灰色预测模型-gm

合集下载

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是由我国学者邓聚龙教授提出的一种处理不完全信息的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为常用的一种预测模型。

该模型适用于数据量少、信息不完全的场景,能够有效地对未来趋势进行预测。

然而,原始的GM(1,1)模型在某些情况下可能存在预测精度不高的问题。

因此,本文旨在探讨灰色GM(1,1)模型的优化方法及其应用,以提高模型的预测精度和适用性。

二、灰色GM(1,1)模型概述灰色GM(1,1)模型是一种基于一阶微分方程的预测模型,主要用于处理含有不完全信息的数据序列。

该模型通过对原始数据进行累加生成序列,建立微分方程,进而对未来数据进行预测。

GM(1,1)模型具有建模简单、计算方便、对数据要求不高等优点,因此在各个领域得到了广泛应用。

三、GM(1,1)模型的优化针对原始GM(1,1)模型在预测精度方面的不足,本文提出以下优化方法:1. 数据预处理:在建立模型前,对原始数据进行预处理,如平滑处理、去噪等,以提高数据的质量。

2. 参数优化:通过引入背景值优化方法、灰色作用量系数优化等方法,对模型的参数进行优化,提高模型的预测精度。

3. 模型检验:在建立模型后,通过实际数据对模型进行检验,根据检验结果对模型进行修正和优化。

四、优化后GM(1,1)模型的应用经过优化后的GM(1,1)模型在各个领域得到了广泛应用,如经济预测、农业产量预测、人口预测等。

以经济预测为例,优化后的GM(1,1)模型能够更准确地预测未来经济走势,为政府和企业提供决策依据。

在农业领域,该模型可以用于预测农作物产量,为农业生产提供科学指导。

此外,该模型还可以应用于人口预测、能源需求预测等领域。

五、案例分析以某地区农产品产量预测为例,采用优化后的GM(1,1)模型进行预测。

首先,对原始数据进行预处理,建立GM(1,1)模型,并引入背景值优化方法和灰色作用量系数优化方法对模型参数进行优化。

基于GM_(0,n)灰色预测模型的构造预测及定量评价

基于GM_(0,n)灰色预测模型的构造预测及定量评价

的预测评价结果,基于对井田构造发育规律的充分
分析,选取最优评价指标,结合灰色模糊综合评价
和灰色系统建模的方法对井田未采区域地质构造的
复杂程度进行了量化研究和综合评价.
1 井田概况
芦岭井田位于宿东向斜西南翼的东南段,含煤
地层为石炭、二叠系,主采 8# 、9# 、10# 煤层.斜
切断层在井田 内 较 为 发 育,走 向 以 NNE、NE 向 为
度.
(
3)
(
2)断层强度 (
F).它反映断裂构造的发育程
t
2 定量评价指标的确定
作为定量评价地质构造复杂程度的基础,评价
指标的确定直接关系到评价结果的准确性.鉴于不
同区域不同井田多 样 化 的 构 造 条 件 以 及 开 采 方 式、
生产机械化程度的差异,统一的指标体系套用是不
可取的,必须与矿井实际情况紧密结合.在此基础
va
l
ua
t
i
onc
r
i
t
e
r
i
ao
ft
hege
o
l
og
i
c
a
ls
t
r
uc
t
u
r
ec
omp
l
ex
i
t
ft
hemi
neda
r
e
awe
r
ee
s
t
ab

yo
l
i
shedbyus
i
ngt
heg
r
eyf
u
z
z
va
l
ua
t
i
onme

GM(1_1)模型,灰色预测

GM(1_1)模型,灰色预测

小额贷款远程智能预警系统 人数预测算法的设计一、灰色系统的引入:灰色系统是指“部分信息已知,部分信息未知”的“小样本”,“贫信息”的不确定性系统,它通过对“部分”已知信息的生成、开发去了解、认识现实世界,实现对系统运行行为和演化规律的正确把握和描述. 灰色系统模型的特点:对试验观测数据及其分布没有特殊的要求和限制,是一种十分简便的新理论,具有十分宽广的应用领域。

目前,灰色系统已经成为社会、经济、科教、技术等很多领域进行预测、决策、评估、规划、控制、系统分析和建模的重要方法之一。

特别是它对时间序列短、统计数据少、信息不完全系统的建模与分析,具有独特的功效。

灰色模型的优点(一) 不需要大量的样本。

(二) 样本不需要有规律性分布。

(三) 计算工作量小。

(四) 定量分析结果与定性分析结果不会不一致。

(五) 可用于近期、短期,和中长期预测。

(六) 灰色预测精准度高。

二、GM (1,1)模型(grey model 一阶一个变量的灰微分方程模型)灰色理论认为系统的行为现象尽管是朦胧的,数据是复杂的,但它毕竟是有序的,是有整体功能的。

灰数的生成,就是从杂乱中寻找出规律。

同时,灰色理论建立的是生成数据模型,不是原始数据模型。

因此,灰色预测的数据是通过生成数据的GM(1,1)模型所得到的预测值的逆处理结果。

GM (1,1)的具体模型计算式设非负原始序列()()(){}n x x x X )0()0()0()0(,...,2,1=对)0(X作一次累加()()∑==ki i x k x1)0()1( ;k=1,2,…,n得到生成数列为()()(){}n x x x X )1()1()1()1(,...,2,1=于是()k x)0(的GM (1,1)白化微分方程为u ax dtdx =+)1()1( (1—1)其中a,u 为待定参数,将上式离散化,即得()()()()u k x az k x =+++∆11)1()1()1((1—2)其中()()1)1()1(+∆k x 为)1(x在(k+1)时刻的累减生成序列,()()()[]()[])1()()1(11)0()1()1()()0()1()0()1()1(+=-+=∆-+∆=+∆k x k x k x k x k x k x r(1—3)()()1)1(+k x z 为在(k+1)时刻的背景值(即该时刻对应的x 的取值)()()()()()k x k x k x z )1()1()1(1211++=+ (1—4)将(1—3)和(1—4)带入(1—2)得()()()()u k x k x a k x +++-=+]121[1)1()1()0( (1—5)将(1—5)式展开得()()()()()()()()()()()()⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡u a n x n x x x x x n x x x 1:11121:32212121:32)1()1()1()1()1()1()0()0()0( (1—6)令()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=n x x x Y )0()0()0(:32,()()()()()()()()()⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡+--+-+-=1:11121:32212121)1()1()1()1()1()1(n x n x x x x x B ,[]Tu a =Φ 为待辨识参数向量,则(1—6)可以写成Φ=B Y (1—7)参数向量Φ可用最小二乘法求取,即[]()Y B B B u a T T T 1ˆ,ˆˆ-==Φ(1—8)把求取的参数带入(2—16)式,并求出其离散解为()()a u e a u x k xk a ˆˆˆˆ11ˆ)1()1(+⎥⎦⎤⎢⎣⎡-=+- (1—9)还原到原始数据得()()()()()ka a e a u x e k x k x k x ˆ)1(ˆ)1()1()0(ˆˆ11ˆ1ˆ1ˆ-⎥⎦⎤⎢⎣⎡--=-+=+ (1—10)(1—9)、(1—10)式称为GM (1,1)模型的时间相应函数模型,它是GM (1,1)模型灰色预测的具体计算公式。

文天灰色预测模型-GM

文天灰色预测模型-GM

常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时 刻,预测异常值什么时候出现在特定时区内。
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
x (0)(N ) ax (1)(N ) u.
把ax(1) (i) 项移到右边,并写成向量的数量积形式
x(0) (2)
[
x(1)
(2),
1]
a u
x
(
0)
(3)
[
x(1)
(3),
1]
a u
(5)
x(0)
(
N
)
[
x(1)
(
N
),
1]
a u
由于x (1)
t
涉及到累加列 x(1)
当k 1, 2, , N 1时,由(8)式算得的
(8) xˆ(1) (k 1) 是拟合值;
当k N时,xˆ(1) (k 1) 为预报值.这是相对于一次累加序列
x(1) 的拟合值,用后减运算还原,当k 1, 2, , N 1时,
就可得原始序列 x (0) 的拟合值 xˆ(0) (k 1);当k N时,
【例2】 表2列出了某公司1999—2003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
【例2】 表2列出了某公司1999—2003年逐年的销 售额.试用建立预测模型,预测2004年的销售额,要求 作精度检验。
表2 逐年销售额(百万元)
年份 序号

灰色预测模型GM

灰色预测模型GM

灰色预测模型GM (1,1)§1 预备知识平面上有数据序列 nn y x y x y x ,,,,,,2211 ,大致分布在一条直线上。

设回归直线为:b ax y ,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和ni iib ax y J 12最小。

J 是关于a, b 的二元函数。

由120211n i i i i n i i i i i b x a y b J x b x a y a J0112n i i i ni ii i i b a y bx ax y x 则得使J 取极小的必要条件为:ii ii ni i i y nb x a y x x b x a 12 (*)22222ii i i i i i ii i i i i x x n y x x x y b x x n y x y x n a (1)以上是我们熟悉的最小二乘计算过程。

下面提一种观点,上述算法,本质上是用实际观测数据ix 、iy 去表示a 与b,使得误差平方和J 取最小值,即从近似方程b b b x x x a y y y n n 2121 中形式上解出a 与b。

把上式写成矩阵方程。

令 n y y y Y21,b a x x x Y n11121 yix xiiy x , jjyx ,令11121nx x x B ,则b a B Y 左乘T B 得b a B B Y B T T 注意到B T B 是二阶方阵,且其行列式不为零,故其逆阵(B T B)-1存在,所以上式左乘1BB T得 Y BB B b a TT 1(2)可以具体验算按最小二乘法求得的结果(1)与(2)式完全相同,下面把两种算法统一一下:由最小二乘得结果:方程(*) ii i i ni i i y nb x a y x x b x a 12 方程组改写为:n n iii y y y x xx b a nxxx21212111 令:11121nx x x B ,n y y y Y 21, b a a ˆ (*)化为 Y B aB B TTˆ所以Y BB B a TT1ˆ以后,只要数据列n j yx jj,,2,1, 大致成直线,既有近似表达式 n i bax y ii,,2,1当令: n y y y Y21,11121nx x x B ,b a a ˆ 则有 a B Y ˆy BBB a TT1ˆ(2)(2)式就是最小二乘结果,即按最小二乘法求出的回归直线b ax y 的回归系数a 与b。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一一、引言灰色系统理论是一种研究信息不完全、数据不精确的系统的理论。

其中,灰色GM(1,1)模型是灰色系统理论中最为重要和常用的预测模型之一。

该模型通过累加生成序列和一次微分方程进行建模,具有较高的预测精度和实用性。

然而,传统的灰色GM(1,1)模型在某些情况下仍存在模型参数不够准确、预测精度不高等问题。

因此,对灰色GM(1,1)模型进行优化及其应用的研究具有重要意义。

本文将首先介绍灰色GM(1,1)模型的基本原理,然后探讨其优化方法,并最后分析其在不同领域的应用。

二、灰色GM(1,1)模型的基本原理灰色GM(1,1)模型是一种基于微分方程的预测模型,主要用于处理小样本、不完全信息的数据。

该模型通过累加生成序列和一次微分方程进行建模,将原始数据序列转化为微分方程的形式,从而进行预测。

其基本步骤包括:数据累加、建立微分方程、求解微分方程、模型检验等。

三、灰色GM(1,1)模型的优化针对传统灰色GM(1,1)模型的不足,学者们提出了多种优化方法。

其中,基于数据预处理、模型参数优化和预测结果修正的优化方法较为常见。

1. 数据预处理:通过对原始数据进行处理,如去趋势、归一化等,以提高模型的适应性和预测精度。

2. 模型参数优化:通过引入其他因素或变量,如时间序列的波动性、随机性等,对模型参数进行优化,提高模型的预测精度。

3. 预测结果修正:通过对预测结果进行修正,如引入专家知识、其他预测方法的结果等,进一步提高预测精度。

四、灰色GM(1,1)模型的应用灰色GM(1,1)模型在各个领域都有广泛的应用。

下面以几个典型领域为例,介绍其应用。

1. 经济学领域:灰色GM(1,1)模型可以用于预测经济增长、股市走势等经济指标,为经济决策提供参考。

2. 农业领域:灰色GM(1,1)模型可以用于预测农作物产量、农业气候等指标,为农业生产提供指导。

3. 医学领域:灰色GM(1,1)模型可以用于预测疾病发病率、死亡率等指标,为医学研究和卫生政策制定提供参考。

灰色预测模型GM

灰色预测模型GM

灰色预测模型GM (1,1)§1 预备知识平面上有数据序列()()(){}n n y x y x y x ,,,,,,2211 ,大致分布在一条直线上。

设回归直线为:b ax y +=,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和()∑=--=ni i ib ax y J 12最小。

J 是关于a , b的二元函数。

由()()()()⎪⎪⎩⎪⎪⎨⎧=-⋅--⋅=∂∂=-⋅--⋅=∂∂∑∑==0120211ni i i ini i i i ib x a ybJ x b x a ya J()()⎪⎪⎩⎪⎪⎨⎧=--=--⇒∑∑==00112n i i i n i i i i i b a y bx ax y x 则得使J 取极小的必要条件为:⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=ii iini i i y nb x ay xx b x a 12(*)()()()()()()()⎪⎪⎩⎪⎪⎨⎧--=--=∑∑∑∑∑∑∑∑∑∑∑22222i i ii i i i i i i i i i x x n y x x x y b x x n y x y x n a (1)以上是我们熟悉的最小二乘计算过程。

下面提一种观点,上述算法,本质上是用实际观测数据i x 、i y 去表示a 与b ,使得误差平方和J 取最小值,即从近似方程⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎪⎪⎪⎭⎫ ⎝⎛b b b x x x a y y y n n 2121 中形式上解出a 与b 。

把上式写成矩阵方程。

令⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴b a x x x Y n11121x令⎪⎪⎪⎪⎪⎭⎫⎝⎛=11121n x x x B ,则⎪⎪⎭⎫⎝⎛=b a B Y 左乘T B 得⎪⎪⎭⎫ ⎝⎛=b a B B Y B TT注意到B T B 是二阶方阵,且其行列式不为零,故其逆阵(B T B )-1存在,所以上式左乘()1-B B T得[]Y B B B b a TT 1-=⎪⎪⎭⎫ ⎝⎛ (2)可以具体验算按最小二乘法求得的结果(1)与(2)式完全相同,下面把两种算法统一一下:由最小二乘得结果:方程(*) ⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=ii iini i i y nb x ay xx b x a 12方程组改写为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛∑∑∑n n iii y y y x x x b a nx xx21212111 令:⎪⎪⎪⎪⎪⎭⎫⎝⎛=11121nx x x B ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,⎪⎪⎭⎫ ⎝⎛=b a a ˆ (*)化为()Y B aB B TT=ˆ所以()Y B B B a TT ⋅⋅=-1ˆ以后,只要数据列(){}()n j y x j j ,,2,1, =大致成直线,既有近似表达式n i bax y i i ,,2,1 =+=当令:⎪⎪⎪⎪⎪⎭⎫⎝⎛=n y y y Y 21,⎪⎪⎪⎪⎪⎭⎫⎝⎛=11121n x x x B ,⎪⎪⎭⎫⎝⎛=b a a ˆ 则有 aB Y ˆ= ()y BB B aTT ⋅⋅=-1ˆ (2)(2)式就是最小二乘结果,即按最小二乘法求出的回归直线b ax y +=的回归系数a 与b 。

《灰色GM(1,1)模型的优化及其应用》

《灰色GM(1,1)模型的优化及其应用》

《灰色GM(1,1)模型的优化及其应用》篇一一、引言随着科技进步与现实问题复杂性提升,数据分析在各领域中的应用愈显重要。

而作为现代统计学的重要工具之一,灰色预测模型不仅可有效应对小样本、非线性、不完整数据的预测问题,而且其计算过程相对简便。

其中,灰色GM(1,1)模型作为最常用的灰色预测模型之一,具有广泛的应用前景。

然而,该模型在应用过程中仍存在一些不足,如模型参数的优化、预测精度的提升等。

本文旨在探讨灰色GM(1,1)模型的优化方法及其在各领域的应用。

二、灰色GM(1,1)模型概述灰色GM(1,1)模型是灰色预测模型的一种,具有小样本、不完整数据的预测优势。

该模型基于一次累加和累减生成的数据序列进行建模,通过微分方程来描述原始数据序列的变化趋势。

然而,由于原始数据序列的随机性和不完整性,灰色GM(1,1)模型在应用过程中可能存在预测精度不高的问题。

三、灰色GM(1,1)模型的优化为了提升灰色GM(1,1)模型的预测精度,本文提出以下优化方法:(一)引入新参数以改善模型精度。

新参数如平均增长趋势系数等可通过特定方法对数据进行计算后获得,这些参数能够更准确地反映数据的变化趋势。

(二)引入误差校正机制。

根据历史数据的误差进行实时调整,以提高模型的预测精度。

误差校正机制能够有效地纠正模型的预测误差,使模型更符合实际数据的趋势。

(三)使用其他算法进行辅助优化。

如使用神经网络算法、遗传算法等对灰色GM(1,1)模型的参数进行优化,以获得更优的预测结果。

四、灰色GM(1,1)模型的应用经过优化的灰色GM(1,1)模型在各领域具有广泛的应用价值。

例如:(一)在经济学领域,该模型可用于预测经济增长、股票价格等经济指标的变化趋势,为政策制定和投资决策提供参考依据。

(二)在农业领域,该模型可用于预测农作物产量、病虫害发生等农业信息,为农业生产提供科学指导。

(三)在医学领域,该模型可用于预测疾病发病率、死亡率等健康指标的变化趋势,为疾病防控和公共卫生政策制定提供支持。

灰色预测模型GM

灰色预测模型GM

灰色预测模型GM (1,1)§1 预备知识灰色预测是就灰色系统所做的预测。

所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。

一般地说,社会系统、经济系统、生态系统都是灰色系统。

例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。

灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。

尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。

平面上有数据序列()()(){}n n y x y x y x ,,,,,,2211 ,大致分布在一条直线上。

设回归直线为:b ax y +=,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和()∑=--=ni i i b ax y J 12最小。

J 是关于a , b的二元函数。

由()()()()⎪⎪⎩⎪⎪⎨⎧=-⋅--⋅=∂∂=-⋅--⋅=∂∂∑∑==0120211ni ii i ni i i i i b x a y b J x b x a y a J()()⎪⎪⎩⎪⎪⎨⎧=--=--⇒∑∑==00112ni i i n i i i i i b a y bx ax y x 则得使J 取极小的必要条件为:⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=i iii n i i i y nb x a y x x b x a 12(*)()()()()()()()⎪⎪⎩⎪⎪⎨⎧--=--=∑∑∑∑∑∑∑∑∑∑∑22222i i i i i i i i i i i i i x x n y x x x y b x x n y x y x n a (1) 以上是我们熟悉的最小二乘计算过程。

预测方法——灰色预测模型

预测方法——灰色预测模型

预测⽅法——灰⾊预测模型灰⾊预测模型主要特点是模型使⽤的不是原始数据序列,⽽是⽣成的数据序列,核⼼体系为灰⾊模型(GM),即对原始数据作做累加⽣成(累减⽣成,加权邻值⽣成)得到近似指数规律再进⾏建模。

优点:不需要很多数据;将⽆规律原始数据进⾏⽣成得到规律性较强的⽣成序列。

缺点:只适⽤于中短期预测,只适合指数增长的预测。

GM(1,1)预测模型GM(1,1)模型是⼀阶微分⽅程,且只含⼀个变量。

1. 模型预测⽅法2. 模型预测步骤1. 数据检验与处理为保证建模⽅法可⾏,需要对已知数据做必要的检验处理。

设原始数据列为x(0)=(x0(1),x0(2),….x0(n)),计算数列的级⽐λ(k)=x(0)(k−1)x(0)(k),k=2,3,...,n如果所有的级⽐都落在可容覆盖区间X=(e−2n+1,e2n+1)内,则数列可以建⽴GM(1,1)模型且可以进⾏灰⾊预测。

否则,对数据做适当的变换处理,如平移变换:y(0)(k)=x(0)(k)+c,k=1,2,...,n取c使得数据列的级⽐都落在可容覆盖内。

2. 建⽴模型根据1中⽅程的解,进⼀步推断出预测值ˆx(1)(k+1)=(x(0)(1)−ba)e−ak+ba,k=1,2,...,n−13. 检验预测值1. 残差检验ε(k)=x(0)(k)−ˆx(0)(k)x(0)(k),k=1,2,...,n如果对所有的|ε(k)|<0.1|ε(k)|<0.1,则认为到达较⾼的要求;否则,若对所有的|ε(k)|<0.2|ε(k)|<0.2,则认为达到⼀般要求。

2. 级⽐偏差值检验ρ(k)=1−1−0.5a1+0.5aλ(k)如果对所有的|ρ(k)|<0.1,则认为达到较⾼的要求;否则,若对于所有的|ρ(k)|<0.2,则认为达到⼀般要求。

4. 预测预报根据问题需要给出预测预报。

3. py实现import numpy as npimport pandas as pddata=[71.1,72.4,72.4,72.1,71.4,72.0,71.6] # 数据来源len=len(data) # 数据量# 数据检验lambdas=[]for i in range(1,len):lambdas.append(data[i-1]/data[i])X_Min=np.e**(-2/(len+1))X_Max=np.e**(2/(len+1))l_min,l_max=min(lambdas),max(lambdas)if l_min<X_Min or l_max> X_Max:print("该组数据为通过数据检验,不能建⽴GM模型!")else:print("改组数据通过检验")# 建⽴GM(1,1)模型data_1=[] # 累加数列z_1=[]data_1.append(data[0])for i in range(1,len):data_1.append(data[i]+data_1[i-1])z_1.append(-0.5*(data_1[i]+data_1[i-1]))B=np.array(z_1).reshape(len-1,1)one=np.ones(len-1)B=np.c_[B,one]Y=np.array(data[1:]).reshape(len-1,1)a,b=np.dot(np.dot(np.linalg.inv(np.dot(B.T,B)),B.T),Y)print('a='+str(a))print('b='+str(b))## 数据预测data_1_prd=[]data_1_prd.append(data[0])data_prd=[] # 预测datadata_prd.append(data[0])for i in range(1,len):data_1_prd.append((data[0]-b/a)*np.e**(-a*i)+b/a)data_prd.append(data_1_prd[i]-data_1_prd[i-1])# 模型检验## 残差检验e=[]for i in range(len):e.append((data[i]-data_prd[i])/data[i])e_max=max(e)if e_max<0.1:print("数据预测达到较⾼要求!")elif e_max<0.2:print("数据预测达到⼀般要求!")# 输出预测数据for i in range(len):print(data_prd[i])灰⾊Verhulst预测模型主要⽤于描述具有饱和状体的过程,即S型过程,常⽤于⼈⼝预测,⽣物⽣长,繁殖预测及产品经济寿命预测等。

灰色预测GM(1,1)模型分析

灰色预测GM(1,1)模型分析

SPSS分析SPSS教程SPSSAU 灰色预测模型GM11 灰色模型灰色预测GM(1,1)模型分析Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)灰色预测模型可针对数量非常少(比如仅4个),数据完整性和可靠性较低的数据序列进行有效预测,其利用微分方程来充分挖掘数据的本质,建模所需信息少,精度较高,运算简便,易于检验,也不用考虑分布规律或变化趋势等。

但灰色预测模型一般只适用于短期预测,只适合指数增长的预测,比如人口数量,航班数量,用水量预测,工业产值预测等。

灰色预测模型有很多,GM(1,1)模型使用最为广泛,第1个数字表示进行一阶微分,第2个数字1表示只包含1个数据序列。

特别提示:GM(1,1)模型仅适用于中短期预测,不建议进行长期预测;GM(1,1)模型适用于数量少(比如20个以内)时使用,大量数据时不适合。

灰色预测模型案例Contents1背景 (2)2理论 (2)3操作 (3)4 SPSSAU输出结果 (3)5文字分析 (4)6剖析 (5)1背景当前某城市1986~1992共7年的道路交通噪声平均声级数据,现希望预测出往后一期器械声平均声级数据。

数据如下:年份城市交通噪声/dB(A)198671.10198772.40198872.40198972.10199071.40199172.00199271.602理论灰色预测GM(1,1)模型一般针对数据量少,有一定指数增长趋势的数据。

在进行模型构建时,通常包括以下步骤:第一步:级比值检验;此步骤目的在于数据序列是否有着适合的规律性,是否可得到满意的模型等,该步骤仅为初步检验,意义相对较小。

级比值=当期值/上一期值。

一般情况下级比值介于[0.982,1.0098]之间则说明很可能会得到满意的模型,但并不绝对。

第二步:后验差比检验;在进行模型构建后,会得到后验差比C值,该值为残差方差/ 数据方差;其用于衡量模型的拟合精度情况,C值越小越好,一般小于0.65即可。

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用

灰色预测GM模型的改进及应用一、本文概述灰色预测GM模型是一种基于灰色系统理论的预测方法,具有对样本数据量少、信息不完全的复杂系统进行有效预测的优势。

然而,传统的GM模型在处理某些实际问题时,可能会遇到预测精度不高、模型适应性不强等问题。

因此,本文旨在深入研究灰色预测GM模型的改进方法,以提高其预测精度和适应性,并探讨改进后的模型在各个领域的应用价值。

具体而言,本文首先将对灰色预测GM模型的基本原理和算法进行详细阐述,为后续研究提供理论基础。

然后,针对传统GM模型存在的问题,本文将从模型参数优化、数据预处理、模型结构改进等方面提出一系列改进措施,并通过实验验证其有效性。

在此基础上,本文将进一步探讨改进后的GM模型在经济管理、生态环境、社会发展等领域的实际应用,以展示其广泛的应用前景和实用价值。

本文旨在通过深入研究灰色预测GM模型的改进方法,提高其预测精度和适应性,推动灰色系统理论在实际问题中的应用,为相关领域的研究和实践提供有益参考。

二、灰色预测GM模型的基本理论灰色预测GM模型,简称GM模型,是灰色系统理论的重要组成部分。

灰色系统理论是由我国著名学者邓聚龙教授于1982年提出的,它主要用于解决信息不完全、数据不充分的“小样本”和“贫信息”问题。

GM模型以其独特的优势,在众多领域如经济预测、环境科学、工程技术等得到了广泛应用。

GM模型的基本思想是通过生成变换,将原始数据转化为规律性较强的生成数据,然后建立微分方程模型进行预测。

其核心步骤包括:数据累加生成:原始数据序列经过一次或多次累加生成,使原本杂乱无章的数据呈现出明显的规律性,这是灰色预测的关键步骤。

建立微分方程:基于累加生成的数据序列,建立一阶线性微分方程,该方程能够较好地描述数据序列的变化趋势。

还原预测值:通过还原操作,将微分方程求解得到的预测值还原为原始数据序列的预测值。

模型检验:对预测结果进行后验差检验或残差检验,以评估模型的预测精度和可靠性。

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》范文

《灰色GM(1,1)模型的优化及其应用》篇一摘要:本文着重讨论了灰色GM(1,1)模型的优化方法及其在多个领域的应用。

首先,对灰色GM(1,1)模型的基本原理和现有问题进行概述,然后提出优化策略,并通过实例分析展示了其在实际问题中的有效应用。

一、引言灰色系统理论是处理不完全信息、不完全规律性问题的有效工具。

其中,灰色GM(1,1)模型是一种常用于小样本、非线性和不稳定数据序列的预测模型。

随着实际应用中需求的增加,对GM(1,1)模型的优化与提高其预测精度的需求变得更为迫切。

二、灰色GM(1,1)模型概述灰色GM(1,1)模型是一种基于一阶微分方程的灰色预测模型,它通过对原始数据进行累加生成序列来构建微分方程模型,进而进行预测。

该模型适用于数据量少、信息不完全的场景,但原始模型在处理复杂问题时可能存在精度不高、稳定性不足等问题。

三、GM(1,1)模型现有问题及优化方向目前,GM(1,1)模型在应用中存在一些问题,如对噪声数据的敏感度较高、模型稳定性不足等。

为了解决这些问题,需要从模型参数优化、数据处理方法等方面进行改进。

本文将重点讨论模型的优化方向和策略。

四、GM(1,1)模型的优化策略(一)参数优化通过对模型参数进行优化,可以提高模型的预测精度和稳定性。

这包括对初始值、灰度系数等进行优化,使其更符合实际数据特征。

(二)数据处理方法改进在数据预处理阶段,采用更先进的数据处理方法,如数据平滑、去噪等,以提高数据的可靠性和准确性。

此外,还可以通过构建多变量灰色模型,引入其他相关因素来提高预测精度。

(三)模型结构改进对GM(1,1)模型的微分方程结构进行改进,以更好地反映数据的动态变化规律。

例如,引入时间滞后项、非线性项等,使模型更加贴近实际。

五、应用实例分析以某城市交通流量预测为例,通过对原始GM(1,1)模型进行优化,包括参数优化、数据处理方法改进和模型结构改进等方面。

经过优化后的模型在预测精度和稳定性方面均有显著提高,能够更好地反映交通流量的动态变化规律,为城市交通管理和规划提供了有力支持。

灰色预测GM(1,1)方法

灰色预测GM(1,1)方法

灰色预测法一、相关知识1、灰色预测通过原始数据的处理和灰色模型的建立,发现、掌握系统发展规律,对系统的未来状态做出科学的定量预测。

2、灰数简介: (1)灰数的定义:是指未明确指定的数,即处在某一范围内的数,灰数是区间数的一种推广。

灰数实际上指在某一个区间或某个一般的数集内取值的不确定数,通常用记号“⊗”表示灰数。

(2)灰数的分类:(Ⅰ)有下界而无上界的灰数[)∞∈⊗,a 或()a ⊗,如大树的重量必大于零,但不可能用一般手段知道其准确的重量,所以其重量为灰数[)∞∈⊗,0。

(Ⅱ)有上界而无下界的灰数(,]a ⊗∈-∞或()a ⊗,如一项投资工程,要有个最高投资限额,一件电器设备要有个承受电压或通过电流的最高临界值。

(Ⅲ)既有下界a 又有上界a 的灰数称为区间灰数,记为[]a a ,∈⊗。

如海豹的重量在20--25公斤之间,某人的身高在1.8-1.9米之间,可分别记为[]25,201∈⊗,[]9.1,8.12∈⊗(Ⅳ)黑数:当()∞∞-∈⊗,或()21,⊗⊗∈⊗,即当⊗的上、下界皆为无穷或上、下界都是灰数时,称⊗为黑数。

(Ⅴ)白数:当[,]a a ⊗∈且a a =时,称⊗为白数。

(3)本征灰数是指不能或暂时还不能找到一个白数作为其“代表”的灰数,比如一般的事前预测值、宇宙的总能量、准确到秒或微妙的“年龄”等都是本征灰数。

非本征灰数是指凭先验信息或某种手段,可以找到一个白数作为其“代表”的灰数。

我们称此白数为相应灰数的白化值,记为⊗~,并用()a ⊗表示以a 为白化值的灰数。

如托人代买一件价格100元左右的衣服,可将100作为预购衣服价格()100⊗的白化数,记为()100100~=⊗。

例:(1)气温不超过36℃,[]36,0∈⊗。

(2)预计某地区今年夏粮产量在100万吨以上,[)∞∈⊗,100;(3)估计某储蓄所年底居民存款总额将达7000万到9000万,[]9000,7000∈⊗; (4)如某人希望至少获得1万元科研经费,并且越多越好,[)∞∈⊗,10000;(5)有的数,从系统的高层次,即宏观层次、整体层次或认识的概括层次上看是白的,可到低层次上,即到系统的微观层次、分部层次或认识的深化层次则可能是灰的。

灰色预测常用的是GM(精)

灰色预测常用的是GM(精)

灰色预测常用的是GM(1,1)模型,该模型存在一定的缺陷,修正起来比较麻烦,另外GM(1,1)模型是一种呈指数增长的模型,其预测精度受到原始数据序列光滑离散性的限制,当原始数据序列不够光滑离散时,利用GM(1,1)模型所建立的系统预测模型精度就很差。

提高GM(1,1)模型预测精度的方法较多,其中主要是对原始数据序列进行变换,增加离散数据光滑度后再进行预测。

常用的改进方法有:指数加权方法、对数变换方法和开n次方变换方法。

从预测结果的相对误差来看,对数变换的预测结果为最好,开平方变换的预测结果次之,指数加权变换方法较差。

几种灰色预测模型1 GM(1,1)预测模型[1,2]GM(1,1)模型是对原始数据序列作一次累加生成,使生成序列呈一定规律,并用典型曲线拟合,建立其数学模型。

对已知原始数据序列X(0)={X(0)i}(i=1,2,…,n),首先进行一阶累加生成新序数列X(1)然后按新序数列中数据间的变化规律对X(1)建立白化形式的微分方程式中 a、u为由最小二乘法确定的参数。

对X(1)(k)进行逆累加生成还原,可得到X(0)(k)预测值,即为GM (1,1)预测模型2 指数加权法用指数加权方法改造原始数据序列,然后对新生成的数据序列用GM(1,1)模型预测,最后把预测数据序列还原。

具体预测步骤如下:①对原始序列{X(0)(t)}按公式Y(0)(t)=αX(0)(t)+(1-α)Y (0)(t-1)(t=1,2,…,N)生成新序列{Y(0)(t)};②对新序列{Y(0)(t)}应用GM(1,1)模型进行预测,得预测序列{Y(0)(t)};③再按公式X(0)(t)=[Y(0)(t)-(1-α)Y(0)(t-1)]/β(t=1,2,…,N,N+1,…,N+L)将序列{Y(0)(t)}还原成序列{X(0)(t)};④在上述计算中,根据需要,可以调整α、β的值,以控制预测结果和精度。

当α=β=1时,即为原GM(1,1)模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档