度很⼩,并且发射线与吸收线中⼼频率⼀致。
锐线光源需要满⾜的条件:a.光源的发射线与吸收线的ν0⼀致。
b.发射线的Δν1/2⼩于吸收线的Δν1/2。
空⼼阴极灯是⼀个封闭的⽓体放电管。
⽤被测元素纯⾦属或合⾦制成圆柱形空⼼阴极,⽤钨或钛、锆做成阳极。
现代分析测试技术-热分析技术
测量和分析材料在温度变化过程中的物理变化(晶型转变、相态变化和吸附 等)和化学变化(脱水、分解、氧化和还原等)。
44
5、分类
9类17种
国 际 (ICTA) 热 分 析 协 会 确 认 的 热 分 析 技 术
热分析的四 大支柱
55
最常用的三种热分析法
1 热重分析法 TG (Thermo-gravimetry) (微商热重分析法 DTG (Derivative Thermogravimetry ) 2 差热分析法 DTA (Differential Thermal Analysis) 3 示差扫描量热分析法 DSC
曲线CD 段又是一平台,相应质量为m1; 曲线DE 为第二台阶,质量损失为1.6 mg,求得质量损失率:
18
曲线EF段也是一平台,相应质量为m2; 曲线FG 为第三ቤተ መጻሕፍቲ ባይዱ阶,质量损失为0.8 mg,可 求得质量损失率
可以推导出CuSO4·5H2O 的脱水方程如下:
19
验证: 根据方程,可计算出CuSO4·5H2O 的理论质量损失率。计算结果表明第一次理论质 量损失率为
参比物应是惰性材料,即在测定的温度范围内,不产生任何热效应(放热、吸热) 的材料,如:α-A12O3、α-石英、硅油等。
22 22
T
3 DTA曲线
向下表示吸热过程 向上表示放热过程
+A
0
纵坐标:温差(T)
-
横坐标:温度T(或时间t)
差热仪炉子供给的热流为Q
试样无热效应时: QS
QR
试样吸热效应时:(Q-g)S QR
99
10
4. 热重分析曲线 ➢ TG曲线:
一次微分
➢ DTG曲线:
《现代分析报告测试技术》复习知识点问题详解
实用标准一、名词解释1. 原子吸收灵敏度:也称特征浓度,在原子吸收法中,将能产生1%吸收率即得到0.0044的吸光度的某元素的浓度称为特征浓度。
计算公式: S=0.0044×C/A (ug/mL/1%)S——1%吸收灵敏度 C——标准溶液浓度 0.0044——为1%吸收的吸光度A——3次测得的吸光度读数均值2. 原子吸收检出限:是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量。
通常以产生空白溶液信号的标准偏差2~3倍时的测量讯号的浓度表示。
只有待测元素的存在量达到这一最低浓度或更高时,才有可能将有效分析信号和噪声信号可靠地区分开。
计算公式: D=c Kδ/A mD——元素的检出限ug/mL c——试液的浓度δ——空白溶液吸光度的标准偏差 A m——试液的平均吸光度 K——置信度常数,通常取2~3 3.荧光激发光谱:将激发光的光源分光,测定不同波长的激发光照射下所发射的荧光强度的变化,以I F—λ激发作图,便可得到荧光物质的激发光谱4.紫外可见分光光度法:紫外—可见分光光度法是利用某些物质分子能够吸收200 ~ 800 nm光谱区的辐射来进行分析测定的方法。
这种分子吸收光谱源于价电子或分子轨道上电子的电子能级间跃迁,广泛用于无机和有机物质的定量测定,辅助定性分析(如配合IR)。
5.热重法:热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
TG基本原理:许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
热重分析通常可分为两类:动态(升温)和静态(恒温)。
检测质量的变化最常用的办法就是用热天平(图1),测量的原理有两种:变位法和零位法。
6.差热分析;差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
现代分析测试技术SE
01
环境扫描电子显微镜技术特点
图1 含水白菜叶柄切片在4℃、620Pa的含水气氛下随时间变化的ESEM图像 图2 含水白菜叶柄切片在20℃、200Pa的干燥气氛下随时间变化的ESEM图像 图3 含水白菜叶柄切片在20℃、400Pa的干燥气氛下随时间变化的ESEM图像 图4 新鲜玫瑰花瓣在20℃、200Pa的干燥气氛下随时间变化的ESEM图像
D
像显示记录系统:荧光屏、照相机、打印机
E
电源系统:稳压电路、控制电路、安全保护电路
F
真空系统:
仪器结构及关键部件
常规二次电子探头结构:收集栅→闪烁器→光导管→光电倍增管; 原理与结构缺陷:探头含裸露的高压元件→高真空环境;光电倍增管对光、热信号敏感→限制照明器、发热发光样品;绝缘试样荷电累积→特殊制样;非真实样品观察;
电子枪
试样(导电)
信号探测器(电子检测器/X射线检测器)
信号放大处理系统
荧光屏(观察屏/记录屏)
同步扫描系统
扫描电子显微镜基本工作原理
A
电子光学系统:电子枪→热发射电子枪、场发射电子枪;会聚透镜→低像差物镜;
B
扫描系统:扫描信号发生器、放大控制器、扫描线圈
C
信号检测放大系统:电子检测器、X射线检测器
01Leabharlann 可以改变样品室的压力、温度及气体成分:在气体压力高达5000Pa,温度高达1500℃,含有任何气体种类的多气环境中,ESEM都可提供高分辨率的二次电子像;
01
自然状态下检测→试样可在未涂层状态下保持其原来的含水自然状态观察→样品表面出现电荷积累时,信号放大过程中所产生的正离子会被吸引到样品表面,从而抑制了区域性电场;
超大试样室等应用型扫描电镜
现代分析测试技术复习题教案
现代分析测试技术练习题一、判断题:1、色谱定量时,用峰高乘以半峰宽为峰面积,则半峰宽是指峰底宽度的一半。
()2、使用气相色谱仪在关机前应将汽化室温度降低至50℃以下,在封闭电源。
()3、氢焰检测器是一种通用型检测器,既能用于有机物分析,也能用于检测无机化合物。
()4、依照分别原理的不同样,液相色谱可分为液固吸附色谱,液液色谱法,离子互换色谱法和凝胶色谱法四各样类。
()5、在色谱分别过程中,单位柱长内组分在两相间的分派次数越多,则相应的分别收效也越好。
()6、色谱外标法的正确性较高,但前提是仪器的牢固性高且操作重复性好。
()7、只若是试样中不存在的物质,均可选作内标法中的内标物。
()8、进样时进样阀手柄位于load地点时载样,位于inject地点时进样。
()9、紫外分光光度计的光源常用碘钨灯。
()10、红外光谱法最大的特点是其高度的特点性。
()二、选择题:1、人眼能感觉到的可见光的波长范围是()。
A.400nm~760nm C.200nm~600nmB.200nm~400nm D.360nm~800nm2、红外光谱法中的红外吸取带的波长地点与吸取谱带的强度,能够用来()。
A.判断未知物的构造组成或确定其化学基团及进行定量分析与纯度判断B.确定配位数C.研究化学位移D.研究溶剂效应3、紫外-可见吸取光谱主要决定于()。
A.分子的振动、转动能级的跃迁B.分子的电子构造C.原子的电子构造D.原子的外层电子能级间跃迁4、双波长分光光度计的输出信号是()A.试样吸取与参比吸取之差B.试样λ1和λ2吸取之差C.试样在λ1和λ2吸取之和D.试样在λ1的吸取与参比在λ2的吸取之和5、原子吸取光谱产生的原因是()。
A.分子中电子能级跃迁B.转动能级跃迁C.振动能级跃迁D.原子最外层电子跃迁6、荧光分析法和磷光分析法的敏捷度比吸取光度法的敏捷度()。
A.高B.低C.相当D.不用然谁高谁低7、红外分光光度计使用的检测器是()。
现代分析测试技术(仪器分析)
应用
用于有机化合物、高分子化合物、 无机化合物等的结构分析和鉴定。
特点
样品用量少、不破坏样品、分析 速度快、可与其他技术联用。
原子发射光谱法
原理
利用物质在受到激发后发射出特征光谱进行分析。不同元素受到激 发后会发射出不同的特征光谱,可用于元素的定性和定量分析。
应用
广泛应用于金属元素、非金属元素、有机物中元素的定性和定量分 析。
离子色谱法
专门用于离子型物质的分离和分析,如环境监测中的阴阳离子检测。
毛细管电泳色谱法
结合了毛细管电泳和色谱技术的优点,具有高分辨率和高灵敏度等 特点,适用于生物大分子和复杂样品的分析。
05 质谱分析法与联用技术
CHAPTER
质谱法基本原理及仪器结构
质谱法基本原理
通过测量离子质荷比 (m/z)进行成分和结 构分析的方法。
02 光学分析法
CHAPTER
紫外-可见分光光度法
原理
利用物质在紫外-可见光区的吸收 特性进行分析。通过测量物质对 特定波长光的吸收程度,确定物
质的种类和浓度。
应用
广泛应用于无机物、有机物、药物、 生物样品等的定性和定量分析。
特点
灵敏度高、选择性好、操作简便、 分析速度快。
红外光谱法
原理
利用物质在红外光区的吸收特性 进行分析。红外光谱是分子振动 和转动能级的跃迁产生的,可用
03 电化学分析法
CHAPTER
电位分析法
原理
利用电极电位与待测离子浓度之间的关系,通过测量电极电位来 确定待测离子浓度的分析方法。
应用
广泛应用于水质分析、环境监测、生物医学等领域,如pH计测量 溶液酸碱度、离子选择性电极测量特定离子浓度等。
现代测试分析技术SEM、TEM、表面分析技术、热分析技术
现代测试分析技术SEM、TEM、表⾯分析技术、热分析技术重庆⼤学材料现代测试分析技术总结(材料学院研究⽣⽤)电⼦衍射部分1、电⼦衍射与X射线衍射相⽐:相同点:电镜中的电⼦衍射,其衍射⼏何与X射线完全相同,都遵循布拉格⽅程所规定的衍射条件和⼏何关系. 衍射⽅向可以由厄⽡尔德球(反射球)作图求出.因此,许多问题可⽤与X射线衍射相类似的⽅法处理.电⼦衍射优点:电⼦衍射能在同⼀试样上将形貌观察与结构分析结合起来。
电⼦波长短,单晶的电⼦衍射花样婉如晶体的倒易点阵的⼀个⼆维截⾯在底⽚上放⼤投影,从底⽚上的电⼦衍射花样可以直观地辨认出⼀些晶体的结构和有关取向关系,使晶体结构的研究⽐X射线简单。
物质对电⼦散射主要是核散射,因此散射强,约为X射线⼀万倍,曝光时间短。
电⼦衍射缺点:电⼦衍射强度有时⼏乎与透射束相当,以致两者产⽣交互作⽤,使电⼦衍射花样,特别是强度分析变得复杂,不能象X射线那样从测量衍射强度来⼴泛的测定结构。
此外,散射强度⾼导致电⼦透射能⼒有限,要求试样薄,这就使试样制备⼯作较X射线复杂;在精度⽅⾯也远⽐X射线低。
2、电⼦衍射花样的分类:1)斑点花样:平⾏⼊射束与单晶作⽤产⽣斑点状花样;主要⽤于确定第⼆相、孪晶、有序化、调幅结构、取向关系、成象衍射条件;2)菊池线花样:平⾏⼊射束经单晶⾮弹性散射失去很少能量,随之⼜遭到弹性散射⽽产⽣线状花样;主要⽤于衬度分析、结构分析、相变分析以及晶体的精确取向、布拉格位置偏移⽮量、电⼦波长的测定等;3)会聚束花样:会聚束与单晶作⽤产⽣盘、线状花样;可以⽤来确定晶体试样的厚度、强度分布、取向、点群、空间群以及晶体缺陷等。
扫描电⼦显微镜1、透射电镜的成像——电⼦束穿过样品后获得样品衬度的信号(电⼦束强度),利⽤电磁透镜(三级)放⼤成像。
扫描电镜成像原理——利⽤细聚焦电⼦束在样品表⾯扫描时激发出来的各种物理信号来调制成像的。
2、扫描电镜的特点分辨本领较⾼。
⼆次电⼦像分辨本领可达1.0nm(场发射), 3.0nm (钨灯丝);放⼤倍数变化范围⼤(从⼏⼗倍到⼏⼗万倍),且连续可调;图像景深⼤,富有⽴体感。
现代分析测试17种技术
一 电化学技术1 1 电导分析法:电导分析法:电导分析法:根据溶液的电导性质来进行分析的方法称为电导分析法。
根据溶液的电导性质来进行分析的方法称为电导分析法。
根据溶液的电导性质来进行分析的方法称为电导分析法。
它包括电导法和电导滴定法两它包括电导法和电导滴定法两种,电导法是直接根据溶液的电导或电阻与被测离子浓度的关系进行分析的方法;电导滴定法是根据溶液电导的变化来确定滴定终点(滴定时,滴定剂与溶液中被测离子生成水、沉淀或其他难解离的化合物,从而使溶液中的电导发生变化,利用化学计量点时出现的转折来指示滴定终点)。
2 2 电位分析法:电位分析法:根据电池电动势或指示电极电位的变化来进行分析的方法。
它包括电位法和电位滴定法。
电位法是直接根据指示电极的电位与被测物质浓度关系来进行分析的方法;电位滴定法是根据滴定过程中指示电极电位的变化来确定终点(滴定时,在化学计量点附近,由于被测物质的浓度产生突变,使指示电极电位发生突越,从而确定终点)。
3 3 电解分析:电解分析:以电子为沉淀剂使被测物质在电解条件下析出或和其他物质分离,以电子为沉淀剂使被测物质在电解条件下析出或和其他物质分离,直接称量析出的被测物直接称量析出的被测物质的质量来进行分析。
质的质量来进行分析。
4 4 库仑分析法:库仑分析法:库仑分析法:根据电解过程消耗的电荷量来进行分析。
根据电解过程消耗的电荷量来进行分析。
根据电解过程消耗的电荷量来进行分析。
它包括控制电流库仑分析法和控制电位库仑分它包括控制电流库仑分析法和控制电位库仑分析法。
析法。
5 5 伏安法(极谱法)伏安法(极谱法):根据被测物质在电解过程中其电流—电压变化曲线来进行分析的方法。
二 光分析技术1 1 原子发射光谱:是根据每种化学元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,进行原子发射光谱:是根据每种化学元素的原子或离子在热激发或电激发下,发射特征的电磁辐射,进行元素的定性、半定量和定量分析的方法。
现代分析测试知识点2
1. 电镜的分辨率 典型值: 100KV 波长 0.0037nm200KV 0.00251nm300KV 0.00197nm综上所述:提高加速电压,缩短电子波长,提高电镜分辨率;加速电压越高,对试样的穿透能力越大,可放宽对样品的减薄要求。
如用更厚样品,更接近样品实际情况。
电子波长与可见光相比,相差105量级2电磁透镜透射电子显微镜中用磁场来使电子波聚焦成像的装置是电磁透镜,磁透镜:能产生旋转对称非均匀磁场的磁极装置3像差♦球差球差即球面像差,是磁透镜中心区和边沿区对电子的折射能力不同引起的,其中离开透镜主轴较远的电子比主轴附近的电子折射程度更大。
球差最小散焦斑的半径在原物面上的折算值如下:λγ210≈∆⎪⎩⎪⎨⎧⎩⎨⎧色差像散球差几何像差341αγs s C =∆由于电磁透镜的周向磁场不非旋转对称引起像散。
使用消像散器极靴内孔不园;上下极靴不同轴;极靴物质磁性不均匀;极靴污染透镜磁场的这种非旋转性对称使它在不同方向上的聚焦能力出现差别,物点P 通过透镜后不能在像平面上聚焦成一点,而是形成一散焦斑,其最小散焦斑在原物面的折算半径值如下 ♦ 色差电子波的波长或能量发生一定幅度的改变而造成的。
若入射电子的能量出现一定的差别,能量大的电子在距透镜光心比较远的地方聚焦,而能量低的电子在距光心近的地方聚焦,由此产生焦距差。
像平面在远焦点和近焦点间移动时存在一最小散焦斑RC稳定电源把散焦斑的半折算到原物面的半径 电磁透镜的分辨率主要由衍射效应和像差来决定. 像差决定的分辨率主要是由球差决定的4. 景深D f 焦长D L ,取 Δr0=1 nm, α=10-2~10-3rad则 D f = 200~2000nmαγ.A A f ∆=∆E E C UU C c c c ∆=⎪⎭⎫ ⎝⎛I ∆I -∆=∆ααγαα002tan 2r r D f ∆≈∆=取Δr0=1 nm, α=10-2rad ;为此,需进一步会聚成近似平行的照明来,这个任务由聚光镜实现, 。
绪论-现代分析测试技术讲解【2024版】
现代分析测试技术概述
显微技术
透射电镜技术(TEM)
利用电子在磁场中的运动与光线在介质中的传播相似的原理 研制的显微技术。
扫描显微技术
扫描电子显微镜(SEM)
扫描探针显微镜
➢ 扫描隧道显微镜(STM)
➢ 原子力显微镜(AFM) ➢ 弹道电子显微镜(BEEM)
➢ 激光力显微镜(LFM) ➢ 光子扫描隧道显微镜(PSTM)
利用物质在流动相(液相)和固定相(液相或固 相)中的分配比不同原理的分离技术。 毛细管电泳(CE)
以高压电场为驱动力,以毛细管为分离通道,根 据样品中各组分间的淌度或分配行为上的不同进行分离 的技术。
现代分析测试技术概述
联用技术
色谱—质谱联用技术 色谱—核磁共振波谱联用技术 色谱—红外吸收光谱联用技术
生命探测仪是借着感应人体所发出超低频电 波产生之电场(由心脏产生)来找到“活人” 的位置。 配备特殊电波过滤器可将其它动物不同于人 类的频率加以过滤去除,使生命探测仪只会 感应到人类所发出的频率产生之电场。仪器 配备两种不同侦测杆,长距离侦测杆侦测距 离可达500公尺,短距离20公尺。人体发出的 超低频电场可穿过钢筋混凝墙、钢板。碰到 上述障碍物时,侦测距离会减少,但只要操 作者向前靠近侦测地点,仍可精准地找到欲 搜寻的人体目标。
检测试样物质中受激分子产生的荧光或磷光的分析技术。 旋光和圆二色性光谱(ORD and CD)
通过分子对不同偏正光吸收的差异作手性分子检测的分析 技术。
现代分析测试技术概述
• X-射线光谱技术
• X—射线荧光光谱
检测分子受X—射线照射后产生的荧光谱线的分 析技术。
• X—射线衍射法
检测由不同晶格结构对X—射线所产生的不同衍 射角的分析技术。
现代分析测试技术
概
发展趋势
述
发展趋势 (1)仪器的灵敏度、选择性等进一步提高 )仪器的灵敏度、 (2)解决复杂体系分析问题 ) (3)非破坏性检测与遥测 ) (4)进一步自动化、智能化 )进一步自动化、 (5)扩展时空多维信息,发展三维分析 )扩展时空多维信息, 仪器分析正在向快速、准确、自动、灵敏及适 应特殊分析的方向迅速发展。仪器分析还将不断地 吸取各学科的成果,改进和完善现有的仪器分析方 法,并建立起一批新的仪器分析方法
现代分析测试技术----概述 现代分析测试技术 概述
现代分析测试技术的概念 产生与发展 分析方法 特点 发展趋势 应用领域与举例
概
述
现代分析测试技术 的概念
现代分析测试技术是利用 现代分析测试技术是利用 现代分析测试仪器 通过测量物质的物理和物理化学性质来确定( 物理和物理化学性质来确定 通过测量物质的物理和物理化学性质来确定(研 物质的组成、 究)物质的组成、状态和结构的一种科学分析方 法。 由于该方法主要是通过仪器来进行分析测试 的,故又称为仪器分析。仪器分析与常规的化学 故又称为仪器分析。 仪器分析 分析比较,较为先进、方便,所以又称为现代仪 分析比较,较为先进、方便,所以又称为现代仪 器分析、现代分析测试方法或 器分析、现代分析测试方法或现代分析测试技术 等。
探秘----夜明珠 探秘----夜明珠 ----
何谓“夜明珠” * 何谓“夜明珠”
*
真假夜明珠 真假夜明珠
下转变带正电荷的离子,然后经加速运动形成离子流,离子流在磁场 (或同时在电场和磁场)的作用下,按照各种离子的质量与其所带电 荷量的比值,即质荷比(m/z)大小顺序★分离★开来,形成有规律 质荷比( 质荷比 )大小顺序★分离★ 的质谱(MS),并用检测器记录下来,进行定性、定量、结构分析 定性、 定性 定量、 的方法。 的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代分析测试技术》复习知识点一、名词解释1. 原子吸收灵敏度、指产生1%吸收时水溶液中某种元素的浓度2. 原子吸收检出限、是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量3.荧光激发光谱、4.紫外可见分光光度法5.热重法、是在程序控制温度下,测量物质质量与温度关系的一种技术。
6.差热分析、是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
7.红外光谱、如果将透过物质的光辐射用单色器加以色散,使光的波长按大小依次排列,同时测量在不同波长处的辐射强度,即得到物质的吸收光谱。
如果用的是光源是红外辐射就得到红外吸收光谱(Infrared Spectrometry)。
8.拉曼散射,但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。
9.瑞利散射、当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射10.连续X射线:当高速运动的电子击靶时,电子穿过靶材原子核附近的强电场时被减速。
电子所减少的能量(△E)转为所发射X 射线光子能量(hν),即hν=△E。
这种过程是一种量子过程。
由于击靶的电子数目极多,击靶时间不同、穿透的深浅不同、损失的动能不等,因此,由电子动能转换为X 射线光子的能量有多有少,产生的X 射线频率也有高有低,从而形成一系列不同频率、不同波长的X 射线,构成了连续谱11.特征X射线、原子内部的电子按泡利不相容原理和能量最低原理分布于各个能级。
在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。
较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X 射线13.相干散射、当入射X射线光子与原子中束缚较紧的电子发生弹性碰撞时,X射线光子的能量不足以使电子摆脱束缚,电子的散射线波长与入射线波长相同,有确定的相位关系。
这种散射称相干散射或汤姆逊(Thomson)散射。
14.非相干散射,,当入射X射线光子与原子中束缚较弱的电子(如外层电子)发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出原子之外,同时发出波长变长、能量降低的非相干散射或康普顿(Compton)散射二、填空1.在色谱分析中,分配系数是指一定温度、压力下,组分分配达到平衡时,组分在固定相和流动相中的浓度比。
2. 在GC法中,为改善宽沸程样品的分离,常采用程序升温的方法;在HPLC中,为了改善组分性质差异较大样品的分离,常采用的方法。
3.高效液相色谱仪主要由高压泵、、、检测器组成。
4. 用气体作为流动相的色谱法称为气相色谱法,用液体作为流动相的色谱法称为液相色谱法,固定相为固体吸附剂的气相色谱法称为气固色谱法,固定相为液体的气相色谱法称为液固色谱法。
5. 在色谱柱中固定液的选择可根据固定液与被测组分的极性来选择。
根据相似相溶原则:非极性样品选非极性固定液,组分先出峰;极性样品选极性固定液,组分先出峰;非极性与极性混合样品选极性固定液,组分先出峰。
6.按照原子化方式分类,原子吸收光谱仪可分为火焰原子化和非火焰原子化原子吸收光谱仪。
7. 原子吸收光谱仪一般由光源、原子化系统、分光系统和检测系统四部分组成。
8. 原子吸收光谱分析中火焰可分为化学计量火焰、富燃火焰、贫燃火焰三大类。
9. 原子吸收光谱分析中常用的定量分析方法有标准曲线法、标准加入法、内标法。
10. 原子吸收线变宽的影响因素主要有自然宽度、多普勒变宽、压力变宽、自吸变宽、场致变宽等。
11.在你所学的现代测试分析方法中原子吸收分析法和X射线荧光谱分析法可以测质的成份;xrd 分析法、分析法、分析法等可以测物质的结构12.获得晶体衍射花样的三种基本方法有转晶法、劳埃法、、粉末法。
13.在分子振动过程中,化学键或基团的偶极矩不发生变化,就不吸收红外光。
14.氢键效应使OH伸缩振动谱带向方向移动。
15.拉曼散射线的频率位移△υ只与散射分子振-转能级有关。
16.引起荧光猝灭的物质,称为猝灭剂,如、、、硝基化合物、重氮化合物、羰基化合物等吸电子极性物质。
17.紫外-可见分光光度计的可见光一般用灯作为光源产生。
18.紫外-可见和荧光分析所用的液体试样池需用低吸光和发光材料,常用池。
三、简答题1.在分子的红外光谱实验中, 并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多,其原因是什么?实际上在绝大多数化合物的吸收光谱图上出现的基频吸收带数目往往小于理论上计算的振动自由度。
原因主要有:存在非活性振动:例如CO2 分子的对称伸缩振动(1388cm-1)使它的两个键的偶极矩方向相反大小相等,正负电中心重合,没有出现分子偶极矩的变化,所以不产生红外吸收带。
简并:不同振动形式有相同的振动频率,如CO2分子的面内和面外弯曲振动因频率完全相同而发生简并,故在其红外光谱中只能看到一个667cm-1 的吸收谱带。
仪器分辨率不高:难以分辨那些频率十分接近和强度很弱的吸收峰,或有的吸收峰不在仪器检测范围之内。
2.红外光谱产生的条件是什么?举例说明。
红外光谱又称分子振动转动光谱,属分子吸收光谱。
样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,导致分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强度减弱,记录经过样品的光透过率T%对波数或波长的曲线,即红外光谱。
3.红外光谱法对试样的要求有哪些?4.何谓基频区?它有什么特点和用途?5.为何拉曼位移中反stokes线比stokes线弱?根据玻尔兹曼定律,常温下处于基态E v= 0的分子数比处于激发态E v = 1的分子数多,遵守玻尔兹曼分布,因此斯托克斯线的强度(I s)大于反斯托克斯线的强度(I as),和实验结果相符6. 在原子吸收光谱分析中,什么是化学干扰?化学干扰是指由于在样品溶液中或气相中被测元素与其他组分之间的化学作用而影响被测元素在原子化器内的化学行为,包括化合物的形成、解离、原子化,从而引起被测元素原子化效率降低或挥发损失的效应。
包括以下几个方面:(1)被测元素与其他组分形成热力学上更稳定的化合物;(2)生成难熔氧化物;(3)在石墨表面生成难解离碳化物;(4)被测元素形成易挥发化合物引起挥发损失;(5)难挥发基体吸留或包裹被测元素。
化学干扰是指由于在样品溶液中或气相中被测元素与其他组分之间的化学作用而影响被测元素在原子化器内的化学行为,包括化合物的形成、解离、原子化,从而引起被测元素原子化效率降低或挥发损失的效应。
7.简述原子吸收光谱分析中消除电离干扰的方法。
消除电离干扰的方法:最有效的方法是加入电离抑制剂,一般采用电离电位低的铯盐或钾盐做电离抑制剂,在火焰中产生大量的自由电子以抑制电离。
消除电离干扰的另一方法是使用温度较低的火焰。
8.写出布拉格方程并简述其应用。
9.简述X射线荧光产生及定性分析的基本原理。
原子中的内层(如K 层)电子被X射线辐射电离后在K 层产生一个空位。
外层(L层)电子填充K 层孔穴时,会释放出一定的能量,当该能量以X 射线辐射释放出来时就可以发射特征X射线荧光。
每一种元素都有其特定波长(或能量)的特征X 射线。
通过测定试样中特征X 射线的波长(或能量),便可确定试样中存在何种元素,即为X 射线荧光光谱定性分析。
10.简述X射线荧光产生及定量分析的基本原理。
元素特征X射线的强度与该元素在试样中的原子数量(即含量)成比例。
因此,通过测量试样中某元素特征X 射线的强度,采用适当的方法进行校准与校正,便可求出该元素在试样中的百分含量,即为X射线荧光光谱定量分析。
11.简述原子力显微镜的工作原理。
原子力显微镜(AFM)工作原理:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触。
由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。
利用光学检测法,可以测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。
12.简述扫描隧道显微镜的工作原理。
STM 的工作原理来源于量子力学中的隧道贯穿原理。
其核心是一个能在样品表面上扫描、并与样品间有一定偏置电压、其直径为原子尺度的针尖。
由于电子隧穿的几率与势垒V(r)的宽度呈现负指数关系,当针尖和样品的距离非常接近时,其间的势垒变得很薄,电子云相互重叠,在针尖和样品之间施加一电压,电子就可以通过隧道效应由针尖转移到样品或从样品转移到针尖,形成隧道电流。
通过记录针尖与样品间的隧道电流的变化就可以得到样品表面形貌的信息。
13.简述质谱分析法的基本原理。
加速后离子的动能不同,在磁场存在下,带电离子按曲线轨迹飞行;离子在磁场中的轨道半径R 取决于:m/e 、H0 、V,改变加速电压V, 可以使不同m/e 的离子进入检测器。
质谱分辨率= M / M (分辨率与选定分子质量有关)①单聚焦磁场分析器:方向聚焦,相同质荷比,入射方向不同的离子会聚,分辨率不高②双聚焦分析器方向聚焦:相同质荷比,入射方向不同的离子会聚;能量聚焦:相同质荷比,速度(能量)不同的离子会聚;质量相同,能量不同的离子通过电场和磁场时,均产生能量色散;两种作用大小相等,方向相反时互补实现双聚焦;14.简述毛细管气相色谱分析中为什么要设置分流比及设置原则分流比:放空的试样量与进入毛细管柱的试样量之比。
一般在50:1 到500:1 之间调节毛细管柱内径很细,因而带来三个问题:(1)允许通过的载气流量很小;(2)柱容量很小,允许的进样量小,需采用分流技术;(3)分流后,柱后流出的试样组分量少、流速慢。
解决方法:灵敏度高的氢焰检测器,采用尾吹技术。
15. 简述色谱定量分析中的内标法定义及内标物的选择原则内标法是将一定量的纯物质作为内标物,加入到准确称取的试样中,根据被测物和内标物的质量及其在色谱图上相应的峰面积比,求出某组分的含量(a)试样中不含有该物质;(b)与被测组分性质比较接近;(c)不与试样发生化学反应;(d)出峰位置应位于被测组分附近,且无组分峰影响。
16. 高效液相色谱对流动相有什么基本要求?17. 荧光与磷光的的根本区别是什么?荧光与磷光的的根本区别是:荧光是由激发单重态最低振动能层至基态各振动能层的跃迁产生的,而磷光是由激发三重态的最低振动能层至基态各振动能层间跃迁产生的。
18. 那些分子结构的物质能够发生荧光?分子产生荧光必须具备两个条件:(1)物质分子必须具有能吸收一定频率紫外光的特定结构;(2)物质分子在吸收了特征频率的辐射之后,必须具有较高的荧光效率。