微生物大小测定和显微镜直接计数
实验三 微生物的显微计数和大小测量
微生物的显微计数和大小测量生05 边晔2010030026周四班5-1 同组成员:徐竞实验时间2012年10月25日一、实验目的1)了解血球计数板的构造和使用方法,并掌握使用血球计数板进行微生物计数的方法。
2)学习用显微测微尺测量酵母细胞的大小,对微生物大小有一种直观的认识。
3)学习灭菌技术及注意事项.二、实验原理血球计数板是一块比普通载玻片厚得多的玻璃片,其上由四条平行槽构成的三个平台,中间的平台较宽,其中间又被一短槽隔成两半,每边平台上面各刻有一个方格网,即为此计数板的计数室。
计数室的长宽各为1 mm,中间平台下陷0.1mm,故盖上盖玻片后计数室的容积为0.1mm3。
计数室有两种规格。
一种是16X25型,共有16个大格,每个大格又分为25个小格。
另一种是25X16型,共有25个大格,每个大格又分成16个小格。
应用血球计数板在显微镜下直接计数微生物细胞的数量,就是先测定若干个方格中的微生物细胞的数量。
再换算成每ml菌液中微生物细胞数量。
微生物大小的测定,需要在显微镜下借助测微尺(包括目镜测微尺和镜台测微尺)完成。
目镜测微尺是一块放入目镜中的圆形玻片,用于测量经显微镜放大后的细胞图像。
目镜测微尺需要先用镜台测微尺进行校正,然后根据微生物细胞相对于目镜测微尺的格数,即可计算出细胞的实际大小。
三、实验器材实验用具:载玻片、盖片、吸管、擦镜纸、装有蒸馏水的洗瓶。
实验仪器:显微镜、目镜测微尺、镜台测微尺、血球计数板、手动计数器;菌种:酿酒酵母四、实验步骤1显微计数1) 200rpm,28 ℃, 36h,培养细菌,稀释20倍分装EP管。
(助教统一完成)2)在加样前,先对计数板的计数室进行镜检若有污物,则需清洗后才能进行计数。
3)震荡摇匀样品后滴加样品4)显微镜计数5) 重复10次实验过程,取其平均值,按公式计算每ml 菌液中所含的酵母菌细胞数。
6) 清洗血球计数板2微生物细胞大小的测定 1) 目镜测微尺校准。
微生物大小的测定及显微镜直接计数法
微生物大小和数量的测定一、目的要求1.学习并掌握使用显微镜测微尺测定微生物大小的方法。
2.增强微生物细胞大小的感性认识。
3.了解血球计数板的构造、明确其计数原理。
4.学习并掌握使用血球计数板测定微生物细胞或孢子数量的方法。
二、基本原理l.显微测微尺显微测微尺可用于测量微生物细胞或孢子的大小,包括镜台测微尺和目镜测微尺两个部件。
目镜测微尺(图1)是一块可放入接目镜内的圆形小玻片,其中央有精确的等分刻度,有等分为50小格和100小格两种。
测量时,需将其放在接目镜中的隔板上,用以测量经显微镜放大后的细胞物象。
由于不同显微镜或不同的目镜和物镜组合放大倍数不同,目镜测微尺每小格所代表的实际长度也不一样。
因此,用目镜测微尺测量微生物大小时,必须先用镜台测微尺进行校正,以求出该显微镜在一定大放大倍数的目镜和物镜下,目镜测微尺每小格所代表的相对长度。
然后根据微生物细胞相当于目镜测微尺的格数,即可计算出细胞的实际大小。
镜台测微尺全长1mm,等分为100格,每格0.01mm。
用于校正目镜测微尺每小格的长度.目镜测微尺每格长度(μm)=两重合线间镜台测微尺格数×10两重合线间目镜测微尺格数2.表示方法球菌用直径来表示其大小;杆菌则用宽和长的范围来表示。
如金黄色葡萄球菌直径约为0.8µm,枯草芽孢杆菌大小为0.7~0.8×2~3µm。
图1:目镜测微尺和镜台测微尺3.显微直接计数法:将小量待测样品悬浮液置于计菌器上,于显微镜下直接计数的一种简便、快速、直观的方法。
显微计数法适用于各种含单细胞菌体的纯培养悬浮液,如酵母、细菌、霉菌孢子等。
菌体较大的酵母菌或霉菌孢子可采用血球计数板,一般细菌则采用彼得罗夫·霍泽(Petrof Hausser)细菌计数板或Hawksley计数板。
三种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。
而血球计数板较厚,不能使用油镜,计数板下部的细菌不易看清。
微生物大小的测定及数量的测定
微生物的大小测定与数量的测定一、实验目的1.学习了解测微尺的结构,掌握测定微生物大小的方法。
2.观察酵母菌的形态,掌握鉴别死活酵母菌的方法。
3.学习了解血球计数板的结构,掌握微生物数量测定的方法。
二、实验内容1.在低倍镜和高倍镜下求出目镜测微尺的校正值。
(1)目镜测微尺和镜台测微尺目镜测微尺是一块圆形玻片,在玻片的中央刻有一小尺,它是在 5 毫米内作50 等分刻制的,每一等份为0.1 毫米。
另一规格是 5 毫米作100 等分,每等分为0.05毫米。
镜台测微尺是刻在载玻片中央的小尺,它是在1 毫米内作100 等分刻成的,每等分10 微米。
(2)目镜测微尺校正的方法将镜台测微尺上面的透镜片取下,把目镜测微尺放在光阑上,刻度朝下。
把镜台测微尺置于载物台上,用低倍物镜检视,使测微尺位于视野中央。
注意区分视野内两把尺哪个是目镜测微尺,哪个是镜台测微尺。
利用推进器或转动目镜使两尺的第一条线(0 线)互相重合,然后找出另一条重合线。
如重合线较多选取距0 线最远的重合线。
记下两条重合线之间两尺的刻度,依公式算出目镜测微尺的校正值。
目镜测微尺校正值(每刻度微米数)= 两重叠刻度间镜台测微尺格数×10两重叠刻度间目镜测微尺格数2.用美兰水浸片法观察酿酒酵母(saccharomyces cerevisiac)的形态,注意出芽繁殖和死活酵母菌的染色形态,并测量大小。
3.用血球板计算黑曲霉孢子的数量。
(1)血球计数板3.用血球板计算黑曲霉孢子的数量。
(1)血球计数板利用血球计数板在显微镜下直接计数是一种常见的微生物计总数的方法。
因为计数板载片和盖片间的容积一定,所以可以根据显微镜下观察到的微生物数目来计算单位体积内微生物总数。
血球计数板是一只特制载玻片。
载片上有两个方格网,每一方格网共分九个大方格,其中间的一个大方格用来做微生物计数,所以又称为计数室。
计数室的刻度一般有两种,一种是每个大方格分成16 个中方格,每中方格又分成25个小方格。
实验八微生物数量的测定――――显微镜直接计数法
实验八微生物数量的测定――――显微镜直接计数法一目的要求了解血球计数板的结构,学习并掌握血球计数板计数微生物数量的技术,包括样品的点样、菌数计数的方法与计算;二实验原理镜检计数法适用于各种含单细胞菌体的纯培养悬浮液,如有杂菌或杂质常不易分辨。
菌体较大的酵母菌或霉菌泡子可采用血球计数板;一般细菌则采用彼得罗夫·霍泽(Petroff Hausser)细菌计数板。
两种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。
而血球计数板较厚,不能使用油镜,故细菌不易看清。
血球计数板是一块特制的厚载玻片,载玻片上有4条槽而构成3个平台。
中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各有一个方格网(图Ⅳ-2)。
每个方格网共分9大格,其中间的一大格(又称为计数室)常被用作微生物的计数。
计数室的刻度有两种:一种是大方格分为16个中方格,而每个中方格又分成25个小方格;另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格。
但是不管计数室是哪一种构造,它们都有一个共同特点,即每个大方格都由400个小方格组成(图5)。
每个大方格边长为1mm,则每一大方格的面积为1mm2,每个小方格的面积为1/400mm2,盖上盖玻片后,盖玻片与计数室底部之间的高度为0.1mm,所以每个计数室(大方格)的体积为0.1mm3,每个小方格的体积为l/4000mm3。
使用血球计数板直接计数时,先要测定每个小方格(或中方格)中微生物的数量,再换算成每毫升菌液(或每克样品)中微生物细胞的数量。
图Ⅳ-2 血球计数板的构造a.平面图(中间平台分为两半,各刻有一个方格网)b.侧面图(中间平台与盖玻片之间有高度为0.1毫米的间隙)图Ⅳ-3 血球计数板计数网的分区和分格三实验材料1、菌种:酿酒酵母;2、血球计数板,显微镜,盖玻片,无菌毛细滴管;3、菌种:大肠杆菌菌悬液。
4、1ml无菌吸管,无菌平皿,无菌水,试管,恒温培养箱牛肉膏蛋白胨培养基。
微生物显微镜的直接计数法和微生物大小测定
(1)先将计数板盖上盖片在显微镜下,从低倍找到计数器位 置,不动。
(2)将稀释好菌悬液摇匀,用滴管吸入由盖玻片边缘滴入让 其自行渗透,使室充满(不宜过多,也不可有气泡)。
微生物显微镜的直接计数法和微生物大小测定
第8页
(3)静止3-5分钟,先在低倍镜观察,然后换成高倍 镜进行计数。样品不宜太浓或太稀,最好每小格 控制在5-10个菌体为宜,计数需要重复二次。取 平均值。先后二次误差太大,需再重复计数。
2.微生物大小测定
பைடு நூலகம்
微生物显微镜的直接计数法和微生物大小测定
第5页
微生物显微镜的直接计数法和微生物大小测定
第6页
三、器材
显微镜;血球计数板;手揿计数器;盖玻片; 目镜测微尺;镜台测微尺。
酵母菌菌悬液; 枯草杆菌和金黄色葡萄球菌染色标本。
微生物显微镜的直接计数法和微生物大小测定
第7页
四、操作步骤
在计数时,通常以五个中方格总菌数(每个中方格中数四 个小方格)即20个小方格总菌数(求平均值)。
比如:设20个小方格中总菌数为A,悬液稀释度B,那么 大格(0.1立方毫米总菌数) A/20×400×B。
微生物显微镜的直接计数法和微生物大小测定
第3页
微生物显微镜的直接计数法和微生物大小测定
第4页
测量枯草杆菌长和宽及金黄色葡萄球菌直径。
微生物显微镜的直接计数法和微生物大小测定
第12页
五、试验结果
1、P48题1 2、P92题1
微生物显微镜的直接计数法和微生物大小测定
第13页
六、思索题
1、依据你体会,用血球计数板误差主要来自 那些方面?应怎样防止误差,力争准确?
2、当接目镜不变,目镜测微尺也不变,只改 变接物镜,目镜测微尺每格所量镜台上物体 实际长度是否相同?为何?
微生物细胞大小的测定方法
微生物细胞大小测定一、实验目得了解目镜测微尺与镜台测微尺得构造与使用原理,掌握微生物细胞大小得测定方法. 二、实验原理微生物细胞得大小就是微生物重要得形态特征之一,由于菌体很小,只能在显微镜下来测量。
用于测量微生物细胞大小得工具有目镜测微尺与镜台测微尺。
目镜测微尺(图-1)就是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分。
测量时,将其放在接目镜中得隔板上(此处正好与物镜放大得中间像重叠)来测量经显微镜放大后得细胞物象。
由于不同目镜、物镜组合得放大倍数不相同,目镜测微尺每格实际表示得长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上得镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小方格所代表得相对长度.镜台测微尺(图20-2)就是中央部分刻有精确等分线得载玻片,一般将lmm等分为100格,每格长l0μm(即0、0lmm),就是专门用来校正目镜测微尺得.校正时,将镜台测微尺放在载物台上,图1目镜测微尺图2 镜台测微尺由于镜台测微尺与细胞标本就是处于同一位置,都要经过物镜与目镜得两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数得放大而放大,因此从镜台测微尺上得到得读数就就是细胞得真实大小,所以用镜台测微尺得已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表得长度,然后移去镜台测微尺,换上待测标本片,用校正好得目镜测微尺在同样放大倍数下测量微生物大小。
三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)、枯草杆菌(Baccillussubtili s)染色标本片。
2。
器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。
四、实验方法1.目镜测微尺得校正把目镜得上透镜旋下,将目镜测微尺得刻度朝下轻轻地装入目镜得隔板上,把镜台测微尺置于载物台上,刻度朝上.先用低倍镜观察,对准焦距,视野中瞧清镜台测微尺得刻度后,转动目镜,使目镜测微尺与镜台测微尺得刻度平行,移动推动器,使两尺重叠,再使两尺得“0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合得刻度,计数两重合刻度之间目镜测微尺得格数与镜台测微尺得格数.因为镜台测微尺得刻度每格长l0μm,所以由下列公式可以算出目镜测微尺每格所代表得长度.例如目镜测微尺5小方格正好与镜台测微尺5小方格重叠,已知镜台测微尺每小方格为l0μm,则目镜测微尺上每小方格长度为=5×10μm/5=10μm用同法分别校正在高倍镜下与油镜下目镜测微尺每小方格所代表得长度。
实验五微生物细胞大小的测定及显微镜下直接计数
主要实验内容:
一 显微镜下细菌细胞大小的测定 二 血球计数板测定微生物细胞的数量 (显微镜下直接计数)
一 显微镜下细菌细胞大小的测定
1 实验目的 2 实验原理 3 实验材料 4 实验方法步骤 5 实验报告
1 实验目的
学习用镜台测微尺校正目镜测微尺的方法★ 学习并掌握用目镜测微尺测定细菌细胞大小 的方法★★ 巩固显微镜油镜的使用方法
5 实验报告
(1) 目镜测微尺标定结果记录
物镜 低倍镜 油镜 物镜放大倍数 目镜测微尺格数 镜台测微尺格数 目镜测微尺每格 代表长度(um)
100
×
×
0.5um
(2) 在油镜下测量枯草杆菌大小结果记录
菌体 编号 1 2 3 4 5
….
宽 目尺 格数
长
菌体宽 平均值 目尺格 菌体长 平均值 (um) (um) 数
计数方法
在计数时,用含16个中方格的计数板,要按对角线方位 计数左上、左下、右上、下等四个中方格(100个小方格) 所含有的菌数;由此可计算得出每个小方格所含有的菌数 的平均值, 计数室每个小方格容积为: 0.1×10-3÷400=1/4×106 (ml) 计算公式:
每ml菌液含菌数 = N ×K ×d
菌体大小 (平均值) 宽 ×长(um)
20
二 血球计数板测定微生物细胞的数量
1 实验目的 2 实验原理 3 实验材料 4 实验方法步骤 5 实验报告
1 实验目的
掌握血球计数板测定微生物细胞数量的原理。 学习用血球计数板测定微生物细胞数量的方法。
2 实验原理
利用血球计数板在显微镜下直接计数,是将菌悬液 放入血球计数板与盖玻片之间的计数室中,然后在显微 镜下计数,因为计数室容积一定,所以可根据测定值推 算出菌悬液单位体积所含微生物的总数量。
实验六、微生物细胞的大小测量和显微计数目
10
计数规则:
1)要求每小格内约有5-10个菌体为宜;
2)选计数室四个角的中方格和中央的一个中方格进行计数;
3)当细胞位于方格的线上时,一般只数上方和右边线上的细胞;
4)酵母出芽,又未脱离母体的,只有当芽体大小达到母细胞的
一半时,即作为两个菌体计算;
操作要点:
•血球计数室要清洁。
•观察时光线不宜过强,否则难以找到计数室。
操作要点: • 观察时光线不宜过强,否则难以找到镜台测微尺的刻度。 • 换高倍镜和油镜校正时,防止接物镜压坏镜台测微尺和损坏 镜头。
2、显微直接计数
1)血球计数室的观察和清洗 取血球计数板置于载物台上→ 观察熟悉计数室的中 方格和小方格 → 取下血球计数板→用自来水冲洗计 数室后,再用无水乙醇将血球计数室冲洗干净→ 置 干燥箱干燥 。
精选ppt课件
9
2)样品中酵母菌细胞的直接计数:
取干净血球计数板→ 在计数室上方盖上盖玻片→ 用无 菌吸管,吸取摇匀的酵母菌稀释液→ 在盖玻片边缘沾 一下,让菌液沿缝隙靠毛细管渗透作用进入计数室→ 静置5min → 低倍镜或高倍镜计算每个中方格内的细 胞数→ 完毕后清洗血细胞计数板→ 冲洗、干燥
精选ppt课件
2
二、基本原理
1、微生物细胞大小的测量
微生物细胞的大小是微生物基本的形态特征,也 是分类鉴定的依据之一。微生物大小的测定,需要 在显微镜下,借助特殊测量工具――测微尺(包括 镜台测微尺和目镜测微尺)。
测微尺原理:镜台测微尺是中央部分刻有精确等 分线的载玻片,一般是将1mm等分为100格,每格长 0.01mm(即10μm)。镜台测微尺并不直接用来测量细 胞的大小,而是用于校正目镜测微尺每格的相对长 度,然后再用目镜测微尺测量微生物细胞的大小。
微生物细胞大小测定及显微镜直接计数
微生物细胞大小测定及显微镜直接计数一、实验原理微生物细胞的大小是微生物重要的形态特征之一,由于菌体微小,只能在显微镜下测量。
用于测量微生物细胞大小的工具有目镜测微尺和镜台测微尺。
目镜测微尺(图示)是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10mm长度刻成100等分。
测量时,将其放在接目镜中的隔板上,此处正好与物镜放大的中间物像重迭,用于测量经显微镜放大后的细胞物象。
由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小格所代表的相对长度。
镜台测微尺(图示)是中央部分刻有精确等分线的专用载玻片,一般将1mm等分为100格,每格长10µm即0.01mm,是专门用来校正目镜测微尺的。
校正时,将镜台测微尺放在载物台上,由于镜台测微尺与细胞标本是处于同一位置,都要经过物镜和目镜的两次放大成像进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的实际长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物细胞大小。
测定微生物细胞数量的方法很多,通常采用的有显微镜直接计数法和稀释平板计数法。
直接计数法适用于各种单细胞菌体的纯培养悬浮液,如有杂菌或杂质,则难于直接测定。
菌体较大的酵母菌或霉菌孢子可采用血球计数板,一般细菌则采用彼德罗夫·霍泽(Petrof Hausser)细菌计数板。
两种计数板的原理和部件相同,只是细菌计数板较薄,可以使用油镜观察。
而血球计数板较厚,不能使用油镜,计数板下部的细菌难于区分。
血球计数板是一块特制的厚型载玻片,载坡片上有4条槽所构成的3个平台。
中间的平台较宽,其中间又被一短横槽分隔成两半,每个半边上面各有一个计数区(图示),计数区的刻度有两种:一种是计数区分为16个大方格,大方格用三线隔开,而每个大方格又分成25个小方格;另一种是一个计数区分成25个大方格,大方格之间用双线分开,而每个大方格又分成16个小方格。
微生物细胞大小的测定方法
微生物细胞大小测定一、实验目的了解目镜测微尺与镜台测微尺的构造与使用原理,掌握微生物细胞大小的测定方法。
二、实验原理微生物细胞的大小就是微生物重要的形态特征之一,由于菌体很小,只能在显微镜下来测量。
用于测量微生物细胞大小的工具有目镜测微尺与镜台测微尺。
目镜测微尺(图-1)就是一块圆形玻片,在玻片中央把5mm长度刻成50等分,或把10 mm长度刻成100等分。
测量时,将其放在接目镜中的隔板上(此处正好与物镜放大的中间像重叠)来测量经显微镜放大后的细胞物象。
由于不同目镜、物镜组合的放大倍数不相同,目镜测微尺每格实际表示的长度也不一样,因此目镜测微尺测量微生物大小时须先用置于镜台上的镜台测微尺校正,以求出在一定放大倍数下,目镜测微尺每小方格所代表的相对长度。
镜台测微尺(图20-2)就是中央部分刻有精确等分线的载玻片,一般将lmm等分为100格,每格长l0μm(即0、0lmm),就是专门用来校正目镜测微尺的。
校正时,将镜台测微尺放在载物台上,图1目镜测微尺图2 镜台测微尺由于镜台测微尺与细胞标本就是处于同一位置,都要经过物镜与目镜的两次放大成象进入视野,即镜台测微尺随着显微镜总放大倍数的放大而放大,因此从镜台测微尺上得到的读数就就是细胞的真实大小,所以用镜台测微尺的已知长度在一定放大倍数下校正目镜测微尺,即可求出目镜测微尺每格所代表的长度,然后移去镜台测微尺,换上待测标本片,用校正好的目镜测微尺在同样放大倍数下测量微生物大小。
三、实验器材1.活材料:酿酒酵母(Saccharomyces cerevisiae)、枯草杆菌(Baccillus subtilis)染色标本片。
2.器材:显微镜、目镜测微尺、镜台测微尺、擦镜纸。
四、实验方法1.目镜测微尺的校正把目镜的上透镜旋下,将目镜测微尺的刻度朝下轻轻地装入目镜的隔板上,把镜台测微尺置于载物台上,刻度朝上。
先用低倍镜观察,对准焦距,视野中瞧清镜台测微尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器,使两尺重叠,再使两尺的“0”刻度完全重合,定位后,仔细寻找两尺第二个完全重合的刻度,计数两重合刻度之间目镜测微尺的格数与镜台测微尺的格数。
显微镜直接计数法实验报告
显微镜直接计数法实验报告篇一:显微镜直接计数法实验报告显微镜直接计数法一、实验目的1、明确血细胞计数板计数原理;2、掌握使用血细胞计数板进行微生物计数的方法。
二、实验原理利用血细胞计数板在显微镜下直接计数,是一种常用的微生物计数方法。
此法的优点是直观、快速。
该计数板(构造如图1所示),是一块特制的载玻片,其上由四条槽构成三个平台。
中间的平台又被一短横槽隔成两半,每一边的平台上各刻有一个方格网,每个方格网共分九个大方格,中间的大方格即为计数室,微生物的计数就在计数室中进行。
计数室的刻度一般有两种规格,一种是一个大方格分成16个中方格,而每个中方格又分成25个小方格;另一种是一个大方格分成25个中方格,而每个中方格又分成16个小方格。
所以无论是哪种规格的计数板,每一个大方格中的小方格数都是相同的即共有400个小格。
2每一个大方格边长为1㎜,则每一大方格的面积为1㎜,盖上盖玻片后,载玻片与盖3玻片之间的高度为㎜,所以计数室的容积为㎜。
其计算方法如下:设5个中方格中的总菌数为A,菌液稀释倍数为B 1.16×25的计数板计算公式细胞数/ml=×16×10000×B=32000AB 个2.25×16的计数板计算公式细胞数/ml=×25×10000×B=50000AB 个三、实验器材(1)菌悬液:酵母菌悬液(2)其他物品:血球计数板,显微镜,盖玻片,无菌毛细管等。
四、实验步骤1.稀释:将酵母菌悬液进行适当稀释,菌液如不浓,可不必稀释。
(一般样品稀释度要求每小格内约有5—10个菌体为宜)2.镜检计数室:在加样前,先对计数板的计数室进行镜检。
若有污物,则需清洗后才能进行计数。
3.加样品:将清洁干燥的血球计数板盖上盖玻片,再用无菌的细口滴管将稀释的酵母菌液由盖玻片边缘滴一小滴(不宜过多),使菌液沿缝隙靠毛细渗透作用自行进入计数室,静置5—10分钟即可计数。
04微生物细胞大小的测定和显微镜直接计数
实验四微生物细胞大小的测定和显微镜直接计数一、实验目的1.学习接目测微计的校正方法,了解血球计数板的构造和计数原理2. 学习使用显微镜测微尺测定微生物细胞大小,掌握用血球计数板测定微生物细胞总数的方法。
二、实验原理微生物细胞的大小是微生物分类鉴定的重要依据之一。
微生物个体微小,必须借助于显微镜才能观察,要测量微生物细胞大小,也必须借助于特殊的测微计在显微镜下进行测量。
显微测微计由镜台测微计和目镜测微计两部分组成。
后者可直接用于测量细胞大小。
它是一块圆形玻片,其中央有精确等分到度,测量时将其放在接目镜中的隔板上。
由于目镜测微计所测量的是微生物细胞经过显微镜放大之后所成像的大小,刻度实际代表的长度随使用的目镜和物镜放大倍数及镜筒的长度而改变,所以,使用前须先用镜台测微计进行标定,求出某一放大率下,目镜测微计每一小格所代表的长度,然后用目镜测微计直接测被测对象的大小。
镜台测微计是一块中央有精确刻玻片,刻度的总长为lmm,等分为100小格,每小格长10um,专用于对目镜测微计进行标定的。
三、材料3.1 器械:显微镜、目镜测微尺、镜台测微尺,载玻片、盖玻片、血球计算板、擦镜纸、吸水纸、玻片架、肾形盘、洗瓶、接种环、酒精灯、火柴、滴管。
3.2 菌种:培养48h的啤酒酵母斜面菌体和菌悬液。
3.3 革兰氏染液四、实验步骤(一)微生物菌体大小的测定1.目镜测微尺的校正(1)更换目镜镜头:更换目镜测微尺镜头(标记为PF);或者取下目镜上部或下部的透镜,在光圈的位置上安上目镜测微尺,刻度朝下,再装上透镜,制成一个目镜测微尺的镜头。
(2)某一倍率下标定目镜刻度:将镜台测微尺置于载物台上,使刻度面朝上,先用低倍镜对准焦距、看清镜台测微尺的刻度后,转动目镜,使目镜测微尺与镜台测微尺的刻度平行,移动推动器使两尺重叠,并使二尺的左边的某一刻度相重合,向右寻找另外二尺相重合的刻度。
记录两重叠刻度间的目镜测微尺的格数和镜台测微尺的格数。
实验5微生物大小及量测定
【实验报告】
3)用表5-3对各菌测定结果进行计算和表述。
细菌名称
目镜测微尺 每格代表的 长度/μm
宽
目镜测微尺 平均格数
金黄色葡萄球菌
宽度 μm
长
目镜测微尺 平均格数
长度 μm
菌体 大小
枯草芽孢杆菌
迂回螺菌
注:球菌用直径(宽度)表示细胞大小,杆菌和螺菌用宽度×长度表示细胞大小。
【实验报告】
2. 思考题 1)为什么更换不同放大倍数的目镜或物镜时,必须用镜台
12 345
第一室
第二室
2. 思考题 1)根据你的体会,说明用血细胞计数板计数的误差主要来自哪 些方面?应如何尽量减少误差,力求准确? 2)某单位要求知道一种干酵母粉中的活菌存活率,请设计1~2 种可行的检测方法。
Thanks for your attention!
Central laboratory of Biology
【基本原理】
目镜测微尺是一块可放入接目镜内的圆形小玻片,其中央有精 确的等分刻度,一般有等分为50小格和100小格两种。测量时, 需将其放在接目镜中的隔板上,用以测量经显微放大后的细胞物 象。由于不同显微镜或不同的目镜和物镜组合放大倍数不同,目 镜测微尺每小格在不同条件下所代表的实际长度也不一样。
【实验用品】
1.菌种:金黄色葡萄球菌、枯草芽孢杆菌和迂回螺菌的染色玻 片标本。 2.试剂:香柏油,二甲苯。 3.仪器和其他用品:镜台测微尺,目镜测微尺,普通光学显微 镜,擦镜纸等。
【方法步骤】
1. 目镜测微尺的安装 2. 校正目镜测微尺 3. 菌体大小的测定 4. 测定完毕
获得本实验成功的关键
【基本原理】
血细胞计数板是一块特制的载玻片,其上由4条槽构成3个平台。 中间较宽的平台又被一段横槽隔成两半,每一边的平台上各刻有 一个方格网,每个方格网共分9个大方格,中间的大方格即为计 数室。计数室的刻度一般有两种规格,一种是一个大方格分成25 个中方格,而每个中方格又分成16小方格(图5-2);另一种是 一个大方格分成16个中方格,而每个中方格又分成25个小方格, 但无论是哪一种规格的计数板,每一个大方格中的小方格都是 400个。每一个大方格边长为1mm,则每一个大方格的面积为1mm2, 盖上盖玻片后,盖玻片与载玻片之间的高度为0.1mm,所以计数 室的容积为0.1mm3(10-4mL)。
微生物生长的测定方法
微生物生长的测定方法:微生物生长的测定有计数、重量和生理指标等方法。
1、计数法此法通常用来测定样品中所含细菌、抱子、酵母菌等单细胞微生物的数量。
计数法又分为直接计数和间接计数两类。
(1)直接计数这类方法是利用特定的细菌计数板或血细胞计数板,在显微镜下计算一定容积里样品中微生物的数量。
此法的缺点不能区分死菌与活菌。
计数板是一块特制的载玻片,上面有一个特定的面积1 mm2和高O.Imm的计数室,在I mm2的面积里又被刻划成25个(或16个)中格,每个中格进一步划分成16个(或25个)小格,但计数室都是由400个小格组成。
将稀释的样品滴在计数板上,盖上盖玻片,然后在显微镜下计算4-5个中格的细菌数,并求出每个小格所含细菌的平均数,再按下面公式求出每毫升样品所含的细菌数。
每毫升原液所含细菌数二每小格平均细菌数x400x1000x稀释倍数.(2)间接计数法此法又称活菌计数法,其原理是每个活细菌在适宜的培养基和良好的生长条件下可以通过生长形成菌落。
将待测样品经一系列10倍稀释,然后选择三个稀释度的菌液,分别取0.2m1故人无菌平皿,再倒人适量的已熔化并冷至45℃左右的培养基,与菌液混匀,冷却、待凝固后,放人适宜温度的培养箱或温室培养,长出菌落后,计数,按下面公式计算出原菌液的含菌数:每毫升原菌液活菌数=同一稀释度三个以上重复平皿菌落平均数x稀释倍数x5此法可因操作不熟练造成污染,或因培养基温度过高损伤细胞等原因造成结果不稳定。
尽管如此,由于该方法能测出样品中微量的菌数,仍是教学、科研和生产上常用的一种测定细菌数的有效方法。
土壤、水、牛奶、食品和其他材料中所含细菌、酵母、芽抱与抱子等的数量均可用此法测定。
但不适于测定样品中丝状体微生物,例如放线菌或丝状真菌或丝状蓝细菌等的营养体等。
除上述两种常用的计数方法外,还有膜过滤法、比浊法。
膜过滤法是当样品中菌数很低时,可以将一定体积的潮水、海水或饮用水等样品通过膜过滤器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五微生物大小测定和显微镜直接计数
一、实验目的:
1、了解显微测微尺的结构;
2、掌握显微测微尺用于测量菌体的方法;
3、学习使用血细胞计数板计算酵母细胞数的原理和方法;
4、了解微生物活体染色的原理的技术的方法。
二、实验原理:
1、显微测微尺可用于测量微生物细胞或孢子的大小,包括镜台测微尺和目镜测微尺两个部件。
镜台测微尺全长1mm,等分为100格,每格0.01mm。
用于校正目镜测微尺没小哥的长度.目镜测微尺其中央刻有50等分或100等分的小格.测量前应预先用镜台测微尺来校正并计算出在某一放大镜下,目镜测微尺每小格所代表的实际长度,再以后作为测量微生物
细胞的长度.目镜测微尺每格长度/μm = 两条重合线间镜台测微尺的格数×10/两条重合线间目镜测微尺的格数
2、利用血球计数板直接在显微镜下计数微生物的细胞(或孢子)数目。
优点:直观、快速、操作简便,其缺点为:不能区分死菌与活菌;不适于对运动细菌的计数;需要相对高的细菌浓度;个体小的细菌在显微镜下难以观察
1ml菌液中的总菌数=(5个方格中的总菌数/5)×25×104×稀释倍数
本实验中暂规定:计上不计下,计左不计右,即位于本格上线和左线上的细胞计入本格,本格的下线和右线上的细胞按规定计入相应的格中
三、实验步骤:
(一)微生物大小的测定:
1、放置目镜测微尺:取出目镜,旋开目透镜,目镜测微尺放在光阑上,旋上目镜,将目镜插入镜筒
2、将镜台测微尺放在井台上,调焦看清镜台测微尺的刻度
3、低倍镜下使镜台测微尺与目镜测微尺刻度平行,一段起止线重合,分别数出格数并求出目镜测微尺每小格的实际长度,同样的方法在高倍镜下重复进行
4、按公式计算目镜测微尺每格的长度
5、测量菌体的大小:取下镜台测微尺,制作酵母菌涂片,分别在低倍镜、高倍镜下测量10个菌体的长宽,求其平均值,用长(μm)*宽(μm)表示
(二)显微镜直接计数
1、制备酵母菌的稀释液,将菌液稀释10倍
2、将计数板的盖玻片放在计数室上面的两边平台架上,混匀后酵母菌悬液吸取滴加在盖玻片与计数板的边缘缝隙处,待菌液渗入计数室,菌体自然沉降与稳定后计数
3、在计数室移至视野中央,选取25中格(4觉与中央)计含菌数,重复计数2-4个计数室内的含菌量,求其平均值。
四、材料和器皿:
酵母菌液,显微镜,镜台测微尺,目镜测微尺,擦镜纸,二甲苯,血细胞计数板,配套的计数板厚盖玻片,试管,移液管,吸水纸。
五、实验结果:
10倍镜下目镜测微尺的实际每个长度:(5/10)×10=5um;
40倍镜下目镜测微尺每格的实际长度:(10/80)×10=1.25um。
分别列表5个酵母菌的长和宽,计算其平均值(10倍镜下)
1 2 3 4 5 平均值
长 1.8 1.5 1.0 2.4 2.0 1.7
实际长度9.0 7.5 5.0 12.0 10.0
宽 2.0 1.6 1.2 2.2 2.4 1.1
实际宽度10.0 8.0 6.0 11.0 12.0
分别列表5个酵母菌的长和宽,计算其平均值(40倍镜下)
1 2 3 4 5 平均值
长7.2 9.2 8.3 6.8 7.4 7.8
实际长度9.0 11.5 10.4 8.5 9.3 9.6
宽 6.9 9.0 8.0 7.2 7.0 7.6
实际宽度8.6 11.3 10.0 9.0 8.8 9.5
长(μm)=9.6 宽(μm)=9.5
大小(μm2)=9.6*9.5
计菌总数
中格菌数大格总菌数稀释倍数菌数(个/mL)
x1 x2 x3 x4 x5 (平均值)
第一室 17 39 29 23 30 29 10 7×107
第二室 32 36 30 24 28 30 10
7.5×107
结果分析:
1)10倍镜和40倍镜的放大精确度不同。
2)血细胞板计数所计数的有活菌、有死菌,结果代表总的细菌值。
3)此计数法采用计上不计下,计左不计右的原则。
六、回答问题
1、在某架显微镜下使用某一放大倍数的物镜,测得目镜测微尺的每个实际长度,当换一架显微镜用同样放大倍数的物镜时,该尺度是否还有效?为什么?
1、答:无效,显微镜与显微镜之间目镜的放大倍数,或物镜的放大倍数间有一定误差。
虽都标有10*或40*,但可能由于制造过程的误差,会出现不同的放大倍数,其次由于人眼
观察造成误差,显微镜下两线平行并重合,会因不同人的观察时间的不同引起读数不一致,因此在第一次测得每格实际长度后,换一架显微镜即使为同样倍数的物镜,该尺度无效需要重新测量。
2、试分析影响本实验的误差来源及提出改进措施。
2、答:误差来源可能为样品没有摇匀.计数室内有气泡.读数因人而异.样品小室有液体流动.或器材上留有菌液,细胞识别错误等。
可采用的措施包括样品一定要摇均匀,如果有气泡就一定要重新做.读数时速度要快.所用器材均应清洁干燥,应等样品小室内液体稳定后再进行读数,并对细胞进行正确的识别。
同时也有可能是由于滴加的液体样品较少,没有充满样品市,在计数时计数室的样品数不均匀,造成计数偏差。
七.总结与分析:
再用显微测微尺测量酵母菌的大小时,由于做好片子后没有用吸水纸吸去多余的液体,造成片子中的酵母细胞呈流动状态,因此误差较大。