线性代数第6章 二次型及其标准形
二次型的规范形与标准形
![二次型的规范形与标准形](https://img.taocdn.com/s3/m/1e38be76f011f18583d049649b6648d7c1c70893.png)
二次型的规范形与标准形在线性代数中,二次型是由一组变量的二次多项式构成的一类函数。
它在数学和应用领域都有广泛的应用。
对于任意二次型,可以通过适当的线性变换将其化为规范形或标准形。
本文将介绍二次型的规范形和标准形,并探讨它们的性质和应用。
1. 二次型的定义和性质二次型是由变量x1,x2,...,xn 的二次多项式构成的函数。
通常表示为Q(x) = x^T A x,其中x = (x1, x2, ..., xn)^T 是变量向量,A 是实对称矩阵。
二次型具有以下性质:- 对称性:Q(x) = Q(x^T)- 齐次性:Q(kx) = k^2 Q(x),对任意实数k- 加性:Q(x + y) = Q(x) + Q(y),对任意向量x,y2. 二次型的规范形对于任意二次型Q(x),可以通过合适的变量变换将其化为规范形。
规范形是一种特殊的形式,使得无法再通过线性变换进一步简化。
规范形的形式如下:Q(x) = λ1 y1^2 + λ2 y2^2 + ... + λn yn^2其中,λ1,λ2,...,λn 是实数,y1,y2,...,yn 是规范变量。
通过矩阵的特征值分解,可以得到二次型的规范形。
具体步骤如下:- 求出二次型Q(x)对应的对称矩阵A的特征值λ1,λ2,...,λn- 对应每个特征值λi,求出对应的特征向量yi- 将特征向量yi按列排列得到矩阵P = (y1, y2, ..., yn)- 规范形为Q(x) = P^T Δ P,其中,Δ = diag(λ1, λ2, ..., λn) 是特征值对角矩阵3. 二次型的标准形二次型的标准形是规范形的一种特殊情况,对应于所有特征值都是1或-1的情况。
标准形的形式如下:Q(x) = y1^2 + y2^2 + ... + yn^2对于特征值λi = 1,取对应的特征向量yi作为标准变量;对于特征值λi = -1,取对应的特征向量yi的相反数作为标准变量。
相比规范形,标准形更加简洁,且易于分析和计算。
西北工业大学《线性代数》课件-第六章 二次型
![西北工业大学《线性代数》课件-第六章 二次型](https://img.taocdn.com/s3/m/b3909a376ad97f192279168884868762caaebb97.png)
第六章二次型本章共有三节内容:§1 二次型及其矩阵表示§2 化二次型为标准形§3 正定二次型§6.1二次型及其矩阵表示二次型的定义二次型的矩阵表示二次型的标准形合同矩阵一、二次型的定义12(,,,)n f x x x n 元二次型是指如下形式的二次齐次多项式211112121313112222232322222222n n n n nn n a x a x x a x x a x x a x a x x a x x a x =++++++++++ 定义6.112,,,n x x x ;n 元二次型的特点:①含n 个自变量②二次齐次多项式:只含或的项,无一次项2i x i j x x 和常数项。
221212(,)5f x x x x =++不是二次型例如:特点:只含有变量的平方项,无混合乘积项。
222121122(,,,)n n n f x x x d x d x d x =+++ 当a ij 为实数时,称f 为实二次型;当a ij 为复数时,称f 为复二次型。
本章仅讨论实二次型。
标准形:二、二次型的矩阵表示12,1(,,,)n n ij i ji j f x x x a x x ==∑ 若将改写成2()ij i j a x x i j <,ij i j ji j i a x x a x x +,其中ij ji a a =,则二次型可以表示为ij ji a a =即A 是对称矩阵,则二次型可用矩阵形式表示为:111211212222121212(,,)(,,)n n n n n n nn n a a a x a a a x f x x x x x x a a a x ⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠若令11121121222212,n n n n nn n a a a x a a a x a a a x ⎛⎞⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟==⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠A x ,其中T=x Ax 实对称矩阵A 称为二次型f 的矩阵,也把f 称为实对称矩阵A 的二次型,实对称矩阵A 的秩称为二次型f 的秩,二次型与实对称矩阵之间是一一对应的关系。
线性代数知识点总结(第6章)
![线性代数知识点总结(第6章)](https://img.taocdn.com/s3/m/a01a28ce50e2524de5187e1c.png)
线性代数知识点总结(第6章)(一)二次型及其标准形1、二次型:(1)一般形式(2)矩阵形式(常用)2、标准形:如果二次型只含平方项,即f(x1,x2,…,x n)=d1x12+d2x22+…+d n x n2这样的二次型称为标准形(对角线)3、二次型化为标准形的方法:(1)配方法:通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。
其中,可逆线性变换及标准形通过先配方再换元得到。
★(2)正交变换法:通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵注:正交矩阵Q不唯一,γi与λi对应即可。
(二)惯性定理及规范形4、定义:正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形。
5、惯性定理:二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。
注:(1)由于正负惯性指数不变,所以规范形唯一。
(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)(三)合同矩阵6、定义:A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同△7、总结:n阶实对称矩阵A、B的关系(1)A、B相似(B=P-1AP)←→相同的特征值(2)A、B合同(B=C T AC)←→相同的正负惯性指数←→相同的正负特征值的个数(3)A、B等价(B=PAQ)←→r(A)=r(B)注:实对称矩阵相似必合同,合同必等价(四)正定二次型与正定矩阵8、正定的定义二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵。
9、n元二次型x T Ax正定充要条件:(1)A的正惯性指数为n(2)A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E(3)A的特征值均大于0(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)10、n元二次型x T Ax正定必要条件:(1)a ii>0(2)|A|>011、总结:二次型x T Ax正定判定(大题)(1)A为数字:顺序主子式均大于0(2)A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:(1)若A是正定矩阵,则kA(k>0),A k,A T,A-1,A*正定(2)若A、B均为正定矩阵,则A+B正定。
线性代数第六章第二节二次型化为标准型的三种方法
![线性代数第六章第二节二次型化为标准型的三种方法](https://img.taocdn.com/s3/m/73c8da3a2e3f5727a4e96270.png)
问题:有没有其它方法,也可以把二次型化为标 准形?
问题的回答是肯定的。下面介绍一种行之有 效的方法——拉格朗日配方法.
用正交变换能够化实二次型为标准型,这种方法是根据实 对称矩阵的性质,求出二次型 的特征值和规范正交的特征向量, 条件要求较强,当研究一般数域P上的二次型(包括实二次型) 的标准型时,可以用拉格朗日配方法,这种方法不用解矩阵特征 值问题,只需反复利用以下两个初等公式
零多项式,故 可化为标准型.
含有平方项,这归结为情形1,
推论1 任意n阶对称矩阵A都与对角形矩阵合同. 证明 由定理4,存在非退化线性变换X=CY,使得
右端标准型的矩阵为
新旧变量二次型的矩阵A与B满足CTAC=B,即A与对角形矩阵 B合同.
3 初等变换法 根据实对称矩阵及合同变换的特征得到.
只作列 变换
C为所 求
思考
1、化二次型为标准形的正交变换是否 唯一?
2、二次型的标准形是否唯一?
3、二次型的平方和和标准形主要区别 是什么?
4、在实数域里考虑,正交变换法和配
平方法没有改变二次型的那些特征?
思考题解答
1、正交变换不唯一;
2、标准形不计顺序的话是唯一的;
3、标准形的系数为其特征值,而平方 和的系数则不是特征值,可以任意变 动.
时,解方程组
得基础解系
当
时,解方程组
得基础解系
将特征向量正交化、单位化
再对α1,β2, β3单位化,得
写出正交变换的矩阵
由
构成正交矩阵
则二次型经正交变换x=Ty化为标准形
显然,f =1表示的二次曲面为单叶双曲面. 注意:化f为标准形的正交变换不唯一.
第六章二次型答案详解
![第六章二次型答案详解](https://img.taocdn.com/s3/m/17231b2290c69ec3d5bb75c3.png)
【解析】上课已经证明过,自己看 ppt.
习题 6.5 正交线性替换
1.用正交线性替换化下列二次型为标准形:
x12 2x22 +3x32 4x1x2 4x2 x3
2
【答案】正交线性替换为:
x1 x2 x3
3 2 3 1 3
2 3 1 3 2 3
A 11
2 3
53
0 0
1 2
2 4
0 0
1 0
2 0
,秩为
2
3. 已知二次型 f (x1, x2 , x3 ) 5x12 5x22+cx32 2x1x2 6x1x3 6x2x3 的秩为 2 ,求常数 c 及此二次型
院系
班级
姓名
学号
第六章 二次型
习题 6.1 二次型及其标准形
1. 把下列二次型写成矩阵形式:
(1) f (x1, x2 , x3 ) x12 2x1x2 4x1x3 3x22+x2 x3 +7x32 ; (2) f (x, y, z) x2 4xy 2 y 2+4yz+3z 2 .
1 3 2 3
2 3
y1 y2 y3
,标准形为:
y12
2
y22
5
y32
.
2.已知实二次型 f (x1, x2 , x3 ) 2x12 3x22+3x32 2ax2x3 ,其中 a 0 ,经正交线性替换化成标准形 为 y12 2 y22 +5y32 ,求 a 及所用的正交线性替换.
线性代数二次形及其标准型
![线性代数二次形及其标准型](https://img.taocdn.com/s3/m/ef72c6deba0d4a7302763ac3.png)
4
2 2 ( 1)2 ( 10) 2
I A
5
2
A的特征值为 1 1(二重), 2 10
把1=1(2重)代入齐次方程组,得基础解系为
线性代数 第五章
12 12
1 1 1 1 , 2 0 0 2
把含有x2各项集中在一起,再配平方
8 2 ( x1 2 x2 2 x3 ) 6( x x2 x3 ) 2 x3 3 4 26 2 2 2 ( x1 2 x 2 2 x3 ) 6( x2 x 3 ) x3 3 3
2 2 2
线性代数
第五章
16 16
令
2 3 2 3 1 3
1 T 1 则 Q AQ 10
令正交变换X=QY,则
2 2 f y12 y 2 10 y 3
(注):正交变换化二次形为标准形具有保持几何图形不变 的特点,使其易于识别。 线性代数 第五章
14 14
x1 a1n a2n x x2 x n a nn
a11 a 21 f ( x1 ,, x n ) a n1
a12 a 22 an 2
a1n x1 a 2 n x 2 x a nn n
a11 a12 a 21 a 22 ( x1 , , x n ) a n1 a n 2
第五章
a1 n x 1 a 2n x 2 x a nn n
2
令
a11 a12 a21 a 22 A a a n1 n 2
线性代数 第六章第二节 二次型化为标准型的三种方法
![线性代数 第六章第二节 二次型化为标准型的三种方法](https://img.taocdn.com/s3/m/6ee772777fd5360cba1adb48.png)
解 由于所给二次型中无平方项,所以
记X=BY
得 再把所有含y1的项集中,配平方;同样地 把含有y2的项集中,配平方,就得到
即:
求逆 矩阵
记Y=DZ
所用变换矩阵为
定理4 对于任一n元二次型
都存在非退化的线性变换X=CY,使之成为标准型(平方和)
证明பைடு நூலகம்
对变量个数进行归纳。
平方项的系数不全为零,不妨设
思考题解答
1、正交变换不唯一;
2、标准形不计顺序的话是唯一的;
3、标准形的系数为其特征值,而平方 和的系数则不是特征值,可以任意变 动.
4、没有改变二次型的秩,事实上,二 次型的系数中正负项的个数也没有被 正交变换改变。
化二次型为含有平方项的二次型,然后再按1中方 法配方.
例3
解
含有平方项
去掉配方后多出来的项
所用变换矩阵为
例4 用配方法化二次型
为标准型,并求出所用的可逆线性变换。 解
令
(1)
则
(2)
(2)是可逆线性变换,使
2 2 9 2 f (x1, x2, x3) y1 + y2 - 4 y3
例5
化为标准形,并指出方程f =1表示何种二 次曲面.
解 写出 f 的系数矩阵A,求出A的特征 值和特征向量
由
得
,
当
时,解方程组
得基础解系 当 得基础解系 时,解方程组
将特征向量正交化、单位化
再对α1,β2, β3单位化,得
写出正交变换的矩阵 由 构成正交矩阵
则二次型经正交变换x=Ty化为标准形
是n-1元二次型或零多项式。由归纳假设,存在非退化线性变换
则非退化线性变换为
6.1二次型及其标准形
![6.1二次型及其标准形](https://img.taocdn.com/s3/m/a7193f5b6fdb6f1aff00bed5b9f3f90f76c64d25.png)
0 3 3
见书上例2、例3.
只含有平方项的二次型 f k1 y12 k2 y22 kn yn2
称为二次型的标准形(或法式). 例如
f x1, x2 , x3 2x12 4x22 5x32 4x1x3 f x1, x2 , x3 x1 x2 x1 x3 x2 x3
其中1,2 ,, n是 f 的矩阵A aij 的特征值.
用正交变换化二次型为标准形的具体步骤
1. 将二次型表成矩阵形式f xT Ax,求出A;
2. 求出A的所有特征值1,2 ,,n;
3. 求出对应于特征值的特征向量1 ,2 ,,n;
4.
将
特征向量
1
,
2
,,
正
n
交化,
单位化,
得
1 ,2 ,,n ,记C 1 ,2 ,,n ;
xn cn1 y1 cn2 y2 cnn yn
记C (cij),则上述可逆线性变换可 记作
x Cy
将其代入 f xT Ax,有
f xT Ax CyT ACy yT CT AC y.
这样问题就演变为如何找出n阶可逆矩阵C使得CT AC 为对角矩阵。
定义:如果对于n阶方阵A和B,存在n阶可逆矩阵P,使
a1n
a2n
,
ann
x1
x
x2
,
xn
则二次型可记作 f xT Ax,其中A为对称矩阵.
对称矩阵A叫做二次型 f 的矩阵; f 叫做对称矩阵A的二次型;
例1 写出二次型 f x12 2 x22 3 x32 4 x1 x2 6 x2 x3
的矩阵.
解 a11 1, a22 2, a33 3, a12 a21 2, a13 a31 0, a23 a32 3.
线性代数二次形及其标准型
![线性代数二次形及其标准型](https://img.taocdn.com/s3/m/7a85af0202020740be1e9bae.png)
f = x T Ax = (Qy )T A(Qy ) = y T (Q T AQ ) y = y T Λy
2 = λ1 y12 + λ 2 y22 + L + λn yn
线性代数
第五章
11 11
例4
通过正交变换 化二次型
2 2 2 f = 5 x1 + 5 x 2 + 2 x 3 − 8 x1 x 2 − 4 x1 x 3 + 4 x 2 x 3
a11 x1 + a12 x2 + L+ a1n xn a x a x L a x = ( x1 , x2 ,L, xn ) 21 1 + 22 2 + + 2n n LLLL a x + a x + L+ a x nn n n1 1 n2 2
线性代数
写成矩阵形式
解
.
½ 0 f ( x 1 , x 2 , x 3 ) = ( x 1 , x 2 , x 3 ) ½ 2 −3 2 ½
x1 −3 x 2 2 0 x 3
½
注
a ij = a ji ( i ≠ j )为交叉项 x i x j的系数的一半, 的系数的一半, a ii 为平方项 x i2的系数 ,
令正交变换X=QY,则 , 令正交变换
2 2 f = y12 + y 2 + 10 y 3
(注):正交变换化二次形为标准形具有保持几何图形不变 ):正交变换化二次形为标准形具有保持几何图形不变 的特点,使其易于识别。 , 。 线性代数 的特点 使其易于识别 第五章
14 14
(二)用满秩线性变换化二次型为标准形——配方法 用满秩线性变换化二次型为标准形 配方法 例2 化二次型
线代课件§6用配方法化二次型成标准形
![线代课件§6用配方法化二次型成标准形](https://img.taocdn.com/s3/m/29d1e035178884868762caaedd3383c4ba4cb444.png)
4. 配方
最后,我们对每一项进行 配方,得到 $(x-g)^2 = D - g^2$,$(y-f)^2 = D f^2$ 和 $(z-h)^2 = D h^2$。
证明步骤详解
1. 引入配方法
2. 展开式子
这一步是为了将二次型转化为一个更易于处 理的形式,通过引入 $g, f, h$ 和 $D$,使得 二次型可以更容易地被配方。
证明结论总结
• 通过上述的证明过程,我们证明了二次型 $f(x,y,z) = ax^2 + by^2 + cz^2 + 2gx + 2fy + 2fz$ 可以被配方法化为标准形 $f(x,y,z) = a(x-g)^2 + b(y-f)^2 + c(z-h)^2 + D$。
05
配方法化二次型成标准形的应 用
配方法简介
01
配方法的定义:通过配方将二次型转化为完全平方的形式 ,从而将其化为标准形的方法。
02
配方法的步骤
03
1. 将二次型中的每一项写成平方项与线性项之和。
04
2. 将二次型中的平方项组合成完全平方项。
05
3. 将二次型中的线性项与完全平方项相加,得到标准形 。
06
配方法的适用范围:适用于任何实数域上的二次型,尤其 在实数域上的一元二次方程求解中有广泛应用。
理解了二次型标准形在解决实际问题 中的应用价值。
对未来研究的展望
深入研究其他化二次型为标准形 的方法,如三角分解法、正交变
换法等。
探索二次型标准形在各个领域的 应用,如物理学、工程学、经济
学等。
进一步研究二次型标准形与矩阵 理论之间的关系,以及其在矩阵 分解和特征值计算等领域的应用。
线性代数第六章
![线性代数第六章](https://img.taocdn.com/s3/m/0c06dd0d6529647d27285291.png)
1 2 1
1 2 1
对
A
2
2
0
进行行变换可以得到
0
2
5
,所以二次型的秩为
3.
1 0 6
0 0 17
6.1.1 二次型的基本概念
例题
5
1 2
0
例2
设
A
1 2 0
3
4
,写出矩阵
A
所对应的二次型.
4
2
解: f (x1 ,x2 ,x3 ) 5x12 3x22 2x32 x1x2 8x2 x3 .
6.1.2 可逆变换
定义
设由变量 y1 ,y2 ,L ,yn 到 x1 ,x2 ,L ,xn 的线性变换为
x1 c 1 y1
1 c
y1 2 L2
c
n
yn
,
1
x2
c
2 y1
1 c y2 2 L2 L
c
n
yn
,
2
xn cn1 y 1 cn y2 2 L cnn yn ,
(6-3)
c11 c12 L
解:由于
f
中没有平方项,但有
x1
x2
项,由此令
x1 x2
y1 y1
y2 y2
, ,即
x3
y3 ,
x1 1 1 0 y1
x2
1
1
0
y2
,
x3 0 0 1 y3
得
f ( y1 y2 )( y1 y2 ) ( y1 y2 ) y3 y12 y22 y1 y3 y2 y3
n
nn
f aij xi xj
aij xi x j
i ,j 1
线性代数课件:第六章实二次型
![线性代数课件:第六章实二次型](https://img.taocdn.com/s3/m/7f2bd22e1fd9ad51f01dc281e53a580216fc5034.png)
目录 Contents
• 实二次型的定义与性质 • 实二次型的标准型 • 实二次型的正定性 • 实二次型与矩阵的关系 • 实二次型的几何意义
01
实二次型的定义与性质
定义
实二次型
对于一个实数域上的线性空间V,如果存在一个由V上的线性函数f组成的双线 性函数Q,使得对于V中的任意元素x和y,有Q(x,y)=f(x)*f(y),则称Q为V上的 一个实二次型。
实二次型的正定性的应用
判断矩阵的正定性
通过判断矩阵对应的二次型是否正定,可以确定矩阵的正定性。
判断向量组的线性无关性
如果一个向量组在正定二次型下线性无关,则该向量组一定是线性 无关的。
优化问题
在优化问题中,正定二次型常常被用作目标函数的约束条件,以保 证优化问题的解是唯一的。
04
实二次型与矩阵的关系
实二次型的性质
实二次型的矩阵表示
实二次型可以表示为一个矩阵和向量 的乘积,其中矩阵是二次型中各项系 数的矩阵,向量是变量构成的向量。
实二次型具有对称性,即对于任意两 个变量x和y,x和y的系数相等。
实二次型的标准型转换
线性变换
通过线性变换可以将实二次型转 换为标准型。线性变换是通过一 个可逆矩阵左乘原二次型矩阵得
二次型的矩阵表示
对于任意向量x=[x1,x2,...,xn]^T,如果将f(x)表示为矩阵A与向量x的乘积形式 f(x)=Ax,那么二次型Q(x,y)可以表示为Q(x,y)=x^TAy。
性质
实对称性
实二次型总是实对称的,即对于 任意向量x和y,有Q(x,y)=Q(y,x)
。
正定性
如果对于所有的非零向量x,都有 Q(x,x)>0,则称实二次型为正定的 。
(完整版)线性代数第六章实二次型(自考经管类原创)
![(完整版)线性代数第六章实二次型(自考经管类原创)](https://img.taocdn.com/s3/m/6920273ff524ccbff12184d4.png)
正定 半正定 负定 半负定 不定
二、正定矩阵
n元实二次型f xT Ax,及对称矩阵A一一对 应,能够判定A为正定矩阵,则f 必为正定二 次型.正定矩阵有哪些性质,怎样判定?
正定矩阵的性质 定理 对角矩阵为正定矩阵当且仅当中所 有对角元全大于零. 例 E为正定矩阵.
定理(必要条件) 对称矩阵A为正定矩阵,则A 中所有对角元必全部大于零. 反之,若存着对角元aii 0, 则A必然不正定. 例2 f 4x12 6x22 +15x32 x1x2 2x2 x3是否正定? 定理 正定矩阵的合同矩阵必为正定矩阵. 定理 同阶正定矩阵之和必为正定矩阵.
2a12x1x2 + 2a13x1x3 + ···+ 2an-1,nxn-1xn
为二次型.
取 aij = aji , 则
2aijxixj = aijxixj + ajixjxi ,
nn
于是 二次型可写成 f (x1, x2,..., xn )
aij xi x j .
i1 j1
a11 a12 a1n
令
y1 y2
x1 x2
2x2 x3
y3 x3
即作可逆变换
x1 x2
y1+2 y2 y2 +y3
+2y3
x3 = y3
x1 1 2 2 y1
即经可逆变换
x2
=
0
1
1
y2
x3 0 0 1 y3
将二次型化为标准形y12 6 y22 4 y32
O
定义 规范形中k称为二次型的正惯性指数,k r称 为负惯性指数,正负惯性指数的差2k r称为二次 型的符号差.
定理 对称矩阵A与B合同当且仅当它们有相同的 秩和相同的正惯性指数.
二次型及其标准形式
![二次型及其标准形式](https://img.taocdn.com/s3/m/08616f26a31614791711cc7931b765ce05087ac2.png)
二次型及其标准形式二次型是高等数学中一个重要的概念,它与矩阵有着密切的关系。
在本文中,我将介绍什么是二次型,以及如何将二次型化为标准形式。
什么是二次型?二次型是指二次齐次多项式,也就是形如:$$Q(x_1, x_2, ..., x_n) =\sum\limits_{i=1}^n\sum\limits_{j=1}^na_{ij}x_ix_j$$其中 $a_{ij}$ 是实数。
可以看出,二次型与关于 $n$ 个变量的二次方程非常相似,但它们有一个显著的不同点:二次型中的系数 $a_{ij}$ 不一定是已知的数值,它们可以是函数或变量,也可以是其他复杂的表达式。
如何将二次型化为标准形式?将二次型化为标准形式可以帮助我们更好地研究它的性质。
标准形式指的是经过某种变换后,二次型可以写成以下形式:$$Q(x_1, x_2, ..., x_n) = \lambda_1y_1^2 + \lambda_2y_2^2 + ... + \lambda_ny_n^2$$其中 $\lambda_1, \lambda_2, ..., \lambda_n$ 是非负实数,$y_i$ 是 $x_1, x_2, ..., x_n$ 的线性组合,即 $y_i = a_{i1}x_1 +a_{i2}x_2 + ... + a_{in}x_n$。
那么,如何将二次型化为标准形式呢?我们可以用矩阵的方法来处理。
首先,我们用一个 $n$ 行 $n$ 列的矩阵 $A=(a_{ij})$ 来表示二次型。
我们可以将$A$ 矩阵分解为两个矩阵的乘积:$A=QQ^T$,其中 $Q$ 是一个 $n$ 行 $n$ 列的矩阵,且 $Q$ 的列向量构成一个标准正交基。
我们在 $Q$ 的基础上引入新的变量 $y_1, y_2, ..., y_n$,它们的值分别为 $y_i = q_{i1}x_1 + q_{i2}x_2 + ... + q_{in}x_n$,其中$q_{ij}$ 是$Q$ 矩阵的元素。
【指导】线性代数学习指导第六章二次型
![【指导】线性代数学习指导第六章二次型](https://img.taocdn.com/s3/m/4853b03fad51f01dc381f119.png)
【关键字】指导第八章二次型一.内容提要:1. 二次型及其标准形的概念定义1 包含个变量的二次齐次函数称为一个元二次型,简称二次型.若记,则二次型的矩阵形式为,其中A为n阶实对称矩阵,称为二次型的矩阵,A的秩称为二次型的秩.2. 二次型的标准形和规范形定义2 经可逆线性变换所得的只含平方项的二次型称为原二次型的标准形定义3系数为1或0的标准形称为复二次型的规范形;系数为1、-1或0的标准形称为实二次型的规范形.3. 矩阵的合同定义4 设A ,B为n阶矩阵,若存在可逆矩阵C ,使得则称A与B合同矩阵合同具有以下性质:①反身性:n阶矩阵A与A合同;②对称性:若A与B合同,则B与A合同;③传递性:若A与B合同,B与C合同,则A与C合同4. 化二次型为标准形或规范形(1)经可逆线性变换,原二次型矩阵和新二次型的矩阵合同.(2)任意一个实二次型经可逆线性变换可化为标准形.即:任意一个实对角矩阵都与一个对角阵合同.(3)任意一个实二次型都可经过正交变换化为标准形.定理(惯性定理)任意一实二次型都可经过可逆线性变换化为规范形,且规范形唯一.5. 正定二次型和正定矩阵5.1正定二次型定义5 设为一个实二次型,若对任意一组不全为零的实数实二次型的值(8.19)则称为正定二次型,并称正定二次型的矩阵为正定矩阵.5.2二次型正定的充要条件设n元实二次型,则下列几个条件等价:(1)f为正定二次型;(2)A的特征值全为正;(3)f的正惯性指数为n ;(4)A合同于单位阵E ;(5)存在n阶非奇异矩阵C ,使得A =二. 重点难点1. 二次型及其矩阵表示2. 合同变换与合同矩阵3. 二次型的秩 惯性定理4. 二次型的标准形和规范形5. 用正交变换和配方法化二次型为标准形6. 二次型及其矩阵的正定性 三.学习要求1. 了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念.2. 了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,掌握正 交变换和配方法化二次型为标准形的方法.3. 理解正定二次型、正定矩阵的概念,并掌握其判别法. 四.典型题分析例1 求一个正交变换将下列二次型化成标准形: .解 二次型矩阵为 ,故的特征值为当时,可得单位特征向量, 当时,可得单位特征向量,当341λλ==时,可得单位特征向量300P⎪=⎪⎝⎭,400P ⎛⎫⎪= ⎪⎪.于是正交变换为且有222212343f y y y y =-+++.例2.判别下列二次型的正定性:(1)2221231213-2-6-422f x x x x x x x =++;(2)22221234121314243919-242-6f x x x x x x x x x x x x =+++++分析 可用顺序主子式方法判断 解(1) f 的矩阵为-2111-6010-4A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,11-20a =<,-211101-6=>,-2111-60-3801-4=<, 故f 为负定.(2) 1-121-130-3209-61-3-619A ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,1110a =>,1-140-13=>, 1-12-1306029=>,240A =>. 故f 为正定.例3 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .分析二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.解 因为2132********)()()(),,(x x x x x x x x x f ++-++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2. 例4 设,A B 为n 阶正定阵,下列命题正确的是: (A )若A 合同于B ,则A 相似于B(B )若A 相似于B ,则A 合同于B (C )若A 合同于B ,则A 与 B 等价 (D )若A 与 B 等价,则A 合同于B解 由等价、相似、与合同的定义可知:若A 合同于B ,由于一般矩阵1T C C -≠,故不能推出A 相似于B.反之由A 相似于B ,也不能推出A 合同于B.但A 合同于B 时,则A 与 B 必等价,所以选(C).例5 设矩阵200030001A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭,则A 合同于矩阵解:答案(C )和矩阵200030001A ⎛⎫⎪= ⎪ ⎪-⎝⎭的特征值有相同正负个数,即由相同的惯性指数所以选(C)例6 对于二次型(),Tf X X AX =其中A 为n 阶实对称矩阵,下述结论中正确的是 (A )化()f X 为标准形的可逆线性变换是唯一的 (B )化()f X 为规范形的可逆线性变换是唯一的 (C )()f X 的标准形是唯一的 (D )()f X 的规范形是唯一的解 二次型()Tf X X AX =化为标准形或规范形有不同的方法,对应的可逆线性变换也不相同,但正、负惯性指数及非零平方项个数一定是唯一确定的,所以选(D )例8 设矩阵010010000010012A y ⎛⎫⎪⎪= ⎪⎪⎝⎭(1) 已知A 的一个特征值为3,试求y . (2) 求矩阵P ,使()()TAP AP 为对角阵.分析 (1)可将A 的一个特征值3代入方程即可求解y(2) 注意到A 是对称阵,所以2()()TTAP AP P A P =,求出2A 的标准形即可.解 (1)将特征值3代入矩阵A 的特征多项式1001000001012A E y λλλλλ---==--解得2y =(2) 由(1)结果可知因为TA A =,所以2()()TTAP AP P A P =对应于2A 的二次型为 作线性变换:11223344445y x y x y x x y x =⎧⎪=⎪⎪⎨=+⎪⎪=⎪⎩ 即:1122334410000100400150001x y x y X PY x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭将X PY =代入二次型2T X A X ,得 即 矩阵P ,使得例9设n 阶矩阵A 为正定矩阵,试证1A -也是正定矩阵 证明 因A 为正定矩阵,故存在可逆矩阵C ,使得 且1A -依然为对称矩阵,所以1A -也是正定矩阵.五.习题解析习题8.11.写出下列二次型的矩阵.(1)222123123121323(,,)f x x x x x x x x x x x x =+++++(2)12341223(,,,)f x x x x x x x x =-(3)1234135(,,,)246785T f x x x x X X ⎛⎫⎪= ⎪ ⎪⎝⎭解1.(1) 111221112211122⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭;(2) 10002110022100020000⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭;(3) 51625472675⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭解答略2.将二次型表成矩阵形式,并求该二次型的秩.解所以该矩阵的秩为3,也即二次型的秩为3 3.设A = ⎪⎪⎪⎭⎫ ⎝⎛321000000a a a , B = ⎪⎪⎪⎭⎫ ⎝⎛13200000a a a 证明A 与B 合同,并求可逆矩阵C ,使得 B = T C A C . 证明4.如果n 阶实对称矩阵A 与B 合同,C 与D 合同,证明A O B O O C O D ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭与合同. 证明 n 阶实对称矩阵A 与B 合同,所以存在可逆矩阵P ,使T P AP B = C 与D 合同,所以存在可逆矩阵Q ,使TQ CQ D = 故:A O B O O C O D ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭与合同 习题8.21.用正交变换法化下列实二次型为标准形,并求出所用的正交变换.(1)22212312323(,,)2334f x x x x x x x x =+++解(1)200032023A ⎛⎫ ⎪= ⎪⎪⎝⎭解得对应于11λ=的特征向量:1011p ⎛⎫⎪= ⎪ ⎪-⎝⎭当22λ=,代入:解得对应的特征向量:2100p ⎛⎫ ⎪= ⎪⎪⎝⎭当35λ=解得对应的特征向量:3011p ⎛⎫ ⎪= ⎪⎪⎝⎭再分别单位化,得正交阵:令,X QY =得标准形为22212325,f y y y =++(2)12341234(,,,)22f x x x x x x x x =- 解得特征值12341,1λλλλ====- 当1λ=解得特征向量:121010,0101p p ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭当1λ=-解得特征向量:341010,0101p p -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭将34,p p 分别正交化、单位化得正交变换矩阵:0000000Q ⎫⎪⎪⎪⎪⎪= ⎝经正交变换X QY =后得 标准形:22221234f y y y y =+--(3)222123123121323(,,)44448f x x x x x x x x x x x x =++-+-解得特征值1230,9λλλ===当0λ=解得对应的特征向量:12221,001p p -⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭将12,p p正交化、单位化得12,0ηη⎛⎪== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭代入39λ=解得对应的特征向量:3122p ⎛⎫ ⎪=- ⎪⎪⎝⎭单位化得:3132323η⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭将特征向量分别正交化单位化得正交变换矩阵:经正交变换X QY =得标准形:239f y =2.已知二次型2221231231223(,,)222f x x x x x x cx x x x =++++的秩为2.(1) 求c;(2) 求一正交变换化二次型为标准形. 解 (1) 代入A满足()2R A =, 解 (2)得特征值 1232,0λλλ=== 当2λ=解得对应的特征向量:12100,101p p ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当0λ=解得对应的特征向量:311p ⎪=- ⎪⎪⎝⎭将3p单位化得0⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭,最后得 正交变换矩阵:3.已知二次型2212323121323(,,)43248f x x x x x ax x x x x x =-+-+经正交变换化为标准形解由题意:A 与B 正交相似,有trA trB = 即:解得:12102,3a a ==-当0222,244243a A -⎛⎫ ⎪== ⎪ ⎪--⎝⎭代入11λ=解得对应的特征向量:1201p -⎛⎫⎪= ⎪⎪⎝⎭代入26λ=解得对应的特征向量:212521p ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭代入36λ=-解得对应的特征向量:32121p ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭将特征向量分别正交化单位化得正交变换矩阵:代入103a =-1不是A 的特征值,故103a =-舍去 注 本题也可利用A 与B 的特征多项式相等,从而同次项系数相等来确定参数.22224. 222444,,.x x ay z bxy xy yz y Q z a b Q ξηζηζ⎛⎫⎛⎫ ⎪ ⎪+++++== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭+=2已知二次曲面方程可经正交变换化为椭圆柱面方程求的值与正交矩阵解由题意:A 与B 正交相似,有trA trB = 即:解得:3,1a b == 当10λ=解得对应的特征向量:1101p -⎛⎫ ⎪= ⎪⎪⎝⎭当21λ=解得对应的特征向量:2111p ⎛⎫ ⎪=- ⎪⎪⎝⎭当34λ=解得对应的特征向量:3121p ⎛⎫ ⎪= ⎪⎪⎝⎭将特征向量分别单位化得正交变换矩阵:5.用配方法化下列二次型为标准形,并求出所用的可逆线性变换.(1)222123123121323(,,)25228f x x x x x x x x x x x x =+++++解最后得标准形:2221235f y y y =+-可逆变换:(2)123121323(,,)5f x x x x x x x x x =-+ 解 令11221233x y y x y y x y =+=-= 代回二次型 得标准形2221235f z z z =-+可逆变换112233*********x z x z x z -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭(3)222123123121323(,,)55428f x x x x x x x x x x x x =+++-+解 2212123,,012001f y y X CY C --⎛⎫ ⎪=+== ⎪ ⎪⎝⎭其中解答同(1),略6.在二次型 f ( x 1 ,x 2 ,x 3 )= 213232221)()()(x x x x x x -+-+- 中,令得 f = 232221y y y ++可否由此认定上式为原二次型f 的标准形且原二次型的秩为3 ?为什么?若结论是否定的,请你将f 化为标准形并确定 f 的秩. 解11011=011---变换矩阵行列式,变换不可逆,所以不能认为上式为原二次型f 的标准形且原二次型的秩为3因为二次型222123122313222222f x x x x x x x x x =++---,用配方法:令:11232231()2y x x x y x x ⎧=-+⎪⎨⎪=-⎩ 得 本题的另一种解法如下:因为二次型222123122313222222f x x x x x x x x x =++---,其矩阵得特征值1233,0λλλ∴=== 代入123λλ==解得对应的特征向量:12110,110p p --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭正交化得:121120,1112ζζ⎛⎫- ⎪-⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭- ⎪⎝⎭代入0λ=解得对应的特征向量:1111p ⎛⎫ ⎪= ⎪⎪⎝⎭将特征向量分别正交化单位化得正交变换矩阵:标准形:221233f y y =+注意:这两种解法看似答案不一样,但有相同的规范形,所以都正确.7.判断矩阵01111213A B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭与是否合同.解 矩阵01111213A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭与所对应的二次型具有相同的规范形,合同.习题8.31.判定下列实二次型的正定性.(1)2221231231223(,,)23442f x x x x x x x x x x =++-- (2)222123123121323(,,)23222f x x x x x x x x x x x x =---+-+(3)123121323(,,)5f x x x x x x x x x =+- (4)∑∑≤<≤=+nj i jini ixx x112解 (1)231014A ⎪=-- ⎪ ⎪-⎝⎭各阶顺序主子式为:该实二次型正定(2)解答同理,略 (3) 解答同理 解 (4) 二次型矩阵故A 的特征值全为正,所以A 正定2. a 为何值时, 实二次型222123123121323(,,)(2)22f x x x x a x ax x x x x x x =++++--是正定的.解 运用顺序主子式法判定 解(1)2101020123(2)101A E c +c +c λλλλλλ--=---- 解得特征值:12302λλλ∴===, (2) 可求得B 的特征值:22,(2)k k +由于当B 的特征值都大于0时正定,所以02k k ≠≠-且时,B 正定.习题八 (A)一、填空题1.二次型222123123121323(,,)23246f x x x x x x x x x x x x =+-+-+的矩阵为 .解 易得:A =212113233-⎛⎫ ⎪⎪ ⎪--⎝⎭2.2123123(,,)()f x x x ax bx cx =++二次型的矩阵为 .解 易得:A=22ab bbc ac bc c ⎪ ⎪ ⎪⎝⎭3.已知二次型的矩阵为124214447-⎛⎫⎪- ⎪ ⎪--⎝⎭,则该二次型为 . 解 该二次型为:122212321231213233124(,,)2147488447x x x x x x x x x x x x x x x -⎛⎫⎛⎫ ⎪⎪-=+++-- ⎪⎪⎪⎪--⎝⎭⎝⎭4.二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .解因线性变换112223313y x x y x x y x x=+⎧⎪=-⎨⎪=+⎩ 不可逆,故222222123122331123121323(,,)()()()222222f x x x x x x x x x x x x x x x x x x =++-++=++++-得二次型的矩阵为:A =211121121011()2112000R A -⎛⎫⎛⎫⎪ ⎪-→-∴= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭5.化二次型222123123(,,)43f x x x x x x =+-为规范形 ,所用的可逆线性变换矩阵为 .解 令1122332y x y x y ⎧=⎪=⎨⎪=⎩ 得二次型222123123(,,)43f x x x x x x =+-的规范形222123y y y +-,所用的可逆线性变换矩阵为112⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎝6.二次型123121323(,,)f x x x x x x x x x =++的规范形为 . 解 二次型123121323(,,)f x x x x x x x x x =++的矩阵为:A =022*********2⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭求其特征值得:所以规范形为:222123y y y --7.已知实对称矩阵A 与矩阵100012022T X AX ⎛⎫⎪- ⎪ ⎪⎝⎭合同,则二次型的规范形为 .解 由于实对称矩阵A 与矩阵100012022⎛⎫⎪- ⎪ ⎪⎝⎭合同,则对应的二次型有相同的规范形先求实对称矩阵A 与矩阵100012022⎛⎫⎪- ⎪ ⎪⎝⎭的特征值:故:12313,2λλλ===-, 所以规范形为:222123y y y +-8.已知2221231231223(,,)22f x x x x x x x x ax x =++++正定,则a = .解9.当t 满足 , 2221231231213(,,)4242f x x x x x x tx x x x =---++是负定的.解10.已知二次型222123123121323(,,)222f x x x x ax x x x ax x x x =+++--的正、负惯性指数均为1,则a = . 解由于二次型的正负惯性指数均为1,故f 的秩为2,于是A 的秩也为2,所以0A = 解得:1221a a =-=, 代入 当12a ∴=- 求其特征值得:所以规范形为:2213y y -符合题意,故12a =-2不合题意,故舍去21a =二、单项选择题1. 已知二次型22212312312(,,)(1)(1)22(1)f x x x a x a x x a x x =-+-+++的秩为2,则a =( ).(A) 0 (B) 1 (C) 2 (D) 3解 11022211011011000100200200a a A a a a a a a a -+⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+-→+-→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∴=选(A)2. 设100020005A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭, 则下列矩阵中与A 合同的矩阵是( ).(A) ⎪⎪⎪⎭⎫ ⎝⎛-100010001 (B)100020001-⎛⎫⎪- ⎪ ⎪-⎝⎭ (C) ⎪⎪⎪⎭⎫ ⎝⎛--500010002 (D)⎪⎪⎪⎭⎫ ⎝⎛300010002 解 A 的特征值两正一负,只有(A)符合题意(A) A 与B 合同 (B) A 与B 等价 (C) A 与B 相似 (D) A 与B 的秩相等 解 根据合同的定义及性质,可知(A),(B),(D)正确,由相似的定义知(C)不正确. 4. 设A, B 都是正定阵, 则( ).(A) AB, A + B 一定都是正定阵 (B) AB 是正定阵, A + B 不是正定阵 (C) AB 不一定是正定阵, A + B 是正定阵 (D) AB, A + B 都不是正定阵 解 选(C ),因为AB 不一定是对称阵5. 下列条件不能保证n 阶实对称矩阵A 为正定的是( ). (A) 1A -正定(B) 二次型f=X T AX 的负惯性指数为零 (C) 二次型f=X T AX 的正惯性指数为n(D) A 合同于单位矩阵解 选(B),负惯性指数为零也可能是半正定.解 由22212312323123(,,)(2)(23)(3)f x x x x ax x x x x x ax =+-+++++二次型知: 线性变换矩阵的秩为3 选(C )7. 已知实对称矩阵A 满足A 2-5A+6E=O ,则A ( ).(A) 正定 (B) 半正定 (C) 负定 (D) 不定 解 由实对称矩阵A 满足A 2-5A+6E=O 两边同乘以特征向量X,得A 的特征值为2或3 ,故选(A)8. 已知二次型222123123121323(,,)22248f x x x x x x ax x x x x x =--+++经正交变换化为 222123227f y y y =+-,则a =( ).(A)1 (B) -1 (C) 2 (D) -2 解 由题意可知: 故选(D)9. 下列矩阵合同于单位矩阵的是( ).(A) 121242363⎛⎫ ⎪⎪ ⎪⎝⎭ (B)101040101-⎛⎫⎪ ⎪ ⎪--⎝⎭(C) ⎪⎪⎪⎭⎫ ⎝⎛811172121 (D)212134244--⎛⎫ ⎪- ⎪ ⎪⎝⎭解 通过计算可知选(C )10. 设矩阵211112111120A B A B --⎛⎫⎛⎫⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭与矩阵,则与( ).(A) 合同且相似 (B) 合同但不相似(C) 不合同但相似 (D) 既不合同也不相似 解 根据合同与相似的定义可知选(B)(B)1.已知22082006B a ⎛⎫ ⎪= ⎪ ⎪⎝⎭相似于对角阵.(1)求a 的值;(2)求正交变换使二次型X T BX 为标准形.解 先求22082006B a ⎛⎫ ⎪= ⎪ ⎪⎝⎭的特征值:代入二重特征值6λ=解得 0a = 220820006B ⎛⎫⎪∴= ⎪ ⎪⎝⎭代入12λ=-解得对应的特征向量:1120p -⎛⎫⎪= ⎪⎪⎝⎭代入236λλ==解得对应的特征向量:12102,001p p ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭已 正交,将特征向量分别正交化单位化得正交变换矩阵:标准形: 222123266y y y -++解 (1)先写出222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-二次型的矩阵:513153153~0126330129()2,3A c c R A c ---⎛⎫⎛⎫ ⎪ ⎪=--- ⎪ ⎪⎪ ⎪--+⎝⎭⎝⎭=∴= 代入A 解得:1230,4,9λλλ===(2)标准形: 22491y z +=表示椭圆柱面.3. 已知实二次型f=X T AX 中矩阵A 的特征值为1,2,5,A 属于特征值1与2的特征向量分别为12(0,1,1),(1,0,0),TTαα=-=求该二次型.解法1 设A 属于特征值5的特征向量为1323x x x α⎛⎫ ⎪= ⎪ ⎪⎝⎭,因A 为实对称阵,故13230,0T Tαααα==,即2310x x x -=⎧⎨=⎩,取 3301,11x α⎛⎫ ⎪== ⎪ ⎪⎝⎭,构成可逆矩阵()123010,,101101P ααα⎛⎫ ⎪== ⎪ ⎪-⎝⎭计算得:10111200.2011P --⎛⎫ ⎪= ⎪ ⎪⎝⎭因1125P AP -⎛⎫ ⎪=Λ= ⎪ ⎪⎝⎭,故 解法2 设111213122223132333a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭由题意:AX X λ= 得 :1112131213222323332,0011a a a a a a a a a ===-=-=-=- 令 33a a = 可得200101~2015A a a a a ⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭由 相似矩阵迹相同得:2283a a +=⇒= 4.设二次型123(,,)f x x x 经正交变换 解 由题意412TA Q Q ⎛⎫⎪= ⎪ ⎪-⎝⎭=220212020-⎛⎫⎪-- ⎪ ⎪-⎝⎭5.设A 是n 阶对称矩阵,如果对任一n 维向量X ,都有f=X T AX=0,证明A=O .证明 设()111212122212n n ij n n nn a a a a a a A a a a a ⎛⎫⎪⎪== ⎪⎪⎝⎭,由于A 对称,故ij ji a a = 取()0,1,0,0,(1,2,,)i X i n ε===则0,(1,2,)Ti i ii A a i n εε===再取(0,,0,1,0,,0,1,0,,0)jii j X εε=+=则20Tii ij ji jj ij ji ij X AX a a a a a a a =+++=+== 推出 0ij a =,于是A =O6.设f = T X A X 为n 元实二次型 ,λ与μ 分别为其矩阵A 的最大特征值与最小特征值,证明对任一实n 维向量X ,总有 μT X X ≤T X A X ≤ λT X X .证明 f = T X A X μT X X =TX EX μ要证对任一实n 维向量X ,总有 μT X X ≤TX A X只需证明对任一实n 维向量X ,()0TX A E X μ-≥ 即 A E μ-半正定 由于存在正交相似变换矩阵Q ,使1111()T T T T n n Q AQ Q A E Q Q AQ Q EQ λλμμμμμμμμμ---⎛⎫⎛⎫⎪ ⎪-⎪ ⎪=⇒-=-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭显然:11n λμμμμμ--⎛⎫⎪-⎪ ⎪ ⎪-⎝⎭半正定,所以A 与半正定阵合同,故 ()0T X A E X μ-≥ 即对任一实n 维向量X ,总有 μT X X ≤T X A X对任一实n 维向量X ,TX A X ≤λT X X 的情形同理可证7.试证:若A 是n 阶方阵,则 TA A 是半正定矩阵. 证明()0T T T X A AX AX AX =≥TA A ∴是半正定矩阵8.设A 为n 阶实对称矩阵且满足 A A A ++23 = 3 E ,证明A 是正定矩阵.证明 3230A A A E ++-=两边同乘A 的特征向量X, 32(3)0A A A E X ++-=文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.21文档收集于互联网,如有不妥请联系删除. 由于特征向量非零,所以:3230λλλ++-= 即因为A 为n 阶实对称矩阵,所以其特征值只有实数,故只有1是其特征值,因此A 的特征值都为正,所以A 是正定矩阵.9.设实对称矩阵A 与B 合同,若A 是正定矩阵,证明B 是正定矩阵.证明 因为实对称矩阵A 与B 合同,A 是正定矩阵,所以A 与E 合同,由合同的传递性知,E 与B 合同,所以B 是正定矩阵10.设A 是实对称矩阵.证明:当实数t 充分大时,t E + A 是正定矩阵.证法1 显然 A 是对称矩阵.故存在正交阵Q ,有T Q AQ =Λ 对任意的列向量Y ,有:显然当t 充分大时,()T Y tE Y +Λ为正,即t E + A 与正定矩阵合同,t E + A 是正定矩阵.证法2 设A 的特征值为12,,,n λλλ.因A 是实对称阵,故i λ为实数(1,2,)i n = 取 max{}i i t λ>,则tE A +的特征值(1,2,,)i t i n λ+=全大于0,于是t E + A 是正定矩阵.11.设B 为可逆矩阵,A =B T B , 证明f = T X A X 为正定二次型.证明 f = T X A X =T X B T B X =()TBX BX 又B 为可逆矩阵,,X BX θθ∴∀≠≠有,故f = T X A X >0,故f = T X A X 为正定二次型.此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
线性代数第六章二次型试的题目及问题详解
![线性代数第六章二次型试的题目及问题详解](https://img.taocdn.com/s3/m/89e85931a76e58fafab0033a.png)
第六章 二次型一、基本概念n 个变量的二次型是它们的二次齐次多项式函数,一般形式为f(x 1,x 2,…,x n )= a 11x 12+2a 12x 1x 2+2a 13x 1x 3+…+2a 1n x 1x n + a 22x 22+2a 23x 1x 3+…+2a 1n x 1x n + …+a nn x n 2=212nii i ij i j i i ja x a x x =≠+∑∑.它可以用矩阵乘积的形式写出:构造对称矩阵A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑==n nn n n n n n n i n j j i ij n x x x a a a a a a a a a x x x x x a x x x f 21212222111211211121),,(),,( 记[]Tx x x X ,,21=,则f(x 1,x 2,…,x n )= X TAX称对称阵A 为二次型f 的矩阵, 称对称阵A 的秩为二次型f 的秩.注意:一个二次型f 的矩阵A 必须是对称矩阵且满足AX X f T=,此时二次型的矩阵是唯一的,即二次型f 和它的矩阵A (A 为对称阵)是一一对应的,因此,也把二次型f 称为对称阵A 的二次型。
实二次型 如果二次型的系数都是实数,并且变量x 1,x 2,…,x n 的变化范围也限定为实数,则称为实二次型.大纲的要求限于实二次型.标准二次型 只含平方项的二次型,即形如2222211nn x d x d x d f +++= 称为二次型的标准型。
规范二次型 形如221221q p p p x x x x ++--+ 的二次型,即平方项的系数只 1,-1,0,称为二次型的规范型。
二、可逆线性变量替换和矩阵的合同关系对二次型f(x 1,x 2,…,x n )引进新的变量y 1,y 2,…,y n ,并且把x 1,x 2,…,x n 表示为它们的齐一次线性函数⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=nnn n n n nn n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 代入f(x 1,x 2,…,x n )得到y 1,y 2,…,y n 的二次型g(y 1,y 2,…,y n ). 把上述过程称为对二次型f(x 1,x 2,…,x n )作了线性变量替换,如果其中的系数矩阵c 11 c 12 … c 1n C = c 21 c 22 … c 2n … … …c n1 c n2 … c nn 是可逆矩阵,则称为可逆线性变量替换.下面讲的都是可逆线性变量替换.变换式可用矩阵乘积写出:CY X =Y AC C Y CY A CY AX X f T T T T )()()(===记AC C B T =,则B B T=,从而BY Y f T=。
线性代数第6章二次型及其标准形
![线性代数第6章二次型及其标准形](https://img.taocdn.com/s3/m/59706507ed630b1c59eeb5c3.png)
f ( x1, x2 , x3 ) [ x1, x2 , x3 ]4
5
6
x2
xT
Bx
7 8 9 x3
解 f x12 5 x22 9 x33 6 x1 x2 10x1 x3 14x2 x3
1 3 5 x1
[ x1, x2 , x3 ]3
x2 x3
注:二次型
对称矩阵
定义2: 二次型 f X T AX 把对称矩阵 A称为二次型 f 的矩阵 也把二次型 f 称为对称矩阵 A 的二次型 对称矩阵 A 的秩称为二次型 f 的秩
例1 写出下面二次型 f 的矩阵表示,并求 f 的秩r(f)。
1 2 3 x1
an1 x1 an2 x2
a1n xn
a2n xn
ann xn
a11 a12
( x1, x2 ,
,
xn
)
a21
a22
an1
an2
a1n x1
a2
n
x2
ann
xn
a11 a12
1 E A 2 4 2 2 4 2 52 4
4 2 1 4 2 1
所以A的特征值为: 1 2 5, 3 4
1 2 1
2对1
2
5, 解5E
AX
0, 得基础解系为:1
1
解(1)写出二次型 f 的矩阵 (2) 求出A的全部特征值及其对应的标准正交的特征向量
线性代数教学课件第六章二次型第二节化二次型为标准形与规范形
![线性代数教学课件第六章二次型第二节化二次型为标准形与规范形](https://img.taocdn.com/s3/m/31e10dd64431b90d6d85c7c6.png)
原二次型化为
f 2 y12 2 y22 4 y1 y3 8 y2 y3
9
f 2 y12 2 y22 4 y1 y3 8 y2 y3
再配方,得
f 2( y1 y3 )2 2( y2 2 y3 )2 6 y32 ,
z1 y1 y3
令
z2
y2
2 y3
z3
y3
y1 z1 z3
xi yi y j x j yi y j
(k 1,2,, n且k i, j)
xk
yk
化二次型为含有平方项的二次型,然后再按1中方法
配方.
4
例1 用配方法化二次型
f 2 x12 x22 x32 4 x1 x2 4 x1 x3 6 x2 x3
为标准形和规范形,并写出对应的可逆线性替换.
2
定义 如果二次型
f ( x1 , x2 , , xn ) xT Ax 通过可逆线性替换 x Cy ,化为二次型
f d1 y12 d2 y22 dn yn2 , 其中有多少个
则称之为原二次型的标准形.
pi 不为 0 呢?
如果通过可逆线性替换 x Cy ,二次型化成
f
y12
yБайду номын сангаас2
z1
z2
z3
.
x3
z3
11
定理2 任何二次型都可以通过可逆线性变换化 为标准形
f d1 y12 d2 y22 dn yn2 ,
其中 di (i 1,2,, n) 为常数,由相应的线性变 换确定.
证法2 令 f ( x1, x2 ,, xn ) xT Ax, 因 A 为实对称 矩阵,由第五的相应定理知,存在正交阵 Q , 使QT AQ 为对角矩阵.作正交变换 x Qy ,则
线性代数第六章
![线性代数第六章](https://img.taocdn.com/s3/m/ed8332e3524de518964b7d5f.png)
(x1 , x2 , x3 )
T
= (k ,−k ,0 )
T.
例10(1991)考虑二次型 ( )
f = x + 4 x + 4 x + 2λx1 x2 − 2 x1 x3 + 4 x2 x3
2 1 2 2 2 3
+ 2 a n − 1, n x n − 1 x n 称为二次型 .
二次型可记作 f = x T Ax , 其中 A T = A . A 称 为二次型 f的矩阵 , f称为对称阵 A 的二次型 , 对 称阵 A 的秩称为二次型 f的秩 .
二次型与它的矩阵是一一对应的. 二次型与它的矩阵是一一对应的.
提示: 提示:f = X T 1 (A* )T X = X T 1 A* X = X T A−1 X
A A
合同, 由于 A 与 A−1合同,所以 g ( X ) = X T AX 与
f ( X ) = X T A−1 X 具有相同的规范形 具有相同的规范形.
例5(2003)设二次型 ( )
2 2 f ( x1 , x2 , x3 ) = X T AX = ax12 + 2 x2 − 2 x3 + 2bx1 x3 (b > 0),
3) 个系数全为负。 (3) f 的标准形的n个系数全为负。 (4) f 的负惯性指数为 n 。 ) ,(或 (5) A 与负单位矩阵 E 合同,(或- E 为 A 的规范 ) 与负单位矩阵- 合同,( 形) (6)存在可逆 矩阵 P ,使 A = − P P )
T
(7)对称矩阵A为负定的充分必要条件是 : 奇数阶主子 )
( 2 )任给实二次型 f = ∑ a ij x i x j ( a ij = a ji ), 总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 1 2 1 P P 取正交矩阵 1 2 2 1 P 2 P 3 3 2 1 2 则得所欲求的正交变换
即
x1 2 1 y1 2 1 x2 3 1 2 2 y 2 2 1 2 x y3 3
(2) 求出A的全部特征值及其对应的标准正交的特征向量
而它们所对应的标准正交的特征向量为
2 1 P 1 1 3 2
2 1 P2 2 3 1
1 1 P3 2 3 2
(3) 写出正交变换
a11 x1 a12 x2 a1n xn a x a x a x 21 1 22 2 2n n ( x1 , x2 ,, xn ) an1 x1 an 2 x2 ann xn
a11 a 21 ( x1 , x2 , , xn ) a n1 a12 a1n x1 a22 a2 n x2 an 2 ann xn
令B C AC , B diag (k1 , k2 ,, kn )
T
矩阵的合同: 两个 n 阶方阵A、B , 若存在可逆矩阵 C ,
使得 B C T AC , 则称 A 合同于 B .
记作 A B 定理 设A为对称矩阵,且A与B合同,则
(1) B C T AC 仍是对称矩阵 ( 2) r ( B ) r ( A)
(4)
写出
的标准型。 后所得二次型的标准型
易知经上述正交变换
2.
解
2 f x1 , x2 , x3 x12 4 x2 x32 4 x1 x2 8 x1 x3 4 x2 x3
二次型的矩阵为
1 2 4 A 2 4 2 4 2 1
二次型 f X T AX
可逆线性变换X CY
标准形 f Y T (C T AC )Y
k1 y1 k2 y2 kn yn
2 2
2
Y T Y
问题转化为: 求可逆矩阵 C,使得 C T AC 为对角矩阵
回忆: 对于任意实对称矩阵 A, 总存在正交矩阵 T,
使得, T 1 AT 又T为正交矩阵,即 T T T E,
2 2 2 f k1 x1 k2 x2 kn xn
k1 x1 [ x1 ,, x n ] kn xn
称为二次型的标准形(或法式)。
平方项系数只在 1,1,0 中取值的标准形
2 2 2 f x1 x2 x x p p 1 r
对3 4, 解 4E AX 0, 得基础解系为: 3 1,1 2 ,1
T
3)对每个基础解系进行Schmidt正交化、再单位化:
1 2 4 1 2 , 1 1 1 1 1 , 2 2 1 2 ; 3 3 1 2 1 , 1 5 0 1 5
a11 a 令 A 21 a n1
a12 a22 an 2
a1n a2 n ann
x1 x X 2 xn
则 f X T AX 其中 A 为对称矩阵。
二次型的矩阵表示(重点)
注 1、对称矩阵A的写法:A一定是方阵。
f ( x, y ) x 2 y 2 5
不是二次型。
f ( x, y ) 2 x 2 y 2 2 x
取 aij a ji
则 2aij xi x j aij xi x j a ji xi x j
则(1)式可以表示为
f a11 x12 a12 x1 x2 a1n x1 xn
1 3 5 x1 [ x1 , x 2 , x 3 ] 3 5 7 x 2 x T Ax 5 7 9 x3
r( f ) r( A) 2
问: 在二次型 f x T Ax 中,如不限制 A对称, A唯一吗?
定义 只含平方项的二次型
为可逆线性变换。
对于二次型,我们讨论的主要问题是: 寻求可逆的线性变换,使二次型只含平方项。 即二次型
为什么研究可逆 的变换?
f X T AX
i , j 1
a
n
ij
xi x j
经过可逆线性变换 使得
2 1
X CY
2 2 2 n
f k1 y k2 y kn y
即经过可逆线性变换X CY 可化为 f X T AX (CY )T A(CY ) Y T (CT AC)Y
称为二次型的规范形。 (注:这里规范形要求系数为1的项排
在前面,其次排系数为-1的项。)
目的:对给定的二次型
f x1 , x2 ,, xn
找可逆的线性变换(坐标变换):
i , j 1
aij xi x j
n
(1)
x1 c11 y1 c12 y2 c1n yn x c y c y c y 2 21 1 22 2 2n n ( 其中 C (c ij ) 可逆 ) x n cn1 y1 cn 2 y2 cnn yn
2、其对角线上的元素 aii 恰好是 x 2 i i 1,2, , n 的系数。 3、 xi x j 的系数的一半分给 a ji . 可保证 a ij a ji .
2 2 f ( x , x , x ) x 3 x 例如:二次型 1 2 3 1 3 4 x1 x 2 x 2 x 3
例1
写出下面二次型 f 的矩阵表示,并求 f 的秩r(f)。
1 2 3 x1 f ( x1 , x 2 , x 3 ) [ x1 , x 2 , x 3 ]4 5 6 x 2 x T Bx 7 8 9 x3
解
2 2 3 f x1 5 x2 9 x3 6 x1 x2 10 x1 x3 14 x2 x3
作正交变换 X=QY,则
2 4 y32 f 5 y12 5 y2
在几何中,可以保持曲线 注:正交变换化为标准形的优点: (曲面)的几何形状不变。
2. 配方法
⑴ 同时含有平方项 与交叉项 的情形。 例2 用配方法将下列二次型经可逆线性变换化为标准形。
所以 T 1 T T
所以, 对于任意实对称矩阵 A, 总存在正交矩阵 T,
使得, T T AT
此结论用于二次型
主轴定理 (P191 定理6.2.1)
任给二次型 f
i , j 1
aij xi x j aij a ji , 总有
n
正交变换 x Py , 使 f 化为标准形
2 ann xn
称为n维(或n元)的二次型. 关于二次型的讨论永远约定在实数范围内进行!
例如: f ( x, y ) x 2 4 xy 5 y 2
都是二次型。 f ( x, y, z ) 2 x 2 y 2 xz yz f ( x1 , x2 , x3 , x4 ) x1 x2 x2 x3 x2 x4
§6.1 二次型及其标准形
引言 判别下面方程的几何图形是什么?
2 x 2 3 xy y 2 10 (1)
作旋转变换
~ sin( ) ~ y x cos( ) x , ~ ~ 6 y sin( ) x cos( ) y
代入(1)左边,化为:
2 a21 x2 x1 a22 x2 a2 n x2 xn
2 an1 xn x1 an 2 xn x2 ann xn
二次型用和号表示
i , j 1
a
n
ij
xi x j
x1 (a11 x1 a12 x2 a1n xn ) x2 (a21 x1 a22 x2 a2 n xn ) xn (an1 x1 an 2 x2 ann xn )
代入(1)式,使之成为标准形
f
2 k1 y1 2 k 2 y2 2 k n yn
称上面过程为化二次型为标准形。
第六章 二次型及其标准型
§6.1 二次型及其矩阵表示 §6.2 化二次型为标准型
§6.3 正定二次型与正定矩阵
一、 非退化线性变换(可逆线性变换) 设
若
简记
当C 是可逆矩阵时, 称
0 x1 1 -2 ( x1 , x2 , x3 ) -2 0 1/2 x2 0 1/2 -3 x 3
注:二次型 对称矩阵
定义2: 二次型
f X T AX 把对称矩阵 A 称为二次型 f 的矩阵
也把二次型 f 称为对称矩阵 A 的二次型 对称矩阵 A 的秩称为二次型 f 的秩
1
1 2 4 5 0 5 2 E A 2 4 2 2 4 2 5 4 4 2 1 4 2 1
所以A的特征值为: 1 2 5, 3 4
1 2 1 2对1 2 5, 解5E AX 0, 得基础解系为: 1 1 , 2 0 0 1
1 4 2 1 1 1 1 令 i i , 则 1 2 , 2 2 , 3 1 , i 3 5 45 0 5 2 1 5 4 45 2 3 4令Q 1 , 2 , 3 2 5 2 45 1 3 , 则Q是正交矩阵。 0 5 45 2 3 并且QT AQ Q 1 AQ diag 5,5,4