七年级数学上册 一元一次方程 拔高及易错题精选(Word版附答案)

合集下载

最新七年级一元一次方程易错题(Word版 含答案)

最新七年级一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。

已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。

该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.4.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.5.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【答案】(1)解:如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元)(2)解:设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人(3)解:方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.6.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点.写出点A,D,C所对应的数,并计算p的值;(2)①若原点O在图中数轴上点C的右边,且CO=x,p=﹣71,求x.②此时,若数轴上存在一点E,使得AE=2CE,求点E所对应的数(直接写出答案)。

初一数学一元一次方程易错题解析

初一数学一元一次方程易错题解析

第三章《一元一次方程》易错题一、解方程易错题:易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以,得C.去括号,得x-24=7D.方程整理,得例2.(1)若式子3nx m+2y4和-mx5y n-1能够合并成一项,试求m+n的值。

(2)下列合并错误的个数是( )①5x6+8x6=13x12②3a+2b=5ab③8y2-3y2=5④6a n b2n-6a2n b n=0(A)1个(B)2个(C)3个(D)4个例3.解下列方程(1)(2)(3)易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了,4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;两边同乘,每项均乘到,去括号注意变号;(4)2(4x-1.5)-5(5x-0.8)=10(1.2-x)8x-3-25x+4=12-10x-7x=11评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现,而是两边同乘以0.5×0.2进行去分母变形,更有思维跳跃的同学认为0.5×0.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)二、行程问题(一)本课重点,请你理一理1.基本关系式:_________________ __________________ ;2.基本类型:相遇问题; 相距问题; ____________ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_________________________逆水(风)速度=_________________________(二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项习题(含解析)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项习题(含解析)

一、解答题1.已知14y x =-+,222y x =-.(1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.2.解方程:2x 13+=x 24+-1. 解析:x=-2. 【分析】按去分母,去括号,移项,合并同类项,系数化为1的步骤进行求解即可. 【详解】去分母得:4(2x+1)=3(x+2)-12, 去括号得:8x+4=3x+6-12, 移项得:8x-3x=6-12-4, 合并同类项得:5x=-10, 系数化为1得:x=-2. 【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤以及注意事项是解题的关键.3.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值.解析:14a =-【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可. 【详解】3210x a +-=,解得123ax -=; 20x a -=,解得2x a =.由题意得,12203aa -+=, 解得14a =-.【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 4.某家具厂生产一种课桌和椅子,课桌每张定价200元,椅子每把定价80元,厂方在开展促销活动期间,向客户提供两种优惠方案: 方案一:每买一张课桌就赠送一把椅子; 方案二:课桌和椅子都按定价的80%付款. 某校计划添置100张课桌和x 把椅子. (1)若x=100,请计算哪种方案划算;(2)若x >100,请用含x 的代数式分别把两种方案的费用表示出来;(3)若x=300,如果两种方案可以同时使用,请帮助学校设计一种最省钱的方案.解析:(1)方案一省钱;(2)见解析;(3)见解析.【分析】(1)分别按两种方案结合已知数据计算、比较即可得到结论;(2)分别根据两种方案列出对应的表达式并化简即可;(3)按以下三种方式分别计算出各自所需费用并进行比较即可:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子.【详解】(1)当x=100时,按方案一购买所需费用为:100×200=20000(元);按方案二购买所需费用为:100×(200+80)×80%=22400(元),∵20000<22400,∴方案一省钱;(2)当x>100时,按方案一购买所需费用为:100×200+80(x﹣100)=80x+12000(元);按方案二购买所需费用为:(100×200+80x)×80%=64x+16000(元),答:方案一、方案二的费用为:(80x+12000)元、(64x+16000)元;(3)当x=300时,①全按方案一购买:100×200+80×200=36000(元);②全按方案二购买:(100×200+80×300)×80%=35200(元);③先按方案一购买100张课桌,同时送100把椅子;再按方案二购买200把椅子,100×200+80×200×80%=32800(元),∵36000>35200>32800,∴先按方案一购买100张桌子,同时送100把椅子;再按方案二购买200把椅子最省.【点睛】(1)读题题意,弄清各数据间的关系是解答第1、2小题的关键;(2)解第3小题时,需分以下三种情况分别计算所需费用:①全按方案一购买;②全按方案二购买;③先按方案一购买100张课桌,同时送100把椅子,再按方案二购买200把椅子;解题时不要忽略了其中任何一种.5.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.解:(1)15(x +15)=1231-(x -7).去分母,得6(x +15)=15-10(x -7). 去括号,得6x +90=15-10x +70. 移项及合并同类项,得16x =-5.系数化为1,得x =-516. (2)2110121364x x x -++-=-1 去分母,得4(2x -1)-2(10x +1)=3(2x +1)-12. 去括号,得8x -4-20x -2=6x +3-12. 移项,得8x -20x -6x =3-12+4+2. 合并同类项,得-18x =-3. 系数化为1,得x =16. 【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键. 6.解下列方程 (1)-9x-4x+8x=-3-7; (2)3x+10x=25+0.5x . 解析:(1)x=2;(2)x=2 【分析】(1)方程移项合并,把x 系数化为1,即可求出解; (2)方程移项合并,把x 系数化为1,即可求出解. 【详解】解:(1)合并同类项,得,-5x=-10 系数化为1,得,x=2 (2)移项,得3x+10x-0.5x=25 合并同类项,得12.5x=25 系数化为1,得,x=2 【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 7.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.8.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆? 解析:小型汽车有45辆 【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可. 【详解】设中型汽车有x 辆,则小型汽车有3x 辆, 根据题意,得643270+⨯=x x , 合并同类项,得18x =270, 系数化为1,得x =15, 则3x =45.答:小型汽车有45辆. 【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程. 9.关于x 的方程357644m x m x +=-的解比方程4(37)1935x x -=-的解大1,求m 的值. 解析:623m =-【分析】分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=-313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m--= 解得:623m =- 【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.10.如图A 在数轴上所对应的数为﹣2.(1)点B 在点A 右边距A 点4个单位长度,求点B 所对应的数;(2)在(1)的条件下,点A 以每秒2个单位长度沿数轴向左运动,点B 以每秒2个单位长度沿数轴向右运动,当点A 运动到﹣6所在的点处时,求A ,B 两点间距离.(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A ,B 两点相距4个单位长度.解析:(1)B 所对应的数为2;(2)A ,B 两点间距离是12个单位长度;(3)经过4秒或8秒长时间A ,B 两点相距4个单位长度. 【分析】(1)根据左减右加可求点B 所对应的数;(2)先根据时间=路程÷速度,求出运动时间,再根据路程=速度×时间求解即可; (3)分两种情况:运动后的B 点在A 点右边4个单位长度;运动后的B 点在A 点左边4个单位长度;列出方程求解即可. 【详解】解:(1)﹣2+4=2. 故点B 所对应的数为2; (2)(﹣2+6)÷2=2(秒), 4+(2+2)×2=12(个单位长度). 故A ,B 两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.【点睛】本题考查了数轴,行程问题的数量关系的运用,解答时根据行程问题的数量关系列出方程是解决问题的关键.11.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱?(2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析.【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x元,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.12.青岛、大连两个城市各有机床12台和6台,现将这些机床运往海南10台和厦门8台,每台费用如表一:问题1:如表二,假设从青岛运往海南x台机床,并且从青岛、大连运往海南机床共花费36万元,求青岛运往海南机床台数.问题2:在问题1的基础上,问从青岛、大连运往海南、厦门的总费用为多少万元?解析:问题1:青岛运往海南机床台数是4台;问题2:从青岛、大连运往海南、厦门的总费用为94万元.【分析】(1)假设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据等量关系:“运往海南机床共花费36万元”,即可列出方程解决问题;(2)根据问题1中求出的分别从青岛和大连运出的台数,则它们剩下的台数都要运到厦门,由此利用乘法和加法的意义即可解答问题.【详解】(1)设从青岛运往海南x台机床,则从大连运往海南的就是10-x台,根据题意可得方程:4x+3(10-x)=36,4x+30-3x=36,x=6,则从大连运往海南的有:10-6=4(台).答:从青岛运往海南6台,从大连运往海南4台.(2)根据上面计算结果可知:青岛剩下12-6=6(台);大连剩下6-4=2(台),剩下的这些都要运往厦门,所以需要的费用是:6×8+2×5,=48+10,=58(万元),36+58=94(万元).答:从青岛、大连运往海南、厦门的总费用为94万元.【点睛】观察表格,找出已知条件,和要求的问题,根据题干中的等量关系即可,此题条件稍微复杂,需要学生认真审题进行解答.13.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价为多少?解析:180元或202.5元【分析】先根据题意判断出可能打折的情况,再分别算出可能的可能的原价.【详解】∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.【点睛】本题考查打折销售问题,关键在于分类讨论.14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱.【分析】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可.【详解】(1)设当购买乒乓球x盒时,两种优惠办法付款一样,则30×5+5(x−5)=(30×5+5x)×90%5x+125=135+4.5x5x+125−4.5x=135+4.5x−4.5x0.5x+125=1350.5x+125−125=135−1250.5x=100.5x ×2=10×2 x =20答:当购买乒乓球20盒时,两种优惠办法付款一样. (2)①在甲商店购买球拍5副、15盒乒乓球需要: 30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要: (30×5+5×15)×90%=225×90%=202.5(元) 因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要: 30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要: (30×5+5×30)×90%=300×90%=270(元) 因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型. 15.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值.解析:a=1 【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可. 【详解】解:∵3(2)x x a -=-,解得:62ax -=; ∵223x a x a+-=, 解得:5x a =,∴65522a a -=-, 解得:1a =; ∴a 的值为1. 【点睛】本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.16.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(2)若该水果店按售价销售完这批水果,获得的利润是多少元?解析:(1)购进甲种水果65千克,乙种水果75千克;(2)获得的利润为495元. 【分析】(1)设购进甲种水果x 千克,则购进乙种水果(140)x -千克,根据表格中的数据和意义列出方程并解答;(2)总利润=甲的利润+乙的利润. 【详解】解:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000 解得:x=65 ∴140﹣x=75;答:购进甲种水果65千克,乙种水果75千克; (2)3×65+4×75=495(元) 答:获得的利润为495元. 【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3. 【分析】(1)原式利用规定的运算方法计算即可求出值; (2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可. 【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5;故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9, 整理得:5x =10, 解得:x =2, 故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数, ∴(2x−1)k−(−3)(x +k )=3+2k , ∴(2k +3)x =3,∴323x k =+, ∵k 是整数,∴2k +3=±1或±3, ∴k =0,−1,−2,−3. 【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键. 18.如果,a b 为定值,关于x 的方程2236kx a x bk+-=+无论k 为何值时,它的根总是1,求,a b 的值.解析:a=132,b=﹣4 【分析】先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值. 【详解】解:方程两边同时乘以6得: 4kx +2a =12+x−bk , (4k−1)x +2a +bk−12=0①, ∵无论为k 何值时,它的根总是1, ∴把x =1代入①, 4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a、b.19.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?解析:5【分析】设两队合作x个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】解:设两队合作x个月完成,由题意,得[112(1+40%)+115(1+25%)]x=1,解得x=5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.20.某市水果批发欲将A市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A市与B市之间的距离为S千米,你若是A市水果批发部门的经理,要想将这种水果运往B市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x=400;(2) 当s>200时,选择火车运输;当s<200时,选择汽车运输;当s=200时,两种方式都一样【分析】(1)设路程为x千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解.(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100ss s ++=+ 汽车运输的费用为•2002090022.590080ss s ++=+ 当17s +2000=22.5s +900,解得s =200 当s >200时,选择火车运输 当s <200时,选择汽车运输 当s =200时,两种方式都一样 【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 21.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数; (2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少?解析:(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1 【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数. (2)根据相反数的定义求解即可. (3)根据题意列出方程求解即可. 【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-. 因为473-+=,所以点C 表示的数为3. (2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-. 因为 1.54 5.5--=-,所以点B 表示的数为 5.5-. (3)设小虫P 与小虫Q 的运动时间为t .依题意得0.50.27t t +=,解得10t =, 则点D 表示的数是0.51041⨯-=. 【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键.22.松雷中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件.且单独加工这批校服甲工厂比乙工厂要多用20天在加工过程中,学校每天需付甲工厂费用80元,乙工厂费用120元.(1)这批校服共有多少件?(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工多少天?(3)经学校研究制定如下方案:方案一:由甲工厂单独完成;方案二:由乙工厂单独完成;方案三:按第(2)问方式完成并且每种方案在加工过程中,每个工厂需要一名工程师进行技术指导,并由学校提供每天10元的午餐补助费,请你通过计算帮学校选择一种既省时又省钱的加工方案. 解析:(1)960件 (2)28天 (3)方案三 【分析】(1)由题意设这批校服共有x 件,并根据题意建立一元一次方程进行求解即可; (2)根据题意设甲工厂加工a 天,则乙工厂共加工(24)a +天,并根据题意建立一元一次方程进行求解即可;(3)根据题意分别计算三种方案所需的时间与费用,并进行比较即可得出答案. 【详解】解:(1)设这批校服共有x 件.由题意,得201624x x -=.解得960x =. 答:这批校服共有960件.(2)设甲工厂加工a 天,则乙工厂共加工(24)a +天.依题意得(1624)24(125%)(24)960a a a ++⨯++-=.解得12a =.2424428a +=+=.答:乙工厂共加工28天.(3)①方案一:需要耗时9601660÷=(天),费用为60(1080)5400⨯+=(元); ②方案二:需要耗时9602440÷=(天),费用为40(12010)5200⨯+=(元); ③方案三:甲工厂耗时12天,乙工厂耗时28天,故需要耗时28天,费用为12(1080)28(10120)4720⨯++⨯+=(元). 综上,方案三既省时又省钱. 【点睛】本题考查一元一次方程的实际应用,读懂题干并依据题干条件建立一元一次方程求解是解题的关键.23.阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--. 两边同时加上1,得2(1)3(1)x x -=-.第一步 两边同时除以(1)x -,得23=.第二步 所以原方程无解.第三步 解析:第二步出错,见解析 【分析】根据等式的基本性质判断即可. 【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0. 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.24.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算? (2)如果这位商人想住一年,租哪家的房子划算? (3)这位商人住多长时间时,租两家的房子租金一样?解析:(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样. 【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可. 【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元), 交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元), 交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算. (3)设这位商人住x 个月时,租两家的房子租金一样, 根据题意,得120020001400x x +=. 解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.25.如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费) (1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.解析:(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出. 【详解】(1)143,109,900 套餐1:490.2(220200)0.3(800500)+⨯-+⨯- 490.2200.3300=+⨯+⨯49490=++ 143=(元).套餐2:690.2(800600)+⨯- 690.2200=+⨯ 6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =. 故答案为:143;109;900. (2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等; 当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =; 当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 26.解方程:32122234x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦. 解析:8x =-【分析】先去括号,再按照移项、合并同类项、系数化为1的步骤解答即可. 【详解】 解:去括号,得1324xx ---=, 移项、合并同类项,得364x-=, 系数化为1,得8x =-.。

七年级数学一元一次方程易错题(Word版 含答案)

七年级数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。

(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。

(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。

2.(公园门票价格规定如下表:1)班人数较少,不足50人,(2)班超过50人,但不足100人。

经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。

最新七年级数学上册一元一次方程易错题(Word版 含答案)

最新七年级数学上册一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。

人教版七年级上册第3章《一元一次方程》易错题训练卷含答案

人教版七年级上册第3章《一元一次方程》易错题训练卷含答案

人教版七年级上册第3章《一元一次方程》易错题训练卷一.选择题1.下列是一元一次方程的为()A.x2﹣2x=1B.x+2y=5C.ax+b=c(a、b、c为常数)D.y=12.下列各组等式变形中,不一定成立的是()A.如果x=y,那么ax=ayB.如果,那么x=yC.如果x﹣b=y﹣b,那么x=yD.如果x=y,那么3.下列四组变形中,属于移项变形的是()A.由5x+10=0,得5x=﹣10B.由,得x=12C.由3y=﹣4,得D.由2x﹣(3﹣x)=6,得2x﹣3+x=64.解方程2x+=2﹣,去分母,得()A.12x+2(x﹣1)=12+3(3x﹣1)B.12x+2(x﹣1)=12﹣3(3x﹣1)C.6x+(x﹣1)=4﹣(3x﹣1)D.12x﹣2(x﹣1)=12﹣3(3x﹣1)5.小明在解方程去分母时,方程右边的﹣1没有乘3,因而求得的解为x=2,则原方程的解为()A.x=0B.x=﹣1C.x=2D.x=﹣26.若x=2是关于x的一元一次方程ax﹣2=b的解,则3b﹣6a+2的值是()A.﹣8B.﹣4C.8D.47.设“■●▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“■●▲”中质量最大的是()A.▲B.■C.●D.无法判断8.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折B.5.5折C.7折D.7.5折9.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+2510.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14B.72C.33D.69二.填空题11.关于x的方程(|m|﹣3)x2+(m﹣3)x+1=0是一元一次方程,则m=.12.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.13.从一个内径为12cm的圆柱形茶壶向一个内径为6cm、内高为12cm的圆柱形茶杯中倒水,茶杯中的水满后,茶壶中的水下降了cm.14.为了倡导居民节约用水,自来水公司规定:居民每户用水量在8立方米以内,每立方米收费0.8元;超过规定用量的部分,每立方米收费1.2元.小明家12月份水费为18元,求小明家12月份的用水量,设小明家12月份用水量为x立方米,根据题意,可列方程为.15.已知关于x的方程ax﹣4x=﹣2的解为正整数,则整数a的值为.16.如果对于任意非零的有理数a,b定义运算如下:.已知x⊕2⊕3=5,则x的值为.三.解答题17.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)18.解方程:.19.用白铁皮做罐头盒,每张铁皮可制作盒身15个或盒底42个,一个盒身与两个盒底配成一套罐头盒,现有144张白铁皮,用多少张制作盒身,多少张制作盒底,可以正好制成整套罐头盒?20.m为何值时,关于x的方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.21.A、B两列火车长分别是120m和144m,A车比B车每秒多行5m.(1)两列相向行驶,从相遇到两车全部错开需8秒,问两车的速度各是多少?(2)在(1)的条件下,若同向行驶,A车的车头从B车的车尾追及到A车全部超出B 车,需要多少秒?22.为庆祝“六一”儿童节,某市中小学统一组织文艺汇演,甲、乙两所学校共92人(其中甲校的人数多于乙校的人数,且甲校的人数不足90人)准备统一购买服装参加演出;下面是某服装厂给出的演出服装的价格表购买服装的套数1套至45套46套至90套91套以上每套服装的价格60元50元40元(1)如果两所学校分别单独购买服装一共应付5000元,甲、乙两所学校各有多少学生准备参加演出?(2)如果甲校有10名同学抽调去参加书法绘画比赛不能参加演出,请你为两所学校设计一种最省钱的购买服装方案.23.如图,在数轴上,点A表示的数为﹣12.点B是数轴上位于点A右侧的一点,且A,B 两点间的距离为32.动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设点P的运动时间为t(t>0)秒.(1)点B表示的数是.(2)①点P表示的数是(用含t的代数式表示).②当点P将线段AB分成的两部分的比为1:2时,求t的值.(3)若点P从原点出发,沿数轴移动.第1次向左移动1个单位长度,第2次向右移动3个单位长度,第3次向左移动5个单位长度,第4次向右移动7个单位长度,……①点P第9次移动后,表示的数是.②点P在运动过程中,(填“能”或“不能”)与点A重合.当点P与B重合时,移动了次.参考答案一.选择题1.解:A.x2﹣2x=1属于一元二次方程,不合题意;B.x+2y=5属于二元一次方程,不合题意;C.只有当a≠0时,ax+b=c(a、b、c为常数)属于一元一次方程,不合题意;D.y=1属于一元一次方程,符合题意;故选:D.2.解:A、如果x=y,那么ax=ay,原变形成立,故此选项不符合题意;B、如果a+=a+,那么x=y,原变形成立,故此选项不符合题意;C、如果x﹣b=y﹣b,那么x=y,原变形成立,故此选项不符合题意;D、如果x=y,a≠0,则=,原变形不一定成立,故此选项符合题意.故选:D.3.解:A、移项得出5x=﹣10,故本选项正确;B、去分母得出x=12,故本选项错误;C、方程的两边除以3得出,y=﹣,故本选项错误;D、去括号得出2x﹣3+x=6,故本选项错误;故选:A.4.解:方程2x+=2﹣,去分母,得12x+2(x﹣1)=12﹣3(3x﹣1)故选:B.5.解:根据题意,得:2x﹣1=x+a﹣1,把x=2代入这个方程,得:3=2+a﹣1,解得:a=2,代入原方程,得:,去分母,得:2x﹣1=x+2﹣3,移项、合并同类项,得:x=0,故选:A.6.解:将x=2代入一元一次方程ax﹣2=b得2a﹣b=2∵3b﹣6a+2=3(b﹣2a)+2∴﹣3(2a﹣b)+2=﹣3×2+2=﹣4即3b﹣6a+2=﹣4故选:B.7.解:第一个不等式,■质量<▲质量,根据第二个不等式,●质量<■质量,所以●质量<■质量<▲质量,故选:A.8.解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x•,解得:y=7.5即相当于这两件商品共打了7.5折.故选:D.9.解:设这个班有学生x人,由题意得3x+20=4x﹣25.故选:A.10.解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数,故选:A.二.填空题11.解:∵方程(|m|﹣3)x2+(m﹣3)x+1=0是关于x的一元一次方程,∴|m|﹣3=0,m﹣3≠0,∴m=±3,m≠3,∴m=﹣3.故答案为:﹣3.12.解:设需x天完成,则x(+)=1,解得x=4,故需4天完成.13.解:设茶壶中水的高度下降了xcm.9π×12=36π×x,解得x=3,∴茶壶中水的高度下降了3cm.故答案为:3.14.解:∵8×0.8=6.4<18,∴x>8,根据题意,可列方程为:8×0.8+1.2(x﹣8)=18,故答案为:8×0.8+1.2(x﹣8)=18.15.解:ax﹣4x=﹣2x=,由题意得,4﹣a=1或2,则a=3或2,故答案为:3或2.16.解:根据题意得:x⊕2=2x+,则x⊕2⊕3=6x+x+=5,去分母得:36x+9x+4x+x=30,移项合并得:50x=30,解得:x=0.6.故答案为:0.6.三.解答题17.解:去括号:2x﹣4﹣12x+3=9﹣9x,移项:2x﹣12x+9x=9+4﹣3,合并同类项:﹣x=10,系数化1:x=﹣10.18.解:去分母得,6(3x+4)﹣12=7﹣2x,去括号得,18x+24﹣12=7﹣2x,移项得,18x+2x=7﹣24+12,合并同类项得,20x=﹣5,系数化为1得,x=﹣.19.解:设用x张制作盒身,(144﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,得2×15x=42(144﹣x)解得x=84,∴144﹣x=60(张).答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.20.解:解方程x=2x﹣3m,得:x=3m,解4x﹣2m=3x﹣1得:x=2m﹣1,∵关于x的方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍,∴2×3m=2m﹣1,∴解得:m=﹣.答:当m=﹣时,关于x的方程4x﹣2m=3x﹣1的解是x=2x﹣3m的解的2倍.21.解:(1)设B车的速度为xm/s,则A车的速度为(x+5)m/s.由题意可得:8〔x+(x+5)〕=120+144,解得x=14,则x+5=19.答:A车、B车的速度分别为19m/s,14m/s;(2)设A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要t秒.依题意得:19t=14t+120+144,解得t=52.8.答:若A、B两车同向行驶,A车的车头从B车的车尾追及到A车全部超出B车,需要52.8秒.22.解:(1)设甲校x人,则乙校(92﹣x)人,依题意得50x+60(92﹣x)=5000,x=52,∴92﹣x=40,答:甲校有52人参加演出,乙校有40人参加演出.(2)乙:92﹣52=40人,甲:52﹣10=42人,两校联合:50×(40+42)=4100元,而此时比各自购买节约了:(42×60+40×60)﹣4100=820元若两校联合购买了91套只需:40×91=3640元,此时又比联合购买节约:4100﹣3640=460元因此,最省钱的购买方案是两校联合购买91套服装,即比实际人数多买91﹣(40+42)=9套.23.解:(1)﹣12+32=20(2)①p的运动路程2t,则P为(2t﹣12);②因为P为(2t﹣12),所以P A为2t,PB为(32﹣2t)当时,,所以t=当时,,所以t=∴t的值为,(3)①规定向左运动记为﹣,向右运动记+,则记为:﹣1,+3,﹣5,+7,﹣9,+11,﹣13,+15,﹣17,(﹣1)+(+3)+(﹣5)+(+7)+(﹣9)+(+11)+(﹣13)+(+15)+(﹣17)=﹣9②因为运动量加起来不等于0,所以不能;P与B重合时则加起来等于20,经计算总共运动了20次。

七年级一元一次方程易错题(Word版 含答案)

七年级一元一次方程易错题(Word版 含答案)

3.如图 1,O 为直线 AB 上一点,过点 O 作射线 OC,∠ AOC=30°,将一直角三角板 (∠ M=30°)的直角顶点放在点 O 处,一边 ON 在射线 OA 上,另一边 OM 与 OC 都在直线 AB 的上方.
(1)将图 1 中的三角板绕点 O 以每秒 3°的速度沿顺时针方向旋转一周.如图 2,经过 t 秒 后,OM 恰好平分∠ BOC.①求 t 的值;②此时 ON 是否平分∠ AOC?请说明理由;
(3)解:由题意得 200x+7600=7800, 解得 x=1. 符合实际意义,
答: 有可能 ,杭州厂运往南昌的机器为 1 台.
【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运 费),列式后化简即可。 (2)根据(1)中的表达式等于 8400,列方程并求解。 (3)根据(1)中的表达式等于 7800,列方程并求解,若方程的解符合实际意义,则有可 能,否则就不可能。
∠ CON=∠ COM=45°,又三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度 旋转,设∠ AON 为 3t,∠ AOC 为 30°+6t,根据∠ AOC﹣∠ AON=45°得出含 t 的方程,求解得 出 t 的值 ; ( 3)根据∠ AON+∠ BOM=90°,∠ BOC=∠ COM,及三角板绕点 O 以每秒 3°的速度,射线 OC 也绕 O 点以每秒 6°的速度旋转,故设∠ AON 为 3t,∠ AOC 为 30°+6t,从而得到∠ COM
【答案】 (1)
(2)解:设
=m,方程两边都乘以 100,可得 100×

=0.7373…,可知 100×
即 73+x=100x

【精选】人教版七年级上册数学 一元一次方程易错题(Word版 含答案)

【精选】人教版七年级上册数学 一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。

(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地10台,杭州厂可支援外地4台,现在决定给武汉8台,南昌6台,每台机器的运费如下表,设杭州厂运往南昌的机器为x台,(1)用含x的代数式来表示总运费(单位:元)(2)若总运费为8400元,则杭州厂运往南昌的机器应为多少台?(3)试问有无可能使总运费是7800元?若有可能请写出相应的调动方案;若无可能,请说明理由.【答案】(1)解:总费用为:400(6-x)+800(4+x)+300x +500(4-x)=200x+7600(2)解:由题意得200x+7600=8400,解得x=4,答:杭州运往南昌的机器应为4台(3)解:由题意得200x+7600=7800,解得x=1. 符合实际意义,答:有可能,杭州厂运往南昌的机器为1台.【解析】【分析】(1)根据总费用=四条线路的运费之和(每一条线路的费用=台数×运费),列式后化简即可。

人教版数学七年级上册 一元一次方程易错题(Word版 含答案)

人教版数学七年级上册 一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.(1)若点P到点A.点B的距离相等,写出点P对应的数;(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)【答案】(1)解:∵A、B两点对应的数分别为−4和2,∴AB=6,∵点P到点A. 点B的距离相等,∴P到点A. 点B的距离为3,∴点P对应的数是−1(2)解:存在;设P表示的数为x,①当P在AB左侧,PA+PB=10,−4−x+2−x=10,解得x=−6,②当P在AB右侧时,x−2+x−(−4)=10,解得:x=4(3)解:∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少秒,PB始终距离为2,设运动t分钟后P点到点A. 点B的距离相等,|−4+2t|+t=2,解得:t=2【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.3.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.4.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?【答案】(1)解:设两厂同时处理每天需xh完成,根据题意,得(55+45)x=700,解得x=7.答:甲、乙两厂同时处理每天需7 h.(2)解:设安排甲厂处理y h,根据题意,得550y+495× ≤7370,解得y≥6.∴y的最小值为6.答:至少安排甲厂处理6 h.【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.5.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项测试(含答案)

《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项测试(含答案)

一、解答题1.已知关于x的方程:2(x﹣1)+1=x与3(x+m)=m﹣1有相同的解,求以y为未知数的方程3332my m x--=的解.解析:214y=-.【分析】根据方程可直接求出x的值,代入另一个方程可求出m,把所求m和x代入方程3,可得到关于y的一元一次方程,解答即可.【详解】解:解方程2(x﹣1)+1=x得:x=1将x=1代入3(x+m)=m﹣1得:3(1+m)=m﹣1解得:m=﹣2将x=1,m=﹣2代入33 32my m x --=得:3(2)2332y----=,解得:214y=-.【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x个家长,则有(15﹣x)个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x个家长,(15﹣x)个学生,根据题意得:100x+100×0.8(15﹣x)=1400,解得:x=10,15﹣x=5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.3.解下列方程:(1)15(x+15)=1231-(x-7).(2)2110121364x x x-++-=-1.解析:(1)x=-516;(2)x=16.【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x+15)=1231-(x-7).去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项及合并同类项,得16x=-5.系数化为1,得x=-5 16.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.4.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x ,得3x -2x =2x -6-2x .所以x =-6.(2)两边减x ,得2+x -x =2x +1-x .化简,得2=x +1.两边减1,得2-1=x +1-1所以x =1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8.所以x =9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 5.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=-解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.6.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d =-,那么当35727x-=时,x 的值是多少? 解析:x =-2【分析】 根据新定义的运算得到关于x 的一元一次方程,解方程即可求解.【详解】解:由题意得:21 - 2(5 - x )=7即21-10+2x =7x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键. 7.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足|4a-b|+(a-4)2=0(1)a= ,b= ,并在数轴上面出A 、B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A .求点P 和点Q 运动多少秒时,P 、Q 两点之间的距离为4,并求此时点Q 对应的数.解析:(1)4,16.画图见解析;(2)83或8秒;(3)点P 和点Q 运动4或8或9或11秒时,P ,Q 两点之间的距离为4.此时点Q 表示的数为20,24,25,27.【分析】(1)根据非负数的性质求出a 、b 的值即可解决问题;(2)构建方程即可解决问题;(3)分四种情形构建方程即可解决问题.【详解】(1)∵a ,b 满足|4a-b|+(a-4)2≤0,∴a=4,b=16,故答案为4,16.点A 、B 的位置如图所示.(2)设运动时间为ts .由题意:3t=2(16-4-3t)或3t=2(4+3t-16),解得t=83或8,∴运动时间为83或8秒时,点P到点A的距离是点P到点B的距离的2倍;(3)设运动时间为ts.由题意:12+t-3t=4或3t-(12+t)=4或12+t+4+3t=52或12+t+3t-4=52,解得t=4或8或9或11,∴点P和点Q运动4或8或9或11秒时,P,Q两点之间的距离为4.此时点Q表示的数为20,24,25,27.【点睛】本题考查多项式、数轴、行程问题的应用等知识,具体的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.8.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.解析:a=2,x=-3【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a的值,然后将a的值代入方程求解即可.【详解】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入21233x x a-+=-得:2x﹣1=x+2﹣6.解得:x=﹣3.【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a)-2的解是解题的关键.9.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x ,(-2)2+2×(-2)x=-2+x ,4-4x=-2+x ,-4x-x=-2-4,-5x=-6, x=65. 【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.10.某地下停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场的小型汽车数量是中型汽车的3倍,这些车共缴纳停车费270元,则小型汽车有多少辆?解析:小型汽车有45辆【分析】设中型汽车有x 辆,则小型汽车有3x 辆,根据“这些车共缴纳停车费270元”列出关于x 的方程,然后求解方程即可.【详解】设中型汽车有x 辆,则小型汽车有3x 辆,根据题意,得643270+⨯=x x ,合并同类项,得18x =270,系数化为1,得x =15,则3x =45.答:小型汽车有45辆.【点睛】本题主要考查一元一次方程的应用,解此题的关键在于根据题意设出未知数,找到题中相等关系列出方程.11.市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元按总价优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,两次购物价值_____元和_____元.(2)在此活动中,通过打折他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品与两次分别购买是更节省还是亏损?说明你的理由.解析:(1)134元,520元;(2)54元;(3)见解析【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减去实际付款可求节省的钱数;(3)先计算两次物品合起来一次购买实际付款,在与134+466比较即可.【详解】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品的标价超过了500元.设其标价x元,则500×0.9+(x-500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;故答案为:134元,520元;(2)134+520-134-466=54,所以省了54元;(3)两次物品合起来一次购买更节省.两次合起来一次购买支付500×0.9+(654-500)×0.8=573.2元,573.2<134+466=600,所以两次物品合起来一次购买更节省.【点睛】此题主要考查了一元一次方程的应用中实际生活中的折扣问题,关键是运用分类讨论的思想,分析清楚付款打折的两种情况.12.某市居民生活用水实行“阶梯水价”收费,具体收费标准见下表:⨯+⨯-= (元).例:甲用户1月份用水25吨,应缴水费1.620 2.4(2520)44(1)若乙用户1月份用水10吨,则应缴水费________元;(2)若丙用户1月份应缴水费62.6元,则用水________吨;.(3)若丁用户1、2月份共用水60吨(1月份用水量超过了2月份),设2月份用水a吨,求丁用户1、2月份各应缴水费多少元.(用含a的代数式表示)-元.当2月份用水量不超过20吨时,解析:(1)16;(2)32; (3) 1月份应缴水费(155 3.3)aa-元.应缴水费1.6a元;当2月份用水量超过20吨但不超过30吨时,应缴水费(2.416)【分析】(1)根据每户每月用水量不超过20时,水费价格为1.6元/吨,可知乙用户1月份用水10吨,则应缴水费:1.6×10,计算即可;(2)由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,列出方程,求解即可;(3)由丁用户1、2两个月共用水60吨,设2月份用水a 吨,则1月份用水(60-a )吨,根据1月份用水量超过了2月份,得出1月份用水量超过了2月份,得出1月份用水量大于30吨,2月份用水量小于30吨,根据三级收费求出1月份应缴水费,分两种情况求出2月份应缴水费, ①当2月份用水量不超过20吨时;②当2月份用水量超过20吨但不超过30吨时;【详解】解:(1)依题意得:1.6×10=16;故答案为:16(2) 依题意得:由于用水30吨时应缴水费为:1.6×20+2.4×10=56<62.6,所以丙用户1月份用水超过30吨,设用水为x 吨,依题意得:56(30) 3.362.6x +-⨯=解得:x=32故答案为:32;(3)因为1月份用水量超过了2月份,所以1月份用水量超过了30吨,2月份用水量少于30吨.1月份应缴水费20 1.610 2.4 3.3(6030)(155 3.3)a a ⨯+⨯+--=-元.①当2月份用水量不超过20吨时,应缴水费1.6a 元;②当2月份用水量超过20吨但不超过30吨时,应缴水费1.6202.4(20)(2.416)a a ⨯+-=-元.【点睛】本题主要考查了列代数式,代数式求值,掌握列代数式,代数式求值是解题的关键. 13.统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?解析:102座.【分析】根据等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可得答案.【详解】设严重缺水城市有x 座,依题意得:(3x+52)+x+2x=664.解得:x=102.答:严重缺水城市有102座.【点睛】此题考查一元一次方程的应用,解题的关键在于找到合适的等量关系,列出方程求解. 14.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念.15.某同学在给方程21133x x a -+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程.解析:2a =,0x =【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解.【详解】把2x =代入211x x a -=+-,得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+-移项得:2231x x -=-+合并同类项得:0x =【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 16.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?解析:(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【详解】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得:500{243313800x y x y +=+=, 解得:300{200x y ==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.17.已知关于x 的方程3(2)x x a -=- 的解比223x a x a +-= 的解小52 ,求a 的值. 解析:a=1【分析】分别求出两个方程的解,然后根据关系列出等式,求出a 的值即可.【详解】解:∵3(2)x x a -=-, 解得:62a x -=; ∵223x a x a +-=, 解得:5x a =, ∴65522a a -=-, 解得:1a =;∴a 的值为1.【点睛】 本题考查了解一元一次方程,以及一元一次方程的解,解题的关键是正确求出一元一次方程的解,从而列出等式求出a 的值.18.已知14y x =-+,222y x =-.(1)当x 为何值时,12y y =;(2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.19.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键. 20.检验下列方程后面小括号内的数是否为相应方程的解. (1)2x+5=10x-3(x=1); (2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 解析:(1)是;(2)否. 【分析】(1)先求出一元一次方程的解,然后进行判断即可; (2)先求出一元一次方程的解,然后进行判断即可; 【详解】解:(1)25103x x +=-, ∴88x -=-, ∴1x =,∴括号内的数是方程的解; (2)112(1)(1)3(1)(1)23x x x x --+=+--, ∴77(1)(1)32x x -=+, ∴2233x x -=+, ∴5x =-;∴括号内的数不是方程的解. 【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的方法和步骤. 21.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工? 解析:5 【分析】设两队合作x 个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】解:设两队合作x 个月完成,由题意,得[112(1+40%)+115(1+25%)]x =1,解得x =5.答:两队合作,5个月可以完工. 【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程. 22.公园门票价格规定如下表:50人.若两个班都以班为单位购票,则一共应付1240元,问: (1)如果两班联合起来,作为一个团体购票,可省多少元? (2)两班各有多少学生?(3)如果七(1)班单独组织去公园游玩,作为组织者的你将如何购票才最省钱? 解析:(1)304元;(2)七(1)班有48人,七(2)班有56人;(3)买51张门票可以更省钱. 【分析】(1)利用算术方法即可解答;(2)若设初一(1)班有x 人,根据总价钱即可列方程; (3)应尽量设计的能够享受优惠. 【详解】(1)12401049304-⨯=(元),所以可省304元. (2)设七(1)班有x 人,则七(2)班有(104)x -人. 由题意得1311(104)1240x x +-=或139(104)1240x x +-=, 解得48x =或76x =(不合题意,舍去). 即七(1)班有48人,七(2)班有56人.(3)由(2)可知七(1)班共48人,若买48张门票,共需4813624⨯=(元),若买51张门票,共需5111561⨯=(元), 所以买51张门票可以更省钱. 【点睛】本题考查了一元一次方程的应用.在优惠类一类问题中,注意认真理解优惠政策,审题要细心.23.阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--. 两边同时加上1,得2(1)3(1)x x -=-.第一步 两边同时除以(1)x -,得23=.第二步所以原方程无解.第三步 解析:第二步出错,见解析 【分析】根据等式的基本性质判断即可. 【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0. 【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.24.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算? (2)如果这位商人想住一年,租哪家的房子划算? (3)这位商人住多长时间时,租两家的房子租金一样?解析:(1)住半年时,租B 家的房子划算;(2)住一年时,租A 家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样. 【分析】(1)分别根据A 、B 两家租金的缴费方式计算A 、B 两家半年的租金,然后比较即得答案;(2)分别根据A 、B 两家租金的缴费方式计算A 、B 两家一年的租金,然后比较即得答案;(3)根据A 家租金(2000+1200×租的月数)=B 家租金(1400×租的月数)设未知数列方程解答即可. 【详解】解:(1)如果住半年,交给A 家的租金是1200620009200⨯+=(元), 交给B 家的租金是140068400⨯=(元),因为9200>8400,所以住半年时,租B 家的房子划算.(2)如果住一年,交给A 家的租金是120012200016400⨯+=(元), 交给B 家的租金是14001216800⨯=(元),因为16400<16800,所以住一年时,租A 家的房子划算. (3)设这位商人住x 个月时,租两家的房子租金一样, 根据题意,得120020001400x x +=. 解方程,得10x =.答:这位商人住10个月时,租两家的房子租金一样. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A 、B 两家租金的缴费方式是解题的关键.25.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.26.如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费) (1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.解析:(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出. 【详解】(1)143,109,900 套餐1:490.2(220200)0.3(800500)+⨯-+⨯- 490.2200.3300=+⨯+⨯ 49490=++ 143=(元).套餐2:690.2(800600)+⨯- 690.2200=+⨯ 6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =. 故答案为:143;109;900. (2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等; 当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =; 当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱. 【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 27.解方程:228425920x x x --+=-. 解析:49x =【分析】考虑到最后一项的分子分母可同时除以4,可化简此项后再根据解一元一次方程的方法和步骤解答. 【详解】解:原方程可化为:2222595x x x --+=+. 移项、合并同类项,得229x =. 系数化为1,得49x =. 【点睛】本题考查了一元一次方程的解法,灵活应用整体思想、熟练掌握解一元一次方程的方法和步骤是解题的关键. 28.解方程32324343x x -=-.解析:1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解. 【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.29.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?解析:存活期用了1600元,买债券用了3200元 【分析】设存活期用了x 元,则买债券用了(4800)x -元,由题意列式求解即可. 【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元. 【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 30.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析. 【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可.【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠;②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠.设他所购货物价值x元,则90%×500+(x﹣500)×80%=466,解得x=520,520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元),∵573.2<600,∴此人将这两次购物合为一次购买更节省.【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.。

七年级数学上册一元一次方程易错题(Word版 含答案)

七年级数学上册一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)

七年级上期末复习《第三章一元一次方程》知识点+易错题(含答案)

2019年七年级数学上册期末复习一元一次方程知识点+易错题一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bc=或a c b c÷=÷(0c≠)③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0a b=≠,那么11 a b =③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0ax b+=(a,b为常数,x为未知数,且0a≠).(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13xx+=,它不是一元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

七年级数学一元一次方程拔高题及易错题(Word版附答案)

七年级数学一元一次方程拔高题及易错题(Word版附答案)

七年级数学一元一次方程拔高题及易错题(Word版附答案)人教版人教版七七年级数学年级数学第3章一元一次方程一元一次方程拔高及易错拔高及易错题题精选精选((全卷总分150分)姓名姓名得分得分得分一、选择题(每小题4分,共32分)1.关于x 的方程a(a -1)x 2-ax+5=0是一元一次方程,那么a 是() A. 0 B. -1 C. 0或1 D. 12.若xy=xz 成立,则下列式子未必成立的是()A .y=zB .x (y+1)=x (z+1)C .xy 2=xyzD .x (y -1) =x (z -1)3.“●■▲”分别表示三种不同的物体.如图所示,天平①①保持平衡.如果要使天平③也平衡,那么应在天平③的右端放()个“■”.① ② ③A. 3B. 4C. 5D. 64.若方程2ax -3=5x+b 无解,则a ,b 应满足()A .a ≠25,b ≠3B .a=25,b=-3C .a ≠25,b=-3D .a=25,b ≠-35.下表是2015年6月份的月历表,任意圈出一横行或一竖列相邻的三个数,则这三个数的和不可能是() A. 24 B. 43 C. 57 D. 69 6.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率为5%.则应打()A. 6折B. 7折C. 8折D. 9折7.学友书店推出售书优惠方案:一次性购书不超过100元,不享受优惠;一次性购书超过100元但不超过200元一律打九折;一次性购书超过200元一律打八折。

如果王明同学一次性购书付款162元,那么他所购书的原价为()10.不论x 取何值等式2ax+b=411.求1+2+22+23+…+22014的值+22015,因此2S-S =22015-1,所1+5+52+53+…+52014的值是12.一列火车匀速行驶,经过一灯在火车上垂直照射的时间为113.如图,有一种足球由32块黑五边形,白皮可看成正六边形,所以黑皮的边数可以根据白皮的据一块黑皮有5条边,设白皮有关系可列方程为14.芜湖市对城区主干道进行绿的两端各栽一棵,并且每两棵树如果每隔6m 载1棵树,则树苗.15.某人乘船从A 地顺流而下到知船在静水中的速度为每小时7为10 km ,则A ,B 两地的距离16.某村修一条水渠,计划每天划多修60 m ,并且第二天结束后17.一天,著名的数学家笛卡儿不同.已知粗蜡烛可点5h ,细蜡度是细蜡烛长度的4倍,那么这18.某商店的冰箱先按原价提高19.(10分)某同学在解关于y 的方程12312?+=?ay y 去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a 的值及其此方程的解.20.(10分)要制作一个如图所示(图中阴影部分为底与盖,且底的长边是x 的2倍,S Ⅰ=S Ⅱ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来即可,求有盖盒子的高x .21.(10分)小李从家骑摩托车到火车站,若每小时行驶30km ,则比火车的开车时间早22.(10分)一水池装有甲、乙、独开甲管6h 可注满水池,单独水排完. 现在先打开甲、乙两管池注满水?23.(10分)某人沿河流逆流游泳10min 后此人发现并立即返身回24.(12分)某校组织10位教师和公司有两种优惠方案.方案一:所有师生按全票价的8方案二:前20人全票,从第21人教版人教版七七年级数学年级数学第3章一元一次方程一元一次方程拔高及易错拔高及易错题题精选精选参考答案一、选择题(每小题4分,共32分)1.关于x 的方程a(a -1)x 2-ax+5=0是一元一次方程,那么a 是( D ) A. 0 B. -1 C. 0或1 D. 12.若xy=xz 成立,则下列式子未必成立的是( A )A .y=zB .x (y+1)=x (z+1)C .xy 2=xyzD .x (y -1) =x (z -1)3.“●■▲”分别表示三种不同的物体.如图所示,天平①②保持平衡.如果要使天平③也平衡,那么应在天平③的右端放(C )个“■”.① ② ③A. 3B. 4C. 5D. 64.若方程2ax -3=5x+b 无解,则a ,b 应满足( D )A .a ≠25,b ≠3B .a=25,b=-3C .a ≠25,b=-3D .a=25,b ≠-35.下表是2015年6月份的月历表,任意圈出一横行或一竖列相邻的三个数,则这三个数的和不可能是( B ) A. 24 B. 43 C. 57 D. 69 6.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率为5%.则应打( B )A. 6折B. 7折C. 8折D. 9折7.学友书店推出售书优惠方案:一次性购书不超过100元,不享受优惠;一次性购书超过100元但不超过200元一律打九折;一次性购书超过200元一律打八折。

【精选】七年级数学上册一元一次方程易错题(Word版 含答案)

【精选】七年级数学上册一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.2.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.3.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.4.2016年春节即将来临,甲、乙两单位准备组织退休职工到某风景区游玩.甲、乙两单位共102人,其中甲单位人数多于乙单位人数,且甲单位人数不够100人.经了解,该风景区的门票价格如下表:数量(张)1﹣5051﹣100101张及以上单价(元/张)60元50元40元如果两单位分别单独购买门票,一共应付5500元.(1)如果甲、乙两单位联合起来购买门票,那么比各自购买门票共可以节省多少钱?(2)甲、乙两单位各有多少名退休职工准备参加游玩?(3)如果甲单位有12名退休职工因身体原因不能外出游玩,那么你有几种购买方案,通过比较,你该如何购买门票才能最省钱?【答案】(1)解:如果甲、乙两单位联合起来购买门票需40×102=4080(元),则比各自购买门票共可以节省:5500﹣4080=1420(元)(2)解:设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人.依题意得:50x+60×(102﹣x)=5500,解得:x=62.则乙单位人数为:102﹣x=40.答:甲单位有62人,乙单位有40人(3)解:方案一:各自购买门票需50×60+40×60=5400(元);方案二:联合购买门票需(50+40)×50=4500(元);方案三:联合购买101张门票需101×40=4040(元);综上所述:因为5400>4500>4040.故应该甲乙两单位联合起来选择按40元一次购买101张门票最省钱【解析】【分析】(1)运用分别购票的费用和﹣联合购票的费用就可以得出结论;(2)设甲单位有退休职工x人,则乙单位有退休职工(102﹣x)人,根据“如果两单位分别单独购买门票,一共应付5500元”建立方程求出其解即可;(3)有三种方案:方案一:各自购买门票;方案二:联合购买门票;方案三:联合购买101张门票.分别求出三种方案的付费,比较即可.5.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.6.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.7.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2。

(word完整版)一元一次方程拔高题

(word完整版)一元一次方程拔高题

一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.3、已知方程2(x+1)=3(x﹣1)的解为a+2,求方程2[2(x+3)﹣3(x﹣a)]=3a的解.4、解关于x的方程(mx﹣n)(m+n)=0.5、解方程,(a+x﹣b)(a﹣b﹣x)=(a2﹣x)(b2+x)﹣a2b2.6、已知(m2﹣1)x2﹣(m+1)x+8=0是关于x的一元一次方程,求代数式199(m+x)(x﹣2m)+m的值.7、已知关于x的方程a(2x﹣1)=3x﹣2无解,试求a的值.8、k为何正数时,方程k2x﹣k2=2kx﹣5k的解是正数?9、若abc=1,解方程++=110、若a,b,c是正数,解方程11、设n为自然数,[x]表示不超过x的最大整数,解方程:x+2[x]+3[x]+4[x]+…+[x]=.12、已知关于x的方程且a为某些自然数时,方程的解为自然数,试求自然数a的最小值.13、解下列方程:(1)(2)(3){}=114、解下列关于x的方程:(1)a2(x﹣2)﹣3a=x+1;(2)ax+b﹣(3)15、a为何值时,方程有无数个解?无解?16、当k取何值时,关于x的方程3(x+1)=5﹣kx分别有(1)正数解;(2)负数解;(3)不大于1的解.答案与评分标准一、解答题(共16小题,满分150分)1、解方程﹣[x﹣(x﹣)]﹣=x+.考点:解一元一次方程。

专题:计算题。

分析:先去小括号,再去中括号,然后移项合并、化系数为1可得出答案.解答:解:去小括号得:﹣[x﹣x+]﹣=x+,去中括号得:﹣x+x+﹣=x+,移项合并得:,系数化为1得:x=﹣.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.2、已知下面两个方程3(x+2)=5x,①4x﹣3(a﹣x)=6x﹣7(a﹣x)②有相同的解,试求a的值.考点:同解方程。

人教版七年级数学上册第3章一元一次方程拔高题及易错题(含两套试题及答案)

人教版七年级数学上册第3章一元一次方程拔高题及易错题(含两套试题及答案)

23.(10 分)某人沿河流逆流游泳而上, 途中不慎将矿泉水壶失落, 水壶沿河水漂流而下, 10min 后此人发现并立即返身回游,请问:此人返游多少时间后可以追上矿泉水壶?
21.(10 分 )小李从家骑摩托车到火车站,若每小时行驶 30km,则比火车的开车时间早 15min 到达火车站;若每小时行驶 18km,则比火车的开车时间晚 15min 到达火车站。 现在小李打算在火车开车前 10min 到达火车站,此时小李的摩托车的速度应是多少?
划多修 60 m,并且第二天结束后刚好剩下 1 ,则要修的水渠全长
m.
4
17.一天,著名的数学家笛卡儿点了两支蜡烛读书,这两支蜡烛的长度相同,但粗细
不同.已知粗蜡烛可点 5h,细蜡烛可点 4h,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长
度是细蜡烛长度的 4 倍,那么这两支蜡烛已经点了
h.
18.某商店的冰箱先按原价提高 40%,然后在广告中写上大酬宾八折优惠,结果每台

5 A .a≠
,b≠3
B.a= 5 ,b=- 3
2
2
C. a≠5 ,b=- 3 2
5.下表是 2015 年 6 月份的月历表 , 任意圈出一横行或一
D.a= 5 ,b≠- 3 2
竖列相邻的三个数 , 则这三个数的和不可能是(

A. 24
B. 43
C. 57
D. 69
6.某种商品的进价为 800 元,出售时的标价为 1200 元, 后来由于该商品积压, 商店准备打折出售, 但要保持利润

11.求 1+2+22+23+…+22014 的值,可令 S= 1+2+22+23+…+22014,则 2S=2+22+23+24+…

七年级数学上册一元一次方程易错题集含详细解析

七年级数学上册一元一次方程易错题集含详细解析
等式; 等式性质2:等式的两边都乘以或者除以 同一个数(除数不为零),所得结果仍
是等式.
变式练习:
2.已知x=y,则下面变形不一定成立的 是( )
A.x+a=y+a B.x﹣a=y﹣a C. D.2x=2y
考点:等式的性质。
分析:答题时首先记住等式的基本性质, 然后对每个选项进行分质,
七年级数学上册一元一次方程易错题集
含详细解析
等式的性质
1.下列说法中,正确的个数是( ) ①若mx=my,则mx﹣my=0;②若mx=my,则x=y; ③若mx=my,则mx+my=2my;④若x=y,则 mx=my.
A.1 B.2 C.3 D.4 考点:等式的性质。
分析:利用等式的性质对每个式子进行 变形即可找出答案.
2.有m辆客车及n个人,若每辆客车乘40 人,则还有10人不能上车,若每辆客车 乘43人,则只有1人不能上车,有下列四 个等式:①40m+10=43m﹣1;② ③ ④ 40m+10=43m+1,其中正确的是( )
A.①② B.②④ C.②③ D.③④ 考点:由实际问题抽象出一元一次方程。
专题:应用题。
• 分析:只含有一个未知数(元),并且未 知数的指数是1(次)的方程叫做一元一次 方程,它的一般形式是ax+b=0(a,b是常 数且a≠0).根据未知数的指数为1可得出 k的值.
• 解:由一元一次方程的特点得3﹣2k=1, • 解得:k=1, • 故原方程可化为:2x+2=41, • 解得:x= . • 故填: . •
专题:行程问题。
分析:根据所学的正负数的意义判断出 他离出发点的最少距离,除以速度即为
最少需几分钟.
解:3千米每小时=50米/分. 设A为原点,按顺时针方向记为正,那么

七年级数学上册 一元一次方程易错题(Word版 含答案)

七年级数学上册 一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.2.有两个大小完全一样长方形OABC和EFGH重合着放在一起,边OA、EF在数轴上,O 为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.(1)数轴上点A表示的数为________.(2)将长方形EFGH沿数轴所在直线水平移动.①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的一半时,则移动后点F在数轴上表示的数为________.②若长方形EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数时互为相反数?【答案】(1)6(2)①3或9②如图所示:据题意得出D所表示的数为,点E表示数为:,当D、E两点在数轴上表示的数时互为相反数时:则解得:,当移动x为4的时候D、E两点在数轴上表示的数时互为相反数.【解析】【解答】解:(1)根据题意可得:A表示数为的长,故答案为:6.( 2 )①当向左边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为9,当向右边边移动的时候,刚好移到矩形长一半的时候,此时重叠面积为长方形面积的一半,此时为3;故答案为:3或9.【分析】(1)根据题意可以看出结果;(2)①分为两种情况,分别向左或向右平移;②根据题意得出D所表示的数为,当D、E两点在数轴上表示的数时互为相反数时点E表示数为:,则,解出答案即可.3.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.4.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P是多少(用含x的式子表示);(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.(3)一天当中安排多少名工人制衣时,所获利润为11806元?【答案】(1)解:由题意得,P=25×4×x=100x.故答案是:100x;(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.故答案是:(9000−72x);(3)解:根据题意得解得答:应安排100名工人制衣.【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;(3)根据总利润=11806,列方程求解即可.5.试根据图中信息,解答下列问题.(1)一次性购买6根跳绳需________元,一次性购买12根跳绳需________元;(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.【答案】(1)150;240(2)解:设小红购买x跳绳根,那么小明购买(x-2)根跳绳,25x×0.8=25(x-2)-5,解得: x=11;小明购买了:11-2=9根.答:小红购买11根跳绳.【解析】【解答】解:(1)一次性购买6根跳绳需25×6=150(元);一次性购买12根跳绳需25×12×0.8=240(元);故答案为:150;240.【分析】(1)根据单价×数量=总价,求出6根跳绳需多少元;购买12根跳绳,超过10根,打八折是指现价是原价的80%,用单价×数量×0.8即可求出购买12根跳绳需多少元;(2)有这种可能,可以设小红购买x跳绳根,那么小明购买x-2根跳绳,列出方程25x×0.8=25(x-2)-5,解答即可.6.已知,两正方形在数轴上运动,起始状态如图所示.A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,两正方形同时出发,相向而行,小正方形的速度是大正方形速度的两倍,两个正方形从相遇到刚好完全离开用时2秒.完成下列问题:(1)求起始位置D、E表示的数;(2)求两正方形运动的速度;(3)M、N分别是AD、EF中点,当正方形开始运动时,射线MA开始以15°/s的速度顺时针旋转至MD结束,射线NF开始以30°/s的速度逆时针旋转至NE结束,若两射线所在直...线.互相垂直时,求MN的长.【答案】(1)解:∵A、F表示的数分别为-2、10,大正方形的边长为4个单位长度,小正方形的边长为2个单位长度,∴D表示的数为:-2+2=0,E表示的数为:10-4=6(2)解:设小正方形的速度是2x个单位/秒,大正方形的速度是x个单位/秒,则有2(2x+x)=2+4,解得:x=1,∴小正方形的速度是2个单位/秒,故小正方形速度2个单位/秒,大正方形速度1个单位/秒(3)解:设运动时间为t,由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°,①15°t+30°t=90°,解得t=2,此时小正方形运动了4个单位,D点在数字4的位置,大正方形运动了2个单位,E点也在数字4的位置,即D,E重合,∵M、N分别是AD、EF中点,∴MN=3;②15°t+30°t=270°,解得t=6,此时小正方形运动了12个单位,D点在数字12的位置,大正方形运动了6个单位,E点在数字0的位置,∵M、N分别是AD、EF中点,∴此时M点位于数字11的位置,N点位于数字2的位置,∴MN=11-2=9;综上:当t=2时,MN=3;当t=6时,MN=9.【解析】【分析】(1)利用图象和正方形的边长即可得出;(2)设小正方形的速度是2x 个单位/秒,大正方形的速度是x个单位/秒,然后列方程计算即可;(3)由题意可得若想要两射线所在直线互相垂直,则有①15°t+30°t=90°或②15°t+30°t=270°两种情况,根据两种情况分别讨论即可.7.定义:若一个关于x的方程的解为,则称此方程为“中点方程”.如:的解为,而;的解为,而 .(1)若,有符合要求的“中点方程”吗?若有,请求出该方程的解;若没有请说明理由;(2)若关于x的方程是“中点方程”,求代数式的值.【答案】(1)解:没有符合要求的“奇异方程”,理由如下:把代入原方程解得:x= ,若为“中点方程”,则x= ,∵≠ ,∴不符合“中点方程”定义,故不存在(2)解:∵,∴(2a-b)x+b=0.∵关于x的方程是“中点方程”,∴x= =a.把x=a代入原方程得:,∴ =【解析】【分析】(1)把代入原方程解得:x= ,若为“中点方程”,则x= ,由于b≠b-2,根据“中点方程”定义即可求解;(2)根据“中点方程”定义得到, = ,整体代入即可.8.阅读理解:一部分同学围在一起做“传数”游戏, 我们把某同学传给后面的同学的数称为该同学的“传数”.游戏规则是: 同学1心里先想好一个数, 将这个数乘以2再加1后传给同学2,同学2把同学1告诉他的数除以2再减后传给同学3,同学3把同学2传给他的数乘以2再加1后传给同学4,同学4把同学3告诉他的数除以2再减后传给同学5,同学5把同学4传给他的数乘以2再加1后传给同学6,……,按照上述规律,序号排在前面的同学继续依次传数给后面的同学,直到传数给同学1为止.(1)若只有同学1,同学2,同学3做“传数”游戏.①同学1心里想好的数是2, 则同学3的“传数”是________;②这三个同学的“传数”之和为17,则同学1心里先想好的数是________.(2)若有个同学(n为大于1的偶数)做“传数”游戏,这个同学的“传数”之和为,求同学1心里先想好的数是多少.【答案】(1)5;3(2)解:设同学1心里先想好的数为x,由题意得:同学1的“传数”是2x+1同学2的“传数”是同学3的“传数”是2x+1同学4的“传数”是x……同学n(n为大于1的偶数)的“传数”是x于是∵n为大于1的偶数∴n≠0∴解得:故同学1心里先想好的数是13.【解析】【解答】解:(1)①由题意得:故同学3的“传数”是5;②设同学1想好的数是a,则解得:故答案为:3【分析】(1)根据题意分别计算出同学1和同学2、同学3的传数即可;(2)设同学1想好的数是a,由题意列出方程,再解方程求得a的值即可;(3)设同学1心里先想好的数为x,根据题意分别表示同学2、同学3、同学4的传数,找出规律,即可知同学n(n为大于1的偶数)的“传数”是x,得,化简得,根据n为大于1的偶数,即可得出答案.9.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.10.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.【答案】(1)解:∵经过t秒点P和点O相遇,∴有,解得,∴,∴点P和点Q相遇时的位置所对应的数为(2)解:∵点P比点Q迟1秒钟出发,∴点Q运动了(t+1)秒,①若点P和点Q在相遇前相距1个单位长度,则,解得:,②若点P和点Q在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:,综合上述,当P出发秒或秒时,P和点Q相距1个单位长度(3)解:若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为P点,所表示的数为;若点P和点Q在相遇前相距1个单位长度,此时满足条件的点C即为Q点,所表示的数为 .【解析】【分析】(1)根据题意得出运动t秒时,P点和Q点所代表的的数字,如果两个数字相遇,则两个数P点和Q点表示的数相等,得到关于t的方程,解出值即可。

【精选】七年级数学一元一次方程易错题(Word版 含答案)

【精选】七年级数学一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程 拔高及易错题精选(全卷总分150分) 姓名 得分一、选择题(每小题4分,共32分)1.关于x 的方程a(a -1)x 2-ax+5=0是一元一次方程,那么a 是( ) A. 0 B. -1 C. 0或1 D. 12.若xy=xz 成立,则下列式子未必成立的是( )A .y=zB .x (y+1)=x (z+1)C .xy 2=xyzD .x (y -1) =x (z -1)3.“●■▲”分别表示三种不同的物体.如图所示,天平①②保持平衡.如果要使天平③也平衡,那么应在天平③的右端放( )个“■”.① ② ③ A. 3 B. 4 C. 5 D. 64.若方程2ax -3=5x+b 无解,则a ,b 应满足( )A .a≠25,b≠3B .a=25,b=-3C .a≠25,b=-3D .a=25,b≠-35.下表是2015年6月份的月历表,任意圈出一横行或一竖列相邻的三个数,则这三个数的和不可能是( ) A. 24 B. 43 C. 57 D. 696.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率为5%.则应打 ( )A. 6折B. 7折C. 8折D. 9折7.学友书店推出售书优惠方案:一次性购书不超过100元,不享受优惠;一次性购书超过100元但不超过200元一律打九折;一次性购书超过200元一律打八折。

如果王明同学一次性购书付款162元,那么他所购书的原价为( )A. 180元B. 202.5元C. 180元或202.5元D. 180元或200元8.某种出租车收费标准是:起步价7元(即行驶距离不超过3 km 需付7元车费),超过了3 km 以后,每增加1 km 加收2.4元(不足1 km 按1 km 计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x km ,则x 的最大值是( )A .11B .8C .7D .5 二、填空题(每小题5分,共50分)9.已知(m -3)x 2 m +5=0是关于x 的一元一次方程,则m= .10.不论x 取何值等式2ax+b=4x -3恒成立,则a+b= .11.求1+2+22+23+…+22014的值,可令S =1+2+22+23+…+22014,则2S =2+22+23+24+…+22015,因此2S-S =22015-1,所以1+2+22+23+…+22014=22015-1.仿照以上推理,计算出1+5+52+53+…+52014的值是 .12.一列火车匀速行驶,经过一条长600m 隧道需要45s 的时间,隧道顶部一盏固定的灯在火车上垂直照射的时间为15s ,则火车的长为 . 13.如图,有一种足球由32块黑白相间的牛皮缝制而成.黑皮可看成正五边形,白皮可看成正六边形,每块白皮有三条边和黑皮连在一起,所以黑皮的边数可以根据白皮的边数确定;另外黑皮的边数还可以根据一块黑皮有5条边,设白皮有x 块,则黑皮有(32-x )块.根据边的关系可列方程为 .14.芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上樟树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5m 栽1棵树,则树苗缺21棵;如果每隔6m 载1棵树,则树苗正好用完,设原有树苗x 棵,则根据题意列出的方程为 .15.某人乘船从A 地顺流而下到B 地,然后又沿原路逆流而上到C 地,共乘船4 h.已知船在静水中的速度为每小时7.5 km ,水流速度为每小时2.5 km.若A ,C 两地的距离为10 km ,则A ,B 两地的距离为 km.16.某村修一条水渠,计划每天修 31,第一天只完成当天计划的80%,第二天比原计划多修60 m ,并且第二天结束后刚好剩下41,则要修的水渠全长 m.17.一天,著名的数学家笛卡儿点了两支蜡烛读书,这两支蜡烛的长度相同,但粗细不同.已知粗蜡烛可点5h ,细蜡烛可点4h ,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长度是细蜡烛长度的4倍,那么这两支蜡烛已经点了 h.18.某商店的冰箱先按原价提高40%,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚270元,则冰箱的原价是 元,现售价是 元. 三、解答题(共68分)18.(6分)已知等式 (a -5)c=a -5,其中c≠1,求a 2-2a -1的值.19.(10分)某同学在解关于y 的方程12312-+=-ay y 去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a 的值及其此方程的解.20.(10分)要制作一个如图所示(图中阴影部分为底与盖,且底的长边是x 的2倍,S Ⅰ=S Ⅱ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来即可,求有盖盒子的高x .21.(10分)小李从家骑摩托车到火车站,若每小时行驶30km ,则比火车的开车时间早15min 到达火车站;若每小时行驶18km ,则比火车的开车时间晚15min 到达火车站。

现在小李打算在火车开车前10min 到达火车站,此时小李的摩托车的速度应是多少?22.(10分)一水池装有甲、乙、丙三个水管,甲、乙两管是注水管,丙管是排水管,单独开甲管6h 可注满水池,单独开乙管8h 可注满水池,单独开丙管12h 可把满水池的水排完. 现在先打开甲、乙两管进水2h ,再打开丙管. 问:打开丙管几小时后便可将水池注满水?23.(10分)某人沿河流逆流游泳而上,途中不慎将矿泉水壶失落,水壶沿河水漂流而下,10min 后此人发现并立即返身回游,请问:此人返游多少时间后可以追上矿泉水壶?24.(12分)某校组织10位教师和部分学生外出考察,全票价为25元,对集体购票客运公司有两种优惠方案.方案一:所有师生按全票价的88%购票.方案二:前20人全票,从第21人开始每人按全票价的80%购票. (1)若有30位学生外出考察,则选择哪种方案较省钱? (2)当外出考察的学生人数是多少时,两种方案付费一样多?参 考 答 案一、选择题(每小题4分,共32分)1.关于x 的方程a(a -1)x 2-ax+5=0是一元一次方程,那么a 是( D ) A. 0 B. -1 C. 0或1 D. 12.若xy=xz 成立,则下列式子未必成立的是( A )A .y=zB .x (y+1)=x (z+1)C .xy 2=xyzD .x (y -1) =x (z -1)3.“●■▲”分别表示三种不同的物体.如图所示,天平①②保持平衡.如果要使天平③也平衡,那么应在天平③的右端放( C )个“■”.① ② ③ A. 3 B. 4 C. 5 D. 64.若方程2ax -3=5x+b 无解,则a ,b 应满足( D )A .a≠25,b≠3B .a=25,b=-3C .a≠25,b=-3D .a=25,b≠-35.下表是2015年6月份的月历表,任意圈出一横行或一竖列相邻的三个数,则这三个数的和不可能是( B ) A. 24 B. 43 C. 57 D. 696.某种商品的进价为800元,出售时的标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率为5%.则应打 ( B )A. 6折B. 7折C. 8折D. 9折7.学友书店推出售书优惠方案:一次性购书不超过100元,不享受优惠;一次性购书超过100元但不超过200元一律打九折;一次性购书超过200元一律打八折。

如果王明同学一次性购书付款162元,那么他所购书的原价为( C )A. 180元B. 202.5元C. 180元或202.5元D. 180元或200元8.某种出租车收费标准是:起步价7元(即行驶距离不超过3 km 需付7元车费),超过了3 km 以后,每增加1 km 加收2.4元(不足1 km 按1 km 计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x km ,则x 的最大值是( B )A .11B .8C .7D .5 二、填空题(每小题5分,共50分)9.已知(m -3)x 2-m +5=0是关于x 的一元一次方程,则m= -3 .10.不论x 取何值等式2ax+b=4x -3恒成立,则a+b= -1 .11.求1+2+22+23+…+22014的值,可令S =1+2+22+23+…+22014,则2S =2+22+23+24+…+22015,因此2S-S =22015-1,所以1+2+22+23+…+22014=22015-1.仿照以上推理,计算出1+5+52+53+…+52014的值是4152015- . 12.一列火车匀速行驶,经过一条长600m 隧道需要45s 的时间,隧道顶部一盏固定的灯在火车上垂直照射的时间为15s ,则火车的长为 300m . 13.如图,有一种足球由32块黑白相间的牛皮缝制而成.黑皮可看成正五边形,白皮可看成正六边形,每块白皮有三条边和黑皮连在一起,所以黑皮的边数可以根据白皮的边数确定;另外黑皮的边数还可以根据一块黑皮有5条边,设白皮有x 块,则黑皮有(32-x )块.根据边的关系可列方程为 6x=2×5(32-x) . 14.芜湖市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上樟树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5m 栽1棵树,则树苗缺21棵;如果每隔6m 载1棵树,则树苗正好用完,设原有树苗x 棵,则根据题意列出的方程为 5(x+21-1)=6(x -l) .15.某人乘船从A 地顺流而下到B 地,然后又沿原路逆流而上到C 地,共乘船4 h.已知船在静水中的速度为每小时7.5 km ,水流速度为每小时2.5 km.若A ,C 两地的距离为10 km ,则A ,B 两地的距离为 20 km.16.某村修一条水渠,计划每天修 31,第一天只完成当天计划的80%,第二天比原计划多修60 m ,并且第二天结束后刚好剩下41,则要修的水渠全长 400 m.17.一天,著名的数学家笛卡儿点了两支蜡烛读书,这两支蜡烛的长度相同,但粗细不同.已知粗蜡烛可点5h ,细蜡烛可点4h ,临睡时把蜡烛吹灭,这时所剩粗蜡烛的长度是细蜡烛长度的4倍,那么这两支蜡烛已经点了 5 h.18.某商店的冰箱先按原价提高40%,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚270元,则冰箱的原价是 2250 元,现售价是 2520 元. 三、解答题(共68分)18.(6分)已知等式 (a -5)c=a -5,其中c≠1,求a 2-2a -1的值. 解:由等式(a -5)c=a -5,其中c≠1,得a -5=0. 解得a=5,当a=5时,a 2-2a -1=25-10-1=14.19.(10分)某同学在解关于y 的方程12312-+=-ay y 去分母时,方程右边的-1没有乘6,结果求得方程的解为y=2,试求a 的值及其此方程的解.解:根据题意去分母得:2(2y -1) =3(y +a )-1去括号得:4y -2=3y+3a -1, 把y=2代入得:6=6+3a -1,解得:a=31,则原方程为:1231312-+=-y y ,去分母得:2(2y -1) =3(y +31)-6去括号得:4y -2=3y+1-6,解得:y=-3.20.(10分)要制作一个如图所示(图中阴影部分为底与盖,且底的长边是x 的2倍,S Ⅰ=S Ⅱ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来即可,求有盖盒子的高x . 解:∵底的长边是x 的2倍, ∴阴影部分的长边是2x , 列方程得:60-2x=2x , 解得:x=15.答:有盖盒子的高是15.21.(10分)小李从家骑摩托车到火车站,若每小时行驶30km ,则比火车的开车时间早15min 到达火车站;若每小时行驶18km ,则比火车的开车时间晚15min 到达火车站。

相关文档
最新文档