《现代分析测试技术》复习知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《现代分析测试技术》复习知识点
一、名词解释
1. 原子吸收灵敏度、指产生1%吸收时水溶液中某种元素的浓度
2. 原子吸收检出限、是指能产生一个确证在试样中存在被测定组分的分析信号所需要的该组分的最小浓度或最小含量
3.荧光激发光谱、4.紫外可见分光光度法
5.热重法、是在程序控制温度下,测量物质质量与温度关系的一种技术。
6.差热分析、是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
7.红外光谱、如果将透过物质的光辐射用单色器加以色散,使光的波长按大小依次排列,同时测量在不同波长处的辐射强度,即得到物质的吸收光谱。如果用的是光源是红外辐射就得到红外吸收光谱(Infrared Spectrometry)。
8.拉曼散射,但也存在很微量的光子不仅改变了光的传播方向,而且也改变了光波的频率,这种散射称为拉曼散射。
9.瑞利散射、当一束激发光的光子与作为散射中心的分子发生相互作用时,大部分光子仅是改变了方向,发生散射,而光的频率仍与激发光源一致,这种散射称为瑞利散射
10.连续X射线:当高速运动的电子击靶时,电子穿过靶材原子核附近的强电场时被减速。电子所减少的能量(△E)转为所发射X 射线光子能量(hν),即hν=△E。
这种过程是一种量子过程。由于击靶的电子数目极多,击靶时间不同、穿透的深浅不同、损失的动能不等,因此,由电子动能转换为X 射线光子的能量有多有少,产生的X 射线频率也有高有低,从而形成一系列不同频率、不同波长的X 射线,构成了连续谱
11.特征X射线、原子内部的电子按泡利不相容原理和能量最低原理分布于各个能级。在电子轰击阳极的过程中,当某个具有足够能量的电子将阳极靶原子的内层电子击出时,于是在低能级上出现空位,系统能量升高,处于不稳定激发态。较高能级上的电子向低能级上的空位跃迁,并以光子的形式辐射出标识X 射线
13.相干散射、当入射X射线光子与原子中束缚较紧的电子发生弹性碰撞时,X射线光子的能量不足以使电子摆脱束缚,电子的散射线波长与入射线波长相同,有确定的相位关系。这种散射称相干散射或汤姆逊(Thomson)散射。
14.非相干散射,,当入射X射线光子与原子中束缚较弱的电子(如外层电子)发生非弹性碰撞时,光子消耗一部分能量作为电子的动能,于是电子被撞出原子之外,同时发出波长变长、能量降低的非相干散射或康普顿(Compton)散射
二、填空
1.在色谱分析中,分配系数是指一定温度、压力下,组分分配达到平衡时,组分在固定相和流动相中的浓度比。
2. 在GC法中,为改善宽沸程样品的分离,常采用程序升温的方法;在HPLC中,为了
改善组分性质差异较大样品的分离,常采用的方法。
3.高效液相色谱仪主要由高压泵、、、检测器组成。
4. 用气体作为流动相的色谱法称为气相色谱法,用液体作为流动相的色谱法称为液相色
谱法,固定相为固体吸附剂的气相色谱法称为气固色谱法,固定相为液体的气相色谱法称为液固色谱法。
5. 在色谱柱中固定液的选择可根据固定液与被测组分的极性来选择。根据相似相溶原
则:非极性样品选非极性固定液,组分先出峰;极性样品选极性固定液,组分先出峰;非极性与极性混合样品选极性固定液,组分先出峰。
6.按照原子化方式分类,原子吸收光谱仪可分为火焰原子化和非火焰原子化原子吸收光谱仪。
7. 原子吸收光谱仪一般由光源、原子化系统、分光系统和检测系统四部分组
成。
8. 原子吸收光谱分析中火焰可分为化学计量火焰、富燃火焰、贫燃火焰三大类。
9. 原子吸收光谱分析中常用的定量分析方法有标准曲线法、标准加入
法、内标法。
10. 原子吸收线变宽的影响因素主要有自然宽度、多普勒变宽、压力
变宽、自吸变宽、场致变宽等。
11.在你所学的现代测试分析方法中原子吸收分析法和X射线荧光谱分析法可以测质的成份;xrd 分析法、分析法、分析法等可以测物质的结构
12.获得晶体衍射花样的三种基本方法有转晶法、劳埃法、、粉末法。
13.在分子振动过程中,化学键或基团的偶极矩不发生变化,就不吸收红外光。14.氢键效应使OH伸缩振动谱带向方向移动。
15.拉曼散射线的频率位移△υ只与散射分子振-转能级有关。
16.引起荧光猝灭的物质,称为猝灭剂,如、、、硝基化合物、重氮化合物、羰基化合物等吸电子极性物质。
17.紫外-可见分光光度计的可见光一般用灯作为光源产生。
18.紫外-可见和荧光分析所用的液体试样池需用低吸光和发光材料,常用池。
三、简答题
1.在分子的红外光谱实验中, 并非每一种振动都能产生一种红外吸收带,常常是实际吸收带比预期的要少得多,其原因是什么?
实际上在绝大多数化合物的吸收光谱图上出现的基频吸收带数目往往小于理论上计算
的振动自由度。原因主要有:
存在非活性振动:例如CO2 分子的对称伸缩振动(1388cm-1)使它的两个键的偶极矩方向相反大小相等,正负电中心重合,没有出现分子偶极矩的变化,所以不产生红外吸收带。
简并:不同振动形式有相同的振动频率,如CO2分子的面内和面外弯曲振动因频率完全相同而发生简并,故在其红外光谱中只能看到一个667cm-1 的吸收谱带。
仪器分辨率不高:难以分辨那些频率十分接近和强度很弱的吸收峰,或有的吸收峰不在仪器检测范围之内。
2.红外光谱产生的条件是什么?举例说明。
红外光谱又称分子振动转动光谱,属分子吸收光谱。样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,导致分子振动或转动引起偶极矩的净变化,使振-转能级从基态跃迁到激发态,相应于这些区域的透射光强度减弱,记录经过样品的光透过率T%对波数或波长的曲线,即红外光谱。
3.红外光谱法对试样的要求有哪些?
4.何谓基频区?它有什么特点和用途?
5.为何拉曼位移中反stokes线比stokes线弱?
根据玻尔兹曼定律,常温下处于基态E v= 0的分子数比处于激发态E v = 1的分子数多,遵守玻尔兹曼分布,因此斯托克斯线的强度(I s)大于反斯托克斯线的强度(I as),和实验结果相符
6. 在原子吸收光谱分析中,什么是化学干扰?
化学干扰是指由于在样品溶液中或气相中被测元素与其他组分之间的化学作用而
影响被测元素在原子化器内的化学行为,包括化合物的形成、解离、原子化,从而引起被测元素原子化效率降低或挥发损失的效应。包括以下几个方面:(1)被测元素与其他