云南大学信号与系统教案第5章.ppt
信号与系统课程讲义5-4课件
接收端:各路信号由同步检测器分离
信号与系统课程讲义5-4
9
§5.4 PCM、多路复用
f2 (t)
f1 (t)
t 两路信号的时分复用
③时分复用的优点:
a) 电路实现容易:数字电路为主,更易于集成 b) 各路信号之间干扰小:无各种谐波失真,可防止码间串扰 c) 实际传送PCM信号(非PAM信号)
为节省频带,选择矩形不归零码,T, Bf 1/T
码速为 f1/T(bit/s,bps)
⑤ 防止码间串扰
忽略第一过零点以外的高频成分,接收端失真,畸变为 具有上升下降延迟的形状,而且可能出现拖尾振荡。失 真严重时,出现码值误判,引起各路信号之内的串扰
措施:⑴ 用升余弦码;⑵ 用 S a 函数码
信号与系统课程讲义5-4
占据有限的不同频率区间 b)需要设计不同的带通滤波器,容易产生谐波失真
信号与系统课程讲义5-4
8
§5.4 PCM、多路复用
3.时分复用 ①理论基础:满足采样定理,可由采样值唯一确定原始
连续信号
②实现方法:
发送端:设 g 1(t),g2(t),,gn(t)都是频带限于 fm fm 信号,g 1(t),g2(t),,gn(t)可由间隔为 1 /( 2 f m )
信号与系统课程讲义5-4
3
§5.4 PCM、多路复用
3.PCM的优点和缺点 ① 可再生 模拟通信系统:中继器只做信号放大用,有噪声累加,信噪比低 数字通信系统:中继器做信号放大和再生器用,无噪声累加,
信噪比高(每个脉冲持续期间判决脉冲有无, 重新产生脉冲)
中继(信号放大和再生)
发送端
信号与系统课程讲义5-4
《信号和系统》课件
系统建模:MATL AB可以建立系统的数学模型,并进行仿真和优化
控制系统设计:MATL AB可以进行控制系统的设计、分析和优化 信号和系统分析:MATL AB可以进行信号和系统的分析,包括频谱分析、 时域分析等
MATL AB在系统设计中的应用
互动性强:设置问 答、讨论等环节, 增强学生的学习兴 趣和参与度
信号基础知识
信号定义
信号是信息的载体, 是信息的表现形式
信号可以分为模拟 信号和数字信号
模拟信号是连续变 化的物理量,如声 音、图像等
数字信号是离散变 化的物理量,如二 进制数据等
信号分类
连续信号:在时 间上和数值上都
是连续的信号
结构图描述法:通过结构 图来描述系统的结构关系
系统分析的基本概念
系统:由相互关联的 组件组成的整体,具 有特定的功能和目标
信号:信息的载体, 可以是数字、模拟或
其他形式
输入:系统的输入信 号,决定了系统的行
为和输出
输出:系统的输出信 号,是系统对输入信
号的处理结果
反馈:系统对输出信 号的监测和调整,以 实现更好的性能和稳
适用人群
电子信息工程、 通信工程、自 动化等专业的
学生
信号处理、通 信系统、控制 系统等领域的
工程师
对信号和系统 感兴趣的科研
人员
信号和系统课 程的教师和助
教
课件特点
内容全面:涵盖信 号与系统的基本概 念、理论、应用等
逻辑清晰:按照信 号与系统的发展脉 络进行讲解,易于 理解
实例丰富:结合实 际案例,便于学生 理解抽象概念
定常系统:系统参数不随时间变化的系统
信号与系统第五章-4
5.3.3 傅里叶逆变换
前面介绍了傅里叶变换的主要内容和方法。对给定信号或系 统进行分析时,有时需要在时域中进行,有时需要在变换域 (如频域)中进行。在频域中分析系统的性能比较方便,求解 系统的输出响应也比较简单,但频域中的系统输出响应不便 于理解,需要变换回时域中进行分析,这种从频域到时域的 变换就是傅里叶逆变换。 1. 傅里叶逆变换的定义 按照傅里叶变换及逆变换的定义,若已知某信号的傅里叶变 换为 F ( j ) F [ f (t )] f (t )e dt (5-115) 则其傅里叶逆变换的计算公式如下
(2) 部分分式展开法 如果系统在信号作用下的输出响应为 j 的有理分式,则可 将其按部分分式的方式进行展开(展开方法同拉普拉斯展开 法一样,只需将 j 换成即可。具体内容见“连续时间系统 的复频域分析”),然后再对各项分别求其傅里叶逆变换即 可。在对部分分式进行展开和求其逆变换时,常常会用到以 下的傅里叶逆变换结果。 F 1[( j )n ] ( n) (t ) n 0,1, 2, L (5-120) 1 t n 1 t F 1 e u (t ) 0, n 0,1, 2, L (5-121) n ( j ) (n 1)! 【例5-13】 已知 2( j ) F ( j ) ( j 1)( j 3) 1 求 F (j ) 的傅里叶逆变换 F [ F ( j )] 。 解: F (j ) 可展开成以下的部分分式
2
∞
令 s j ,即可将其化为以下的复变函数积分
1 j∞ F ( s)e st ds f (t ) j2 j∞
(5-122) 利用复变函数积分的留数法即可对上述积分进行求解,具体 求解过程略。 葡京娱乐城官网
云南大学信号与系统教案第5章
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
例3 双边信号求其拉普拉斯变换。
f3 (t)
f1 (t)
f
2
(t
)
e e
t t
, ,
t0 t 0
求其拉普拉斯变换。
解 其双边拉普拉斯变换 Fb(s)=Fb1(s)+Fb2(s)
仅当>时,其收敛域
根据收敛坐标0的值可分为以下三种情况:
(1)0<0,即F(s)的收敛域包含j轴,则f(t)的傅里叶
变换存在,并且
F(j)=F(s) s=j
如f(t)=e-2t(t) ←→F(s)=1/(s+2) , >-2;
则 F(j)=1/( j+2)
第5-14页
■
©西安电子科技大学电路与系统教研中心
解
f1 (t)
F1 (s)
s
1
3
s
1
2
Re[s]= > – 2
f2 (t)
F2 (s)
s
1
3
s
1
2
f3 (t)
F3 (s)
s
1
3
s
1
2
Re[s]= < – 3 –3<<–2
可见,象函数相同,但收敛域不同。双边拉氏变换必 须标出收敛域。
第5-8页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
• 例:求矩形脉冲信号的象函数
f
(t
信号与系统ppt课件
结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统全套课件
解答
f (t)
f (t 5)
1
时移
1
1 O 1 t 尺度 变换
f (3t)
6 5 4
t 尺度 O 变换
f (3t 5)
1 t
1O 1
33
时移
1 t
2 4 3
1.4.2 信号的变换
平移、展缩、反折相结合举例
例 已知f (t)如图所示,画出 f(-2t-4)。 解答
右移4,得f (t–4)
反转,得f (-2t–4)
1.4.2 信号的变换
2.信号的平移
将 f (t) → f (t–t0) ,称为对信号f (t)的右移
f (t) → f
其中,t0 >0
如
(t +t0), 称为对信号f t → t–1右移
(t)的左移
f (t-1)
1
f (t) 1
o1 2 t
o1 t
t → t+1左移
雷达接收到的目标回波信号就是平移信号。
1.2.2 信号的分类
1. 确定信号和随机信号
•确定性信号 可用确定的时间函数表示的信号。
对于指定的某一时刻t,有确定的函数值f(t)。
•随机信号
取值具有不确定性的信号。 如:电子系统中的起伏热噪声、雷电干扰信号。
•伪随机信号 貌似随机而遵循严格规律产生的信号(伪随机码)。
1.2.2 信号的分类
f (t)
2
1
4
- 4 - 3 - 2- 1 0 1 2 3
t
-1
-2
f (t) 2 1 - 4 - 3 - 2- 1 0 1 2 3 4 t
(a)
(b)
图5 确定性信号与随机信号
集成电路设计ppt
第四章 半导体集成电路基本加工工艺与设计规则 4.1 引言 4.2 集成电路基本加工工艺 4.3 CMOS工艺流程 4.4 设计规则 4.5 CMOS反相器的闩锁效应 4.6 版图设计
第五章 MOS管数字集成电路基本逻辑单元设计 5.1 NMOS管逻辑电路 5.2 静态CMOS逻辑电路 5.3 MOS管改进型逻辑电路 5.4 MOS管传输逻辑电路 5.5 触发器 5.6 移位寄存器 5.7 输入输出(I/O)单元
[3] 陈中建主译. CMOS电路设计、布局与仿真.北京:机械工 业出版社,2006.
[4](美)Wayne Wolf. Modern VLSI Design System on Silicon. 北京:科学出版社,2002.
[5] 朱正涌. 半导体集成电路. 北京:清华大学出版社,2001. [6] 王志功,沈永朝.《集成电路设计基础》电子工业出版
第六章 MOS管数字集成电路子系统设计 6.1 引言 6.2 加法器 6.3 乘法器 6.4 存储器
6.5 PLA 第七章 MOS管模拟集成电路设计基础
7.1 引言 7.2 MOS管模拟集成电路中的基本元器件 7.3 MOS模拟集成电路基本单元电路 7.4 MOS管集成运算放大器和比较器 7. 5 MOS管模拟集成电路版图设计 第八章 集成电路的测试与可测性设计
1.2 集成电路的发展
1、描述集成电路工艺技术水平的五个技术指标 (1)集成度(Integration Level)
集成度是以一个IC芯片所包含的元件(晶体管或门/数)来 衡量(包括有源和无源元件)。随着集成度的提高,使IC及使用 IC的电子设备的功能增强、速度和可靠性提高、功耗降低、体积 和重量减小、产品成本下降,从而提高了性能/价格比,不断扩 大其应用领域,因此集成度是IC技术进步的标志。为了提高集成 度采取了增大芯片面积、缩小器件特征尺寸、改进电路及结构设 计等措施。为节省芯片面积普遍采用了多层布线结构。硅晶片集 成(Wafer Scale Integration -WSI)和三维集成技术也正在研 究开发。从电子系统的角度来看,集成度的提高使IC进入系统集 成或片上系统(SoC)的时代。
信号与系统 课件 ppt
02
信号的基本性质
信号的时域特性
信号的幅度
描述信号在某一时刻的强度。
信号的频率
描述信号周期性变化的快慢程度。
信号的相位
描述信号在某一时刻相对于参考相位的偏移 。
信号的周期
描述信号重复变化的时间间隔。
信号的频域特性
01
02
03
幅度谱
描述信号在不同频率下的 幅度大小。
相位谱
描述信号在不同频率下的 相位偏移。
信号的叠加原理线性性质若两个信号来自足线性性质,则它们的和也是信号 。
独立性
两个信号之和的图形与它们各自的图形没有交点 。
叠加原理的应用
在电路中,多个信号源共同作用产生的电流可以 叠加。
信号的相加与相乘
信号相加
两个信号的图形在时间上对齐,求和后得到一个新的信号。
信号相乘
两个信号相乘得到一个新的信号,称为卷积。
感谢您的观看
THANKS
卷积的性质
两个信号相乘后,其卷积的图形与两个信号分别作图形变换后的 图形有类似形状。
信号的频谱合成与分解
频谱的概念
01
一个周期信号可以分解为多个不同频率的正弦波的和。
傅里叶级数
02
将周期信号分解为正弦波的级数,其中每个正弦波都有一个特
定的频率。
频谱分析
03
通过傅里叶变换将时域信号转换为频域信号,可以观察到信号
信号与系统 课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本性质 • 系统的基本性质 • 信号与系统的基本分析方法 • 信号的合成与分解 • 系统的响应与稳定性分析
01
信号与系统概述
信号的定义与分类
信号与系统 全套课件完整版ppt教学教程最新最全
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类
《信号与系统教案》课件
《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是反映随机过程或者确定过程的变量,在时间或空间上的函数。
分类:模拟信号、数字信号、离散信号等。
1.2 系统的概念与分类定义:系统是输入与输出之间存在某种关系的装置。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的处理方法信号处理:滤波、采样、量化、调制等。
系统处理:稳定性分析、频率响应分析、时间响应分析等。
第二章:连续信号及其运算2.1 连续信号的基本运算叠加原理:两个连续信号的叠加,其结果也是连续信号。
时移原理:连续信号的时间平移,其结果仍为连续信号。
2.2 连续信号的傅里叶变换傅里叶变换的定义与性质常用连续信号的傅里叶变换2.3 连续信号的拉普拉斯变换拉普拉斯变换的定义与性质常用连续信号的拉普拉斯变换第三章:离散信号及其运算3.1 离散信号的基本运算叠加原理:两个离散信号的叠加,其结果也是离散信号。
时移原理:离散信号的时间平移,其结果仍为离散信号。
3.2 离散信号的傅里叶变换傅里叶变换的定义与性质常用离散信号的傅里叶变换3.3 离散信号的Z变换Z变换的定义与性质常用离散信号的Z变换第四章:信号与系统的时域分析4.1 系统的时域响应单位冲激响应:系统对单位冲激信号的响应。
单位阶跃响应:系统对单位阶跃信号的响应。
4.2 信号的时域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。
信号的采样与恢复:采样定理、信号的恢复方法。
4.3 信号的时域分析方法傅里叶级数:信号的分解与合成。
拉普拉斯展开:信号的分解与合成。
第五章:信号与系统的频域分析5.1 系统的频域响应频率响应的定义与性质常用系统的频率响应分析5.2 信号的频域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。
信号的调制与解调:调幅、调频、调相等。
5.3 信号的频域分析方法傅里叶变换:信号的频谱分析。
离散傅里叶变换:信号的离散频谱分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 连续系统的s域分析
5.1 拉普拉斯变换
一、从傅里叶变换到拉普拉斯变换 二、收敛域 三、(单边)拉普拉斯变换
5.2 拉普拉斯变换的性质 5.3 拉普拉斯变换逆变换 5.4 复频域分析
一、微分方程的变换解 二、系统函数 三、系统的s域框图 四、电路的s域模型
点击目录
第5-1页
在这一章将通过把频域中的傅里叶变换推广到复频 域来解决这些问题。
本章引入复频率 s = σ+jω,以复指数函数est为基本信 号,任意信号可分解为不同复频率的复指数分量之和。 这里用于系统分析的独立变量是复频率 s ,故称为s域分 析。所采用的数学工具为拉普拉斯变换。
第5-2页
■
©西安电子科技大学电路与系统教研中心
解
F2b (s)
0 e t e st d t e (s )t
(s )
0
1
[1 lim e e ( )t j
(s ) t
t]
无界 , Re[s] .
不定
,
jω
1
(s
)
,
可见,对于反因果信号,仅当
Re[s]=<时,其拉氏变换存在。
0
βσ
收敛域如图所示。
第5-6页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
例3 双边信号求其拉普拉斯变换。
f3 (t)
f1 (t)
f2 (t)
e t , e t ,
求其拉普拉斯变换。
t0 t 0
解 其双边拉普拉斯变换 Fb(s)=Fb1(s)+Fb2(s)
仅当>时,其收敛域
jω
为 <Re[s]<的一个带
,进入相关章节
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
第五章 连续系统的s域分析
频域分析以虚指数信号ejωt为基本信号,任意信号可 分解为众多不同频率的虚指数分量之和。使响应的求解 得到简化。物理意义清楚。但也有不足: (1)有些重要信号不存在傅里叶变换,如e2tε(t); (2)对于给定初始状态的系统难于利用频域分析。
5.1 拉普拉斯变换
通常遇到的信号都有初始时刻,不妨设其初始时刻为 坐标原点。这样,t<0时,f(t)=0。从而拉氏变换式写为
F (s) f (t) est d t 0
称为单边拉氏变换。简称拉氏变换。其收敛域一定是 Re[s]> ,可以省略。本课程主要讨论单边拉氏变换。
三、单边拉氏变换
def
F(s)
f (t) e ( j )t d t
f(t) e-t=
1
2
Fb (
j) e j
td
f (t) 1
2
Fb (
j ) e( j )t d
令s = + j,d =ds/j,有
第5-3页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
Fb (s)
f (t)est d t
(1)f(t)在有限区间 a<t<b 内可积( 其中 0 a b )
可积。
(2)对于某个 0 ,有
lim
t
f (t) e t
0,
0
第5-10页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
四、常见函数的拉普拉斯变换
1、(t) ←→1,> -∞
2、(t) ←→1/s ,> 0
f (t)
1
2
j
j
F j b
(s)
e
st
ds
双边拉普拉斯变换对
Fb(s)称为f(t)的双边拉氏变换(或象函数), f(t)称为Fb(s) 的双边拉氏逆变换(或原函数)。
二、收敛域
只有选择适当的值才能使积分收敛,信号f(t)的双 边拉普拉斯变换存在。
使 f(t)拉氏变换存在的取值范围称为Fb(s)的收敛域。 下面举例说明Fb(s)收敛域的问题。
状区域,如图所示。
α0
βσ
第5-7页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
例4 求下列信号的双边拉氏变换。
f1(t)= e-3t (t) + e-2t (t) f2(t)= – e -3t (–t) – e-2t (–t) f3(t)= e -3t (t) – e-2t (– t)
解
f1 (t)
F1 (s)
s
1 3
s
1
2
Re[s]= > – 2
f2 (t)
F2 (s)
s
1
3
s
1
2
f3 (t)
F3 (s)
s
1
3
s
1
2
Re[s]= < – 3 –3<<–2
可见,象函数相同,但收敛域不同。双边拉氏变换必 须标出收敛域。第5- Nhomakorabea页■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
3、指数函数es0t (t) ←→
F(s) es0testd t e(ss0 )t
0
(s s0 )
1
, Re[s] ,
无界 ,
可见,对于因果信号,仅当 Re[s]=>时,其拉氏变换存 在。 收敛域如图所示。
jω 0α
S平面(复数平面)
收敛边界
σ 收敛域
第5-5页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
例2 反因果信号f2(t)= et(-t) ,求其拉普拉斯变换。
f (t) est d t
0
简记为F(s)=£[f(t)] f(t)=£ -1[F(s)]
f
(t
)
def
1
2
j
j
F
j
(
s)
e
st
d
s
(t
)
或
f(t)←→ F(s)
第5-9页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
• 满足下列条件的因果函数f(t)存在拉普拉斯变换, 其收敛域为 以右0 ,即 Re[s的] 半0 平面
信号与系统 电子教案
5.1 拉普拉斯变换
一、从傅里叶到拉普拉斯变换
有些函数不满足绝对可积条件,求解傅里叶变换困难。 为此,可用一衰减因子e-t(为实常数)乘信号f(t) , 适当选取的值,使乘积信号f(t) e-t当t∞时信号幅 度趋近于0 ,从而使f(t) e-t的傅里叶变换存在。
相Fb应(+的j傅)=里ℱ叶[ 逆f(t变) e换-t]为= f (t) e t e j t d t
第5-4页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
5.1 拉普拉斯变换
例1 因果信号f1(t)= et (t) ,求其拉普拉斯变换。
解
F1b (s)
et e st d t e (s )t
0
(s )
0
1 [1 lim e( )t
(s ) t
e j
t]
1
不s 定