六年级数学《立体图形表面积和体积》专题练习
(完整版)六年级总复习之立体图形的表面积与体积练习
人教版小学数学六年级总复习练习卷9、立体图形的表面积与体积一、填空。
1、圆柱的底面半径扩大 3 倍,高不变,底面周长扩大()倍,侧面积扩大()倍,底面积扩大()倍,体积扩大()倍。
2、一个圆柱形容器与一个圆锥形容器等底等高,将圆锥形容器装满水后全部倒入空圆柱形容器内,这时水深 2 厘米,圆锥形容器的高是()厘米。
3、用铁丝焊接成一个长 5 分米,宽 4 分米,高 3 分米的长方体模型,最少需要铁丝();若是用纸糊它的表面,最少需要()纸板;这个长方体模型的体积是()。
4、用 3 个棱长都是 2 厘米的正方体拼成一个长方体,拼成的这个长方体的表面积是()平方厘米,体积是()立方厘米。
5、一个圆锥与和它等底等高的圆柱的体积相差12 立方分米,圆锥的体积是()立方分米。
6、把长、宽、高分别是 6 厘米、 4 厘米、 5 厘米的长方体削成一个最大的圆柱体,圆柱的体积是()立方厘米。
7、把一根直径是20 厘米,长是 2 米的圆柱形木材锯成同样的 3 段,表面积增加了()立方厘米。
8、一个圆柱形的铁皮水桶,从里面量底面直径 4 分米,深 5 分米,做这个无盖水桶最少需要()铁皮;这个水桶最多可以装水()升。
9、圆柱和圆锥的体积比是3﹕ 2,底面积的比是3﹕4,高的比是()。
10、一个正方体的高增加 3 厘米,获取的新长方体的表面积比原来正方体的表面积增加了 60 平方厘米,原来正方体的体积是()立方厘米。
11、两个完满同样的圆柱,能拼成一个高 12 分米的圆柱,但表面积减少了25.12 平方分米。
原来一个圆柱的体积是()。
12、一个圆柱和一个圆锥等底等高,圆柱的底面积 4 m2,高 3 m,圆锥的体积是( )cm 。
的 面张开是( )形。
13、把一个底面直径是 12 cm ,高是 6 cm 的 柱,削成一个与它等底等高的 ,削去部分的体 是()cm 3,节余部分的体 是()cm 3。
14、一个 的体 是 12 立方分米,高是 4 分米,底面 是( )平方分米。
苏教版 数学 六年级上册 长方体、正方体的表面积和体积计算练习
课前预习
请根据预习单思考以下问题,并和同桌说一说。
1.什么是长方体和正方体的表面积?怎样计算? 2.什么是长方体和正方体的体积?怎样计算? 3.什么是容积? 4.表面积和体积、容积有什么区别? 5.常用的面积单位、体积单位、容积单位分别有哪些?
知识梳理
长方体(或正方体)六个面的总面积叫作它的表面积。
基础应用
16.一种长方体的煤气灶包装箱,长8分米,宽4分米,高1.5 分米。 (1)做这个包装箱至少要用多少平方分米硬纸板?是多少 平方米? (2)包装箱的体积是多少立方分米?是多少立方米?
(1)(8×4+8×1.5+4×1.5)×2 (2)8×4×1.5=48(立方分米)
= (32+12+6)×2
常用的面积单位有:平方米、平方分米、平方厘米 常用的体积单位有:立方米、立方分米、立方厘米 常用的容积单位有:升、毫升
基础应用
15.
长方体 正方体
长
宽
高
10 cm 8 cm 6 cm
5 dm 5 cm 4 dm
0.5 m 0.3 m 0.2 m 棱长4 dm
表面积 体积 376cm² 480cm³ 130dm² 100dm³ 0.62m² 0.03m³ 96dm² 64dm³
提高训练
18.一个花坛(如右图),高0.9米,底面 是边长1.2米的正方形,四周用木条围成。 (1)这个花坛占地多少平方米?
1.2×1.2=1.44(平方米) 答:这个水花坛占地1.44平方米。
(2)用泥土填满这个花坛,大约需要泥土 多少立方米?(木条的厚度忽略不计)
1.44×0.9=1.296(立方米) 答:大约需要泥土1.296立方米。
小学数学苏教版六年级上册长方体和正方体表面积和体积练习题
小学数学苏教版六年级上册长方体和正方体表面积和体积练习题小学数学苏教版六年级上册长方体和正方体表面积和体积练题1、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?2.一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。
现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?3、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?4.一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少平方厘米?5、用两个棱长为5厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?6、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。
7、用两个同样的长、宽、高划分为4厘米、3厘米和2厘米的小长方体,拼成一个外表积最大的长方体,这个大长方体的外表积是多少平方厘米?8.做一个长方体的浴缸(无盖),长8分米,宽4分米,高6分米,至少需要多少平方分米的玻璃?如果每平方分米玻璃4元钱,至少需要多少钱买玻璃?9.一个抽屉,长50厘米,宽30厘米,高10厘米,做2个这样的抽屉,至少需要木板多少平方厘米?1、用一根铁丝恰好焊成一个棱长8厘米的正方体框架,假如用这根铁丝焊成一个长10厘米、宽7厘米的长方体框架,它的高应该是多少厘米?2、一种长方体硬纸盒,长10厘米,宽6厘米,高5厘米,有2平方米的硬纸板210张,可以做这样的硬纸盒多少个?(不计接口)3、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?4、一个长方体的棱长和是72厘米,它的长是9厘米,宽6厘米,它的表面积是多少平方厘米?5、一个长方体的告白箱长是1.2米,宽是5分米,高是2米,做这样一个长方体告白箱需要多少平方米的塑料薄膜?6、一个正方体棱长是1.3米,它的表面积是多少?7、一个长方体铁皮油箱,长8分米,宽6分米,高4.5分米.做10个这样的油箱至少需要多少铁皮?8、一个正方体的棱长总和是24厘米,它的外表积是多少平方厘米?9、用36厘米的铁丝折一个正方体框架,这个正方体棱长是多少?假如用纸糊满框架的外表,最少需要纸多少平方厘米?10、长方体不同的三个面的面积分别为10平方分米,6平方分米,15平方分米,这个长方体的表面积是多少?11、做20个棱长为30厘米的小正方体纸箱,至少需要多少平方米硬纸?12、把一个长方体锯成18块,要锯几次呢?13.用72分米长的铁丝做一个正方体的框架,然后在外面贴上一层纸,至少需要多少平方分米的纸?14、一个正方体的外表积是384平方厘米,它的棱长是多少?15、一个长方体侧面积是360平方厘米,高是9厘米,长是宽的1.5倍,求它的外表积。
六年级立体图形的表面积、体积总复习题
六年级立体图形的表面积、体积总复习题班级______ 姓名__________ 得分__________复习内容:①立体图形的基本概念②立体图形的表面积、体积、容积一、填空1. 长方体有()个面,有()条棱,有()个顶点。
()分别叫做长方体的长、宽、高。
2. ()的长方体叫做正方体。
它的六个面都是()形,六个面的面积都(),它的12条棱都()。
3. 右图是()体的表面展开图,请你测量出有关数据(精确到整厘米数)。
这个形体的底面周长是()厘米。
这个形体的高是()厘米。
这个形体的侧面积是()平方厘米。
这个形体的体积是()立方厘米。
4. 填表:形体名称已知条件表面积体积长方体长3米,宽2米,高1.5米正方体棱长0.6分米底面半径10厘米,高5厘米圆柱体底面直径1.8分米,高12厘米底面周长0.942米,高20厘米圆锥体底面直径和高都是9分米5. 用铁丝焊接成一个长5分米,宽4分米,高3分米的长方体模型,至少需要铁丝();如果用纸糊它的表面,至少需要()纸板;这个长方体模型的体积是()。
6. 用3个棱长都是2厘米的正方体拼成一个长方体,拼成的这个长方体的表面积是()平方厘米,体积是()立方厘米。
7. 一个圆锥与和它等底等高的圆柱的体积相差12立方分米,圆锥的体积是()立方分米。
8. 把长、宽、高分别是6厘米、4厘米、5厘米的长方体削成一个最大的圆柱体,圆柱的体积是()立方厘米。
9. 把一根直径是20厘米,长是2米的圆柱形木材锯成同样的3段,表面积增加了()立方厘米。
10. 一个圆柱形的铁皮水桶,从里面量底面直径4分米,深5分米,做这个无盖水桶至少需要()铁皮;这个水桶最多可以装水()升。
11. 圆柱和圆锥的体积比是3﹕2,底面积的比是3﹕4,高的比是()。
12. 一个正方体的高增加3厘米,得到的新长方体的表面积比原来正方体的表面积增加了60平方厘米,原来正方体的体积是()立方厘米。
二、判断(对的请在括号内打“√”,错的打“×”。
(完整word)六年级奥数表面积和体积计算题
表面积与体积练习和答案专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?【思路导航】这是一道开放题,方法有多种:1)沿一条棱挖,剩下部分的表面积为592平方厘米。
2)在某个面挖,剩下部分的表面积为632平方厘米。
3)挖通某两个对面,剩下部分的表面积为672平方厘米。
练习1.1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米?2.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化?例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。
【思路导航】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。
练习2:1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。
求这个立体图形的表面积。
2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。
图形六年级面积表面积体积专题练习(可编辑修改word版)
测试卷一、填空题。
(每题2 分,共24 分)(1)一个圆柱和一个圆锥的底面积和高分别相等,圆锥的体积是圆柱体积的( ),圆柱的体积是圆锥体积的( ).(2)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6 厘米,那么圆锥体的高是 ( )厘米。
(3)一个圆锥体的底面周长是12.56 分米,高是6 分米,它的体积是( )立方分米。
(4)一根长2 米的圆木,截成两同样大小的圆柱后,表面积增加48 平方厘米,这根圆木原来的体积是( )立方厘米。
(5)圆柱的底面半径是3 厘米,体积是6.28 立方厘米,这个圆柱的高是( )厘米。
(6)一个圆柱体高4 分米,体积是40 立方分米,比与它等底的圆锥体的体积多10 立方分米。
这个圆锥体的高是( )分米。
(7)一个圆锥的体积是7.2 立方米,与它等底等高的圆柱的体积是( )立方米.(8)一个圆锥的底面半径是3 厘米,体积是6.28 立方厘米,这个圆锥的高是( )厘米.(9)一个直圆柱底面半径是1 厘米,高是2.5 厘米。
它的侧面积是 ( )平方厘米。
(10)一个圆柱体高4 分米,体积是40 立方分米,比与它等底的圆锥体的体积多10 立方分米。
这个圆锥体的高是( )分米。
(11)一个圆锥体的底面周长是12.56 分米,高是6 分米,它的体积是( )立方分米。
(12)一根长2 米的圆木,截成两段后,表面积增加48 平方厘米,这根圆木原来的体积是( )立方厘米。
二、判断题。
(每题2 分,共10 分)1、圆锥的体积比与它等底等高的圆柱的体积小2 倍。
()2、一个长方体木箱的体积一定大于它的容积。
()13、底面积和高都相等的圆锥体体积是长方体体积的。
()34、一个圆锥的底面半径扩大2 倍,高也扩大2 倍,体积就扩大4 倍。
()5、一个圆柱和一个圆锥的底面半径相等,圆锥的高是圆柱高的3 倍,圆柱体积是15 立方厘米时,圆锥体积是15 立方厘米()6、有一个正方体的底面周长与一个圆柱体底面周长相等,它高也相等,那么它们的体积也必定相等。
立体图形练习题六年级
立体图形练习题六年级立体图形是数学中的一个重要概念,在小学六年级的数学学习中占有一席之地。
通过练习立体图形题目,可以帮助学生深入了解立体图形的性质和特点,从而提升其数学思维和解题能力。
本文将提供一些六年级学生常见的立体图形练习题,通过解答这些题目,帮助学生更好地掌握立体图形的知识。
1. 题目一:计算长方体的表面积和体积小明手里有一块长方体砖块,其边长分别为5厘米、8厘米和10厘米。
请帮助小明计算出这个长方体砖块的表面积和体积。
解析:长方体的表面积可通过公式2lw+2lh+2wh计算,其中l、w、h分别代表长方体的长度、宽度和高度。
带入具体数值,可以得到:表面积 = 2 × 5 × 8 + 2 × 5 × 10 + 2 × 8 × 10 = 176平方厘米长方体的体积可通过公式V = lwh计算。
带入具体数值,可以得到:体积 = 5 × 8 × 10 = 400立方厘米因此,这个长方体砖块的表面积为176平方厘米,体积为400立方厘米。
2. 题目二:判断正方体的性质小红手里有一块正方体磁铁,边长为6厘米。
请判断下列说法是否正确,并给出你的理由。
说法一:正方体的表面积等于6个正方形的面积之和。
说法二:正方体的对角线长度等于边长的平方根乘以立方根。
解析:对于说法一,正方体的表面积确实等于6个正方形的面积之和。
正方体有6个面,每个面都是正方形,所以表面积等于6个正方形的面积之和。
对于说法二,正方体的对角线长度并不等于边长的平方根乘以立方根。
正方体的对角线长度可通过勾股定理计算,即对角线长度d = √(边长的平方 + 边长的平方 + 边长的平方) = √3边长。
所以,正方体的对角线长度等于边长的平方根乘以√3,而不是立方根。
因此,说法一是正确的,而说法二是错误的。
3. 题目三:求解棱柱的面积和体积小华手里有一个棱柱,底面为一个边长为4厘米的正三角形,高度为6厘米。
六年级数学下册典型例题系列之期中专项练习:求不规则或组合立体图形的表面积与体积(原卷版)人教版
六年级数学下册典型例题系列之期中专项练习:求不规则或组合立体图形的表面积与体积(原卷版)1.求如图图形的表面积。
(单位:厘米)2.求体积。
(单位:dm)3.计算下面图形的体积。
4.看图求体积。
(单位:cm)5.计算下图的表面积与体积。
(单位:厘米)6.计算下面模具(由正方体与圆柱体组成)的表面积与体积。
(单位:厘米)7.下图中圆柱的底面周长是6.28厘米,高是3厘米,求阴影部分的体积。
8.求下面图形的体积。
9.求下面面图形的表面积。
10.如下图,求一个直角梯形以AB为轴旋转一周后形成的立体图形的体积。
(单位:厘米)11.计算下面物体的体积。
(单位:cm)12.求下面图形的表面积和体积。
(单位:cm)13.计算下图(按45°斜切)的体积(单位:厘米)。
14.计算下面图形的体积。
(半圆柱的底面直径是10cm)15.下图是一块长方形铁皮,利用图中的阴影部分,刚好能做成一个圆柱形油桶(接头忽略不计),求这个油桶的体积。
16.右图是一个底面半径为3厘米的圆柱木块被削去一半后的形状,请你计算出它的体积。
17.如图,一个圆柱体零件,高10厘米,底面直径6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米。
(1)这个零件的体积是多少立方厘米?(2)如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米?18.下图ABCD是直角梯形,以AB为轴并将梯形绕这个轴旋转一周,得到一个旋转体,它的体积是多少立方厘米?(除不尽的保留两位小数)19.如图,卫生纸的高度是10cm,中间硬纸轴的直径是4 cm。
制作100个这样的硬纸轴,至少需要多少平方米的硬纸皮?学习与生活的苦,每一个人必须选择一个。
不管你选择了哪一个,都应该尽最大的努力做到最好,只有做到最好,人生才会在不留遗憾。
老一辈教育我们,书山有路勤为径,学海无涯苦作舟;吃得人中苦,方为人上人;吃亏是福,在学习的年龄不要贪图享乐;认认真真听课,勤勤恳恳学习,美好的未来可以值得可期。
六年级上册数学试题长方体和正方体的表面积和体积专项练习
长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。
这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。
(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。
六年级下册奥数专题练习-立体图形的计算(含答案) 全国通用
立体图形的计算【表面积的计算】例1 一个正方体木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大小不等的长方体60块(如图5.69)。
那么,这60块长方体的表面积的和是平方米。
(1988年北京小学数学奥林匹克邀请赛试题)讲析:不管每次锯的长方体大小如何,横着锯2次一共增加了4个正方形面;前后竖直方向锯3次共增加了6个正方形面;左右竖直方向锯4次共增加了8个正方形面。
原来大正方体有6个正方形面,所以一共有24个正方形面。
所以,60块长方体的表面积之和是(1×1)×24=24(平方米)。
例2 图5.70是由19个边长都是2厘米的正方体重叠而成的。
求这个立体图形的外表面积。
(北京市第一届“迎春杯”小学数学竞赛试题)讲析:如果按每一层有多少个正方体,然后再数出每层共有多少个外表面正方形,则很麻烦。
于是,我们可采用按不同的方向来观察的方法去计算。
俯视,看到9个小正方形面;正视,看到10个小正方形面;侧视,看到8个小正方形面。
所以,这个立体图形的表面积是(2×2)×[(9+10+8)×2]=216(平方厘米)。
【体积的计算】例1 一个正方体的纸盒中恰好能放入一个体积为628立方厘米的圆柱体,如图5.71,纸盒的容积有多大?(π取3.14)(全国第四届“华杯赛”复赛试题)讲析:因圆柱体的高、底面直径以及正方体的棱长都相等。
故可设正方即:正方体纸盒的容积是800立方厘米。
例2 在一个棱长4厘米的正方体的上面、右面、前面这三个面的中心分别挖一个边长1厘米的正方形小孔(如图5. 72所示),并通过对面,求打孔后剩下部分的体积。
(北京市第二届“迎春杯”小学数学竞赛试题)。
讲析:打完孔之后,在大正方体正中央就有一个1×1×1的空心小正方体。
三个孔的体积是(1×1×4)×3-(1×1×1)×2=10(立方厘米)。
六年级上册数学试题长方体和正方体的表面积和体积专项练习
长方体和正方体的表面积和体积专项练习一、高减少或增加引起表面积的变化:例题:一个长方体高减少3厘米后,表面积减少了72平方厘米,剩下的刚好是一个正方体,原来长方体的表面积是多少平方厘米?试一试:一个长方体,如果高增加2厘米,就成为一个正方体,这时表面积比原来增加了64平方厘米,原来的长方体的表面积是多少平方厘米?二、拼接引起表面积的变化:例题:1.用两个长、宽、高分别是6分米、4分米、2分米的长方体拼成一个较大的长方体,这个长方体怎样拼表面积最大?怎样拼表面积最小?2.用6个棱长是1厘米的小正方体拼成一个较大的长方体,拼成的长方体的表面积比原来减少了多少平方厘米?试一试:10包长、宽、高分别为8厘米、5厘米、2厘米的中华牌香烟,若用包装纸将他们打包成一个长方体,不计接头处,至少需要多少平方厘米的包装纸?三、切割引起表面积的变化:例题:将一个长10厘米、宽6厘米、高5厘米的长方体切成两个完全相同的小长方体,这两个小长方体的表面积总和比原来增加了多少平方厘米?试一试:(1)有一个长方体,若用三种不同的方法切成两个完全一样的长方体,它们的表面积分别增加30平方厘米、20平方厘米、12平方厘米。
这个长方体的表面积是多少平方厘米?(2)如右图,一个正方体木块的表面积是36平方分米,把它沿虚线截成体积相等的8个小正方体木块,这时,表面积增加了多少平方厘米?四、挖去部分引起表面积的变化:例题:在一个长6厘米、宽4厘米、高3厘米的长方体上挖去一个棱长1厘米的小正方体,剩余部分的表面积可能是多少平方厘米?试一试:用橡皮泥做一个棱长为4厘米的正方体。
(1)如右图,在顶面中心位置从上到下打一个边长为1厘米的正方形通孔,打孔后的橡皮泥块的表面积为多少平方厘米?(2)在第(1)题打孔后,再在正面中心位置处,从前到后打一个边长1厘米的正方形通孔(如右图所示),那么打孔后的橡皮泥内外的表面积总和是多少平方厘米?(3)在棱长为3厘米的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1厘米的正方形(如图)。
六年级数学立体图形表面积和体积练习册
六年级数学立体图形表面积和体积练习册
目的
本练册旨在帮助六年级学生提高他们对数学立体图形表面积和体积的理解和计算能力。
通过完成这些练题,学生将能够掌握不同立体图形的表面积和体积计算方法,并能运用所学知识解决实际问题。
练内容
本练册包含一系列练题,涵盖以下立体图形的表面积和体积计算:
1. 立方体的表面积和体积
2. 长方体的表面积和体积
3. 圆柱体的表面积和体积
4. 圆锥体的表面积和体积
5. 球体的表面积和体积
每个部分都包含了一些基础练题以及一些稍难的应用题。
在练中,学生将需要运用正确的公式和计算方法来计算每个立体图形的
表面积和体积。
使用方法
学生们可以根据自己的速度和进度来完成练册中的题目。
每个
题目都有详细的解题步骤和答案,学生们可以自行核对和纠正自己
的答案。
建议学生在完成练后,再对照解题步骤进行自我检查和提升。
此外,老师和家长也可以通过这个练册来了解学生的研究进展,并提供必要的帮助和指导。
结语
通过完成这个练册,学生们将能够熟练运用数学立体图形表面
积和体积的计算方法。
这将为他们今后在研究和生活中遇到的相关
问题提供有力的基础。
祝愿各位学生在学习数学立体图形表面积和体积时取得良好的
成绩!。
(完整word版)六年级数学立体图形表面积和体积专题练习.doc
六年级数学《立体图形表面积和体积》专题练习一、概念辨析:要在一个长和宽都是30 厘米,高是 5 分米长方体框架的外面糊上一层纸,就是求它的();要在纸盒的四周贴上标签,就是求();这个长方体的纸盒占有多大的空间,就是求()。
A 侧面积B 棱长总和C 表面积D 体积E 容积二、求几个面:①做一个圆柱形的油箱,底面半径 3 分米,高 4 分米。
至少需要铁皮多少平方分米?②做一节圆柱形的通风管,底面周长 18.84 分米,长 4 分米。
至少需要铁皮多少平方分米?(压路机、猪圈、柱子、游泳池、教室墙壁)切割:把一个长 8 厘米、宽 4 厘米、高 6 厘米的长方体木块,切削成一个最大的圆柱,圆柱的体积是()立方厘米。
把一个棱长是 4 分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是 ()立方分米。
粘合 :把两个棱长是 5 厘米的正方体木块粘合成一个长方体,这个长方体的表面积是多少平方厘米?三、空间思维:1、把一个圆柱体侧面展开得到一个正方形,已知圆柱体底面周长是10 厘米,求圆柱体的侧面积。
2、一个底面直径是 27 厘米,高 9 厘米的圆锥体木块,分成形状大小完全相同的两个木块后,表面积比原来增加多少平方厘米?3、一根长 2 米的圆木,截成两段后,表面积增加48 平方厘米,这根圆木原来的体积是 ( )立方厘米。
四、锥柱关系1:1、一个圆柱与一个圆锥等底等高,它们的体积之和是36 立方分米,圆锥的体积是 ( )立方分米。
① 12 ②9 ③27 ④242、一个圆锥的体积是 n 立方厘米,和它等底等高的圆柱体的体积是()立方厘米。
①n ②2n ③3n ④3、把一段圆钢切削成一个最大的圆锥体,切削掉的部分部分重8 千克,这段圆钢重()千克。
①24 ②16 ③ 12 ④ 84、一个圆柱体积比一个与它等底等高的圆锥体的体积大()。
①② 1 ③2 倍④3 倍5、等底等高的圆柱和圆锥的体积相差16 立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.锥柱关系 2:一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的 3 倍,圆锥的体积是 12 立方分米,圆柱的体积是()立方分米。
人教版小升初数学复习专项《立体图形的表面积和体积》能力达标卷
人教版小升初数学复习专项《立体图形的表面积和体积》能力达标卷一、基础题1、把底面积是20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少?2、用两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,有几种拼法?拼成的长方体的表面积分别是多少?3、把19个棱长是3厘米的小正方体重叠在一起,如图所示,拼成一个立体图形,求这个立体图形的表面积?4、有一个正方体,棱长是10厘米,如果把这个正方体切成棱长是5厘米的小正方体,那么这些小正方体的表面积的和比原正方体的表面积多多少平方厘米?5、一个长是30厘米,横截面是正方形的长方体,如果它的长增加5厘米,表面积就增加80平方厘米,求原长方体的表面积?二、提高题1、从一个棱长是10厘米的正方体木块上挖去一个长10厘米,宽2厘米,高2厘米的小长方体,剩下部分的表面积是多少?2、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长是2厘米的小正方体,剩下部分的表面积是多少?3、一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方厘米。
求原长方体的表面积?4、一个长方体的所有棱长之和是192厘米,长、宽、高的比是7:5:4,这个长方体的体积是多少立方厘米?5、有一个正方体,如果它的高增加2厘米,就成了长方体,这个长方体的表面积比原来正方体的表面积增加96平方厘米,原来正方体的表面积和体积各是多少?6、一个长2米的长方体,沿着长截成相等的6段后,表面积增加了3.6平方米,求原来的长方体的体积?7、有一块长方形的铁皮,长是30厘米,宽是20厘米。
在这块铁皮的四个角上各剪下一个边长是4厘米的正方形后,再将剩下的部分焊接成一个无盖的长方体铁盒,求这个铁盒的表面积和体积?8、有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,这个长方体的体积是多少?三、竞赛题1、用3个正方体木块堆成的多面体,其中下面的正方体的棱长为10厘米,而上面的正方体下底面的4个顶点分别是其下面正方体上底面各边的中点.那么,这个多面体的表面积是多少平方厘米?2、如图所示,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积?3、一个底面是正方形的长方体木块被锯掉一部分,变成如图所示的图形,其中最长的边DH=8厘米,最短的边AB=BC=CD=DA=BF=4厘米,求这个几何体的体积是多少立方厘米?4、一个长方体的表面积是67.92平方分米,底面的面积是19平方分米,底面周长是17.6分米,这个长方体的体积是多少立方分米?(32.3)立体图形的表面积和体积能力达标卷(一)答案解析一、基础题1、答案:200平方厘米解析:把两个相同是正方体拼成一个长方体,这个长方体的表面积比原来两个正方体的表面积的和减少了两个面面的面积。
六年级数学小升初专项测评卷(二十)立体图形的表面积和体积(解析版)
小升初专项培优测评卷(二十)参考答案与试题解析一.填一填(共12小题)1.(2019•长沙)一个正方体的棱长由5厘米变成8厘米,表面积增加了平方厘米.【分析】根据正方体的表面积公式分别求出棱长为8厘米和5厘米的正方体的表面积,相减即可求解.【解答】解:886556⨯⨯-⨯⨯384150=-234=(平方厘米);答:表面积增加了234平方厘米.故答案为:234.【点评】考查了正方体的表面积,正方体的表面积公式:正方体的表面积=棱长⨯棱长6⨯.2.(2019•莘县)一个长方体的长、宽、高的比是3:2:1,其中,长比高多4分米,它的体积是立方分米.【分析】已知一个长方体的长、宽、高的比是3:2:1,也就是高是长的13,其中,长比高多4分米,那么4分米是长的1(1)3-,由此可以求此长,进而求此高,又知宽是长的23,根据一个数乘分数的意义,即可求出宽,然后根据长方体的体积公式:v abh=,把数据代入公式解答即可.【解答】解:长:14(1)3÷-,342=⨯,6=(分米),宽:2643⨯=(分米),高:1623⨯=(分米),体积:64248⨯⨯=(立方分米);答:它的体积是48立方分米.故答案为:48.【点评】此题解答关键是把比转化为分数,分别求出长、宽、高,再根据长方体的体积公式解答.3.(2019•武威)一个长方体的长、宽、高分别是8cm、6cm、4cm,这个长方体的占地面积最大是2cm,它的体积是3cm.【分析】这个长方体的占地面积就是它的底面积,根据长方形的面积公式:S ab=,把数据代入公式解答,再根据长方体的体积公式:V abh =,把数据代入公式解答. 【解答】解:8648⨯=(平方厘米), 864⨯⨯ 484=⨯192=(立方厘米), 答:这个长方体的占地面积是48平方厘米,它的体积是192立方厘米. 故答案为:48、192.【点评】此题主要考查长方形的面积公式、长方体的体积公式的灵活运用,关键是熟记公式.4.(2019•郑州)将一块长宽高分别为2m 、3m 、4m 的长方体木块,分割成四个完全相同的小长方体木块,表面积最多增加 2m .【分析】把一个长方体分割成四个小长方体,只分割3次,增加6个横截面,要使增加的面积最多,则平行于34⨯面分割,这样就增加6个34⨯的面;由此即可解答. 【解答】解:346⨯⨯ 126=⨯272()m =答:表面积最多增加272m . 故答案为:72.【点评】本题考查了长方体切割后的图形的表面积计算,此题沿平行于长⨯宽面切割,可使两个长方体的表面积之和最小;沿平行于宽⨯高面切割,可使两个长方体的表面积之和最大.5.(2019•绵阳)一个长方体木块长、宽、高分别是5cm 、4cm 、4cm .如果用它锯成一个最大的正方体,体积比原来减少了 %.【分析】抓住正方体的特征,这个最大的正方体的棱长就是这个长方体最短的棱长,即4cm ,利用长方体体积公式V abh =和正方体的体积公式3V a =代入数据,即可解决问题. 【解答】解:54480⨯⨯=(立方厘米) 44464⨯⨯=(立方厘米)(8064)80-÷ 1680=÷ 0.2= 20%=,答:体积要比原来减少20%.故答案为:20.【点评】找出这个最大正方体的棱长是解决本题的关键.6.(2019•贵阳)有一个正方体土坑,向下再挖深2米,它的表面积就增加64平方米,成为一个长方体土坑.这个长方体土坑的容积是立方米.【分析】根据题意,如果再向下挖深2米,则会增加4个相同的长方形面,那么可计算出增加的一个长方形的面的面积,然后再用一个长方形的面积除以2米,就是长方形面的边长也是正方体的棱长,最后再用长方体的容积公式计算出挖深2米后的长方体的容积即可.【解答】解:向下挖深2米后露出的一个长方形的面的面积为:64416÷=(平方米),正方体的棱长为:1628÷=(米),挖深后的高为:8210+=(米),长方体土坑的容积为:8810640⨯⨯=(立方米),答:这个长方体土坑的容积是640立方米.故答案为:640.【点评】解答此题的关键是确定挖深2米后露出的一个面的面积是多少,然后再计算出正方体的棱长与长方体土坑的高,最后用长方体的容积公式进行计算.7.(2019•海口)把一根长2m的圆柱形木料截成2段后表面积比原木料增加了20.8m,这根木料的底面积是2m,体积是3m.【分析】根据题意可知,这根木料的底面积就是截面的面积,把这根圆柱形木料截成2段,表面积增加了0.8平方米,表面积增加的是两个底面的面积,因此用增加的表面积除以2即可求出底面积,再利用圆柱的体积=底面积⨯高(长)计算即可解答问题.【解答】解:0.820.4÷=(平方米)⨯=(立方米)0.420.8答:这根木料的底面积是0.4平方米,体积是0.8立方米.故答案为:0.4;0.8.【点评】此题重点是理解圆柱被锯成2段后,表面积增加了两个底面积.8.(2019•郾城区)一个高20cm的圆柱,沿着底面直径切成两个半圆柱,表面积增加2360cm,这个圆柱的底面直径是cm.【分析】已知把一个高20厘米的圆柱体,沿着它的底面直径切成两个部分,表面积增加360平方厘米,表面积增加的360平方厘米是两个截面的面积,每个截面都是长方形,这个长方形的长等于圆柱的高,宽等于圆柱的直径,由此可以求出圆柱的直径,据此解答即可.【解答】解:360220÷÷18020=÷=(厘米)9答:这这个圆柱的底面直径是9厘米.故答案为:9.【点评】此题主要考查圆柱的表面积公式、体积公式的灵活运用,关键是熟记公式,重点是明确:表面积增加的360平方厘米是两个截面的面积,每个截面的长等于圆柱的高,宽等于圆柱的直径.9.(2019•东莞市)一个棱长8分米的正方体水缸,水深6分米,如放入一块石头完全浸入水中,水溢出18升,则石头的体积是3dm.【分析】由题意得石头的体积等于上升的水的体积加上溢出水的体积,根据长方体的体积计算公式:长方体体积=长⨯宽⨯高计算即可.【解答】解:18升18=立方分米88(86)18⨯⨯-+=+12818=(立方分米)146答:这块石头的体积是146立方分米.故答案为:146.【点评】此题主要考查特殊物体体积的计算方法,将物体放入或取出水中,水面上升或下降的体积就是物体的体积;也考查了长方体的体积=长⨯宽⨯高;在解答时要注意:单位的统一.10.(2019•富源县)如图有个棱长为20cm的正方体木箱堆放在墙角的形状,这些木箱的体积是3cm.【分析】由图形可知,这些木箱一共有5个,根据正方体的体积公式:3=,求一个木箱的体积再乘5即v a可.【解答】解:2020205⨯⨯⨯=⨯,80005=(立方厘米),40000答:这些木箱的体积是40000立方厘米.故答案为:5个,40000.【点评】此题主要考查正方体的体积计算方法及组合图形的体积计算.11.(2019•鄞州区)把一个圆柱体木料横切成两个圆柱(图1),表面积增加了25.122cm,纵切成两个半圆柱(图2),则表面积增加了2cm.48cm,原来这个圆柱的体积是3【分析】根据图1的方式切成两个圆柱,表面积就会增加225.12cm,表面积增加的是两个切面的面积,每个切面的面积与原来圆柱的底面积相等,据此可以求出圆柱的底面半径,进而求出圆柱的高,再根据圆柱的体积公式解答;图2沿直径方向切成两个半圆柱,切面是两个长方形,长等于圆柱的高,宽等于圆柱的底面直径,表面积增加的48平方厘米,是两个切面的面积,由此可以求出一个切面的面积.【解答】解:圆柱的底面积:25.12212.56÷=(平方厘米),底面半径的平方:12.56 3.144÷=,因为2的平方是4,所以圆柱的底面半径是2厘米,圆柱的高:482(22)÷÷⨯=÷244=(厘米)6体积:2⨯⨯3.14263.1446=⨯⨯=(立方厘米)75.36答:这个圆柱的体积是75.36立方厘米.故答案为:75.36.【点评】此题解答关键是根据纵切、横切,求出圆柱的底面半径和高,再利用圆柱的体积公式解答.12.(2019•大安区)一根长方体木料,横截面是边长10厘米的正方形.从这根木料上截下6厘米长的一段,切削成一个最大的圆锥.圆锥的体积是2cm,约占截下这段长方体木料体积的%(百分号前面保留一位小数).【分析】(1)如图要求这个圆锥的体积,需要知道这个圆锥的底面半径和高,这里高显然就是这个长方体的高6厘米,圆锥的底面应是这个边长为10厘米的正方形底面内最大的圆,正方形内最大圆的直径等于这个正方形的边长,由此可得这个底面半径是1025÷=厘米,由此即可利用圆锥的体积公式进行解答;(2)利用长方体的体积公式求得这段木料的体积,利用圆锥的体积÷这个长方体木料的体积即可解决问题. 【解答】解:(1)根据分析可得: 1025÷=(厘米), 213.14563⨯⨯⨯, 6.2825=⨯,157=(立方厘米), (2)157(10106)÷⨯⨯, 157600=÷, 0.262≈, 26.2%=,答:圆锥的体积是 157平方厘米,约占截下这段长方体木料体积的26.2%. 故答案为:157;26.2.【点评】此题考查了圆锥和长方体的面积公式的灵活应用,这里根据正方形内最大圆的特点得出这个圆锥的底面半径是解决本题的关键. 二.选一选(共7小题)13.(2019•青原区)一个大正方体如果拿出一个小方块后,它的表面积与原来的表面积比较( )A .一样大B .减少了C .增大了D .无法比较【分析】拿走一个小正方体,减少了三个面,但同时又增加了三个面,因此大正方体的表面积不变. 【解答】解:因为拿走在顶点的一个小方块,减少了三个面的同时又增加了三个面, 所以大正方体的表面积不变. 故选:A .【点评】解答此题的关键是:看组成大正方体表面积的面有没有变化.14.(2019•广州)一个长方体木块,长5分米,它有一组相对的面是正方形,其余4个面的面积和是40平方分米,则这个木块的体积是( )立方分米. A .20或50B .20或48C .20【分析】根据题意可知:这个长方体的长是5分米,它有一组相对的面是正方形,也就是这个长方体的宽和高相等,其余4个面的面积和是40平方分米,由此可以可以求出一个侧面的面积,用一个侧面的面积除以长即可求出宽和高,再根据长方体的体积公式:V abh =,把数据代入公式解答.另一种情况,这个长方体的长是5分米,宽是5分米,那么高是40452÷÷=(分米),根据长方体的体积公式:V abh =,把数据代入公式解答【解答】解:第一种情况:这个长方体的长是5分米,宽和高多少2分米, 4045÷÷ 105=÷2=(分米), 22520⨯⨯=(立方分米), 答:这个木块的体积是20立方分米.第二种情况:这个长方体的长和宽都是5分米,高是2分米, 55250⨯⨯=(立方分米); 答:这个长方体的体积是50立方分米. 故选:A .【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.15.(2019•海安县)如图,把一个高为4厘米的圆柱切成若干等份,拼成一个近似的长方体,表面积增加了40平方厘米.圆柱的侧面积是( )平方厘米.A .40B .20C .10D .125.6【分析】把圆柱切拼成一个近似长方体,这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,长方体的表面积比圆柱的表面积增加了两个切面的面积.每个切面的长等于圆柱的高,切面的宽等于圆柱的底面半径.已知表面积增加了40平方厘米,据此求出底面半径:40245÷÷=厘米,再根据圆柱的侧面积公式:2S rh π=,把数据代入公式解答. 【解答】解:圆柱的底面半径: 40245÷÷=(厘米) 2 3.1454⨯⨯⨯ 3.14104=⨯⨯ 125.6=(平方厘米)答:圆柱的侧面积是125.6平方厘米. 故选:D .【点评】此题主要考查圆柱侧面积公式的灵活运用,关键是求出圆柱的底面半径.16.(2019•杭州)如图所示,一个铁锥完全浸没在水中.若铁锥一半露出水面,水面高度下降7厘米,若铁锥全部露出,水面高度共下降()厘米.A.14B.10.5C.8D.无法计算【分析】因为容器的底面积不变,所以铁锥排开水的体积与高成正比例,由此只要求出浸入水中的铁锥的体积之比即可求出排开水的高度之比;因为铁锥露出水面一半时,浸在水中的圆锥的高与完全浸入水中时铁锥的高度之比是1:2,则浸入水中的铁锥的体积与完全浸入水中时铁锥的体积之比是1:8;所以浸在水中的体积与露在外部的体积之比是:1:7,设铁锥完全露出水面时,水面又下降x厘米,由此即可得出比例式求出x的值,再加上7厘米即可解答.【解答】解:根据圆锥的体积公式可得:把圆锥平行于底面,切成高度相等的两半时,得到的小圆锥的体积与原圆锥的体积之比是1:8;所以铁锥一半露出水面时,浸在水中的体积与露在外部的体积之比是1:7,设铁锥完全露出水面时,水面又下降x厘米,根据题意可得:x=,:71:7x=,77x=,1+=(厘米),718答:水面共下降8厘米.故选:C.【点评】解答此题的关键是利用圆锥的体积公式得出圆锥平行于底面切成高相等的两部分的体积之比,从而得出水面下降的高度之比.17.(2019春•旅顺口区期末)把9个棱长是10厘米的正方体堆放在墙角(如图),露在外面的面积是()厘米2.A.1500B.1600C.1700D.1800【分析】从正面看能看到6个小正方形的面,从上面看能看到5个小正方形的面,从右面看能看到6个小正方形的面,共看到65617⨯=平方厘米,所以露在外面++=(个),每个小正方形的面积是:1010100的面积是100171700⨯=厘米2,据此解答.【解答】解:(1010)(656)⨯⨯++,10017=⨯,1700=(厘米2),答:露在外面的面积是1700厘米2.故选:C.【点评】本题考查了从不同方向观察物体的三视图的灵活应用,关键是得出露在外面的小正方形面的个数.18.(2019•绵阳)小明拿了等底等高的圆锥和圆柱形容器各一个,他将圆柱形容器装满水后倒入圆锥形容器,当水全部倒满时,从圆锥形容器中溢出36.2毫升水.圆锥形容器内有水()毫升.A.36.2B.18.1C.54.3D.108.6【分析】因为等底等高的圆柱的体积是圆锥体积的3倍,所以等底等高的圆柱与圆锥的体积差相当于圆锥体积的(31)-倍,根据已知一个数的几倍是多少,求这个数,用除法解答.【解答】解:36.2(31)÷-36.22=÷18.1=(毫升),答:圆锥形容器的容积是18.1毫升.故选:B.【点评】此题主要考查等底等高的圆柱与圆锥体积之间的关系及应用.19.(2019•益阳模拟)一个物体是由圆柱和圆锥黏合而成的(如图),如果把圆柱和圆锥重新分开,表面积就增加了250.24cm,原来这个物体的体积是()A.3200.96cm B.3226.08cm C.3301.44cm D.3401.92cm【分析】根据题意可知:如果把圆柱和圆锥重新分开,表面积就增加了50.24平方厘米,表面积增加的两个底面的面积,由此可以求出底面积,再根据圆柱的体积公式:V sh=,圆锥的体积公式:13V sh=,把数据分别代入公式求出它们的体积和即可.【解答】解:50.24225.12÷=(平方厘米)125.12625.12(126)3⨯+⨯⨯-1150.7225.1263=+⨯⨯150.7250.24=+ 200.96=(立方厘米)答:原来这个物体的体积是200.96立方厘米. 故选:A .【点评】此题主要考查圆柱、圆锥体积公式的灵活运用,关键是熟记公式. 三.计算题(共4小题)20.(2019•顺庆区)如图,ABCD 是直角梯形,以AB 为轴将梯形旋转一周,得到一个立体图形,这个立体图形的体积是多少立方厘米?【分析】根据题意可知:以AB 为轴旋转一周得到是一个上面是空心圆锥,下面是一个圆柱,圆锥和圆柱的底面半径都是2厘米,圆锥的高是(85)-厘米,圆柱的高是8厘米,根据圆锥的体积公式:13v sh =,圆柱的体积公式:v sh =,把数据分别代入公式求出圆柱与圆锥的体积差即可. 【解答】解:如下图:2213.1428 3.142(85)3⨯⨯-⨯⨯⨯-13.1448 3.14433=⨯⨯-⨯⨯⨯100.4812.56=-87.92=(立方厘米), 答:这个立体图形的体积是87.92立方厘米.【点评】解答求组合图形的体积,关键是考查分析图形是由哪几部分组成的,是求各部分的体积和,还是求各部分的体积差,再利用相应的体积公式解答.21.(2019•萧山区模拟)求组合图形的表面积和体积.(单位:分米)【分析】根据图形的特点可知:上面的圆柱与下面的长方体粘在一起,所以上面的圆柱只求侧面积加上下面长方体的表面积,它的体积等于圆柱与长方体的体积和.据此列式解答.【解答】解:3.1447(858252)2⨯⨯+⨯+⨯+⨯⨯=⨯+++⨯12.567(401610)2=+⨯87.92662=+87.92132=(平方分米);219.922⨯÷⨯+⨯⨯3.14(42)7852=⨯⨯+3.144780=+87.9280167.92=(立方分米);答:它的表面积是219.92平方分米,体积是167.92立方分米.【点评】此题主要考查圆柱、长方体的表面积公式、体积公式的灵活运用,关键是熟记公式.22.(2019•青岛)如图这只工具箱的下半部是棱长为20cm的正方体,上半部是圆柱体的一半.算出它的表面积和体积.【分析】根据圆柱和正方体的表面积的计算方法,它的表面积是上面圆柱的表面积的一半加上下面正方体的5个面的面积.再根据圆柱和正方体的体积公式,计算上面圆柱体积的一半加上下面正方体的体积即可.【解答】解:表面积:2⨯⨯÷+⨯+⨯⨯,3.1420202 3.14102020512562 3.141004005=÷+⨯+⨯,6283142000=++,2942=(平方厘米); 体积:23.1410202202020⨯⨯÷+⨯⨯,3.141002028000=⨯⨯÷+,31408000=+,11140=(立方厘米); 答:它的表面积是2942平方厘米,体积是11140立方厘米.【点评】解答求组合图形的表面积和体积,关键是分析图形是由哪几部分组成,然后根据它们的表面积公式和体积公式进行解答.23.(2019•成都)如图,将三个高都是1米,底面半径分别是1.5米、1米、0.5米的3个圆柱体组成一个物体.①求这个物体的体积?②求这个物体的表面积?【分析】由题意可知:这个物体的体积就等于3个圆柱的体积之和,利用圆柱的体积公式即可得解;这个物体的表面积是大圆柱的表面积加上中、小圆柱的侧面积,根据公式计算即可.【解答】解:(1)2223.14(1.510.5)1⨯++⨯,3.14(2.2510.25)=⨯++,3.14 3.5=⨯,10.99=(立方米), 答:这个物体的体积是10.99立方米.(2)大圆柱的表面积:23.14 1.522 3.14 1.51⨯⨯+⨯⨯⨯,14.139.42=+,23.55=(平方米),中圆柱侧面积:2 3.1411 6.28⨯⨯⨯=(平方米),小圆柱侧面积:2 3.140.51 3.14⨯⨯⨯=(平方米),这个物体的表面积:23.55 6.28 3.1432.97++=(平方米);答:这个物体的表面积是32.97平方米.【点评】此题主要考查圆柱的体积、侧面积、表面积公式及其计算.四.走进生活,解决问题(共8小题)24.把一个长12cm、宽6cm、高9cm的长方体木块锯成两个相同的小长方体木块.这两个小长方体木块的表面积之和比原来长方体木块的表面积增加了多少平方厘米?(请你将几种情况都写出来)【分析】把一个长方体截成两个长方体,只锯一次,增加两个横截面,(1)切割时,平行于126⨯面的面积,由此即可解决问题;⨯面切割,这样切割后,就增加了2个126(2)切割时,平行于129⨯面的面积,由此即可解决问题;⨯面切割,这样切割后,就增加了2个129(3)切割时,平行于96⨯面的面积,由此即可解决问题.⨯面切割,这样切割后,就增加了2个96【解答】解:(1)1262⨯⨯722=⨯=(平方厘米)144答:这两个小长方体木块的表面积之和比原来长方体木块的表面积增加了144平方厘米.(2)1292⨯⨯=⨯1082=(平方厘米)216答:这两个小长方体木块的表面积之和比原来长方体木块的表面积增加了216平方厘米.(3)962⨯⨯=⨯542=(平方厘米)108答:这两个小长方体木块的表面积之和比原来长方体木块的表面积增加了108平方厘米.【点评】本题考查了长方体切割后的图形的表面积计算,根据长方体切割小长方体的方法,明确表面积增加的2个面是几⨯几的面是解决本题的关键.25.(2019•深圳校级模拟)把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,这个大长方体的表面积最少是多少?【分析】根据两个长方体拼组成大长方体的方法,拼在一起的面越小,那么拼组后的大长方体的表面积就越大,反之,拼组后的表面积就越小;所以要使拼成的一个大长方体的表面积最小,只要把两个大面(97)⨯拼在一起,然后用两个小长方体的表面积之和减去减少的面积解答即可.【解答】解:(979474)22972⨯+⨯+⨯⨯⨯-⨯⨯,12722126=⨯⨯-,508126=-,382=(平方厘米);答:大长方体的表面积最小是382平方厘米.【点评】解决本题的关键是明确拼组后的长方体的表面积等于这两个小长方体的表面积之和-减少的两个面的面积.26.(2019•龙海市)一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?【分析】根据长方体的特征,相对的面面积相等,从下部和上部分别截去高为3厘米和2厘米的长方体后,表面积减少了120平方厘米,减少的只是前后左右的侧面积,因为截去两部分后又露出两个底面;又因为剩下部分是正方体,因此减少部分(上+下)的4个面的面积相等,因此求出一个面的面积,120430÷=(平方厘米),再除以上下部分的高就可以求出剩下部分正方体的棱长;由此解答.【解答】解:1204(23)3056÷÷+=÷=(厘米);66(65)3611396⨯⨯+=⨯=(立方厘米);答:原来长方体的体积是396立方厘米.【点评】此题主要考查长方体的体积计算,解答的关键是理解表面积减少的只是侧面积,只要求出剩下部分正方体的棱长,再利用长方体的体积公式解答即可.27.(2019春•南阳期中)如图,在密封的容器中装有一些水,水面距底部的高度是10cm.如果将这个容器倒过来,你能求出这时水面距底部的高度是多少厘米吗?【分析】因为等底等高的圆锥的体积是圆柱体积的13,下面圆锥的高是6厘米,把容器倒过来,水面在圆柱容器中的高是2厘米,再加上原来圆柱中水的高(106)-厘米,即可求出这时水面距底部的高度.据此解答.【解答】解:高6厘米的圆锥容器中水倒入等底的圆柱容器中高是632÷=(厘米)+-2(106)=+24=(厘米),6答:如果将这个容器倒过来,这时水面距底部的高度是6厘米.【点评】此题主要考查等底等高的圆柱和圆锥体积关系的灵活运用.28.有大、中、小三个正方体水池,它们的棱长分别是6米、3米、2米,把两堆碎石分别沉落在中、小水池的水里,两个水池的水面分别升高了6厘米、4厘米,如果将这两堆碎石都沉没在大水池的水里,大水池的水面将升高多少厘米?(得数保留一位小数)【分析】有大、中、小三个正方形的水池,可知这三个水池底面都是正方形的,把两堆碎石分别沉没在中、小水池的水里,可知底面是不变的,只是水面会升高,升高那部分水的体积就是所放碎石的体积,利用长方体的体积公式=长⨯宽⨯高求出两堆碎石的体积;再将这两堆碎石都沉没在大水池的水里,底面变了,体积没变,水面升高的那部分水的体积就是两堆碎石的体积,那就用两堆碎石的体积除以大正方形水池的底面积即可求出.【解答】解:6米600=厘米3米300=厘米2米200=厘米放中池里碎石的体积:3003006540000⨯⨯=(立方厘米)放小池里碎石的体积:2002004160000⨯⨯=(立方厘米)两堆碎石总体积:540000160000700000+=(立方厘米)大水池的水面升高:700000(600600) 1.9÷⨯≈(厘米)答:大水池的水面将升高大约1.9厘米.【点评】此题主要是利用规则图形长方体的体积公式,来将不规则固体借助水的流动性变成规则的形状,底面是不变的,水面升高那部分体积就是不规则物体的体积,再利用体积公式解答即可.29.(2019•南阳模拟)六一儿童节,康康把一块橡皮泥揉成圆柱形,切成三块(如图1),表面积增加了50.24平方厘米;切成四块(如图2),表面积增加了48平方厘米.请你算算圆柱形橡皮泥的体积是多少立方厘米.【分析】如图:切成3块,增加4个面,表面积增加50.24平方厘米,由此求出一个底面的面积,进而求出圆柱的底面半径;纵切,表面积增加4以底面直径为长,以圆柱的高为宽的长方形的面积,由此求出一个长方形的面积,进而求出圆柱高,然后根据:圆柱的体积=底面积⨯高,由此解答即可.【解答】解:50.24412.56÷=(平方厘米);假设圆柱的底面半径是r,则212.56rπ=,所以212.56 3.144r=÷=,所以2r=(厘米);圆柱的高:484(22)÷÷⨯124=÷3=(厘米)体积为:23.1423⨯⨯12.563=⨯37.68=(立方厘米)答:圆柱形橡皮泥的体积是37.68立方厘米.【点评】此题考查了圆柱的知识,明确圆柱的切拼方法,是解答此题的关键.30.(2019•吉安县)一个酸奶瓶(如图),它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米.当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?【分析】因为瓶子的容积不变,装的酸奶的体积不变,所以正放与倒放的空余部分的体积应相同.将正放与倒放的空余部分变化一下位置,可以看出酸奶瓶的容积应等于与它的底面积相等、高为8210+=厘米的圆柱的体积,因而酸奶占32.4立方厘米的810,由此算出瓶内酸奶的体积.【解答】解:8210+=(厘米),。
六年级下册数学试题表面积和体积综合练习_人教新课标()(含答案)
一、 表面积和体积 1、 填空(1) 把圆柱的侧面沿着它的一条高展开,可以得到一个(长方形)或(正方形),它的长是圆柱的(底面周长),宽是圆柱的(高)。
由于它们之间有着这样的联系,所以圆柱的侧面积等于(底面周长)乘(高)。
(2) 填表。
(3) 一段圆柱形木头,把它削成一个最大的圆柱体,削去部分的体积是圆柱体积的(23),是圆锥体积的(2)倍。
(4) 有大、小两个正方体,大正方体的棱长是小正方体棱长的3倍,大正方体的体积是小正方体体积的(27)倍。
(5) 挖一个底面周长是6.28米,深1.5米的圆柱体水池,这个水池的容积是(4.71)立方米。
(6) 一个正方体的表面积是384平方厘米,平均分成两个长方体,每个长方体的表面积是(256)平方厘米。
(7) 用3个长3厘米,宽2厘米,高1厘米的长方体拼成一个表面积最小的大长方体,这个大长方体的表面积是(42)平方厘米。
(8)一个长方体,长5厘米,宽3厘米,高2厘米,它的最小面的面积是最大面的面积的(25)倍。
(9) 一个密封的长方体水箱,从里面量,长80厘米,宽30厘米,高30厘米。
当水箱如左图放置时,水深为20厘米;当水箱如右图放置时,水深(53.3)厘米。
(得数保留一位小数)(10) 小明从一个长方体纸盒上撕下两个邻居的面(展开后如右图),这个纸盒的底面积是(18)平方厘米,体积是(126)立方厘米。
(11) 一个瓶子的下半部是圆柱体,它的底面积是6平方厘米,瓶高8厘米。
在瓶子里面注入高度为4厘米的水(图1)。
封好瓶口,将其倒立,则水号6厘米(图2)。
这个瓶子的溶剂是(36)立方厘米。
2、 选择(1) 水桶占地面积是指水桶的(D )。
A 12 B 14 C 16(2) 一个长方体,地面是边长为2厘米的正方形,沿着高正好可以截成4个正方体,这些正方体的表面积之和与原来长方体的表面积比是(D )(3) 一个无盖的长方体玻璃鱼缸,长0.6米,宽0.3米,深0.25米,做这个鱼缸至少需要多少平方米的玻璃?正确的算式是(C )A (0.6×0.3+0.3×0.25+0.6×0.25)×2B 0.6×0.3+0.3×0.25+0.6×0.25C 0.6×0.3+(0.3×0.25+0.6×0.25)×2(4) 一根绳子长250厘米,如果用它绕体积是512立方厘米的正方体,最多可以绕(B )圈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学《立体图形表面积和体积》专题练习
一、概念辨析:
要在一个长和宽都是30厘米,高是5分米长方体框架的外面糊上一层纸,就是求它的();要在纸盒的四周贴上标签,就是求();这个长方体的纸盒占有多大的空间,就是求()。
A侧面积 B 棱长总和C表面积D体积E 容积
二、求几个面:
①做一个圆柱形的油箱,底面半径3分米,高4分米。
至少需要铁皮多少平方分米?②做一个圆柱形的水桶,底面直径6分米,高4分米。
至少需要铁皮多少平方分米?
③做一节圆柱形的通风管,底面周长分米,长4分米。
至少需要铁皮多少平方分米?(压路机、猪圈、柱子、游泳池、教室墙壁)
切割:
把一个长8厘米、宽4厘米、高6厘米的长方体木块,切削成一个最大的圆柱,圆柱的体积是()立方厘米。
把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是( )立方分米。
粘合:
把两个棱长是5厘米的正方体木块粘合成一个长方体,这个长方体的表面积是多少平方厘米?
三、空间思维:
1、把一个圆柱体侧面展开得到一个正方形,已知圆柱体底面周长是10厘米,求圆柱体的侧面积。
2、一个底面直径是27厘米,高9厘米的圆锥体木块,分成形状大小完全相同的两个木块后,表面积比原来增加多少平方厘米?
3、一根长2米的圆木,截成两段后,表面积增加48平方厘米,这根圆木原来的体积是( )立方厘米。
四、锥柱关系1:
1、一个圆柱与一个圆锥等底等高,它们的体积之和是36立方分米,圆锥的体积是( )立方分米。
①12 ②9 ③27 ④24
2、一个圆锥的体积是n立方厘米,和它等底等高的圆柱体的体积是()立方厘米。
①n ②2n ③3n ④
3、把一段圆钢切削成一个最大的圆锥体,切削掉的部分部分重8千克,这段圆钢重()千克。
①24 ②16 ③12 ④8
4、一个圆柱体积比一个与它等底等高的圆锥体的体积大()。
①②1 ③2倍④3倍
5、等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米,圆锥的体积是()立方米.
小学六年级全科目课件教案习题汇总语文数学英语
锥柱关系2:
一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。
一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高6厘米,那么圆锥体的高是( )厘米。
一个圆锥的底面直径是圆柱底面直径的1/3,如果它们的高相等,那么圆锥体积是圆柱体的( )。
五、等积变换:
一个棱长是4分米正方体容器装满水后,倒入一个底面积是12平方分米的圆锥体容器里正好装满,这个圆锥体的高是多少分米?
一个圆锥形的沙堆,底面积是平方米,高是米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?(用进一法取近似值,得数保留整平方米) 六、条件限制:
有一辆车厢为长方体形状的货车(车厢顶盖封死),长米,宽3米,高米,要装载若干个正方体形状的纸箱,这个正方体的棱长是米。
这辆货车车厢最多可以装多少个纸箱?。