初中数学八年级上册 1.1 认识三角形 课件 _2
合集下载
(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时
![(浙教版)八年级数学上册课件:1.1 认识三角形 第2课时](https://img.taocdn.com/s3/m/5381451258fb770bf68a5503.png)
A
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
8.如果一个三角形的三条高的交点恰是三角形的一个顶点, 那么这个三角形是( )
C
A.锐角三角形 C.直角三角形
B.钝角三角形 D.不能确定
9.如图所示.
(1)在△ABC中,BC边上的高是______;
(2)在△AEC中,AE边上的高是______; AB
(3)若AB=CD=3 cm,AE=5 cm,则△AEC的面积S=
1 解:(1)∠DAE=20°.(2)∠DAE=2(β -α ).(3)∠EFG =20°.(4)∠EFG 的大小不发生改变.理由:∵AD⊥BC,
1 FG⊥BC,∴∠GFE=∠EAD.∵∠EAD=2(β -α ),∴∠EFG 的大小不发生改变.
5.如图,AD是△ABC的中线2 ,且AB=6 cm,AC=4 cm,则△ABD 与△ACD的周长之差是_______cm.
第5题图
第6题图
6.如图,点 D 是 BC 的中点,点 E 是 AC 的中点.若 S△ADE=1, 则 S△ABC=_____4___.
知识点3:三角形的高线 7.(义乌市期中)过△ABC的顶点A,作BC边上的高,以下作法 正确的是( )
18.(浦江县月考)(例2变式)已知:在△ABC中,∠C>∠B,AE平 分∠BAC. (1)如图①,AD⊥BC于点D,若∠C=70°,∠B=30°,请你用量 角器直接量出∠DAE的度数; (2)若△ABC中,∠B=α,∠C=β(α<β),根据(1)中的结果大胆猜 想∠DAE与α,β间的等量关系,不必说明理由;
(3)如图②所示,在△ABC中,AD⊥BC,AE平分∠BAC,点 F是AE上的任意一点,过点F作FG⊥BC于点G,且∠B= 40°,∠C=80°,请你运用(2)中结论求出∠EFG的度数;
人教版数学八年级上册全套ppt课件(共1200页)
![人教版数学八年级上册全套ppt课件(共1200页)](https://img.taocdn.com/s3/m/f5d5169e5a8102d277a22f64.png)
由以上讨论可知,可以围成底边长是4cm的等腰三角形.
例4 如图,D是△ABC 的边AC上一点,AD=BD, 试判断AC 与BC 的大小.
三角形的分类 问题1:观察下列三角形,说一说,按照三角形内角 的大小,三角形可以分为哪几类?
锐角三角形、 直角三角形、 钝角三角形.
问题2:你能找出下列三角形各自的特点吗?
三边均 不相等
有两条 边相等
腰
顶角 底角
三条边 均相等
不等边三角形
等腰三角形
等边三角形
底边
总结归纳
➢三条边各不相等的三角形叫做不等边三角形 ; ➢有两条边相等的三角形叫做等腰三角形; ➢三条边都相等的三角形叫做等边三角形.
物到微小的分子结构,都有什么样的形象? (2)在我们的生活中有没有这样的形象呢?试举例.
讲授新课
三角形的概念
问题1:观察下面三角形的形成过程,说一说什么叫三角形? A
定义:由不在同一条直线上的三条线段
首尾顺次相接所组成的图形叫作三角形.
B
C
问题2:三角形中有几条线段?有几个角?
有三条线段,三个角 边:线段AB,BC,CA是三角形的边. 顶点:点A,B,C是三角形的顶点, 角:∠A,∠B,∠C叫作三角形的内角,简称三角
例3 用一条长为18cm的细绳围成一个等腰三角形. (1)如果腰长是底边长的2倍,那么各边的长是多少? (2)能围成有一边的长是4cm的等腰三角形吗?为什么 ?
解:(1)设底边长为xcm,则腰长为2xcm, x+2x+2x=18. 解得 x=3.6. 所以三边长分别为3.6cm、7.2cm、7.2cm.
三角形的三边关系
在A点的小狗,为了尽快吃到B点的香肠,它 选择A B 路线,而不选择A C B
浙教版八年级数学上册1.1认识三角形 (共19张PPT)
![浙教版八年级数学上册1.1认识三角形 (共19张PPT)](https://img.taocdn.com/s3/m/8d7d6ad0da38376baf1fae3f.png)
(1) 1cm, 2cm, 3.5cm;
(2) 4cm, 5cm, 9cm;
(3) 6cm, 8cm, 13cm.
例 2 已知一个三角形的两条边长分别为
3cm和9cm,你能确定该三角形第三条边长 的范围吗? 解:设第三条边长为acm,则
9-3<a<9+3
即 6<a<12
3.如图,在△ABC中,D是AB
例 1 判断下列各组线段中,哪些能组成三
角形,哪些不能组成三角形,并说明理由 (1)a=2.5cm,b=3cm,c=5cm; (2)6.3cm,6.3cm,12.6cm
判断方法:
(1)先从三边中找出最长的一边。 (2)检验较短的两边之和是否大于最长的一边。
课内练习
1.由下列长度的三条线段能组成三角形吗?请说明 理由.
那么C的位置应在什么地方?为什么? C A B 两边之和大于第三边 C C
.
. . .
.
1、有长为3、5、7、10四根木条,要摆 2 种摆法 出一个三角形,有___ 2、一个等腰三角形的一边是2cm,另 20cm 一边是9cm,则这个三角形的周长是______
一个等腰三角形的一边是5cm,另一边是 9cm,则这个三角形的周长是19cm ______________ 或23cm
探究活动
若三角形的周长为17,且三边长都有是 整数,那么满足条件的三角形有多少个?你 可以先固定一边的长,用列表法探求.
九州娱乐网 www.jiuzhouyule.me 车上各放着一把大铁锹和四只大木桶。大个子和小胖子把平车推到淋灰池子旁边,把所有的木桶全部搬下来摆放好,又各自抄起 一把铁锹。大个子问中年男人:“头儿,挖哪个池子里的?”中年男人没有说话,而是走过去从他们手里拿过大铁锹来,将两把铁锹相互 刮蹭敲打一番后又递给他们拿着。接着,又挨着个儿将八只大木桶一个一个地拍打拍打,又提起来倒过去磕打磕打以后重新摆放好。做完 这些之后,中年男人这才问耿老爹:“这位大哥,你想要哪个池子里的?”耿老爹说:“就顺序从边上的这个池子挖吧。”“好喽!”中 年男人答应一声,又认真吩咐大个子和小胖子:“装满当,装结实啊,注意不要铲上边边角角的杂物!”八只大木桶装得满满当当的了。 耿老爹按照中年男人说的数目交了钱,又问这些大木桶的押金几何,中年男人说:“你刚才交的,已经都包含在里边了,押金是一两银子。 什么时候还回来木桶,就如数退还。您稍等一下,我去开个收据。”转头又吩咐大个子年轻后生:“你去,把那个最大的搅拌盆刮蹭干净 了拿过来!”说完,进屋里开收据去了。少顷,中年男人又出来了。除了手里捏着收据之外,他臂弯里还抱来一把泥叶子、一个泥托子、 一把小铲子、一根长短、粗细适度的,光光滑滑的木棍和一包用牛皮纸包着的什么东西。耿老爹和耿正见了,赶快上前接过他臂弯里抱着 的东西。他腾开手以后,先把收据递给耿老爹,说:“这个收据请收好了。”然后,他又指着那些东西说:“这些个家伙什儿你们也拿去 用吧,用完了和八只木桶一块儿还回来就行了!”没等耿老爹道谢,他又指着那把泥叶子说“这把泥叶子很好用!还有,这是一包上好的 榆皮毛拉絮,送你们了。把这个和在石灰膏里充分搅拌,打成的石灰泥特别有韧劲儿,上的墙面既光滑又结实耐磨!”耿老爹喜出望外, 连声道谢!耿正兄妹三人各自拿起一件家伙什儿,小青捧起那包榆皮毛拉絮,都等在一边看着中年男人指挥两个助手装车。耿老爹和中年 男人,应该说是淋灰池子的头儿,分别把两挂平车架起来,大个子和小胖子把八大桶石灰膏和搅拌盆装到车上,再用两根粗实的麻绳将两 辆车上的大桶简单绑系一番,然后从二人手中接过平板车的把手,那头儿就挥手和大家告别了。当八大桶石灰膏被稳稳当当地送到白家院 儿里后,耿老爹赶快取下搅拌盆放在新屋的台阶上,然后和耿正各架住一挂平车,两个助手把八只装满了石灰膏的大木桶合力搬下来放到 新屋里的地中央。大个子年轻后生对耿老爹说:“你们什么还这些木桶和家伙什儿的时候,就过来叫我们一声,我们再推平车过来拉。” 耿老爹道了谢以后,他们就高高兴兴地走了。耿老爹把收据和剩下的银子交给乔氏,问:“不知道他们要的这
1.1.1 认识三角形(同步课件)-八年级数学上册(浙教版)_1
![1.1.1 认识三角形(同步课件)-八年级数学上册(浙教版)_1](https://img.taocdn.com/s3/m/6a8cdc5166ec102de2bd960590c69ec3d4bbdb64.png)
只要把最长的一条线段与另外两条线段的和作比较
解: (1)最长线段是c=5cm,a+b=2.5+3=5.5(cm) ∴a+b>c,所以线段a,b,c能组成三角形 (2)∵最长线段是g=12.6cm e+f=6.3+6.3=12.6(cm), e+f=g,所以线段e,f,g不能组成三角形
题型二 三角形的内角和
过A作ED∥BC,
则∠B=∠BAE (两直线平行,内错角相等)
∠C=∠CAD (两直线平行,内错角相等)
∵∠BAE+∠CAD+∠BAC=180°
E
D
A
(平角的定义)
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
三角形的性质
三角形的内角和等于180° 在△ABC中,∠A+∠B+∠C=180°
三角形三边的关系
3、如图,在△BCD中,BC=4,BD=5.
(1)求CD的取值范围; 解:∵在△BCD中,BC=4,BD=5,
∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数. ∵AE∥BD,∠BDE=125°,
∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°,∴∠C=180°-55°-55°=70°.
题型四 三角形的分类
4、下面三角形被遮住的两个内角是什么角? 试着说明理由。
(1)
(2)
(3)
在三角形中,最多有几个锐角?几个钝角?几个直角呢?
_看__三___角__形___中__最__大___角__的___大__小__:___________________ _最__大___角__是___锐__角__,___三__角___形__就__是___锐__角___三__角__形___;____ _最__大___角__是___直__角__,___三__角___形__就__是___直__角___三__角__形___;____ _最__大___角__是___钝__角__,___三__角___形__就__是___钝__角___三__角__形___.____
解: (1)最长线段是c=5cm,a+b=2.5+3=5.5(cm) ∴a+b>c,所以线段a,b,c能组成三角形 (2)∵最长线段是g=12.6cm e+f=6.3+6.3=12.6(cm), e+f=g,所以线段e,f,g不能组成三角形
题型二 三角形的内角和
过A作ED∥BC,
则∠B=∠BAE (两直线平行,内错角相等)
∠C=∠CAD (两直线平行,内错角相等)
∵∠BAE+∠CAD+∠BAC=180°
E
D
A
(平角的定义)
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
三角形的性质
三角形的内角和等于180° 在△ABC中,∠A+∠B+∠C=180°
三角形三边的关系
3、如图,在△BCD中,BC=4,BD=5.
(1)求CD的取值范围; 解:∵在△BCD中,BC=4,BD=5,
∴1<DC<9.
(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数. ∵AE∥BD,∠BDE=125°,
∴∠AEC=180°-∠BDE=55°, 又∵∠A=55°,∴∠C=180°-55°-55°=70°.
题型四 三角形的分类
4、下面三角形被遮住的两个内角是什么角? 试着说明理由。
(1)
(2)
(3)
在三角形中,最多有几个锐角?几个钝角?几个直角呢?
_看__三___角__形___中__最__大___角__的___大__小__:___________________ _最__大___角__是___锐__角__,___三__角___形__就__是___锐__角___三__角__形___;____ _最__大___角__是___直__角__,___三__角___形__就__是___直__角___三__角__形___;____ _最__大___角__是___钝__角__,___三__角___形__就__是___钝__角___三__角__形___.____
初中数学八年级上册 1.1 认识三角形 (2) 课件
![初中数学八年级上册 1.1 认识三角形 (2) 课件](https://img.taocdn.com/s3/m/c6c79f000b1c59eef9c7b44b.png)
F
当问题直接解决有困难时,
可以考虑从反面着手
B
D
E C
回味 无穷
小结
我的收获是 … … 我感受到了… … 我的问题存在于… …
课外延伸
如图,在ΔABC中,∠A= α60,°∠ ABC,∠ ACB的平分线
交于点O,则∠ B0C的度数为
整体思想
己所不欲,勿施于人。——《论语·颜渊》 君子赠人以言,庶人赠人以财。——荀况 那些尝试去做某事却失败的人,比那些什么也不尝试做却成功的人不知要好上多少。 是非和得失,要到最后的结果,才能评定。 关心自己的灵魂,从来不早,也不会晚。 连一个好朋友都没有的人,根本不值得活着。 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。你要的比别人多,就必须付出得比别人多。 现代的婚姻并不是情感的产物,更多的是竞争的结晶,选配偶其实就是变相的竞争上岗,而小三就是原配最大的竞争对手。 竞争,其实就是一种变相的友谊,在对手的帮助下提高你自己,害怕竞争的人已经输给了对手,注定难取得大的成就。 人们不相信聪明人会做蠢事:人的权利竟是丧失到了如此地步。 所有的胜利,与征服自己的胜利比起来,都是微不足道。所有的失败,与失去自己的失败比起来,更是微不足道。 在茫茫沙漠,唯有前时进的脚步才是希望的象征。
身体健康,
学习进步!
D
B
C
E
AB边上的高是 CE ;
BC边上的高是 AD ;
如图,在△ABC中,AD是△ABC的 高,已知∠BAC=80°,∠C=40°
A
B
D
C
例 如图,在△ABC中,AD是△ABC的高线,
AE是△ABC的角平分线.已知∠BAC=80°,∠C =40°,求∠DAE的大小。
11《三角形的内角》PPT课件人教版数学八年级上册
![11《三角形的内角》PPT课件人教版数学八年级上册](https://img.taocdn.com/s3/m/845341c4b90d6c85ed3ac632.png)
A
证明:∵AD是BC边上的高,
∴∠DMC+∠DCM=90°.
∵∠DMC=∠AME,∠DCM=∠MAE,
E ∴∠AME+∠MAE=90°. ∴∠AEC =90°.
∴△ACE是直角三角形.
B
M ┌ DC
2.如图,在△ABC中,AD⊥BC,∠1=∠B. 求证:
△ABC是直角三角形.
A
证明:∵AD⊥BC,
1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点
D作DE//BC交AC于点E,若∠A=54°,∠B=48°,则
∠CDE的大小是( C )
A.44°
B.40°
C.39°
D.38° A
解析:∵∠A=54°,∠B=48°, ∴∠ACB=180°-54°-48°=78°.
∵CD平分∠ACB,
D
E
∴∠DCB=39°.
答:从B岛看A,C两岛的视角 ∠ABC是60度,从C岛看A,B 两岛的视角∠ACB是90度.
北
北
D
CE
B A
例3 如图,从A处观测C处的仰角∠CAD=30°,从B处 观测C处的仰角∠CBD=45°,从C处观测A,B两处的视 角∠ACB是多少度?
解:∵∠CAD=30°,∠ADC=90°,
C
∴∠ACD=60°.
直∴∠角AC三B角=∠形AC的D-性∠B质C与D=判15定°. 求则证∠B:AC△+A∠BBC+是∠直C=角18三0°.角形.
与△ABC的边BC有什么关系?由这个图, 两解岛:的 ∠A视CD角与∠∠ABC大B是小9相0度等..
∴∠C∠=C9D0B°=,90即°,△A∠BBC+是∠直BC角D=三90角°. 形.
人教版初中数学八年级上册第十一章1111三角形三边课件共27张
![人教版初中数学八年级上册第十一章1111三角形三边课件共27张](https://img.taocdn.com/s3/m/a7c829df76c66137ef06190e.png)
2、三角形按照三条边长的大小关系又有哪些三角形呢?
等边三角形 等腰三角形 不等边三角形 3、等腰三角形与等边三角形有什么共同之处?
都有两条边相等,等边三角形是等腰三角形的特殊情况 4、三角形都可以怎样进行分类?(与同伴交流)
认识等腰三角形
相等的两条边都叫 腰,另一边叫做 底,两腰的夹 角叫做顶角,腰和底边的夹角叫做 底角。
(2)能围成有一边的长为4厘米的等腰三角 形吗?为什么?
通过做这道题,你有何体会?
一是分类讨论的思想。 二是确定三角形的边时,要判断能否构成三角形。 三是方程思想的应用。
用一根长为 18厘米的细铁丝围成一个等腰三角形。 (1)如果腰长是底边的 2倍,那么各边的长是多少?
? 解:设底边长为x厘米,则腰长为2x厘米 x+2x+2x=18
三条线段的长度分别为: (1)3、8、10 (2)5、2、7 (3)5、5、11 (4)13、12、20
能组成三角形的有( B )组。
A、1 B、2 C、3 D、4
思考时间还有156781239400 秒
用两根长度分别为4㎝和7㎝的两根木棒,如果 三角形的周长是偶数,那么第三边的长可能是 哪几个数? 解:设第三边长为x厘米,则3<x<11,
又因为周长为偶数, 所以x必为奇数 因此,第三边的长可能是:5、7、9
思考时间还有156781239400 秒
请用所学的数学 知识解释:
.B
为什么经常有行人Biblioteka 斜穿马路而不走人行横道?道横行人
.A
三角形任意两边之和大于第三边
或者两点之间的所有连线中,线段最短 思考时间还有156781239400 秒
B
a
C
c-b<a
等边三角形 等腰三角形 不等边三角形 3、等腰三角形与等边三角形有什么共同之处?
都有两条边相等,等边三角形是等腰三角形的特殊情况 4、三角形都可以怎样进行分类?(与同伴交流)
认识等腰三角形
相等的两条边都叫 腰,另一边叫做 底,两腰的夹 角叫做顶角,腰和底边的夹角叫做 底角。
(2)能围成有一边的长为4厘米的等腰三角 形吗?为什么?
通过做这道题,你有何体会?
一是分类讨论的思想。 二是确定三角形的边时,要判断能否构成三角形。 三是方程思想的应用。
用一根长为 18厘米的细铁丝围成一个等腰三角形。 (1)如果腰长是底边的 2倍,那么各边的长是多少?
? 解:设底边长为x厘米,则腰长为2x厘米 x+2x+2x=18
三条线段的长度分别为: (1)3、8、10 (2)5、2、7 (3)5、5、11 (4)13、12、20
能组成三角形的有( B )组。
A、1 B、2 C、3 D、4
思考时间还有156781239400 秒
用两根长度分别为4㎝和7㎝的两根木棒,如果 三角形的周长是偶数,那么第三边的长可能是 哪几个数? 解:设第三边长为x厘米,则3<x<11,
又因为周长为偶数, 所以x必为奇数 因此,第三边的长可能是:5、7、9
思考时间还有156781239400 秒
请用所学的数学 知识解释:
.B
为什么经常有行人Biblioteka 斜穿马路而不走人行横道?道横行人
.A
三角形任意两边之和大于第三边
或者两点之间的所有连线中,线段最短 思考时间还有156781239400 秒
B
a
C
c-b<a
1.1 认识三角形 第2课时 浙教版数学八年级上册课件(共24张PPT)
![1.1 认识三角形 第2课时 浙教版数学八年级上册课件(共24张PPT)](https://img.taocdn.com/s3/m/7dec6de329ea81c758f5f61fb7360b4c2e3f2ace.png)
三角形 的高线
从三角形的一个顶 点向它的对边所在 的直线作垂线,顶点
B
和垂足之间的线段
A
∵AD是△ABC的BC上的高线.
∴AD⊥BC
D C ∠ADB=∠ADC=90°.
再见
2
3
4
5
6
7
8
9 10
01 23 4 5
D
C
新课讲解
一个三角形的高线共有几条?总的结高(三:在夹条三钝)角角形的的两外边部上. 因此必须先把它们的边
请画出下面三角形的高线,你延发长现,再了画什它么们?的高.
A
A
F E
B
D
CC
D B
B
A D
CE F
新课讲解
三角形的高线 总结
高 锐角三角形
直角三角形
新课讲解
一个三角形有几条角平分线? (三条) 请画出下面三角形的角平分线,你发现了什么?
三角形的三条角平分线交于一点. 称之为三角形的内心.
做一做
如图,AE是△ABC的角平分线.已知∠B=45°, ∠ C=60°,
求下列角的大小.
C
(1) ∠BAE (2) ∠AEB
E
解(:1)∵AE是△ABC的角平分线
EO D
B
C
(3)当∠A= x 时,求∠BOC的度数 (用含x代数式表示).
变式:将上体中的角平分线改为高线,∠BOC和∠A又会有什么 数量关系?
做一做
A
4.如图,已知:△ABC中,BD、CE分别
是△ABC的两条高线,AC=4,BD=5,CE=3,
EOD
求AB.
B
C
一展身手
A 5.课本P9,探究活动
新浙教版八年级上册初中数学全册教学课件 (2)可修改全文
![新浙教版八年级上册初中数学全册教学课件 (2)可修改全文](https://img.taocdn.com/s3/m/c2534d00bf23482fb4daa58da0116c175f0e1eb4.png)
新浙教版初中数学全册课件
八年级上册
第1章 三角形的初步认识
1.1 认识三角形
第1课时 三角形及其三角、三边的关系
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.三角形的定义. 2.三角形的表示方法及有关概念.(重点) 3.三角形的分类. (重点、难点)
新课讲解
练一练
所有的命题都是基本事实。 X 所有的真命题都是定理 。 X 所有的定理是真命题 。 √ 所有的基本事实是真命题 。 √
课堂小结
1.知识方面: 真命题与假命题的概念
当堂小练
1. “两点之间,线段最短”这个语句是( B ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
2. “同一平面内,不相交的两条直线叫做平行线”这 个语句是( C ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
3.下列各阴影部分的面积有何关系?
S乙>S甲=S丙
拓展与延伸
在△ABC中,AE,AD分别是BC边上的中线和高。说明△ABE的面积
与△AEC的面积相等。
解: ∵ AE是BC边上的中线
A
∴ BE = EC
1 ∵S △ABE= 2 BE · AD
1 S △AEC= 2 EC · AD
B
C ED
新课导入
一对父子的谈话
爸爸,什 么叫法律?
法律就是法 国的律师
那么什么 是法盲?
法盲就是法 国的盲人
新课讲解 知识点1 定义的定义 可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或 术语的定义.
八年级上册
第1章 三角形的初步认识
1.1 认识三角形
第1课时 三角形及其三角、三边的关系
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
1.三角形的定义. 2.三角形的表示方法及有关概念.(重点) 3.三角形的分类. (重点、难点)
新课讲解
练一练
所有的命题都是基本事实。 X 所有的真命题都是定理 。 X 所有的定理是真命题 。 √ 所有的基本事实是真命题 。 √
课堂小结
1.知识方面: 真命题与假命题的概念
当堂小练
1. “两点之间,线段最短”这个语句是( B ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
2. “同一平面内,不相交的两条直线叫做平行线”这 个语句是( C ) A、定理 B、基本事实 C、定义 D、只是命题
当堂小练
3.下列各阴影部分的面积有何关系?
S乙>S甲=S丙
拓展与延伸
在△ABC中,AE,AD分别是BC边上的中线和高。说明△ABE的面积
与△AEC的面积相等。
解: ∵ AE是BC边上的中线
A
∴ BE = EC
1 ∵S △ABE= 2 BE · AD
1 S △AEC= 2 EC · AD
B
C ED
新课导入
一对父子的谈话
爸爸,什 么叫法律?
法律就是法 国的律师
那么什么 是法盲?
法盲就是法 国的盲人
新课讲解 知识点1 定义的定义 可见,在交流时对名称和术语要有共同的认识才行。
一般地,能清楚地规定某一名称或术语的意义的句子叫做该名称或 术语的定义.
人教版数学八年级上册第十一章三角形教学课件
![人教版数学八年级上册第十一章三角形教学课件](https://img.taocdn.com/s3/m/b6320a25a7c30c22590102020740be1e650ecc05.png)
第三根木棒的长度可以是:12cm,14cm, 16cm, 18cm, 20cm ,22cm, 24cm ,26cm
练习3 3.张老师想制作一个三角形木架,现有两根 长度为19cm和9cm的木棒,如果要求第三 根木棒的长度是奇数,我有几种选法?第 三根的长度可以是多少?
有8种选法。
第三根木棒的长度可以是:11cm,13cm, 15cm ,17cm 19cm ,21cm, 23cm ,25cm
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和
即10-3 < x < 10+3(7 < x < 13)
符合条件的数是12 ∴第三根木条应取12cm
小结 三角形:由不在同一直线上的三条线段首尾
顺次相接所组成的图形. A
c
b
B
a
三角形有基本要素
边 (AB、BC、CA)
基本要素 角 (∠A、∠B、∠C)
三角形中线的特点 ①任何三角形有三条中线,并且都在三角 形的内部,交与一点。
②三角形的中线是一条线段。
③三角形的任意一条中线把这个三角形分 成了两个面积相等的三角形。
三角形的表示法
A 我的姓是“△” 我的名字是:三个顶点 字母“A、B、C”
B
记法
C 三角形符号“△”,
如:上图的三角形记作:△ABC (或△BCA或 △CBA 等)
注意:表示三角形时,字母没有先后顺序,但通 常按逆时针来排列.
练习一 1.图中共有 5 个三角形,它们分别 是 :△_A_B_E_, _△_A_B_C_,_△_B_C_E_,_△__B_C_D__,△_C__D_E_ D A
重点:三角形的高、中线和角平分线的定义。
练习3 3.张老师想制作一个三角形木架,现有两根 长度为19cm和9cm的木棒,如果要求第三 根木棒的长度是奇数,我有几种选法?第 三根的长度可以是多少?
有8种选法。
第三根木棒的长度可以是:11cm,13cm, 15cm ,17cm 19cm ,21cm, 23cm ,25cm
解:三角形像框第三边的取值范围是: ∵两边之差<第三边<两边之和
即10-3 < x < 10+3(7 < x < 13)
符合条件的数是12 ∴第三根木条应取12cm
小结 三角形:由不在同一直线上的三条线段首尾
顺次相接所组成的图形. A
c
b
B
a
三角形有基本要素
边 (AB、BC、CA)
基本要素 角 (∠A、∠B、∠C)
三角形中线的特点 ①任何三角形有三条中线,并且都在三角 形的内部,交与一点。
②三角形的中线是一条线段。
③三角形的任意一条中线把这个三角形分 成了两个面积相等的三角形。
三角形的表示法
A 我的姓是“△” 我的名字是:三个顶点 字母“A、B、C”
B
记法
C 三角形符号“△”,
如:上图的三角形记作:△ABC (或△BCA或 △CBA 等)
注意:表示三角形时,字母没有先后顺序,但通 常按逆时针来排列.
练习一 1.图中共有 5 个三角形,它们分别 是 :△_A_B_E_, _△_A_B_C_,_△_B_C_E_,_△__B_C_D__,△_C__D_E_ D A
重点:三角形的高、中线和角平分线的定义。
认识三角形(共27张PPT)数学八年级上册
![认识三角形(共27张PPT)数学八年级上册](https://img.taocdn.com/s3/m/3326ffdbe43a580216fc700abb68a98271feacc7.png)
三角形的中线
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
等底同高的两个三角形面积相等
【议一议】
(1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
钝角三角形和直角三角形的三条中线也交于一点.
(2)钝角三角形和直角三角形的三条中线也有同样的位置关系吗?折一折,画一画,并与同伴进行交流.
1
2
三角形的角平分线
P7做一做第1题
结论:任意三角形的三条角平分线交于同一点.
ቤተ መጻሕፍቲ ባይዱ
三角形的角平分线
【议一议】
在纸上画出一个三角形,并画出它的三条角平分线,它们有怎样的位置关系?与同伴进行交流.
议一议:三角形的角平分线与角的平分线有什么区别和联系?
A
B
F
E
O
C
A
B
E
三角形的角平分线是线段,而角的平分线是一条射线;它们的联系是都是平分角。
课本P9作业讲评
1. 如图,AD,CE分别是△ABC的中线和角平分线,则:
DC BC ∠ECB ∠ACB.
2.如图,在△ABC中,∠ACB=90°,CD是斜边上的高线,CE是△ABC的角平分线,且∠CEB=105°.求∠ECB,∠ECD的大小.
3.如图,AD是△ABC的中线,DE⊥AC,DF⊥AB,E,F 分别是垂足.已知AB=2AC,求DE与DF的长度之比.
1.1 认识三角形
第2课时 三角形的三线
智慧课堂精品课件
知识与技能: 1.了解三角形的角平分线、中线、高线的概念. 2.会利用量角器、刻度尺画三角形的角平分线、中线和高线. 3.会利用三角形的角平分线、中线和高线的概念,解决有关角度、 面积计算等问题.过程与方法:经历三个概念的生成过程,体验锐角、直角、钝角三角 形的高线的位置差异.情感态度与价值观:感受分类讨论的数学思想
精品 2014年八年级数学上册-三角形初步认识 02 与三角形有关的角
![精品 2014年八年级数学上册-三角形初步认识 02 与三角形有关的角](https://img.taocdn.com/s3/m/c5575c3aee06eff9aef8079b.png)
5.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( A.120° B.115° C.110°
5.如图所示,AD 是∠CAE 的平分线,∠B=35°,∠DAC=60°,那么∠ACD 等于( A.25° B.85° C.60° )
) D.95°
6.如图所示,在△ABC 中,E,F 分别在 AB,AC 上,则下列各式不能成立的是( A.∠BOC=∠2+∠6+∠A B.∠2=∠5-∠A C.∠5=∠1+∠4 ) C.∠1+∠4=∠2+∠3
第 02 课 与三角形有关的角
知识点: 三角形的内角与外角 组成的角,叫做三角形的内角。 组成的角,叫做三角形的外角。 个内角,有 对外角。 。三角形的外角和等于 。
注意:三角形有 三角形的内角和等于 三角形外角的性质 (1)三角形的一个外角等于与它不相邻的两个内角之和。 (2)三角形的一个外角大于与它不相邻的任何一个内角。 例 1.求证:三角形内角和为 1800.(三种证明方法)
第 2 页 共 6 页
课堂练习:
1.三角形的一个内角是另一个内角的 A.60°,90°,75°
2 4 ,是第三个内角的 ,则这个三角形各内角度数分别为( 3 5
C.48°,32°,38° ) C.直角三角形 ) C.钝角三角形 D.等腰三角形 D.等边三角形
)
B.48°,72°,60°
D.40°,50°,90°
例 4.如图,在△ABC 中, (1)PB,PC 平分∠ABC 和∠ACB,交于点 P,则∠BPC 与∠A 的关系式为 (2)PB,PC 平分∠EBC 和∠BCF,交于点 P,则∠BPC 与∠A 的关系式为 (3)PB,PC 平分∠ABC 和∠ACE,交于点 P,则∠BPC 与∠A 的关系式为
人教版八年级上册数学《全等三角形》全章说课课件(共20张PPT)
![人教版八年级上册数学《全等三角形》全章说课课件(共20张PPT)](https://img.taocdn.com/s3/m/c911f101fc4ffe473368ab9c.png)
在学习过程中继续体验数学思想 及方法的应用 尝试从不同角度寻求解决问题 的方法并能有效地解决问题; 体会在解决问题的过程中与他 认识通过观察、实验、归纳、类 人合作的重要性; 比、推断可以获得数学猜想;体 验数学活动充满着探索性和创造 性;感受证明过程的严谨性以及 结论的确定性。来自目课 标程内容标准
课程资源的开发与利用。
教材资源 利用教材现有的思考、探究活动、信息技术应用,以及数 学教参的知识拓展与延伸等资料,教师可以充分利用,有序的 引导学生观察、分析、动手实践、分组讨论,得出结论,完成 认识上的飞跃 课外资源 数学课外活动小组 充分利用课外学习小组进行一系列的实 际操作活动,比如寻找超市的位置,测量河的宽度,激发学生 探究知识的欲望; 计算机、多媒体 可以充分发挥计算机的作用,通过演示三 角形平移、翻折、旋转的过程让学生体会对应边、对应角的概 念;
人教版八年级上册数学 《全等三角形》全章说 课课件
目 录
课程目标
说课程标准
内容标准 教材编写特点
说教材
教材编写体例及目的 内容结构 立体整合
教学建议
说建议
评价建议 课程资源的开发与利用建议
课程目标
探索并掌握全等三角 形的性质与判定以及 角平分线的性质与判 定定理;掌握基本的 作图技巧以及推理证 明的格式及基本的推 理技能;体会证明的 必要性;
评价建议
对于课堂的评价方式采取学生自评和教师评价相结合的方式 进行。但是评价的方向不是结果的对错,引导学生通过这道题所 得到的方法技巧是什么,即总结的“副产品”。 课下的评价,借助后黑板,有“谁是数学状元”的活动。同 时可借助作业本、章节测试来了解学生的学习情况。 课堂结束不进行当堂检测,我习惯于课前检测,这样可以留 给学生一天的缓冲时间解决问题,同时通过课前检测很好把学生 的注意力拉过来。
课程资源的开发与利用。
教材资源 利用教材现有的思考、探究活动、信息技术应用,以及数 学教参的知识拓展与延伸等资料,教师可以充分利用,有序的 引导学生观察、分析、动手实践、分组讨论,得出结论,完成 认识上的飞跃 课外资源 数学课外活动小组 充分利用课外学习小组进行一系列的实 际操作活动,比如寻找超市的位置,测量河的宽度,激发学生 探究知识的欲望; 计算机、多媒体 可以充分发挥计算机的作用,通过演示三 角形平移、翻折、旋转的过程让学生体会对应边、对应角的概 念;
人教版八年级上册数学 《全等三角形》全章说 课课件
目 录
课程目标
说课程标准
内容标准 教材编写特点
说教材
教材编写体例及目的 内容结构 立体整合
教学建议
说建议
评价建议 课程资源的开发与利用建议
课程目标
探索并掌握全等三角 形的性质与判定以及 角平分线的性质与判 定定理;掌握基本的 作图技巧以及推理证 明的格式及基本的推 理技能;体会证明的 必要性;
评价建议
对于课堂的评价方式采取学生自评和教师评价相结合的方式 进行。但是评价的方向不是结果的对错,引导学生通过这道题所 得到的方法技巧是什么,即总结的“副产品”。 课下的评价,借助后黑板,有“谁是数学状元”的活动。同 时可借助作业本、章节测试来了解学生的学习情况。 课堂结束不进行当堂检测,我习惯于课前检测,这样可以留 给学生一天的缓冲时间解决问题,同时通过课前检测很好把学生 的注意力拉过来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
断三角形存在的简化方法
两条较短线段之和大于较长线段,则 三条线段能构成 三角形,否则不能。
睿思
1.由下列长度的三条线段能组成三角形吗? 请说明理由. (1)1cm,2cm,3.5cm
(2)4cm,5cm,9cm
何两边
三
之和大于第三边
角
形
身体健康, 最可怕的敌人,就是没有坚强的信念。——罗曼·罗兰
不论你在什么时候结束,重要的是结束之后就不要悔恨。
学习进步!
2.大胆运用猜想,实验验证, 质疑实验,具备数学人的创新
精神和质疑精神
人总是珍惜未得到的,而遗忘了所拥有的。 思想是根基,理想是嫩绿的芽胚,在这上面生长出人类的思想活动行为热情激情的大树。——苏霍姆林斯基 势利之交出乎情,道义之交出乎理,情易变,理难忘。 自己选择的路,跪着也要把它走完。 有志始知蓬莱近,无为总觉咫尺远。 生命的奖赏远在旅途终点,而非起点附近。我不知道要走多少步才能够达到目标,踏上第一千步的时候,仍然可能遭到失败。但是我不会因此 放弃,我会坚持不懈,直至成功! 自知之明是最难得的知识。——西班牙 把气愤的心境转化为柔和,把柔和的心境转化为爱,如此,这个世间将更加完美。 每个人的一生都有许多梦想,但如果其中一个不断搅扰着你,剩下的就仅仅是行动了。 别人能做到的事,自己也可以做到。
1.1 认识三角形(1)
浙教版八年级上册数学
那么,你对三角形的了解有多少呢?
三角形
边: 角: 形状: 面积公式及周长: 生活实际用途:
猜想?
C
b
a
Ac B
△ABC的三边会有怎样的关系呢?
实验探究,合作学习
前后四位同学一起探究,其中两位同学用尺 子测量拿到的三角形三边长度,两位同学记 录数据并填写表格,大家按表格要求一起分 工计算数据,小组长负责汇报实验结果。
实验结论:
三角形任何两边之和大于第三边
验证实验
结论成立的理论依据?
C
b
a
Ac B
两点之间,线段最短
典例精析
例1:判断下列各组线段中,能组成三 角形吗?并说明理由。
(1)a= 20 cm, b= 25cm, c= 20 cm. (成立)
(2)e= 40cm, f= 30cm, g= 8 cm. (不成立)