13、七年级下册《三角形》-单元测试卷(教师版)

合集下载

精品解析2021-2022学年北师大版七年级数学下册第四章三角形单元测试试卷(含答案详细解析)

精品解析2021-2022学年北师大版七年级数学下册第四章三角形单元测试试卷(含答案详细解析)

北师大版七年级数学下册第四章三角形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC和△BAD中,AC=BD,要使△ABC≌△BAD,则需要添加的条件是()A.∠BAD=∠ABC B.∠BAC=∠ABD C.∠DAC=∠CBD D.∠C=∠D2、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,123、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,104、如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A.B.C.D.5、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,76、有一个三角形的两边长分别为2和5,则第三边的长可能是()A.2 B.2.5 C.3 D.57、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是()A.3cm B.6cm C.10cm D.12cm8、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.89、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个10、如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论:①AE =BF ;②AE ⊥BF ;③QF =QB ;④S 四边形ECFG =S △ABG .正确的个数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知:如图,AB = DB .只需添加一个条件即可证明ABC DBC ≌△△.这个条件可以是______.(写出一个即可).2、如图,已知AB CD ∥,21BAF FED ∠=∠=︒,17CDE ∠=︒,则AFC ∠=______°.3、如图,点E ,F 分别为线段BC ,DB 上的动点,BE =DF .要使AE +AF 最小值,若用作图方式确定E ,F ,则步骤是 _____.4、如图,点A ,C 在直线l 上,AE AB ⊥且AE AB =,BC CD ⊥且BC CD =,过E ,B ,D 分别作EF l ⊥,BG l ⊥,DH l ⊥,若6EF =,3BG =,4DH =,则ABC 的面积是______.5、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“4AB =,2BC =”.现仅存下列三个条件:①45A ∠=︒;②45B ∠=︒;③45C ∠=︒.为了甲同学画出形状和大小都确定的ABC ,乙同学可以选择的条件有: ______.(填写序号,写出所有正确答案)三、解答题(5小题,每小题10分,共计50分)1、如图,已知在△ABC中,AB=AC=10cm,∠B=∠C,BC=8cm,D为AB的中点.点P在线段BC上以3 cm /s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等?请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?2、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.3、如图,在ABC中,90⊥于点E,AD ACACB∠=︒,CE AB∠交CE于点F,DF的延长=,AF平分CAB线交AC于点G.求证:DF BC∥.4、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角AOB∠.求作:射线OC,使AOC BOC∠=∠.作法:如图,①在射线OA上任取一点D;②以点О为圆心,OD长为半径作弧,交OB于点E;③分别以点D,E为圆心,大于12DE长为半径作弧,在AOB∠内,两弧相交于点C;④作射线OC.则OC为所求作的射线.完成下面的证明.证明:连接CD,CE由作图步骤②可知OD=______.由作图步骤③可知CD=______.∵OC OC=,∴OCD OCE≌△△.∴AOC BOC∠=∠(________)(填推理的依据).5、已知三角形的两边长分别是4cm和9cm,如果第三边长是奇数,求第三边的长-参考答案-一、单选题1、B【分析】利用全等三角形的判定方法对各选项进行判断.【详解】解:∵AC=BD,而AB为公共边,A、当∠BAD=∠ABC时,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;B、当∠BAC=∠ABD时,根据“SAS”可判断△ABC≌△BAD,该选项符合题意;C、当∠DAC=∠CBD时,由三角形内角和定理可推出∠D=∠C,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;D、同理,“边边角”不能判断△ABC≌△BAD,该选项不符合题意;故选:B.【点睛】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵247+<,∴不能构成三角形;B、∵149+<,∴不能构成三角形;C、∵345+>,∴能构成三角形;D、∵5612+<,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.3、C【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A、1+2=3,不能组成三角形,不符合题意;B、3+4=7,不能组成三角形,不符合题意;C、2+3>4,能组成三角形,符合题意;D、4+5<10,不能组成三角形,不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.4、B【分析】根据三角形全等的判定定理(SAS定理和ASA定理)即可得.【详解】解:A、ABC中,长为,a b的两边的夹角等于5850︒≠︒,则此项不满足SAS定理,与ABC不全等,不符题意;B、此项满足SAS定理,与ABC全等,符合题意;C、ABC中,长为,a c的两边的夹角等于5058︒≠︒,则此项不满足SAS定理,与ABC不全等,不符题意;︒︒的夹边长为a b,则此项不满足ASA定理,与ABC不全等,不符题意;D、ABC中,角度为50,58故选:B.【点睛】本题考查了三角形全等的判定定理,熟练掌握三角形全等的判定方法是解题关键.5、C【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.6、D【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】解:设第三边为x,则5−2<x<5+2,即3<x<7,所以选项D符合题意.故选:D.【点睛】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.7、C【分析】设第三根木棒的长度为x cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为x cm,则x9393,x612,所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.8、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出ABC的面积.【详解】∵AD是BC上的中线,∴12ABD ACD ABCS S S==△△△,∵CE是ACD△中AD边上的中线,∴12ACE CDE ACDS S S==,∴14CDE ABCS S=,即4ABC CDES S=,∵CDE△的面积是2,∴428ABCS=⨯=.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.9、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.10、D【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB;由Rt△ABE≌Rt△BCF得S△ABE=S△BCF即可判定④正确.【详解】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,AB BCABE BCF BE CF=⎧⎪∠=∠⎨⎪=⎩,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°,∵CD∥AB,∴∠CFB =∠ABF ,∴∠ABF =∠PFB ,∴QF =QB ,故③正确;∵Rt△ABE ≌Rt△BCF ,∴S △ABE =S △BCF ,∴S △ABE ﹣S △BEG =S △BCF ﹣S △BEG ,即S 四边形ECFG =S △ABG ,故④正确.故选:D .【点睛】本题主要是考查了三角形全等、正方形的性质,熟练地综合应用全等三角形以及正方形的性质,证明边相等和角相等,是解决本题的关键.二、填空题1、AC =DC【分析】由题意可得,BC 为公共边,AB =DB ,即添加一组边对应相等,可证△ABC 与△DBC 全等.【详解】解:∵AB =DB ,BC =BC ,添加AC =DC ,∴在△ABC 与△DBC 中,AB DB BC BC AC DC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DBC (SSS ),故答案为:AC =DC .【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.2、59【分析】如图,过F 作,FQ AB ∥证明,AB FQ CD ∥∥证明21,,AFQBAF QFC FCD 再利用三角形的外角的性质求解,FCD 从而可得答案.【详解】解:如图,过F 作,FQ AB ∥AB CD ∥,,AB FQ CD ∥∥ 而21BAF ∠=︒21,,AFQ BAF QFC FCD21FED ∠=︒,17CDE ∠=︒,211738,FCD38,213859,QFC AFCAFQ QFC 故答案为:59【点睛】本题考查的是平行线的性质,平行公理的应用,三角形的外角的性质,过F 作,FQ AB ∥再证明AB FQ CD ∥∥是解本题的关键.3、①连接AD ,作CBM ADB ∠=∠;②以点B 为圆心、AD 长为半径画弧,交BM 于点P ;③连接AP 交BC 于点E ;④以点D 为圆心、BE 长为半径画弧,交DB 于点F【分析】按照①连接AD ,作CBM ADB ∠=∠;②以点B 为圆心、AD 长为半径画弧,交BM 于点P ;③连接AP 交BC 于点E ;④以点D 为圆心、BE 长为半径画弧,交DB 于点F 的步骤作图即可得.【详解】解:步骤是①连接AD ,作CBM ADB ∠=∠;②以点B 为圆心、AD 长为半径画弧,交BM 于点P ;③连接AP 交BC 于点E ;④以点D 为圆心、BE 长为半径画弧,交DB 于点F ;如图,点,E F 即为所求.故答案为:①连接AD ,作CBM ADB ∠=∠;②以点B 为圆心、AD 长为半径画弧,交BM 于点P ;③连接AP 交BC 于点E ;④以点D 为圆心、BE 长为半径画弧,交DB 于点F .【点睛】本题考查了作一个角等于已知角、两点之间线段最短、作线段、全等三角形的判定与性质等知识点,熟练掌握尺规作图的方法是解题关键.4、15【分析】根据AAS 证明△EFA ≌△AGB ,△BGC ≌△CHD ,再根据全等三角形的性质以及三角形的面积公式求解即可.【详解】解:(1)∵EF ⊥FG ,BG ⊥FG ,∴∠EFA =∠AGB =90°,∴∠AEF +∠EAF =90°,又∵AE ⊥AB ,即∠EAB =90°,∴∠BAG +∠EAF =90°,∴∠AEF =∠BAG ,在△AEC 和△CDB 中,AEF BAG EFA AGB AE AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFA ≌△AGB (AAS );同理可证△BGC ≌△CHD (AAS ),∴AG =EF =6,CG =DH =4,∴S △ABC =12AC ⨯BG =12(AG +GC )⨯BG =12(6+4)⨯3=15.故答案为:15.【点睛】本题考查了三角形全等的性质和判定,解题的关键是灵活运用所学知识解决问题.5、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选45A∠=︒,是边边角,不能得到形状和大小都确定的ABC;②若选45B∠=︒,是边角边,能得到形状和大小都确定的ABC;③若选45C∠=︒,是边边角,不能得到形状和大小都确定的ABC;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.三、解答题1、(1)△BPD与△CQP全等,理由见解析;(2)当点Q的运动速度为154cm/s时,能够使△BPD与△CQP全等.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP;(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8-3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【详解】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC 是等边三角形,D 为AB 的中点.∴∠ABC =∠ACB =60°,BD=PC =5cm ,在△BPD 和△CQP 中,BD PC ABC ACB BP CQ =⎧⎪∠=∠⎨⎪=⎩, ∴△BPD ≌△CQP (SAS );(2)设点Q 的运动速度为x (x ≠3)cm /s ,经过ts △BPD 与△CQP 全等;则可知PB =3tcm ,PC =(8-3t )cm ,CQ =xtcm ,∵AB =AC ,∴∠B =∠C ,根据全等三角形的判定定理SAS 可知,有两种情况:①当BD =PC 且BP =CQ 时,△BPD ≌△CQP (SAS ),则8-3t =5且3t =xt ,解得x =3,∵x ≠3,∴舍去此情况;②BD =CQ ,BP =PC 时,△BPD ≌△CPQ (SAS ),则5=xt 且3t =8-3t ,解得:x =154; 故若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为154cm /s 时,能够使△BPD 与△CQP 全等.【点睛】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2、见解析【分析】根据平行线的性质得出∠B =∠E ,进而利用SAS 证明ABC DEF ≅,利用全等三角形的性质解答即可.【详解】证明:FB CE =,FB CF CE CF ∴+=+,即BC EF =.//AB DE ,B E ∴∠=∠.在ABC 和DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ()ABC DEF SAS ∴≅△△A D ∴∠=∠.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证ABC DEF ≅是解题的关键.3、见解析【分析】根据已知,利用SAS 判定△ACF ≌△ADF ,从而得到对应角相等可得结论.【详解】证明:∵AF 平分CAB ∠,∴CAF DAF ∠=∠.在ΔACF 和ΔADF 中,∵AC AD CAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴()ΔΔACF ADF SAS ≅.∴ACF ADF ∠=∠.∵90ACB ∠=︒,CE AB ⊥,∴90ACE CAE ∠+∠=︒,90CAE B ∠+∠=︒,∴ACF B ∠=∠,∴ADF B ∠=∠.∴DF //BC .【点睛】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形解决问题.4、OE ; CE ;全等三角形的对应角相等根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明OCD OCE△△,从而根据全等三角形的性≌质可得结论.【详解】证明:连接CD,CE由作图步骤②可知OD=___OE___.由作图步骤③可知CD=__CE___.∵OC OC=,∴OCD OCE△△.≌∴AOC BOC∠=∠(__全等三角形对应角相等__)故答案为:OE;CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.5、第三边长为7cm或9cm或11cm【分析】设三角形的第三边长为x cm,根据三角形的三边关系确定x的范围,然后根据题意可求解.【详解】解:设三角形的第三边长为x cm,由三角形的两边长分别是4cm和9cm可得:9494-<<+,即为513x<<,x∵第三边长是奇数,x=或9或11.∴7本题主要考查三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.。

2020年春北师大版七年级下册第4章《三角形》单元测试卷 含答案

2020年春北师大版七年级下册第4章《三角形》单元测试卷  含答案

的依据是( )
A.SAS
B.SSS
C.AAS
D.ASA
5.下列说法正确的有( )
(1)等边三角形是等腰三角形;(2)三角形的两边之差大于第三边;(3)三角形按边分
类可分为等腰三角形、等边三角形和不等边三角形;(4)三角形按角分类应分为锐角三
角形、直角三角形和钝角三角形.
A.1 个
B.2 个
C.3 个
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
2020 年北师大版七年级下册第 4 章《三角形》单元测试卷
(满分 100 分)
一.选择题(共 10 小题,满分 30 分,每小题 3 分) 1.以下是四位同学在钝角三角形△ABC 中画 AC 边上的高,其中正确的是( )
A.
6 / 17
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
22.在△ABC 和△DEC 中,AC=BC,DC=EC,∠ACB=∠ECD=90° (1)如图 1,当点 A、C、D 在同一条直线上时,AC=12,EC=5, ①求证:AF⊥BD; ②求 AF 的长度; (2)如图 2,当点 A、C、D 不在同一条直线上时,求证:AF⊥BD.
DE=20 米,则 AB=

3 / 17
不要因为长期埋头科学,而失去对生活、对美、对待诗意的感受能力。——达尔 文
14.如图,在△ABC 中,∠ACB=90°,AD 平分∠CAB,交边 BC 于点 D,过点 D 作 DE
⊥AB,垂足为 E.若∠CAD=20°,则∠EDB 的度数是

15.如图,AD 是△ABC 的中线,已知△ABD 的周长为 25cm,AB 比 AC 长 6cm,则△ACD

北师大版七年级下数学《全等三角形》单元测试(含答案)

北师大版七年级下数学《全等三角形》单元测试(含答案)

全等三角形章节测试一、心一(每小 3 分,共36 分)1. 以下法正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A.周相等的两个三角形全等B. 面相等的两个三角形全等C. 三个角相等的两个三角形全等D.三条相等的两个三角形全等2. 以下各段能成三角形的是⋯⋯⋯⋯⋯⋯⋯⋯( )A.3cm , 3cm, 6cmB.7cm,4cm,5cmC.3cm,4cm,8cmD.4.2cm,2.8cm,7cm3. 以下形中,与已知形全等的是⋯⋯⋯⋯⋯⋯⋯⋯( )第3题图(A) (B) (C) (D)4. 如,已知△ ABC≌△ CDE,此中 AB=CD,那么以下中, A不正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯( )EA.AC=CEB. ∠ BAC=∠ CDEC. ∠ ACB=∠ ECDD. ∠B=∠ D BC D第 4 题5. 以下条件中,不可以判断三角形全等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. 三条相等B. 两和一角相等C. 两角和此中一角的相等D. 两角和它的相等6. 如,把形沿BC折,点 A 和点 D 重合,那么中共有全等三角形⋯⋯⋯⋯⋯⋯⋯( )A.1B.2 AC.3D.4B EC7.在△ ABC 和△ A′ B′C′中,已知 AB= A′ B′,∠ B=∠ B′要保△ ABC≌△ A′B′ C′,可充的条D件是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. ∠ B+∠A=900B.AC= A ′ C′C.BC=B ′ C′D.∠ A+∠ A′ =9008.已知在△ ABC和△ A′ B′ C′中,AB= A′ B′,∠ B=∠ B′,充下边一个条件,不可以明△ ABC≌△ A′B′ C′的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( )A. BC=B ′ C′B. AC= A ′ C′C.∠ C=∠ C′D. ∠A=∠ A′9. 如,已知 AE=CF,BE=DF要.△ ABE≌△ CDF,需增添的一个条件是⋯⋯⋯( )A. ∠ BAC=∠ ACDB. ∠ ABE=∠ CDFC. ∠ DAC=∠ BCAD. ∠ AEB=∠ CFDD C A ADEA OAFA B A B C第 9 题 A 第 11题第 10题10. 如图 AD是△ ABC的角均分线, DE是△ ABD的高, EF 是△ ACD的高,则 ( )A. ∠ B=∠CB. ∠ EDB=∠ FDCC. ∠ ADE=∠ ADFD. ∠ ADB=∠ADC11. 如图 AC与 BD订交于点 O,已知 AB=CD,AD=BC,则图中全等三角形有 ( )A.1 对B.2 对C.3 对D.4 对12. 如图 ,D 、 E 分别是 AB,AC 上一点,若∠ B=∠ C,则在以下条件中, B没法判断△ ABE≌△ ACD是( ) DA.AD=AEB.AB=ACC.BE=CDD. ∠ AEB=∠ ADC A E C第 12 题二、专心填一填:(每题 3 分,共 24 分)C F13.如图,△ ABC≌△ DEF,点 B 和点 E, 点 A 和点 D 是对应极点,则 AB=,CB=,∠C=,∠ CAB=.14.若已知两个三角形有两条边对应,则要视这两个三角形全等,还需增添的条件能够是或. A DB E15. 如图已知 AC与 BD订交于点 O, AO=CO,BO=DO,则 AB=CD请说明原因 .第 13题A B解:在△ AOB和△ COD中AO CO(已知)(对顶角相等OBO DO(已知)D C∴△ AOB≌△ COD()第 15题A ∴ AB=DC()16. 如图,已知 AO=OB,OC=OD,AD和 BC订交于点 E, C则图中全等三角形有对 .EO BD第 16题17. 在△ ABC和△ DEF中 ,AB=4, ∠ A=350, ∠ B=700,DE=4, ∠ D= , ∠ E=700, 依据判断△ ABC≌△ DEF. A DAB=DC(已知)18.如图,在△ ABC和△ DEF中BC=DA(已知)() B 第 18 题 C ∴△ ABC≌△ DEF( ) A D19. 如图∠ B=∠ DEF,AB=DE,要证明△ ABC≌△ DEF,(1) 若以“ ASA”为依照,需增添的条件是;B EC C第 19题(2) 若以“ SAS ”为依照,需增添的条件是 .A20. 如图,△ ABC 中, AB=AC=13cm , AB 的垂直均分线交 A B 于 D,交 AC 于 E, 若△ EBC 的周长为 21cm,则 BC= cm.DEBC6 小题,共 40第 20 题三、耐心答一答: (此题有 分)21.( 此题 4 分 ) 已知∠α、∠β和线段a, 如图,用直尺和圆规作△ABC ,使∠ A=∠α ,∠ B=∠β ,BC=a.22.( 此题 6 分 ) 已知 AD 均分∠ CAB,且 DC ⊥ AC, DB ⊥ AB ,那么 AB 和 AC 相等吗?请说明原因 .CDA23.( 此题 6 分 ) 如图,已知 BD=CD ,∠ 1=∠ 2.说出△ ABD ≌△ ACD 的原因 .AB1 2BD C24.( 此题 8 分) 如图,已知 AB=DC , AD=BC,说出以下判断建立的原因: (1)△ ABC ≌△ CDA (2)∠ B=∠DADBC25.( 此题 8 分 ) 如图,把大小为4× 4 的正方形方格图形分别切割成两个全等图形,比如图①,请在以下图中,沿着须先画出四种不一样的分法,把4× 4 的正方形切割成两个全等图形图①26.( 此题画法1画法28 分 ) 如图,△ ABC中, AD垂直均分 BC,H是画法AD上一点,3 画法 4连结 BH,CH.(1)AD 均分∠ BAC吗?为何?(2)你能找出几堆相等的角?请把他么写出来(不需写原因)AH一、仔细选一选:(每题 3 分,共 36 分)题号 1 2 3 4 5 6 7 8 9 10B11 12 CD答案 D B B C D C C B D C D D二、专心填一填(每题 3 分,共 24 分)13.DE,FE, ∠ F, ∠ FED. 14.3 第三边相等,这两边的夹角相等15. ∠ AOB=∠ COD,SAS,全等三角形的对应边相等16.4 17.35 0, AAS 18.AC,CA, 公共边, SSS19. ∠ A=∠ D 20.8三、耐心答一答(此题有六小题,共40 分)21. 图略 22.AB=AC 23. 略24. 略25.画法 1 画法 2 画法 3 画法 426.(1) 由△ ADB≌△ ADC(SAS)得∠ BAD=∠ CAD (4)4 对,∠ BHD=∠ CHD, ∠ ABD=∠ ACD,∠HBD=∠ HCD, ∠ BDA=∠CDA。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.下列各组长度的三条线段能组成三角形的是()A.1,2,3B.1,1,2C.1,2,2D.1,5,72.在△ABC中作AB边上的高,下图中不正确的是()A.B.C.D.3.若AD是△ABC的中线,则下列结论正确的是()A.AD⊥BC B.BD=CD C.∠BAD=∠CAD D.AD=BC 4.下列说法正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形5.如图,用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的判别方法是()A.SAS B.ASA C.AAS D.SSS6.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A.SAS B.ASA C.AAS D.SSS7.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于点E,与CD相交于点F,DH⊥BC于H,交BE于G,有下列结论:①BH=DH;②BD=CD;③AD+CF=BD;④CE=BF.其中正确的是()A.①②B.①③C.①②③D.①②③④8.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=2cm2,则S△ABC为()A.4 cm2B.6 cm2C.8 cm2D.10 cm29.如图所示,BE=3EC,D是线段AC的中点,BD和AE交于点F,已知△ABC的面积是7,求四边形DCEF的面积()A.1B.C.D.210.如图将一副三角板拼成如图所示的图形(∠D=30°,∠ABC=90°,∠DCE=90°,∠A=45°),BC交DE于点F,则∠DFC的度数是()A.75°B.105°C.135°D.125°11.下列说法中正确的是()A.两个面积相等的图形,一定是全等图形B.两个等边三角形是全等图形C.两个全等图形的面积一定相等D.若两个图形周长相等,则它们一定是全等图形12.如图,已知:在△AFD和△CEB,点A、E、F、C在同一直线上,在给出的下列条件中,①AE=CF,②∠D=∠B,③AD=CB,④DF∥BE,选出三个条件可以证明△AFD ≌△CEB的有()组.A.4B.3C.2D.113.如图,△ABC的两条中线AD、CE交于点G,联结BG并延长,交边AC于点F,那么下列结论不正确的是()A.AF=FC B.GF=BG C.AG=2GD D.EG=CE 14.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°15.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,添加下列条件,不能判定△EAB≌△BCD的是()A.EB=BD B.∠E+∠D=90°C.AC=AE+CD D.∠EBD=60°16.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF17.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为()A.32B.24C.40D.3618.如图,△ABC的中线BD、CE相交于点O,OF⊥BC,垂足为F,且AB=6,BC=5,AC=3,OF=2,则四边形ADOE的面积是()A.9B.6C.5D.319.要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加根木条才能固定.20.(1)线段AD是△ABC的角平分线,那么∠BAD=∠=∠.(2)线段AE是△ABC的中线,那么BE==BC.21.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE ⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.22.如图,BE平分∠ABC,CE平分∠ACD,∠A=60°,则∠E=.23.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.24.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.25.如图,要测量河两岸相对两点A、B间的距离,先在过点B的AB的垂线上取两点C、D,使CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是.26.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF.27.如图,点B、F、C、E在同一条直线上,∠B=∠E,∠A=∠D,BF=CE.求证:△ABC≌△DEF.28.如图,在△ABC中,AB=AC,AD⊥BC于点D,BE⊥AC于点E,AD、BE相交于点H,AE=BE.试说明:(1)△AEH≌△BEC.(2)AH=2BD.29.如图,△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,∠A=60°,∠BDC =100°.求∠BDE的度数.30.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.31.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?参考答案1.解:A.1+2=3,不能构成三角形,不合题意;B.1+1=2,不能构成三角形,不合题意;C..1+2>2,能构成三角形,符合题意;D.1+5<7,不能构成三角形,不合题意.故选:C.2.解:由题可得,过点C作AB的垂线段,垂足为H,则CH是BC边上的高,∴A、B、D选项正确,C选项错误.故选:C.3.解:∵AD是△ABC的中线,∴BD=DC,故选:B.4.解:A、一个钝角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;B、一个等腰三角形不一定是锐角三角形,或直角三角形,故本选项错误;C、一个直角三角形不一定不是等腰三角形,一定不是等边三角形,故本选项错误;D、一个等边三角形一定不是钝角三角形,也不是直角三角形,故本选项正确;故选:D.5.解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP≌△ODP(SSS),所以∠COP=∠DOP,即OP平分∠AOB.故选:D.6.解:如图,∠A、AB、∠B都可以测量,即他的依据是ASA.故选:B.7.解:∵DH⊥BC,∠ABC=45°,∴△BDH为等腰直角三角形,∴BH=DH,故①正确,∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故②正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC(ASA).∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故③正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC(ASA).∴CE=AE=AC.又由(1)可知:BF=AC,∴CE=AC=BF;故④正确;故选:D.8.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC,∴S△BCE=S△ABC,∵点F是CE的中点,∴S△BEF=S△BCE.∴S△ABC=8cm2故选:C.9.解:∵AD=DC,BE=3EC,∴可以假设S△ADF=S△DFC=x,S△EFC=y,则S△EFB=3y,则有,解得,∴四边形DCEF的面积=x+y=,故选:B.10.解:由题意得,∠ACB=45°,∠DEC=60°,∵∠DFC是△CFE的一个外角,∴∠DFC=∠ACB+∠DEC=105°,故选:B.11.解:全等的两个图形的面积、周长均相等,但是周长、面积相等的两个图形不一定全等.故选:C.12.解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∴若①②③为条件,不能证明△AFD≌△CEB,若①②④为条件,能证明△AFD≌△CEB(AAS),若①③④为条件,不能证明△AFD≌△CEB,若②③④为条件,能证明△AFD≌△CEB(AAS),故选:C.13.解:如图连接DE.∵△ABC的两条中线AD、CE交于点G,∴点G是△ABC的重心,∴DF也是△ABC的中线,∴AF=FC,故A不符合题意,∵BE=AE,BD=CD,∴DE∥AC,DE=AC,∴===,∴AG=2DG,EG=CE,故C,D不符合题意,故选:B.14.解:如图:∵m∥n,∠1=30°,∴∠3=∠1=30°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣30°=60°,∴∠2=180°﹣∠4=180°﹣60°=120°.故选:C.15.解:∵∠A=∠C=90°,AB=CD,∴当添加EB=BD时,则可根据“HL”判定△EAB≌△BCD;当添加AE=BC,即AC=AE+CD,则可根据“SAS”判定△EAB≌△BCD;当添加∠ABE=∠D时,此时∠D+∠E=90°,∠EBD=90°,则可根据“SAS”判定△EAB≌△BCD,故选:D.16.解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.17.解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN,在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN;∴△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;设AM=a,由勾股定理得:AC2=AM2+MC2,而AC=8;∴2a2=64,a2=32,故选:A.18.解:∵BD、CE均是△ABC的中线,∴S△BCD=S△ACE=S△ABC,∴S四边形ADOE+S△COD=S△BOC+S△COD,∴S四边形ADOE=S△BOC=5×2÷2=5.故选:C.19.解:如图,,要想使一个六边形活动支架ABCDEF稳固且不变形,至少需要增加3根木条才能固定.故答案为:3.20.解:(1)线段AD是△ABC的角平分线,那么∠BAD=∠CAD=∠BAC.故答案为:CAD,BAC;(2)线段AE是△ABC的中线,那么BE=CE=BC.故答案为:CE,.21.解:∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.22.解:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A,∵∠A=60°,∴∠E=30°.故答案为30°.23.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.24.解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.25.解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故答案为:ASA.26.证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL);(2)∵Rt△ABF≌Rt△DCE(已证),∴∠AFB=∠DEC,∴OE=OF.27.证明:∵BF=EC∴BF+CF=EC+CF,∴BC=EF,∵∠B=∠E,∠A=∠D,∴180°﹣∠B﹣∠A=180°﹣∠E﹣∠D,即∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).28.解:(1)∵AD⊥BC,∴∠DAC+∠C=90°,∵BE⊥AC,∴∠EBC+∠C=90°,∴∠DAC=∠EBC,在△AEH与△BEC中,,∴△AEH≌△BEC(ASA);(2)∵△AEH≌△BEC,∴AH=BC,∵AB=AC,AD⊥BC,∴BC=2BD,∴AH=2BD.29.解:如图,∵∠BDC=∠A+∠ABD,∴∠ABD=∠BDC﹣∠A=100°﹣60°=40°∵BD平分∠ABC,∴∠DBC=∠ABD=40°,又∵DE∥BC,∴∠BDE=∠DBC=40°.30.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.31.解:(1)PC=3﹣t.(2)△CPQ≌△BDP,理由如下:∵P、Q的运动速度相等,∴1秒后,CQ=BP=1,CP=BC﹣BP=3﹣1=2,∵D为AB的中点,∴BD=,∴CP=BD,在△CPQ和△BDP中,,∴△CPQ≌△BDP(SAS).(3)解:由(1)知,PC=3﹣t,BP=t,CQ=at,BD=2,∵∠C=∠B∵△BPD与△CQP全等,①当△CPQ≌△BDP时,BP=CQ,t=at,∵t≠0,∴a=1与P、Q的运动速度不相等矛盾,故舍去.②当△CPQ≌△BPD时,BP=CP,CQ=BD,∴t=3﹣t,at=2,t=a=.即点P、Q的运动速度不相等时,点Q的运动速度a为时,能够使△BPD与△CQP 全等。

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

2020最新北师大版数学七下第三章《三角形》单元测试卷及答案(5套)

北师大版七年级数学下册第三章三角形单元测试卷(一)班级姓名学号得分一、选择题1.一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有() A.4对 B.5对 C.6对 D.7对(注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.a+1,a+2,a+3(a>0) B.三条线段的比为4∶6∶10C.3cm,8cm,10cm D.3a,5a,2a+1(a>0)6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为5cm和7cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个 A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是()A.0°<α<90°; B.60°<α<180°; C.60°<α<90°; D.60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为()A.锐角或直角三角形; B.钝角或锐角三角形;C.直角三角形; D.钝角或直角三角形13.已知△ABC中,∠ABC与∠ACB的平分线交于点O,则∠BOC一定()A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线. 2.如图,∠ABC =∠ADC =∠FEC =90°. (1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________; (3)在△FEC 中,EC 边上的高是________; (4)若AB =CD =3,AE =5,则△AEC 的面积为________. 3.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 4.五段线段长分别为1cm 、2cm 、3cm 、4cm 、5cm ,以其中三条线段为边长共可以组成________个三角形. 5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________. 6.一个等腰三角形的周长为5cm ,如果它的三边长都是整数,那么它的腰长为________cm . 7.在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则∠A =______;∠B =______;∠C =______. 8.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I . (1)若∠ABC =70°,∠ACB =50°,则∠BIC =________; (2)若∠ABC +∠ACB =120°,则∠BIC =________; (3)若∠A =60°,则∠BIC =________; (4)若∠A =100°,则∠BIC =________; (5)若∠A =n °,则∠BIC =________. 三、解答题1.在△ABC 中,∠BAC 是钝角. 画出:(1)∠ABC 的平分线; (2)边AC 上的中线; (3)边AC 上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,212cm =∆ABC S ,求△ABD 中AB 边上的高.4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高1DD ,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作21D D 、32D D 、……、k k D D 1-.当作出k k D D 1-时,图中共有多少个不同的直角三角形?6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成15cm和6cm 两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC中,D是AB上一点.求证:(1)AB+BC+CA>2CD;(2)AB+2CD>AC+BC.13.如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),1∠BMN(),∴∠GMN=21∠DNM.同理∠GNM=2∵ AB∥CD(),∴∠BMN+∠DNM=________().∴∠GMN+∠GNM=________.∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD 是△ABC 的外角∠EAC 的平分线,且AD ∥BC . 求证:∠B =∠C .单元测试卷(一)参考答案:一、1.A ; 2.D ; 3.A ; 4.C ;5.B ; 6.C ; 7.B ; 8.D ; 9.C (提示:边长分别为3、4、5;2、4、5;2、3、4.)10.C ; 11.D ; 12.D ; 13.C ; 二、1.(1)BC 边上,ADB ,ADC ;(2)∠BAC 的角平分线,BAE ,CAE ,BAC ,∠BAF 的角平分线; (3)BF ;(4)△ABH ,△AGF ; 2.(1)AB ; (2)CD ; (3)EF ; (4)7.5; 3.22cm 或26cm ; 4.3; 5.11; 6.2;7.90°,36°,54°;8.(1)120°; (2)120°; (3)120°; (4)140°; (5)290︒+︒n ;三、21.略;2.解法1:AB +BD +DA =DA +AC +CD ,∴ BD =CD ,∵ BD =3cm ,∴ CD =3cm ,BC =6cm ,∵ AB =AC ,∴ AB =5cm . 解法2:△ABD 与△ACD 的周长相等,而AB =AC ,∴ BD =CD , ∴ BC =2BD =6cm ,∴ AB =(16-6)÷2=5cm . 3.212cm =∆ABC S ,∴ 21AB ·BC =12,AB =4,∴ BC =6,∵ AB ∥CD ,∴ △ABD 中AB 边上的高=BC =6cm .4.后一种意见正确.5.不作垂线,一个直角三角形,即:1=2×0+1,作一条垂线,三个直角三角形,即:3=2×1+1,同理,5=2×2+1,找出相应的规律,当作出k k D D 1 时,图中共有2×k +1,即2k +1个直角三角形.6.第一种方案:在BC 上取E 、D 、F ,使BE =ED =DF =FC ,连结AE 、AD 、AF ,则△ABE 、△AED 、△ADF 、△AFC 面积相等;第二种方案:取AB 、BC 、CA 的中点D 、E 、F ,连结DE 、EF 、FD ,则△ADF 、△BDE 、△CEF 、△DEF 面积相等.7.设三边长a =2k ,b =3k ,c =4k ,∵ 三角形周长为36,∴ 2k +3k +4k =36,k =4, ∴ a =8cm ,b =12cm ,c =16cm .8.设三角形中最大边为a ,最小边为c ,由已知,a -c =14,b +c =25,a +b +c =48, ∴ a =23cm ,b =16cm ,c =9cm .9.10-5<a -2<10+5,∴ 7<a <17. 10.设AB =AC =2x ,则AD =CD =x ,(1)当AB +AD =15,BC +CD =6时,2x +x =15,∴ x =5,2x =10,∴ BC =6-5=1cm ;(2)当AB +AD =6,BC +CD =15时,2x +x =6,∴ x =2,2x =4,∴ BC =13cm ;经检验,第二种情况不符合三角形的条件,故舍去. 11.AD -AB =AC +CD -AB =CD ,∵ BD -BC <CD , ∴ BD -BC <AD -AB . 12.(1)AC +AD >CD ,BC +BD >CD , 两式相加:AB +BC +CA >2CD . (2)AD +CD >AC ,BD +CD >BC , 两式相加:AB +2CD >AC +BC . 13.(1)已知,角平分线定义,已知,180°,两直线平行同旁内角互补,90°,180°,三角形内角和定理,90°,互相垂直.(2)两平行直线被第三条直线所截,它们的同旁内角的角平分线互相垂直. 14.94°; 35.120°; 36.10°;17.∠EBC <∠DCE ,而∠DCE =∠ACE ,∴ ∠EBC <∠ACE . 18.略.北师大版七年级数学下册第三章三角形单元测试卷(二)班级姓名学号得分一、选择题1.一个三角形的两边长为2和6,第三边为偶数.则这个三角形的周长为 ( ) A.10 B.12 C.14 D.162.在△ABC中,AB=4a,BC=14,AC=3a.则a的取值范围是 ( )A.a>2 B.2<a<14 C.7<a<14 D.a<143.一个三角形的三个内角中,锐角的个数最少为 ( )[A.0 B.1 C.2 D.34.下面说法错误的是 ( )A.三角形的三条角平分线交于一点 B.三角形的三条中线交于一点C.三角形的三条高交于一点 D.三角形的三条高所在的直线交于一点5.能将一个三角形分成面积相等的两个三角形的一条线段是 ( )A.中线B.角平分线 C.高线D.三角形的角平分线6.如图5—12,已知∠ACB=90°,CD⊥AB,垂足是D,则图中与∠A相等的角是 ( )A.∠ 1 B.∠ 2 C.∠ B D.∠ 1、∠ 2和∠ B 7.点P是△ABC内任意一点,则∠APC与∠B的大小关系是( ) A.∠APC>∠B B.∠APC=∠B C.∠APC<∠B D.不能确定8.已知:a 、b 、c 是△ABC 三边长,且M =(a +b +c)(a +b -c)(a -b -c),那么 ( ) A .M >0 B . M =0 C .M <0 D .不能确定9.周长为P 的三角形中,最长边m 的取值范围是 ( )A .23P m P <≤B .23P m P <<C .23P m P ≤<D .23P m P ≤≤10.各边长均为整数且三边各不相等的三角形的周长小于13,这样的三角形个数共有( )A .5个B .4个C .3个D .2个 二、填空题1.五条线段的长分别为1,2,3,4,5,以其中任意三条线段为边长可以________个三角形.2.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是________,周长的取值范围是___________.3.一个三角形的三个内角的度数的比是2:2:1,这个三角形是_________三角形. 4.一个等腰三角形两边的长分别是15cm 和7cm 则它的周长是__________.5.在△ABC 中,三边长分别为正整数a 、b 、c ,且c ≥b ≥a >0,如果b =4,则这样的三角形共有_________个.6.直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为_________. 7.在△ABC 中,∠A -∠B =30°、∠C =4∠B ,则∠C =________.8.如图5—13,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.[来9.如图5—14,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____. 10.如图5—15,△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线BD 、CD 交于点D ,则∠BDC =_____.11.如图5—16,该五角星中,∠A +∠B +∠C +∠D +∠E =________度. 12.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值范围是________. 三、解答题1.如图5—17,点B 、C 、D 、E 共线,试问图中A 、B 、C 、D 、E 五点可确定多少个三角形?说明理由.2.如图5—18,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.3.一个飞机零件的形状如图5—19所示,按规定∠A应等于90°,∠B,∠D应分别是20°和30°,康师傅量得∠BCD=143°,就能断定这个零件不合格,你能说出其中的道理吗?4.如图5—20,在△ABC中,AD是BC边上的中线,△ADC的周长比△ABD的周长多5cm,AB与AC的和为11cm,求AC的长.5.如图5—21,△ABC中,∠B=34°,∠ACB=104°,AD是BC边上的高,AE是∠BAC 的平分线,求∠DAE的度数.6.如图5—22,在△ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的面积;(2)CD的长.7.已知:如图5—23,P是△ABC内任一点,求证:∠BPC>∠A.8.△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,求∠A的度数.9.已知:如图5—24,P 是△ABC 内任一点,求证:AB +AC >BP +PC .10.如图5—25,豫东有四个村庄A 、B 、C 、D .现在要建造一个水塔P .请回答水塔P 应建在何位置,才能使它到4村的距离之和最小,说明最节约材料的办法和理由.单元测试卷(二)参考答案:一、1.C 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.A 10.C 二、1.3; 2.32周长20,164<<<<BC ; 3.锐角(等腰锐角); 4.cm 37;5.10; 6.︒65和︒25; 7.︒100;8.GAC FAC FGC BFC BE CF AD ∆∆∆∆,,,,,,;9.︒65; 10.︒120; 11.︒180; 12.126<<x . 三、1.可以确定6个三角形.理由:经过两点可以确定一条线段,而不在同一条直线上的三条线段首尾顺次相接可组成一个三角形,所以图中可以确定6个三角形.2.错误.因为AD 虽然是线段,但不符合三角形角平分线定义,这里射线AD 是BAC ∠的平分线3.假设此零件合格,连接BD ,则︒=︒-︒=∠+∠37143180CBD CDB ;可知()︒=︒+︒-︒=∠+∠40203090CBD CDB .这与上面的结果不一致,从而知这个零件不合格.4.∵ AD 是BC 边上的中线,∴ D 为BC 的中点,BD CD =.∵ ADC ∆的周长-ABD ∆的周长=5cm ∴ cm AB AC 5=-. 又∵ cm AB AC 11=+, ∴ cm AC 8=.5.由三角形内角和定理,得︒=∠+∠+∠180BAC ACB B .∴ ︒=︒-︒-︒=∠4210434180BAC . 又∵ AE 平分∠BAC . ∴ ︒=︒⨯=∠=∠21422121BAC BAE .∴ ︒=︒+︒=∠+∠=∠552134BAE B AED . 又∵ ︒=∠+∠90DAE AED ,∴ ︒=︒-︒=∠-︒=∠35559090AED DAE . 6.(1)∵ 在△ABC 中,︒=∠90ACB ,cm AC 5=,cm BC 12=,().3012521212cm BCAC S ABC =⨯⨯=⋅=∴∆[ (2)∵ CD 是AB 边上的高, ∴ CD AB S ABC ⋅=∆21.即CD ⨯⨯=132130.∴ ()cm CD 1360=.7.如图,延长BP 交AC 于D ,∵ A PDC PDC BPC ∠>∠∠>∠,, ∴ A BPC ∠>∠ 8.∵ A C ∠=∠74,∴ C A ∠=∠74,∴ C B C ∠<∠<∠74.又∵ ︒=∠+∠+∠180C B A ,∴ ︒=∠+∠+∠18074C B C .∴ C B ∠-︒=∠711180,∵ C C C ∠<∠-︒<∠71118074,∴ ︒<∠<︒8470C .又∵ C A ∠=∠74为整数,∴ ∠C 的度数为7的倍数.∴ ︒=∠77C ,∴ ︒=∠=∠4474C A .9.如图,延长BP 交AC 于点D .在△BAD 中,BD AD AB >+, 即:PD BP AD AB +>+. 在△PDC 中,PC DC PD >+. ①+②得PC PD BP DC PD AD AB ++>+++, 即PC BP AC AB +>+10.如图,水塔P 应建在线段AC 和线段BD 的交点处.这样的设计将最节省材料.理由:我们不妨任意取一点P ',连结P A '、P B '、P C '、P D '、AB 、BC 、CD 、DA , ∵ 在C P A '∆中,CP AP AC P C P A +=>'+', ① 在D P B '∆中,DP BP BD P D P B +=>'+', ② ①+②得DP CP BP AP P D P C P B P A +++>'+'+'+'. ∵ 点P '是任意的,代表一般性,∴ 线段AC 和BD 的交点处P 到4个村的距离之和最小.北师大版七年级数学下册第三章 三角形 单元测试卷(三)班级 姓名 学号 得分一、选择题(每小题3分,共30分)1. 有下列长度的三条线段,能组成三角形的是( )A 2,3,4B 1,4,2C 1,2,3D 6,2,3 2. 在下列各组图形中,是全等的图形是( )3. 下列条件中,能判断两个直角三角形全等的是( )AB C DE图4图2 图 3 A 、一个锐角对应相等 B 、两个锐角对应相等C 、一条边对应相等D 、两条边对应相等4.已知:如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O 点, ∠1=∠2.图中全等的三角形共有 ( ) A .4对 B ..3对 C 2对 D .1对5.如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B. 带②去C. 带③去D. 带①和②去6.右图中三角形的个数是( )A .6 B .7 C .8 D .97.如果两个三角形全等,那么下列结论不正确的是( ) A .这两个三角形的对应边相等 B .这两个三角形都是锐角三角形C .这两个三角形的面积相等D .这两个三角形的周长相等8.在下列四组条件中,能判定△ABC ≌△A /B /C /的是( )A.AB=A /B /,BC= B /C /,∠A=∠A /B.∠A=∠A /,∠C=∠C /,AC= B /C /C.∠A=∠B /,∠B=∠C /,AB= B /C /D.AB=A /B /,BC= B /C /,△ABC 的周长等于△A /B /C /的周长9.下列图中,与左图中的图案完全一致的是( )10. 下列判断:①三角形的三个内角中最多有一个钝角,②三角形的三个内角中至少有两个锐角,③有两个内角为500和200的三角形一定是钝角三角形,④直角三角形中两锐角的和为900,其中判断正确的有( )A.1个B.2个C.3个D.4个 二、填空题:(每题4分共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 。

北师大版数学七年级下册第4章《三角形》单元测试试题 附答案解析

北师大版数学七年级下册第4章《三角形》单元测试试题  附答案解析

北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)1.如果∠A=∠B﹣∠C,那么△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定2.下列各组线段能组成一个三角形的是()A.2cm,3cm,6cm B.6cm,8cm,10cmC.5cm,5cm,10cm D.4cm,6cm,10cm3.画△ABC的边BC上的高,正确的是()A.B.C.D.4.已知在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,下列条件中,不一定能得到△ABC≌△A′B′C′的是()A.BC=B'C' B.∠A=∠A′C.∠C=∠C′D.∠B=∠B′=90°5.如图,△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是()A.20B.24C.26D.286.如图,∠1=140°,∠2=100°,则∠3=()A.100°B.120°C.130°D.140°7.如图,点F,C在BE上,AC=DF,BF=EC,AB=DE,AC与DF相交于点G,则与2∠DFE相等的是()A.∠A+∠D B.3∠B C.180°﹣∠FGC D.∠ACE+∠B 8.如图,△ABC的高CD、BE相交于点O,如果∠A=60°,那么∠BOC的大小为()A.60°B.100°C.120°D.130°9.如图,点C,F,B,E在同一直线上,∠C=∠DFE=90°,添加下列条件,仍不能判定△ACB与△DFE全等的是()A.∠A=∠D,AB=DE B.AC=DF,CF=BEC.AB=DE,BC=EF D.∠A=∠D,∠ABC=∠E10.如图,直线a∥b,在Rt△ABC中,点C在直线a上,若∠1=58°,∠2=24°,则∠A的度数为()A.56°B.34°C.36°D.24°11.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.12.如图,在△ABC中,已知点D、点E分别为BC、AD的中点,且△BDE的面积为3,则△ABC的面积是.13.如图,E为△ABC的BC边上一点,点D在BA的延长线上,DE交AC于点F,∠B=46°,∠C=30°,∠EFC=70°,则∠D=.14.如图,∠ABC与∠ACB的平分线交于I点,若∠ABC+∠ACB=100°,则∠BIC =;若∠A=50°,则∠BIC=.15.如图,△ABC的两条高BD,CE相交于点O,若∠A=75°,则∠ABD=,∠ACE=,∠BOC=.16.如图,三角形ABC的面积为1,分别延长AB、BC、CA至M、N、P,使得BM=2AB,CN=3BC,AP=4CA,则三角形MNP面积是.17.将一副三角板如图所示摆放,若∠BAE=125°,则∠CAD的度数是.18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=15°,∠ACP=50°,则∠P=°.19.设a、b、c是△ABC的三边,化简:|a+b﹣c|﹣|b﹣c﹣a|=.20.如图所示,在△ABC中,AD平分∠BAC,BE是高线,∠BAC=50°,∠EBC=20°,则∠ADC的度数为.21.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是.A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.22.如图,在△ABC中,点E为边BC的中点,连接AE,点D为线段AE上的一点(不与A,E重合),连接BD、CD,若BD=CD,求证:∠ADB=∠ADC.23.已知:如图,在△ABC和△DEF中,点B、E、C、F四点在一条直线上,且BE=CF,AB=DE,∠B=∠DEF.求证:△ABC≌△DEF.24.如图,△ABC中,点D、E在边BC上,∠ADC=∠AEB,CD=BE.求证:∠BAD=∠CAE.25.风筝起源于中国,至今已有2300多年的历史,如图,在小明设计的“风筝”图案中,已知AB=AD.∠B=∠D,∠BAE=∠DAC.求证:AC=AE.26.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.27.如图,点A,B,C,D在同一条直线上,AB=CD,∠A=∠D,AE=DF.(1)求证:△ACE≌△DBF.(2)若BF⊥CE于点H,求∠HBC的度数.28.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.参考答案1.解:因为∠A+∠B+C=180°,且∠A=∠B﹣∠C,所以∠B﹣∠C+∠B+C=180°,所以∠B=90°,所以△ABC是直角三角形.故选:C.2.解:A、2+3<6,不能组成三角形,不符合题意;B、6+8=14>10,能组成三角形,符合题意;C、5+5=10,不能组成三角形,不符合题意;D、4+6=10,不能组成三角形,不符合题意;故选:B.3.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.4.解:A、由AB=A′B′,AC=A′C′,BC=B'C'可以判定△ABC≌△A′B′C′(SSS),不符合题意.B、由AB=A′B′,AC=A′C′,∠A=∠A′可以判定△ABC≌△A′B′C′(SAS),不符合题意.C、由AB=A′B′,AC=A′C′,∠C=∠C′不可以判定△ABC≌△A′B′C′(SSA),符合题意.D、由AB=A′B′,AC=A′C′,∠B=∠B′=90°可以判定Rt△ABC≌Rt△A′B′C′(HL),不符合题意.故选:C.5.解:∵BD是AC边上的中线,∴AD=CD.∵△ABD的周长为30,∴AB+BD+AD=30.∴BD+AD=30﹣AB=30﹣15=15.∴△BCD的周长为BC+CD+BD=BC+AD+BD=9+15=24.故选:B.6.解:∵∠1=140°,∠2=100°,∴∠3=360°﹣140°﹣100°=120°,故选:B.7.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ACB=∠DFE,∴2∠DFE=180°﹣∠FGC,故选:C.8.解:如图,∵CD、BE均为△ABC的高,∴∠BEC=∠ADC=90°,∵∠A=60°,∴∠OCE=180°﹣∠ADC﹣∠A=180°﹣90°﹣60°=30°,则∠BOC=∠BEC+∠OCE=90°+30°=120°.故选:C.9.解:A、∵∠A=∠D,AB=DE,∠C=∠DFE=90°,根据AAS判定△ACB与△DFE 全等,不符合题意;B、∵CF=BE,可得,BC=EF,AC=DF,BC=EF,∠C=∠DFE=90°,根据SAS判定△ACB与△DFE全等,不符合题意;C、∵AB=DE,BC=EF,∠C=∠DFE=90°,根据HL判断Rt△ACB与Rt△DFE全等,不符合题意;D、∵∠A=∠D,∠ABC=∠E,∠C=∠DFE=90°,由AAA不能判定△ACB与△DFE全等,符合题意;故选:D.10.解:如图,∵∠1=54°,a∥b,∴∠3=∠1=58°.∵∠2=24°,∠A=∠3﹣∠2,∴∠A=58°﹣24°=34°.故选:B.11.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).12.解:∵点E为AD的中点,△BDE的面积为3,∴△ABD的面积为3×2=6,∵点D为BC的中点,∴△ABC的面积为6×2=12.故答案为:12.13.解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°﹣∠DAC﹣∠AFD=34°,故答案为:34°.14.解:∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=50°,∴∠BIC=180°﹣(∠IBC+∠ICB)=130°;当∠A=50°时,∠ABC+∠ACB=180°﹣∠A=130°,∴∠IBC+∠ICB=(∠ABC+∠ACB)=65°,∴∠BIC=180°﹣(∠IBC+∠ICB)=115°.故答案为:130°;115°.15.解:∵△ABC的两条高BD,CE相交于点O,∴∠AEC=∠ADB=90°,∵∠A=75°,∴∠ABD=180°﹣∠A﹣∠ADB=180°﹣75°﹣90°=15°,∠ACE=180°﹣∠A﹣∠AEC=180°﹣75°﹣90°=15°,在△ABC中,∠DBC+∠ECB=180°﹣∠A﹣∠ABD﹣∠ACE=180°﹣75°﹣15°﹣15°=75°,在△BOC中,∠BOC=180°﹣(∠DBC+∠ECB)=180°﹣75°=105°.故答案为:15°,15°,105°.16.解:连接MC,AN∵2AB=BM,∴S△BCM=2S△ABC,∴S△BCM=2×1=2,∵3BC=CN,∴S△MNC=3S△BCM,S△ACN=3S△ABC,∴S△MNC=3×2=6,S△ACN=3×1=3,∵4CA=AP,∴S△ANP=4S△ACN,S△AMP=4S△AMC,∴S△ANP=4×3=12,S△AMP=4×(2+1)=12,∵S△MNP=S△ABC+S△BCM+S△MNC+S△ACN+S△ANP+S△AMP,∴S△MNP=1+2+6+3+12+12=36.故答案为:36.17.解:∵∠BAE=125°,∴∠DAE=∠BAE﹣∠BAD=125°﹣90°=35°,∴∠CAD=∠CAE﹣∠DAE=90°﹣35°=55°,故答案为:55°.18.解:∵BP是△ABC中∠ABC的平分线,∠ABP=15°,∴∠CBP=∠ABP=15°,∵CP是∠ACB的外角的平分线,∠ACP=50°,∴∠PCM=∠ACP=50°,∴∠P=∠PCM﹣∠CBP=50°﹣15°=35°,故答案为:35.19.解:∵a、b、c分别为△ABC的三边长,∴a+b﹣c>0,b﹣c﹣a<0,∴|a+b﹣c|﹣|b﹣c﹣a|=a+b﹣c+b﹣c﹣a=2b﹣2c,故答案为:2b﹣2c.20.解:∵AD平分∠BAC,BE是高,∠BAC=50°,∴∠BAD=∠BAC=25°,∠ABE=40°.∵∠EBC=20°,∴∠ADC=∠ABD+∠BAD=∠ABE+∠EBC+∠BAD=40°+20°+25°=85°.故答案为:85°.21.解:如图,∵∠E=∠F=90°,∠B=∠C,AE=AF,∴Rt△ABE≌Rt△ACF(AAS),∴∠F AC=∠EAB,BE=CF,AB=AC,∴∠1=∠2,故A,B正确;又∠B=∠C,∠CAN=∠BAM,∴△ACN≌△ABM(ASA),故C错误;∵△ACN≌△ABM(ASA),∴AN=AM,∴MC=BN,而∠B=∠C,∠CDM=∠BDN,∴△DMC≌△DMB(AAS),∴DC=DB,∴DC≠DN,故D错误.故答案为:A,B;22.证明:∵点E为边BC的中点,∴BE=CE,在△BDE和△CDE中,,∴△BDE≌△CDE(SSS),∴∠BDE=∠CDE,∠DBE=∠DCE,∴∠ADB=∠ADC,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴∠ADB=∠ADC.23.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS).24.证明:∵∠ADC=∠AEB,∴AD=AE,在△ADC和△AEB中,,∴△ADC≌△AEB(SAS),∴∠BAE=∠DAC,∴∠BAD=∠CAE.25.证明:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(ASA),∴AC=AE.26.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.27.(1)证明:∵AB=CD,∴AB+BC=CD+BC.∴AC=BD.在△ABC和△EDF中,,∴△ACE≌△DBF(SAS);(2)解:由(1)知△ACE≌△DBF,∴∠ACE=∠DBF.∵BF⊥CE,∴∠BHC=90°,∴∠HBC+∠HCB=90°,∴∠HBC=∠HCB=45°.28.(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.。

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册 第四章 三角形 单元测试训练卷(word版 含解析)

北师大版七年级数学下册第四章 三角形单元测试训练卷一、单选题(共10小题,每小题4分,共40分)1.下列各组数为边,能构成三角形的是( )A .1,2,3B .2,3,4C .4,4,8D .3,5,9 2.如图,65A ∠=︒,45B ∠=︒,则ACD ∠=( )A .65°B .60°C .45°D .110° 3.如图,12,AC AD ∠=∠=,要使ABC AED ≌△△,还需添加一个条件,那么在以下条件中不能选择的是( )A .AB AE = B .BC ED = C .C D ∠=∠ D .BE ∠=∠ 4.若△ABC 的一个外角等于其中一个内角,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90° 5.如果一个三角形的两边长分别为3和7,则第三边长可能是( ). A .3 B .4 C .7 D .10 6.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带( )去最省事.A.△B.△C.△D.△△7.已知:如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,点P 以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒()秒时.△ABP和△DCE全等.A.1B.1或3C.1或7D.3或78.如图,△CAB=△DBA,再添加一个条件,不一定能判定△ABC△△BAD的是()A.AC=BD B.△1=△2C.△C=△D D.AD=BC 9.如图,在△ABC中,△BAC=90°,AB=AC,AD是经过A点的一条直线,且B、C在AD的两侧,BD△AD于D,CE△AD于E,交AB于点F,CE=10,BD=4,则DE的长为()A.6B.5C.4D.810.如图,在ABC中,△ACB=45°,AD△BC,BE△AC,AD与BE相交下点F,连接并延长CF交AB于点G,△AEB的平分线交CG的延长线于点H,连接AH.则下列结论:△△EBD=45°;△AH=HF;△ABD△CFD;△CH=AB+AH;△BD=CD﹣AF.其中正确的有()个.A .5B .4C .3D .2二、填空题(共6小题,每小题4分,共24分)11.用木棒钉成一个三角架,两根小棒长分别是7cm 和10cm,第三根小棒长为x cm,则x 的取值范围是___.12.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带________去玻璃店.13.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,添加一个条件能判断△ABE △△ACD 的是____.14.如图,A E ∠=∠,AC BE ⊥,AB EF =,25BE =,8=CF ,则AC =_______.15.在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.16.如图,ABC 和ADE 均为等边三角形,D ,E 分别在边AB ,AC 上,连接BE ,CD ,若15ACD =︒∠,则CBE =∠__________.三、解答题(共6小题, 56分)17.如图,在ABC ∆中,AD BC ⊥,垂足为D ,BE AC ⊥,垂足为E ,AE BE =,AD 与BE 相交于点F .(1)请说明AEF BEC ∆∆≌的理由.(2)如果2AF BD =,试说明AD 平分BAC ∠的理由.18.如图,△ABC中,D为BC上一点,△C=△BAD,△ABC的角平分线BE交AD于点F.(1)求证:△AEF=△AFE;(2)G为BC上一点且FE平分△AFG.求证:AB=GB19.如图,已知AE△AB,AF△AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC△BF.20.探索归纳:(1)如图1,已知ABC 为直角三角形,90A ∠=︒,若沿图中虚线剪去A ∠,则12∠+∠=________︒.(2)如图2,已知ABC 中,40A ∠=︒,剪去A ∠后成四边形,则12∠+∠=__________︒.(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想12∠+∠与A ∠的关系是___________.(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究12∠+∠与A ∠的关系并说明理由.21.在△BAC中,△BAC=90°,AB=AC,AE是过A的一条直线,BD△AE于点D,CE△AE于E.(1)如图(1)所示,若B,C在AE的异侧,易得BD与DE,CE的关系是DE=;(2)若直线AE绕点A旋转到图(2)位置时,(BD<CE),其余条件不变,问BD与DE,CE 的关系如何?请予以证明;(3)若直线AE绕点A旋转,(BD>CE),问BD与DE,CE的关系如何?请直接写出结果,不需证明.22.如图,AB=12cm,AC△AB,BD△AB,AC=BD=9cm,点P在线段AB上以3cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动;设点P的运动时间为t秒.(1) PB=________ cm.(用含t的代数式表示)(2)如图1,若点Q的运动速度与点P的运动速度相等,当运动时间t=1秒时,△ACP与△BPQ是否全等?并说明理由.(3)如图2,将“AC△AB,BD△AB”改为“△CAB=△DBA”,其余条件不变;设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.参考答案:1.B【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项分析判断即可.【详解】解:A. 1+2=3 ,不能构成三角形,故该选项不符合题意;B. 2+3>4,能构成三角形,故该选项符合题意;C. 4+4=8,不能构成三角形,故该选项不符合题意;D. 3+5<9,不能构成三角形,故该选项不符合题意;故选B【点睛】本题考查了构成三角形的条件,掌握三角形三边关系是解题的关键.2.D【解析】【分析】根据三角形外角的性质求解即可.【详解】解:△65A ∠=︒,45B ∠=︒,△110ACD A B ∠=∠+∠=︒,故选:D .【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.3.B【解析】【分析】由△1=△2,可得∠BAC=∠EAD ,又AC=AD ,可知在△ABC 和△AED 中,已知一角及其临边对应相等,要证两三角形全等,任意再找一对角对应相等,或者找已知角的另一边对应相等,由此可得答案.解:△△1=△2,△∠BAC=∠EAD ,当AB=AE 时,根据SAS 可得ABC AED ≌△△;当C D ∠=∠时,根据ASA 可得ABC AED ≌△△;当B E ∠=∠时,根据AAS 可得ABC AED ≌△△;当BC=ED 时,SSA 不能判定两个三角形全等,故答案为:B【点睛】本题考查三角形全等的判定,角的和差是常考的判定已知角相等的方法,熟知三角形全等的判定定理是解题的关键.4.D【解析】【分析】根据三角形的外角性质、邻补角的概念计算即可.【详解】解:△三角形的一个外角大于和它不相邻的任何一个内角,△△ABC 的一个外角等于其中一个内角时,这个外角等于它的邻补角,△这个三角形必有一个内角等于90°,故选:D .【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角大于和它不相邻的任何一个内角是解题的关键.5.C【解析】【分析】根据三角形三边之间的关系即可判定.【详解】解:设第三边长为x ,则4<x <10,所以选项中符合条件的整数只有7.故选:C .本题考查了三角形三边关系,三角形中,任意两边之差小于第三边,任意两边之和大于第三边.6.C【解析】【分析】根据全等三角形的判定方法“角边角”可以判定应当带△去.【详解】解:由图形可知,△有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形, 所以,最省事的做法是带△去.故选:C.【点睛】本题考查了全等三角形的判定方法,正确理解“角边角”的内容是解题的关键.7.C【解析】【分析】分P点在线段BC上和P点在线段AD上两种情况讨论,当P点在线段BC上时得到△ABP=△DCE=90°,BP=CE=2进而求解;当P点在线段AD上时得到△BAP=△DCE=90°,AP=CE=2进而求解.【详解】解:由题意可知:AB=CD,当P点在线段BC上时:△ABP=△DCE=90°,BP=CE=2,此时△ABP△△DCE(SAS),由题意得:BP=2t=2,△t=1;当P点在线段AD上时:△BAP=△DCE=90°,AP=CE=2,此时△BAP△△DCE(SAS),由题意得:AP=16-2t=2,△t=7.△当t的值为1或7秒时.△ABP和△DCE全等.故答案为:C.【点睛】本题考查了三角形全等的判定方法,注意要分类讨论,熟练掌握三角形全等判定方法是解题的关键.8.D【解析】【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)判断即可.【详解】解答:解:A.△AC=BD,△CAB=△DBA,AB=AB,△根据SAS能推出△ABC△△BAD,故本选项错误;B.△△CAB=△DBA,AB=AB,△1=△2,△根据ASA能推出△ABC△△BAD,故本选项错误;C.△△C=△D,△CAB=△DBA,AB=AB,△根据AAS能推出△ABC△△BAD,故本选项错误;D.根据AD=BC和已知不能推出△ABC△△BAD,故本选项正确;故选:D.【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.9.A【解析】【分析】根据△BAC=90°得到△BAD+△CAD=90°,由于CE△AD于E,于是得到△ACE+△CAE=90°,根据余角的性质得到△BAD=△ACE,推出△ABD△△CAE,根据全等三角形的性质即可得到结论.【详解】解:△△BAC=90°,△△BAD+△CAD=90°,△CE△AD于E,△△ACE+△CAE=90°,△△BAD=△ACE,在△ABD 与△CAE 中,90D AEC BAD ACE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△AE =BD =4,AD =CE =10,△DE =AD ﹣AE =6.故选:A .【点睛】本题考查全等三角形的判定与性质,解题的关键是利用余角的性质得到△BAD =△ACE . 10.A【解析】【分析】△利用三角形内角和定理即可说明其正确;△利用垂直平分线的性质即可说明其正确;△利用SAS 判定全等即可;△利用△中的结论结合等量代换和等式的性质即可得出结论;△利用△中的结论结合等量代换和等式的性质即可得出结论.【详解】如图所示,设EH 与AD 交于点M ,△△ACB =45°,BE △AC ,△△EBD =90°﹣△ACD =45°,故△正确;△AD △BC ,△EBD =45°,△△BFD =45°,△△AFE =△BFD =45°,△BE △AC ,△△F AE =△AFE =45°,△△AEF 为等腰直角三角形,△EM 是△AEF 的平分线,△EM △AF ,AM =MF ,即EH 为AF 的垂直平分线,△AH =HF ,△△正确;△AD △BC ,△ACD =45°,△△ADC 是等腰直角三角形,△AD =CD ,同理,BD =DF ,在△ABD 和△CFD 中,90AD CD ADB CDF BD FD =⎧⎪∠=∠=︒⎨⎪=⎩, △△ABD △△CFD (SAS ),△△正确;△△ABD △△CFD ,△CF =AB ,△CH =CF +HF ,由△知:HF =AH ,△CH =AB +AH ,△△正确;△BD =DF ,CD =AD ,又△DF =AD ﹣AF ,△BD =CD ﹣AF ,△△正确,综上,正确结论的个数为5个.故选:A .【点睛】本题考查了直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,垂直平分线的判定与性质等相关知识,综合性较强,难度较大,做题时要分清角的关系与边的关系.11.3<x<17【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,确定出第三边的取值范围即可得出答案.【详解】解:设第三根小棒的长为x cm,根据三角形的三边关系可得:10-7<x<10+7,即3<x<17,故答案为3<x<17.【点睛】本题考查了三角形的三边关系.三角形的三边关系:第三边大于两边之差而小于两边之和.12.△【解析】【分析】观察每块玻璃形状特征,利用ASA判定三角形全等可得出答案.【详解】第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA 来配一块一样的玻璃.应带△去.故答案为:△.【点睛】本题属于利用ASA判定三角形全等的实际应用,难度不大,但形式较颖,要善于将所学知识与实际问题相结合.13.AD=AE(答案不唯一)【解析】【分析】根据全等三角形的判定定理添加条件可以,添加AD =AE ,根据SAS 证明△ABE △△ACD 即可.【详解】解:添加的条件是AD =AE ,理由是:在△ABE 和△ACD 中,AE AD A A AB AC =⎧⎪∠=∠⎨⎪=⎩,△△ABE △△ACD (SAS ),故答案为:AD =AE (答案不唯一).【点睛】本题考查了全等三角形的判定定理,熟练掌握全等三角形的判定定理是解题的关键. 14.17【解析】【分析】由“AAS ”可证ABC EFC ∆≅∆,可得AC CE =,9BC CF ==,即可求解.【详解】解:AC BE ⊥,90ACB ECF ∴∠=∠=︒,在ABC ∆和EFC ∆中,A E ACB ECF AB EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFC AAS ∴∆≅∆,AC CE ∴=,8BC CF ==,25817AC CE BE BC ∴==-=-=,故答案为:17.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.15.1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 16.45︒##45度【解析】【分析】根据题意利用全等三角形的判定与性质得出()BD C S ED E SA ≅和15EBD ACD ︒∠=∠=,进而依据CBE =∠ABC EBD ∠-∠进行计算即可.【详解】解:△ABC 和ADE 均为等边三角形,△,,AB AC AE AD EC DB ===,△60,120,AED ADE ABC DEC EDB ︒︒∠=∠=∠=∠=∠=在CED 和BDE 中, EC DB DEC EDB ED ED =⎧⎪∠=∠⎨⎪=⎩, △()BD C S ED E SA ≅,△15EBD ACD ︒∠=∠=,△CBE =∠601545ABC EBD ︒︒︒∠-∠=-=.故答案为:45︒.【点睛】本题考查全等三角形的判定与性质以及等边三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.17.(1)见解析(2)见解析【解析】【分析】(1)由余角的性质可证DAC EBC ∠=∠,根据“ASA”可证结论成立;(2)由AEF BEC ∆∆≌可得AF BC =,结合2AF BD =可知BD CD =,然后根据“SAS”证明△ABD △△ACD 可证结论成立.(1)证明:AD BC ⊥,BE AC ⊥,90ADC ∴∠=,△AEB =△CEB =90°,90DAC C +∠=∴∠,△EBC +△C =90°,DAC EBC =∠∴∠,在AEF ∆与BEC ∆中,EAF EBC AEF BEC AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ΔΔASA AEF BEC ∴≌.(2)解:由(1)知,AF BC =,2AF BD =,2BC BD ∴=,D ∴是BC 的中点,BD CD ∴=,在△ABD 和△ACD 中AD AD ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩, △△ABD △△ACD ,△BAD CAD ∠=∠,AD ∴平分BAC ∠.【点睛】本题考查了全等三角形的判定和性质,余角的性质,角平分线的定义,熟练掌握全等三角形的判定和性质是解题的关键.18.(1)证明见解析(2)证明见解析【解析】【分析】(1)先根据角平分线的定义得到△1=△2,再由三角形外角的性质得到△AEF=△2+△C,△AFE=△1+△BAD,由△C=△BAD,即可推出△AEF=△AFE;(2)根据角平分线的定义得到△AFE=△GFE,再由△AFB+△AFE=180°,△BFG+△GFE=180°,得到△AFB=△BFG,然后证明△ABF△△GBF即可得到AB=GB.(1)解:△BE是△ABC的角平分线,△△1=△2,△△AEF、△AFE分别是△BCE、△ABF的外角,△△AEF=△2+△C,△AFE=△1+△BAD,又△△C=△BAD,△△AEF=△AFE;(2)解:△FE平分△AFG,△△AFE=△GFE,△△AFB+△AFE=180°,△BFG+△GFE=180°,△△AFB=△BFG,在△ABF和△GBF中12AFB BFG BF BF∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ABF △△GBF (ASA )△AB =GB .【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形外角的性质,熟知相关知识是解题的关键.19.(1)见解析(2)见解析【解析】【分析】(1)先求出△EAC =△BAF ,然后利用“边角边”证明△ABF 和△AEC 全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得△AEC =△ABF ,设AB 、CE 相交于点D ,根据△AEC +△ADE =90°可得△ABF +△ADM =90°,再根据三角形内角和定理推出△BMD =90°,从而得证.(1)△AE △AB ,AF △AC ,△△BAE =△CAF =90°,△△BAE +△BAC =△CAF +△BAC ,即△EAC =△BAF ,在△ABF 和△AEC 中,AE AB EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩, △△ABF △△AEC (SAS ),△EC =BF ;(2)如图,设AB 交CE 于D根据(1),△ABF△△AEC,△△AEC=△ABF,△AE△AB,△△BAE=90°,△△AEC+△ADE=90°,△△ADE=△BDM(对顶角相等),△△ABF+△BDM=90°,在△BDM中,△BMD=180°-△ABF-△BDM=180°-90°=90°,所以EC△BF.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会利用“8字型”证明角相等.20.(1)270(2)220∠+∠=︒+∠(3)12180A(4)122A∠+∠=∠,理由见解析【解析】【分析】(1)利用三角形的外角定理及直角三角形的性质求解;(2)利用三角形的外角等于与它不相邻的两个内角和求解;(3)根据(1)、(2)中思路即可求解;∠=︒-∠, (4)根据折叠对应角相等,得到AFE PFE∠=∠,AEF PEF∠=∠,进而求出11802AFE∠+∠=︒-∠即可求解.AFE AEF A∠=︒-∠,最后利用18021802AEF(1)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A=90°+△EF A,△2=△A+△AEF=90°+△AEF,△△1+△2=(90°+△EF A)+( 90°+△AEF)=180°+△EF A+△AEF,△△ABC为直角三角形,△△A=90°,△EF A+△AEF=180°-△A=90°,△△1+△2=180°+90°=270°.(2)解:如下图所示:在△AEF中,由外角性质可知:△1=△A+△EF A,△2=△A+△AEF,△△1+△2=(△A+△EF A)+( △A+△AEF)=(△A +△EF A+△AEF)+∠A=180°+40°=220°.(3)解:由(1)、(2)中思路,由三角形外角性质可知:△1=△A +△EF A ,△2=△A +△AEF ,△△1+△2=(△A +△EF A )+( △A +△AEF )=(△A +△EF A +△AEF)+∠A =180°+∠A ,△12∠+∠与A ∠的关系是:△1+△2=180°+∠A .(4)解:12∠+∠与A ∠的关系为:122A ∠+∠=∠,理由如下:如图,△EFP △是由EFA △折叠得到的,△AFE PFE ∠=∠,AEF PEF ∠=∠,△11802AFE ∠=︒-∠,21802AEF ∠=︒-∠,△()12(1802)(1802)3602AFE AEF AFE AEF ∠+∠=︒-∠+︒-∠=︒-∠+∠,又△180AFE AEF A ∠+∠=︒-∠,△()1236021802A A ∠+∠=︒-︒-∠=∠,△12∠+∠与A ∠的关系122A ∠+∠=∠.【点睛】主要考查了折叠的性质及三角形的内角和外角之间的关系:三角形的外角等于与它不相邻的两个内角和、三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.21.(1)BD ﹣EC(2)BD =DE ﹣CE .见解析(3)当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【解析】【分析】(1)通过互余关系可得△ABD =△CAE ,进而证明△ABD △△ACE (AAS ),即可求得BD =AE ,AD =EC ,进而即可求得关系式;(2)方法同(1)证明△ABD △△CAE (AAS ),进而得出结论;(3)综合(1)(2)结论,分当B ,C 在AE 的同侧或异侧时,写出结论即可.(1)结论:DE =BD ﹣EC .理由:如图1中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△ACE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△BAD △△ACE (AAS ),△BD =AE ,AD =EC ,△BD =DE +CE ,即DE =BD ﹣EC .故答案为:BD ﹣EC ;(2)结论:BD =DE ﹣CE .理由:如图2中,△BD △AE ,CE △AE ,△△ADB =△CEA =90°,△△ABD +△BAD =90°,又△△BAC =90°,△△EAC +△BAD =90°,△△ABD =△CAE ,在△ABD 与△CAE 中,ADB CEA ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, △△ABD △△CAE (AAS ),△BD =AE ,AD =EC ,△BD =DE ﹣CE ;(3)归纳:由(1)(2)可知:当B ,C 在AE 的同侧时,BD =DE ﹣CE ;当B ,C 在AE 的异侧时,BD =DE +CE .【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键. 22.(1)(12-3t )(2)△CAP △△PBQ ,理由见解析(3)满足条件的点Q 的速度为3或92cm /s . 【解析】【分析】(1)求出AP ,再根据题意写出PB 的值即可;(2)求出AP ,PB ,BQ 的值,根据SAS 证明△CAP △△PBQ (SAS )即可;(3)分两种情形分别求解:△由(1)可知,Q 的速度为3cm /s 时,△ACP △△BPQ ,这种情形符合题意.△当P A =PB ,AC =BQ 时,△APC △△BPQ (SAS ),首先确定运动时间,再求出点Q 的运动速度即可.(1)解:由题意:P A =3t (cm ),△AB =12cm ,△PB =AB -AP =12-3t (cm ),故答案为:(12-3t );(2)解:△CAP△△PBQ,理由如下:由题意:t=1(s)时,P A=BQ=3(cm),△AB=12cm,△PB=AB-AP=12-3=9(cm),△AC=9cm,△AC=BP,△△CAP=△PBQ=90°,P A=BQ,△△CAP△△PBQ(SAS);(3)解:△由(2)可知,Q的速度为3cm/s时,△ACP△△BPQ,这种情形符合题意.△当P A=PB,AC=BQ时,△APC△△BPQ(SAS),△t=63=2(s),△点Q的运动速度为92cm/s.△满足条件的点Q的速度为3或92cm/s.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.。

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)

北师大版七年级数学下册第4单元《三角形》单元测试题(含答案)一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.画△ABC的边BC上的高,正确的是()A.B.C.D.3.将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是锐角三角形B.都是直角三角形C.都是钝角三角形D.是一个锐角三角形和一个钝角三角形4.如图,已知在△ABC中,∠A=90°,∠1+∠2的度数是()A.180°B.270°C.360°D.无法确定5.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()A.带①②去B.带②③去C.带③④去D.带②④去6.如图,点A,D在线段BC的同一侧,AC与BD相交于点E,连接AB,CD,已知∠1=∠2,现添加以下哪个条件仍不能判定△ABC≌△DCB的是()A.∠A=∠D B.AC=DB C.∠ABC=∠DCB D.AB=DC7.如图,在△ABC中,∠A=45°,△ABC的外角∠CBD=75°,则∠C的度数是()A.30°B.45°C.60°D.75°8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD二.填空题9.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.10.如图,点A,F,C,D在同一条直线上,BC∥EF,AC=FD,请你添加一个条件,使得△ABC≌△DEF.11.如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.12.在△ABC中,∠A:∠B:∠C=4:5:9,若按角分类,△ABC是三角形.13.如图,∠1=115°,∠2=50°,那么∠3=.14.如图,在△ABC中,∠C=90°,DE⊥AB于D,交AC于点E,若BC=BD,AC=6cm,BC=8cm,AB=10cm,则△ADE的周长是.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,已知△EFG,利用尺规作FG边上的高EH.(不写作法,保留作图痕迹)17.某中学八年级同学到野外开展数学综合实践活动,在营地看到一池塘,同学们想知道池塘两端的距离.某同学设计了如下测量方案:先取一个可直接到达池塘的两端的点A,B 的点E,连接AE,BE,分别延长AE至点D,BE至点C,使得ED=AE,EC=BE.再测出CD的长度即可知道AB之间的距离.他的方案可行吗?请说明理由.18.已知:如图,在△ABC中,∠DAE=10°,AD⊥BC于点D,AE平分∠BAC,∠B=60°,求∠C的度数.19.如图,在四边形ABCD中,∠B=∠D=90°,点B,F分别在AB,AD上,AE=AF,CE=CF,求证:CB=CD.20.如图,在△ABC中,CD是AB边上的高,AE平分∠BAC,AE、CD相交于点F,若∠BAC=∠DCB.求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD =BE.(1)求证:△ABD≌△ECB.(2)若∠BDC=70°.求∠ADB的度数.22.直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).(1)如图1,MN⊥PQ,若∠BAO=30°,∠BAO与∠ABO的角平分线相交于点E,∠AEB的度数为,(2)如图2,MN⊥PQ,∠BAP与∠ABM的角平分线相交于点E,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,若∠MOQ<90°,∠BAO与∠BOQ的角平分线相交于点E,延长BA至点G,∠OAG的角平分线与射线EO相交于点F,点A、B在运动的过程中,试探索∠F与∠ABO之间的等量关系,并证明你的结论.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A.此图形中AD是BC边上的高,符合题意;B.此图形中CD不是BC边上的高,不符合题意;C.此图形中CD是AB边上的高,不符合题意;D.此图形中AD是AB边上的高,不符合题意;故选:A.3.解:如图,沿三角形一边上的高剪开即可得到两个直角三角形.如图,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图,锐角三角形沿虚线剪开即可得到一个锐角三角形和一个钝角三角形.因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形.综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形.故选:A.4.解:在△ABC中,∠A=90°,所以∠ACB+∠ABC=90°,又因为∠1+∠ACB=180°,∠2+∠ABC=180°,所以∠1+∠2=270°,故选:B.5.解:A、带①②去,符合ASA判定,选项符合题意;B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;故选:A.6.解:∵BC=CB,∠1=∠2,A、如添加∠A=∠D,利用AAS即可证明△ABC≌△DCB;B、如添加AC=BD,利用SAS即可证明△ABC≌△DCB.C、如添加∠ABC=∠DCB,利用ASA即可证明△ABC≌△DCB;D、如添加AB=DC,因为SSA,不能证明△ABC≌△DCB,所以此选项不能作为添加的条件;故选:D.7.解:∵∠A=45°,△ABC的外角∠CBD=75°,∴∠C=∠CBD﹣∠A=75°﹣45°=30°,故选:A.8.解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.二.填空题9.解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.10.解:∵BC∥EF,∴∠BCA=∠EFD,若添加BC=EF,且AC=FD,由“SAS”可证△ABC≌△DEF;若添加∠B=∠E,且AC=FD,由“AAS”可证△ABC≌△DEF;若添加∠A=∠D,且AC=FD,由“ASA”可证△ABC≌△DEF;故答案为:BC=EF或∠B=∠E或∠A=∠D(答案不唯一).11.解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.12.解:∵∠A:∠B:∠C=4:5:9,且∠A+∠B+∠C=180°,∴∠C=180°×=90°,∴△ABC是直角三角形,故答案为:直角.13.解:∵∠1=115°,∠2=50°,∴∠3=∠1+∠2=165°,故答案为:165°.14.解:连接BE,∵∠C=90°,DE⊥AB于D,∴∠C=∠BDE=90°,在Rt△BCE与Rt△BDE中,,∴Rt△BCE≌Rt△BDE(HL),∴DE=CE,∵AB=10cm,BC=8cm,AC=6cm,∴△ADE的周长=DE+AE+AD=CE+AE+AB﹣BD=AC+AB﹣BC=6+10﹣8=8(cm),故答案为:8cm.三.解答题15.解:如图所示:.16.解:如图,EH为所作.17.解:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS);∴AB=CD.18.解:∵AD⊥BC,∠B=60°,∴在△ABD中,∠BAD=90°﹣60°=30°,又∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=30°+10°=40°,又∵AE平分∠BAC,∴∠BAC=2∠BAE=80°,∴在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣60°=40°.答:∠C的度数是40°.19.证明:如图,连接AC,在△ACE和△ACF中,,∴△ACE≌△ACF(SSS),∴∠EAC=∠F AC,在△ACB和△ACD中,,∴△ACB≌△ACD(AAS),∴CB=CD.20.证明:在△ABC中,CD是高,∠BAC=∠DCB,∴∠CDA=90°,∠BAC+∠ACD=90°,∴∠DCB+∠ACD=90°,∴∠ACB=90°;∵AE是角平分线,∴∠CAE=∠BAE,∵∠FDA=90°,∠ACE=90°,∴∠DAF+∠AFD=90°,∠CAE+∠CEA=90°,∴∠AFD=∠CEA,∵∠AFD=∠CFE,∴∠CFE=∠CEA,即∠CFE=∠CEF.21.证明:(1)∵AD∥BC,∴∠ADB=∠CBE,在△ABD和△ECB中,,∴△ABD≌△ECB(AAS);(2)∵△ABD≌△ECB,∴BD=BC,∴∠BDC=∠BCD=70°,∴∠DBC=40°,∴∠ADB=∠CBD=40°.22.解:(1)∵MN⊥PQ,∴∠AOB=90°,∵∠BAO=30°,∴∠ABO=60°,∵AE、BE分别是∠BAO和∠ABO的角平分线,∴∠ABE=∠ABO=30°,∠BAE=∠BAO=15°,∴∠AEB=180°﹣∠ABE﹣∠BAE=135°.故答案为:135°.(2)不会发生变化.∵∠BAP与∠ABM的角平分线相交于点E,∴∠EAB=∠P AB,∠EBA=∠MBA,∵MN⊥PQ,∴∠AOB=90°,∵∠P AB=∠ABO+∠AOB=90°+∠ABO,∠MBA=∠BAO+∠AOB=90°+∠BAO,∴∠EAB+∠EBA=(90°+∠ABO+90°+∠BAO)=90°+(∠ABO+∠BAO),∵∠ABO+∠BAO=90°,∴∠EAB+∠EBA=90°+45°=135°,∴∠AEB=180°﹣135°=45°.(3)∠ABO+∠F=90°.如图:∵∠BAO与∠BOQ的角平分线相交于点E,∴∠1=∠BAO,∠2=∠BOQ,由外角的性质可得:∠ABO=∠BOQ﹣∠BAO,∠E=∠2﹣∠1,∴∠E=∠ABO.∵AE平分∠BAO,AF平分∠GAO,∴∠EAF=90°,∴∠E+∠F=90°,即∠ABO+∠F=90°。

北师大版七年级数学下册 第四章《三角形》单元测试卷(含答案)

北师大版七年级数学下册  第四章《三角形》单元测试卷(含答案)

高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B= 1 ∠C, 2
那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是
直角三角形;⑥在 ABC 中,若∠A+∠B=∠C,则此三角形是直角三角形。
A、3 个
B、4 个
C、5 个
D、6 个
7.在 ABC 中, B, C 的平分线相交于点 P,设 A = x, 用 x 的代数式表示 BPC 的
B
21.(本题 6 分)有人说,自己的步子大,一步能走三米多,你相信吗?
用你学过的数学知识说明理由。
C D
第 20 题图
22.(本题 6 分)小颖要制作一个三角形木架,现有两根长度为 8m 和 5m 的木棒。如果要 求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
2/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
度。
14.如图,∠1=_____.
A
A
C
B
E
D 第 11 题图 第 12 题图
D
B
C
第 13 题图
80
1
140
第 14 题图
第 16 题图
15.若三角形三个内角度数的比为 2:3:4,则相应的外角比是
.
16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB,CD⊥AB 于 D,DF⊥CE,
2
2
2
2
∠CDE=∠AED-∠C=(90°- 1 x)-[90°- 1 (40°+x)]=20°.
2
2
5/5
度数,正确的是( )
(A) 90 + 1 x (B) 90 − 1 x

七年级数学下册《第四章 三角形》单元测试卷(附答案解析)

七年级数学下册《第四章 三角形》单元测试卷(附答案解析)

七年级数学下册《第四章三角形》单元测试卷(附答案解析)一、选择题(共10小题,每小题3分,共30分)1.下面是一位同学用三根木棒拼成的图形,其中符合三角形概念的是( )A B C D2.下列说法正确的是( )A.两个面积相等的图形一定是全等图形B.两个全等图形形状一定相同C.两个周长相等的图形一定是全等图形D.两个正方形一定是全等图形3.如图,在△ABC中,∠ACB=90°,CD⊥AB于D,图中的线段可以作为△ABC的高的有( )A.2条B.3条C.4条D.5条4.经常开窗通风,可以有效地利用阳光和空气中的紫外线杀死病菌,清除室内空气中的有害气体,如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短5.下列图形中,是直角三角形的是( )A BC D6.根据下列已知条件,能画出唯一的△ABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=8D.∠C=90°,AB=67.如图,用四个螺丝将不能弯曲的木条围成一个木框,不计螺丝大小,其中相邻两个螺丝的距离依次为3、4、6、8,且相邻两根木条的夹角均可以调整,若调整木条的夹角时不破坏此木框,则任意两个螺丝间的距离的最大值是( )A.7B.10C.11D.148.如图,在△ABC中,AD是∠BAC的平分线,P为AD延长线上一点,PE⊥BC于点E,若∠B=75°,∠P=25°,则∠C的度数是( )A.25°B.75°C.15°D.50°9.如图,△ABC的三条中线AD,BE,CF相交于点G,且四边形CDGE的面积是12,则图中阴影部分的面积为( )A.16B.12C.10D.610.如图,四边形ABCD和四边形EFGH均为正方形,点E、F、G、H分别在AF、BG、CH、DE上,若AE=a,AF=b,则△ABF的面积可以表示为( )ab D.a+bA.abB.2abC.12二、填空题(共6小题,每小题3分,共18分)11.如图,AB=DE,AC=DF,BC=EF,则∠D的度数= .12.若等腰三角形两边的长分别为3 cm和7 cm,则第三边的长是cm.13.△ABC的三边长分别是a,b,c,化简|a-b+c|+|a-c-b|-|b-c-a|的结果为.14.如图,∠B=∠C,AB=AC,要使△ABD≌△ACE,只需增加的一个条件是(只需填写一个你认为适合的条件).15.某段河流的两岸是平行的,数学兴趣小组想测得河的宽度,为了保证安全,在老师带领下不用涉水过河就可以测量,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20米有一棵树C,继续前行20米到达D处;③从D处沿河岸垂直的方向行走,当到达树A正好被树C遮挡住的E处时停止行走;④测得DE的长为5米.则河的宽度为米.16.现有一块如图所示的草地,经测量,∠B=∠C,AB=10米,BC=8米,CD=12米,点E是AB边的中点.点P从点B出发以2米/秒的速度沿BC向点C运动,同时点Q从点C出发沿CD向点D运动.当点Q的速度为米/秒时,能够在某一时刻使△BEP与△CPQ全等.三、解答题(共5小题,共52分)17.(8分)沿着图中的虚线,将图形分割成四个全等的图形.18.(10分)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.19.(10分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,AC,BD相交于点P,PD⊥CD,垂足为D,△ABP中AB边上的高与△CDP中CD边上的高相等.小明根据自己步行的路程(CD的长)为16 m,测出标语AB的长度也为16 m,请说明理由.20.(12分)如图,在△ABC中,AC=BC,D是AB上的一点,AE⊥CD于点E,BF⊥CD于点F,若CE=BF,AE=EF+BF.试判断AC与BC的位置关系,并说明理由.21.(12分)小明不小心将等腰直角三角尺掉到了两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)若DE=35 cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).参考答案与解析1.D 三角形是由不在同一条直线上的三条线段首尾顺次相接所组成的图形.故选D.2.B A.两个面积相等的图形不一定是全等图形,故A错误,不符合题意;B.两个全等图形形状一定相同,故B正确,符合题意;C.两个周长相等的图形不一定是全等图形,故C错误,不符合题意;D.两个正方形不一定是全等图形,故D错误,不符合题意.故选B.3.B △ABC的高有AC、BC、CD,共3条,故选B.4.A5.B A.第三个角的度数是180°-60°-60°=60°,∴该三角形是等边三角形,不符合题意;B.第三个角的度数是180°-55.5°-34.5°=90°,∴该三角形是直角三角形,符合题意;C.第三个角的度数是180°-30°-30°=120°,∴该三角形是钝角三角形,不符合题意;D.第三个角的度数是180°-40°-62.5°=77.5°,∴该三角形是锐角三角形,不符合题意.故选B.6.A A.已知两角及这两角的夹边,能画出唯一的△ABC,符合题意;B.已知两边及其中一边的对角,不能画出唯一的△ABC,不符合题意;C.∵AB=3,BC=4,CA=8,3+4<8,∴AB+BC<CA,∴不能画出△ABC,不符合题意;D.已知一角和一边,不能画出唯一的△ABC,不符合题意.故选A.7.B ①当长度为3,4的两根木条共线时,∵7+6>8,∴此时两个螺丝间的最大距离为8;②当长度为6,4的两根木条共线时,∵3+8>10,∴此时两个螺丝间的最大距离为10;③当长度为3,8的两根木条共线时,∵4+6<11,∴此时会破坏木框,故此种情况不成立;④当长度为6,8的两根木条共线时,∵3+4<14,∴此时会破坏木框,故此种情况不成立.综上所述,任意两个螺丝间的距离的最大值为10,故选B.8.A ∵PE⊥BC,∴∠PEB=90°.∵∠P=25°,∴∠ADB=∠PDE=90°-∠P=65°.∵∠B=75°,∴∠BAD=180°-∠B-∠ADB=180°-75°-65°=40°.∵AD是∠BAC的平分线,∴∠BAC=2∠BAD=80°.∴∠C=180°-∠B-∠BAC=180°-75°-80°=25°.故选A.9.B ∵△ABC的三条中线AD,BE,CF相交于点G,∴S△AGE=S△CGE,S△BGD=S△CGD,∴S阴影=S△AGE+S△BGD=S△CGE+S△CGD=S四边形CDGE=12.故选B.10.C 在正方形ABCD中,AB=AD,∠DAB=90°,∴∠DAE+∠FAB=90°,在正方形EFGH中,∠HEF=∠EFG=90°,∴∠AED=∠BFA=90°,∴∠FAB+∠ABF=90°,∴∠DAE=∠ABF,∴△AED≌△BFA(AAS),∴BF=AE=a,∵BF=a,AF=b,∠AFB=90°,ab.∴S△ABF=12故选C.11.100°解析∵AB=DE,AC=DF,BC=EF,∴△ABC≌△DEF,∴∠A=∠D,在△ABC中,∠A=180°-50°-30°=100°,∴∠D=100°.12.7解析 当3 cm 为腰长时,3+3<7,不合题意,舍去. 当7 cm 为腰长时,3+7>7,故第三边的长为7 cm . 故答案是7. 13.b +c -a解析 ∵a ,b ,c 是△ABC 的三边长,∴b +c >a ,a +c >b ,∴a -b +c >0,a -c -b <0,b -c -a <0, ∴|a -b +c |+|a -c -b |-|b -c -a | =(a -b +c )-(a -c -b )+(b -c -a ) =a -b +c -a +c +b +b -c -a =b +c -a. 故答案为b +c -a. 14.BD =CE (答案不唯一) 解析 添加的条件是BD =CE , 在△ABD 和△ACE 中,{AB =AC,∠B =∠C,BD =CE,∴△ABD ≌△ACE (SAS),答案不唯一. 15.5解析 由题意知,在△ABC 和△EDC 中,{∠ABC =∠EDC =90°,BC =DC,∠ACB =∠ECD,∴△ABC ≌△EDC (ASA), ∴AB =ED ,则AB =DE =5米,即河的宽度是5米. 故答案是5. 16.2或52解析 设运动的时间为t 秒,则BP =2t 米,CP =(8-2t )米, ∵AB =10米,E 为AB 的中点,∴BE =5米, ∵∠B =∠C ,∴①当BE=CP=5米,BP=CQ时,△BPE≌△CQP,此时5=8-2t,,解得t=32=3米,∴BP=CQ=2×32=2(米/秒);此时点Q的运动速度为3÷32②当BE=CQ=5米,BP=CP时,△BPE≌△CPQ,此时2t=8-2t,解得t=2,∴点Q的运动速度为5÷2=5(米/秒).2.故答案为2或5217.解析答案不唯一.如图所示:18.证明∵ED⊥AB,∴∠ADE=∠ACB=90°,又∵∠A=∠A,BC=ED,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.19.解析∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵△ABP中AB边上的高与△CDP中CD边上的高相等, ∴PD=PB,在△ABP与△CDP中,{∠ABP =∠CDP,PB =PD,∠APB =∠CPD,∴△ABP ≌△CDP (ASA), ∴CD =AB =16米.20.解析 AC ⊥BC.理由:∵AE ⊥CD ,BF ⊥CD , ∴∠AEC =∠BFC =90°, ∴∠CAE +∠ACE =90°, ∵CF =CE +EF ,CE =BF , ∴CF =EF +BF , ∵AE =EF +BF , ∴AE =CF ,在△ACE 和△CBF 中,{AC =BC,AE =CF,CE =BF,∴△ACE ≌△CBF (SSS), ∴∠BCF =∠CAE ,∴∠ACB =∠BCF +∠ACE =∠CAE +∠ACE =90°, ∴AC ⊥BC.21.解析 (1)证明:由题意得AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE , ∴∠ADC =∠CEB =90°,∠ACD +∠BCE =90°, ∴∠ACD +∠DAC =90°, ∴∠BCE =∠DAC ,在△ADC 和△CEB 中,{∠ADC =∠CEB,∠DAC =∠BCE,AC =CB,∴△ADC ≌△CEB (AAS). (2)∵一块砖的厚度为a , ∴AD =4a ,BE =3a , 由(1)得△ADC ≌△CEB , ∴DC =BE =3a ,CE =AD =4a , ∴DC +CE =7a =35 cm,∴a=5 cm.答:砖块的厚度a为5 cm.第11 页共11 页。

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

新人教数学七年级下第7章(三角形)单元测试试卷(有答案)

七年级数学(下)第三单元自主学习达标检测A卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.撑上支撑后的自行车能稳稳地停在地上,是因为三角形具有______性.2.在△ABC中,AD是中线,则△ABD的面积______△ACD的面积.(填“>”,“<”或“=”)3.在△ABC中,若∠A=30°,∠B=60°,则这个三角形为三角形;若∠A:∠B:∠C=1:3:5,这个三角形为三角形.(按角的分类填写)4.一木工师傅有两根长分别为5cm、8cm的木条,他要找第三根木条,将它们钉成一个三角形框架,现有3cm、10cm、20cm三根木条,他可以选择长为cm的木条.5.如图所示的图形中x的值是__ ____.6.过n边形的一个顶点的对角线可以把n边形分成______个三角形.(用含n的式子表示)7边上的高是;(2)在△AEC中,AE边上的高是.8.如图,△ABC≌△AED,∠C=400,∠EAC=300,∠B=300,则∠D= ,∠EAD= .9.如图,已知∠1=∠2,请你添加一个条件使△ABC≌△BAD,你的添加条件是(填一个即可).10.若一个等腰三角形的两边长分别是3 cm和5 cm,则它的周长是____ _ cm.11.图所示的图案是由全等的图形拼成的,其中AD=0.5cm,BC=1cm,则AF= .第5题第14题A.B.C.D.12.在△ABC 中,AB =6,AC =10,那么BC 边的取值范围是 .13.如图所示,A 、B 在一水池的两侧,若BE =DE ,∠B =∠D =90°,CD =8 m ,则水池宽AB =m .14.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,若∠CBA =320,则∠FED = ,∠EFD = . 二、选择题(共4题,每题3分,共12分) 15.如图所示,其中三角形的个数是( )A.2个B.3个C.4个D.5个16.下列各组中的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10D.4,4,817.下列图形不具有稳定性的是( )18.一个三角形中直角的个数最多有( )A.3 B.1 C.2 D.0 三、解答题(共60分) 19.(5分)如图,(1)过点A 画高AD ; (2)过点B 画中线BE ;(3)过点C 画角平分线CF .第13题第11题第15题20.(5分)若四边形的两个内角是直角,另外两个内角中一个角比另一个角的2倍少30°,求这两个内角的度数.21.(5分)小颖要制作一个三角形木架,现有两根长度为8m和5m的木棒.如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?22.(6分)如图,在△ABC中,∠A=70°,∠B=50°,CD平分∠ACB.求∠ACD的度数.23.(6分)如图所示,∠BAC=90°,BF平分∠ABC交AC于点F,∠BFC=100°,求∠C的度数.24.(6分)如图所示,已知DF⊥AB于F,∠A=40°,∠D=50°,求∠ACB的度数.25(7分).已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.26.(7分)如图,已知△ABC中,∠ABC和∠ACB的平分线BD、CE相交于点O,且∠A=60°,求∠BOC的度数.27.(7分)已知:如图,四边形ABCD中,AD⊥DC,BC⊥AB,AE平分∠BAD,CF平分∠DCB,AE交CD于E,CF交AB于F,问AE与CF是否平行?为什么?28.(1)某多边形的内角和与外角和的总和为2 160°,求此多边形的边数;(2)某多边形的每一个内角都等于150°,求这个多边形的内角和.七年级数学(下)第三单元自主学习达标检测B卷(时间90分钟满分100分)班级学号姓名得分一、填空题(共14小题,每题2分,共28分)1.用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为 .2.工人师傅在安装木制门框时,为防止变形常常像图中所示,钉上两条斜拉的木条,这样做的原理是根据三角形的 性.3.如图,三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为______.4.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P =___________.5.如图,在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC = °.6.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米. 7.如用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是(写出两种即可) .8.如图所示,∠A +∠B +∠C +∠D +∠E +∠F +∠G 的度数为 . 9.如图,△ABC 中,BD 平分∠ABC ,CD 平分∠ACE ,请你写出∠A 与∠D 的关系: .10.一个多边形,除了一个内角外,其余各角的和为2750°,则这一内角为 . 11.在△ABC 中,∠A =55°,高BE 、CF 交于点O ,则∠BOC =______. 12.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=______.第6题30°30°30°A 第8题GEDCBA第5题DCBA第2题 第3题 第4题第15题第16题13.如图所示,已知点D 是AB 上的一点,点E 是AC 上的一点,BE ,CD 相交于点F ,∠A =50°,∠ACD =40°,∠ABE =28°,则∠CFE 的度数为______.14.任何一个凸多边形的内角中,能否有3个以上的锐角?______(填“能”或“不能”). 二、选择题(共4小题,每题3分,共12分)15.如图,AC ⊥BC ,CD ⊥AB ,DE ⊥BC ,分别交BC ,AB ,BC 于点C ,D ,E ,则下列说法中不正确的是( ) A .AC 是△ABC 和△ABE 的高 B .DE ,DC 都是 △BCD 的高 C .DE 是△DBE 和△ABE 的高 D .AD ,CD 都是 △ACD 的高 16.如图所示,x 的值为( )A .45°B .50°C .55°D .70°17.边长相等的下列两种正多边形的组合,不能作平面镶嵌的是( ) A .正方形与正三角形 B .正五边形与正三角形 C .正六边形与正三角形 D .正八边形与正方形18.如果某多边形的外角分别是10°,20°,30°,…,80°,则这个多边形的边数是( ) A .6B .7C .8D .9 三、解答题(共60分) 19.(4分)△ABC 中,∠A =2∠B =3∠C ,则这个三角形中最小的角是多少度?第9题 第12题 第13题EDC BA20.(4分)如图,已知四边形ABCD 中,∠A =∠D ,∠B =∠C ,试判断AD 与BC 的关系,并说明理由.21.(4分)如图,△ABC 的外角∠CBD 、∠BCE 的平分线相交于点F ,若∠A =68°,求∠F 的度数.22.(6分)在△ABC 中,AB =AC ,AC 上的中线BD 把三角形的周长分为24㎝和30㎝的两个部分,求三角形的三边长.23.(6分)如图所示,某农场有一块三角形土地,准备分成面积相等的4块,分别承包给4位农户,请你设计两种不同的分配方案(在已给的图形中直接画图,保留画图痕迹,不写画法) .24.(6分)如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?C B A C B A25.(6分)一个大型模板如图所示,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?26.(8分)如图所示,小明欲从A 地去B 地,有三条路可走:①A →B ;②A →D →B ;③A→C →B .(1)在没有其它因素的情况下,我们可以肯定小明是走①,理由是______.(2)小明绝对不会走③,因为③路程最长,即AC +BC >AD +DB ,你能说明其原因吗?27.(8分)如图1,有一个五角星ABCDE ,你能说明∠A +∠B +∠C +∠D +∠E =180吗? 如图2、图3,如果点B 向右移到AC 上,或AC 的另一侧时,上述结论仍然成立吗?请分别说明理由.D C B A28.(8分)在日常生活中,观察各种建筑物的地板,你就能发现地板常用各种正多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形.(1)如图,请根据下列图形,填写表中空格:(3)从正三角形、正方形、正六边形中选一种,再在其它正多边形中选一种,请画出用这两种不同的正多边形镶嵌成一个平面图,并探索这两种正多边形共能镶嵌成几种不同的平面图形?说明你的理由.。

北师大版数学七年级下册数学第4章《三角形》单元测试题(含答案)

北师大版数学七年级下册数学第4章《三角形》单元测试题(含答案)

北师大版2019-2020学年七年级下册第4章《三角形》单元测试题(满分120分)姓名:___________班级:___________成绩:___________一.选择题(共10小题,满分30分)1.以下列各组线段长为边,不能组成三角形的是()A.8cm,7cm,13cm B.6cm,6cm,12cmC.5cm,5cm,2cm D.10cm,15cm,17cm2.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.3.若三角形三边长分别为2,x,3,且x为正整数,则这样的三角形个数为()A.2 B.3 C.4 D.54.如图,已知△ABC,下面甲、乙、丙、丁四个三角形中,与△ABC全等的是()A.甲B.乙C.丙D.丁5.如图,若AB=AC,则添加下列一个条件后,仍无法判定△ABE≌△ACD的是()A.∠B=∠C B.AE=AD C.BE=CD D.∠AEB=ADC 6.若线段AD、AE分别是△ABC的BC边上的中线和高线,则()A.AD≥AE B.AD>AE C.AD≤AE D.AD<AE7.如图,在△ABC中,CD平分∠ACB,DE∥AB.已知∠A=74°,∠B=46°,则∠BDC的度数为()A.104°B.106°C.134°D.136°8.如图,在△P AB中,∠A=∠B,M,N,K分别是P A,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°9.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD 于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④BH=CH.A.①②③④B.①②③C.②④D.①③10.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中∠A=52°,则∠ABX+∠ACX=()A.38°B.48°C.28°D.58°二.填空题(共8小题,满分24分)11.在△ABC中,∠A=50°,若∠B比∠A的2倍小30°,则△ABC是三角形.12.如图,已知AB=DC,∠A=∠D,则补充条件可使△ACE≌△DBF(填写你认为合理的一个条件).13.如图,在△ABC中,D在AC上,连结BD,且∠ABC=∠C=∠BDC,∠A=∠ABD,则∠A的度数为.14.如图,在△ABC中,∠C=78°,沿图中虚线截去∠C,则∠1+∠2.15.在△ABC中,已知∠B=50°,∠C=60°,AE⊥BC于E,AD平分∠BAC,则∠DAE 的度数是.16.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ABD的周长为15cm,则AC长为.17.已知一个三角形的两边长分别为2cm和3cm,它的第三边长是偶数,且其长度也是整数.则这个三角形的周长是cm.18.AD,BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC =.三.解答题(共8小题,满分66分)19.点C是AE的中点,∠A=∠ECD,AB=CD,求证:△ABC≌△CDE.20.如图,AD是△ABC的高,BE平分∠ABC交AD于点E.若∠C=76°,∠BED=64°.求∠BAC的度数.21.已知,如图,在△ABC中,D是BC的中点,DE⊥AB于点E,DF⊥AC于点F,且BE =CF.求证:AB=AC.完成下面的证明过程证明:∵DE⊥AB,DF⊥AC∴∠BED=∠CFD=Rt∠∵D是BC的中点∴BD=又∵BE=CF∴Rt△BDE≌Rt△CDF∴∠B=∠C∴AB=AC22.如图,已知∠ABC,求作:(1)∠ABC的平分线BD(写出作法,并保留作图痕迹);(2)在BD上任取一点P,作直线PQ,使PQ⊥AB(不写作法,保留作图痕迹).23.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F.(1)如图1,直接写出AB与CE的位置关系;(2)如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB 于K,求证:HK=BK.24.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为xcm/s,其他条件不变,当点P、Q运动到某处时,有△ACP与△BPQ全等,求出相应的x、t的值.25.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.26.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.参考答案一.选择题(共10小题)1.【解答】解:根据三角形的三边关系,得A、8+7>13,能组成三角形;B、6+6=12,不能组成三角形;C、2+5>5,能组成三角形;D、10+15>17,能组成三角形.故选:B.2.【解答】解:观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型,故选:A.3.【解答】解:由题意可得,4﹣2<x<4+2,解得2<x<6,∵x为整数,∴x为4、5、3,∴这样的三角形个数为3.故选:B.4.【解答】解:A.△ABC和甲所示三角形根据SA无法判定它们全等,故本选项错误;B.△ABC和乙所示三角形根据SAS可判定它们全等,故本选项正确;C.△ABC和丙所示三角形根据SA无法判定它们全等,故本选项错误;D.△ABC和丁所示三角形根据AA无法判定它们全等,故本选项错误;故选:B.5.【解答】解:A、根据ASA(∠A=∠A,∠C=∠B,AB=AC)能推出△ABE≌△ACD,正确,故本选项错误;B、根据SAS(∠A=∠A,AB=AC,AE=AD)能推出△ABE≌△ACD,正确,故本选项错误;C、两边和一角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据AAS(∠A=∠A,AB=AC,∠AEB=∠ADC)能推出△ABE≌△ACD,正确,故本选项错误;故选:C.6.【解答】解:如图所示:故选:A.7.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.8.【解答】解:∵P A=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.9.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.10.【解答】解:连接AX,∵∠BXC=90°,∴∠AXB+∠AXC=360°﹣∠BXC=270°,∵∠A=52°,∴∠BAX+∠CAX=52°,∵∠ABX+∠BAX+∠AXB=180°,∠ACX+∠CAX+∠AXC=180°,∴∠ABX+∠ACX=360°﹣270°﹣52°=38°,故选:A.二.填空题(共8小题)11.【解答】解:∵∠B比∠A的2倍小30°,∴∠B=2×50°﹣30°=70°,∴∠C=180°﹣∠A﹣∠B=180°﹣50°﹣70°=60°,∴△ABC是锐角三角形,故答案为:锐角.12.【解答】解:添加条件∠ECA=∠FBD,理由如下:∵AB=DC,∴AB+BC=CD+BC,即AC=BD,在△EAC和△FDB中,∴△EAC≌△FDB(ASA).故答案为:∠ECA=∠FBD(答案不唯一).13.【解答】解:设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴∠A=36°,故答案为36°.14.【解答】解:如图,∵∠1=∠C+∠4,∠2=∠C+∠3,∴∠1+∠2=∠C+(∠3+∠4+∠C)=78°+180°=258°,故答案为=258°.15.【解答】解:∵在△ABC中,∠B=50°,∠C=60°,∴∠BAC=180°﹣50°﹣60°=70°.∵AD平分∠BAC,∴∠CAD=∠BAC=35°.∵AE⊥BC于E,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=35°﹣30°=5°.故答案为:5°.16.【解答】解:∵AB=6cm,AD=5cm,△ABD周长为15cm,∴BD=15﹣6﹣5=4cm,∵AD是BC边上的中线,∴BC=8cm,∵△ABC的周长为21cm,∴AC=21﹣6﹣8=7cm.故AC长为7cm,故答案为:7cm.17.【解答】解:设第三边长为x,则3﹣2<x<2+3,即1<x<5.又x为偶数,因此x=2或4,故这个三角形的周长是:2+2+3=7(cm)或2+3+4=9(cm).故答案为:7或9.18.【解答】解:如图1,∵AD、BE是锐角△ABC的高,∴∠AEO=∠BDO=90°,∵∠AOE=∠BOD,∴∠DBO=∠DAC,∵BO=AC,∠BDO=∠ADC=90°∴△BDO≌△ADC(ASA),∴∠ABC=∠BAD=45°,如图2,同理证得△BDO≌△ADC(ASA),∴BD=AD,∴∠ABD=∠BAD=45°,∴∠ABC=135°,故答案为:45°或135°.三.解答题(共8小题)19.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ACB与△CED中,∴△ABC≌△CDE(SAS).20.【解答】解:∵AD是△ABC的高,∠C=76°,∴∠DAC=14°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=64°,∴∠ABE+∠BAE=64°,∴∠EBD+64°=90°,∴∠EBD=∠ABE=26°,∴∠BAE=38°,∴∠BAC=∠BAE+∠CAD=38°+14°=52°.21.【解答】解:∵DE⊥AB,DF⊥AC(已知)∴∠BED=∠CFD=Rt∠(垂直的定义)∵D是BC的中点,∴BD=CD,又∵BE=CF,∴在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL)∴∠B=∠C(全等三角形的对应角相等)∴AB=AC(在同一个三角形中,等角对等边).故答案:已知;CD;HL;全等三角形的对应角相等;在同一个三角形中,等角对等边.22.【解答】解:(1)作法:①以B点为圆心,任意长为半径画弧分别交BA、BC于M、N 点;②再以M、N为圆心,以大于它们之间的距离的二分之一为半径画弧,两弧在∠ABC内相交于E,则BD为所作;(2)如图,PQ为所作.23.【解答】解:(1)AB与CE的位置关系是垂直,AB⊥CE(2)证明:∵Rt△ABC≌Rt△CED∴AC=CD,BC=ED,∠E=∠B又∵∠ACB=90°∴∠ADC=45°又∵∠CDE=90°∴∠EDG=∠HDG=45°∵CH=DB∴CH+CD=DB+CH即HD=CB∴HD=ED在△HGD和△EGD中∴△HGD≌△EGD(SAS)∴∠H=∠E又∵∠E=∠B∴∠H=∠B∴HK=BK24.【解答】解:(1)△ACP≌△BPQ,∵AC⊥AB,BD⊥AB∴∠A=∠B=90°∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,,∴△ACP≌△BPQ;∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)存在x的值,使得△ACP与△BPQ全等,①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.25.【解答】解:(1)如图(1),∠BDC=∠BAC+∠B+∠C,理由是:过点A、D作射线AF,∵∠FDC=∠DAC+∠C,∠BDF=∠B+∠BAD,∴∠FDC+∠BDF=∠DAC+∠BAD+∠C+∠B,即∠BDC=∠BAC+∠B+∠C;(2)①∵∠X=90°,由(1)知:∠A+∠ABX+∠ACX=∠X=90°,∵∠A=40°,∴∠ABX+∠ACX=50°,故答案为:50;②如图(3),∵∠A=40°,∠DBE=130°,∴∠ADE+∠AEB=130°﹣40°=90°,∵DC平分∠ADB,EC平分∠AEB,∴∠ADC=∠ADB,∠AEC=∠AEB,∴∠ADC+∠AEC==45°,∴∠DCE=∠A+∠ADC+∠AEC=40°+45°=85°.26.【解答】(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠,北师大版∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。

七年级数学下册_第七章《三角形》综合测试题_

七年级数学下册_第七章《三角形》综合测试题_

凤冈县2011–2012学年第二学期七年级数学(人教版下册)第七章三角形目标检测题时间:120分钟 满分150 陆建东供题一、选择题(每题3分,共30分)1.等腰三角形两边长分别为 3,7,则它的周长为 ( ).A 、 13 .B 、 17 .C 、 13或17 .D 、 不能确定. 2.一个多边形内角和是10800,则这个多边形的边数为 ( ).A 、 6 .B 、 7 .C 、 8 .D 、 9. 3.若三角形三个内角的比为1:2:3,则这个三角形是( ).A 、 锐角三角形.B 、 直角三角形.C 、 等腰三角形.D 、 钝角三角形. 4.下图中有一条公共边三角形的个数为( ).A 、 4个.B 、 6个.C 、 8个.D 、 10个.5.如图在△ABC 中,∠ACB=900,CD 是边AB 上的高。

那么图中与∠A 相等的角是( )A 、 ∠B . B 、 ∠ACD .C 、 ∠BCD.D 、 ∠BDC. 6. 能将三角形面积平分的是三角形的( ).第4题ED CBA第5题DCBAA 、 角平分线.B 、 高.C 、 中线.D 、外角平分线. 7. 在平面直角坐标系中,点A (-3,0),B (5,0),C (0,4)所组成的三角形ABC 的面积是( )A 、32.B 、4.C 、16.D 、8.8. 以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个.B.2个 .C.3个.D.4个.依次观察左边三个图形,并判断照此规律从左向右第四个图形是( ).10. 等腰三角形的底边BC=8 cm ,且|AC -BC|=2 cm ,则腰长AC 为( ) A.10 cm 或6 cm B.10 cm C.6 cm D.8 cm 或6 cm 二、填空(每小题4分,共32分).11.如图,从A 处观测C 处仰角∠CAD=300,从B 处观测C 处的仰角 ∠CBD=450,从C 处观测A、B 两处时视角∠ACB=度.12.已知:如图,CD ∥AB,∠A=400,∠B=600,那么∠1= , ∠2= .13.一个三角形有两条边相等,周长为20㎝,三角形的一边长为5㎝,第(12)题21 DCBA第(11)题DCBA第9题那么其它两边长分别为 .14.填表:用长度相等的火柴棒拼成如图所示的图形:15.如图,∠1=∠2=300,∠3=∠4,∠A=800,则=x ,=y .16.一个多边形的各内角都等于1200,它是 边形。

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

北师大版七年级数学下册第3章《三角形》单元测试试卷及答案(3)

, 北师大版七年级数学下册第 3 章《三角形》单元测试试卷及答案(3)一、填空题(共 10 小题)1.一个等腰三角形的两边长分别是 3cm 和 7cm ,则它的周长是_________ cm .△2.若∠A=∠B=2∠C ,则 ABC 是 _________ 三角形.(填“钝角”、“锐角”或“直 角”)△3.如图, ABC≌△DEF ,△ABC 的周长为 25cm AB=6cm ,CA=8cm ,则 DE= _________ , DF= _________ ,EF= _________ .4.如图,AB=AD ,BC=DC ,要证∠B=∠D ,则需要连接 _________ ,从而可证 _________和 _________ 全等.5.如图,AD ,AE 分别是△ABC 的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= _________ .△6.如图,CA⊥BE ,且 ABC≌△ADE ,则 BC 与 DE 的关系是 _________ .7.如图,有一块边长为 4 的正方形塑料模板 ABCD ,将一块足够大的直角三角板的直角顶 点落在 A 点,两条直角边分别与 CD 交于点 F ,与 CB 延长线交于点 E .则四边形 AECF 的 面积是 _________ .8.如图,BA∥CD,∠A=90°,AB=CE,BC=ED,则△CED≌_________,根据是_________.△9.如图,ABC中,AB=AC,BC=8,BD是AC边上的中线,△ABD与△BDC的周长的差是2,则AB=_________.10.如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB,BC,CA,得到A B C,至点A,B,C,使得A B=2AB,B C=2BC,C A=2CA,顺次连接A,B,C△1 11111111111记其面积为S;第二次操作,分别延长A B,B C,C A至点A,B,C,使得A B=2A B,11111112222111,得到A B C,记其面积为S;…;按B C=2B C,C A=2C A,顺次连接A,B,C△221112111222222B C,则其面积S=_________.此规律继续下去,可得到A△5555二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形B.∠1=∠2C.∠1和∠B都是∠A的余角D.∠2=∠A14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高B.DE,DC都是△BCD的高C.DE是△DBE和△ABE的高D.AD,CD都是△ACD的高15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由..23.如图,公园有一条“Z”字形道路 ABCD ,其中 AB∥CD ,在 E 、M 、F 处各有一个小 石凳,且 BE=CF ,M 为 BC 的中点,请问三个小石凳是否在一条直线上?说出你推断的理 由.△24.如图, ABC 中,AB=BC=CA ,∠A=∠ABC=∠ACB ,在△ABC 的顶点 A ,C 处各有 一只小蚂蚁,它们同时出发,分别以相同速度由 A 向 B 和由 C 向 A 爬行,经过 t (s )后, 它们分别爬行到了 D ,E 处,设 DC 与 BE 的交点为 F .(△1)证明 ACD≌△CBE ;(2)小蚂蚁在爬行过程中,DC 与 BE 所成的∠BFC 的大小有无变化?请说明理由.25.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什 么情况下,它们会全等? (1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l求证:ABC≌ A △1B C .1 1(请你将下列证明过程补充完整.)证明:分别过点 B ,B 作 BD⊥CA 于 D , 1B D ⊥C A 于D .1 11 11 则∠BDC=∠B D C =90°, 1 1 1∵BC=B C ,∠C=∠C , 1 11∴ BCD≌ B △1C D ,1 1∴BD=B D .1 1(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.参考答案与试题解析一、填空题(共10小题)1.一个等腰三角形的两边长分别是3cm和7cm,则它的周长是17cm.考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.解答:解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17cm.故答案为:17.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.△2.若∠A=∠B=2∠C,则ABC是锐角三角形.(填“钝角”、“锐角”或“直角”)考点:三角形内角和定理.专题:计算题.分析:根据三角形的内角和为180°和已知条件设未知数,列方程求解,再判断形状.解答:解:设三角分别是∠A=a°,∵∠A=2∠B=3∠C,∴∠B=a°,∠B=a°,则a+a+a=180°,解a≈98°.所以三角形是钝角三角形.故答案为钝角.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.正确的设出一个角并表示出其他角是解决此题的关键.△3.如图,ABC≌△DEF,△ABC的周长为25cm,AB=6cm,CA=8cm,则DE=6cm,DF=8cm,EF=11cm.考点:全等三角形的性质.分析:根据△ABC的周长求出BC,然后根据全等三角形对应边相等解答即可.解答:解:∵△ABC的周长为25cm,AB=6cm,CA=8cm,∴BC=25﹣6﹣8=11cm,∵△ABC≌△DEF,∴DE=AB=6cm,DF=AC=8cm,EF=BC=11cm.故答案为:6cm;8cm;11cm.点评:本题考查了全等三角形对应边相等的性质,熟记性质并准确找出对应边是解题的关键.4.如图,AB=AD,BC=DC,要证∠B=∠D,则需要连接AC,从而可证△ABC和△ADC全等.考点:全等三角形的判定与性质.分析:连接AC,根据AB=AD,BC=DC,AC=AC即可证明△ABC≌△ADC,于是得到∠B=∠D.解答:解:连接AC,在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠B=∠D.故答案为△AC,ABC,△ADC.点评:本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握其判定定理,此题基础题,比较简单.5.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD= 10°.考点:三角形内角和定理.分析:根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠B AE,然后根据∠EAD=∠BAE﹣∠BAD代入数据进行计算即可得解.解答:解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°,∵AE是△ABC的高线,∴∠BAE=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10°.故答案为:10°.点评:本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,是基础题,准确识图找出各角度之间的关系是解题的关键.△6.如图,CA⊥BE,且ABC≌△ADE,则BC与DE的关系是相等且垂直.考点:全等三角形的性质.分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.解答:解:∵△ABC≌△ADE,∴BC=DE,∠C=∠E,∵CA⊥BE,∴∠BAC=90°,∵∠B+∠C=180°﹣∠BAC=180°﹣90°=90°,∴∠B+∠E=90°,∴∠BFE=180°﹣(∠B+∠E)=180°﹣90°=90°,∴BC⊥DE,故BC与DE的关系是相等且垂直.故答案为:相等且垂直.点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.7.如图,有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角板的直角顶点落在A点,两条直角边分别与CD交于点F,与CB延长线交于点E.则四边形AECF的面积是16.△S AEB =S△=S△ , 考点: 正方形的性质;全等三角形的判定与性质.分析: 由四边形 ABCD 为正方形可以得到∠D=∠B=90°,AD=AB ,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE ,所以可以证明△AEB≌△AFD ,所以 AFD ,那么它们 都加上四边形 ABCF 的面积,即可四边形 AECF 的面积=正方形的面积,从而求出 其面积.解答: 解:∵四边形 ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB , ∴∠ABE=∠D=90°, ∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°, ∴∠DAF=∠BAE , ∴△AEB≌△AFD ,△∴S AEB AFD∴它们都加上四边形 ABCF 的面积,可得到四边形 AECF 的面积=正方形的面积=16.故答案为:16.点评: 本题需注意:在旋转过程中一定会出现全等三角形,应根据所给条件找到.8.如图,BA∥CD ,∠A=90°,AB=CE ,BC=ED ,则△CED≌ △ABC ,根据是HL .考点: 全等三角形的判定.分析: 根据两直线平行,同旁内角互补求出∠DCE=90°,然后利用“HL”证明△CED 和△ABC 全等.解答: 解:∵BA∥CD ,∠A=90°,∴∠DCE=180°﹣∠A=180°﹣90°=90°, ∵在 Rt△CED 和 Rt△ABC 中,,∴ CED≌ ABC (△HL ). 故答案为: ABC ,△HL .点评: 本题考查了全等三角形的判定,平行线的性质,求出∠DCE=90°是解题的关键.△9.如图, ABC 中,AB=AC ,BC=8,BD 是 AC 边上的中线,△ABD 与△BDC 的周长的 差是 2,则 AB= 10 .考点: 等腰三角形的性质.分析: 根据三角形中线的定义可得 AD=CD ,然后求出△ABD 与△BDC 的周长的差=AB﹣BC ,再代入数据进行计算即可得解.解答: 解:∵BD 是 AC 边上的中线,∴AD=CD ,∴△ABD 与△BDC 的周长的差=(AB+AD+BD )﹣(BC+CD+BD )=AB ﹣BC , ∵△ABD 与△BDC 的周长的差是 2,BC=8, ∴AB ﹣8=2, ∴AB=10.故答案为:10.点评: 本题考查了等腰三角形腰上的中线的定义,求出△ABD 与△BDC 的周长的差=AB﹣BC 是解题的关键,也是本题的难点.10.如图,对面积为 1 的△ABC 逐次进行以下操作:第一次操作,分别延长 AB ,BC ,CA 至点 A ,B ,C ,使得 A B=2AB ,B C=2BC ,C A=2CA ,顺次连接 A ,B ,C △1,得到 A B C ,111111111 1 1记其面积为 S ;第二次操作,分别延长 A B ,B C ,C A 至点 A ,B ,C ,使得 A B =2A B , 11 11 11 12222 1 1 1B C =2B C ,C A =2C A ,顺次连接 A ,B ,C △2,得到 A B C ,记其面积为 S ;…;按 2 11 12 11 1222 2 22此规律继续下去,可得到A △5BC ,则其面积 S = 195 .5 5 5考点: 三角形的面积. 专题: 压轴题;操作型.分析: 根据高的比等于面积比推理出A △1BC 的面积是 A △1BC 面积的 2 倍,则 A △1B B 的11面积是A △1BC 面积的 3 倍…,以此类推,得出 A △2BC 的面积.2 2解答: 解:连接 A C ,根据 A B=2AB ,得到:AB :A A=1:3,111因而若过点 B ,A 作△ABC 与 AA △1C 的 AC 边上的高,则高线的比是 1:3, 1因而面积的比是 1:△3,则 A BC 的面积是△ABC 的面积的 2 倍,1设△ABC 的面积是 △a ,则 A BC 的面积是 2a , 1同理可以得到A △1BC 的面积是 A △1BC 面积的 2 倍,是 4a ,1则 A △1B B 的面积是 6a ,1同理B △1C C 和 A △1C A 的面积都是 6a ,11△A B C 的面积是 19a ,1 1 1即 A △1B C 的面积是△ABC 的面积的 19 倍, 1 1同理A △2BC 的面积是 A △1B C 的面积的 19 倍,2 21 1即 A △1B C 的面积是 △19, A B C 的面积 192,1 12 2 2依此类推,AB C的面积是S=195=2476099.△5555点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.二、选择题(共8小题)11.在下列四组线段中,能组成三角形的是()A.2,2,5B.3,7,10C.3,5,9D.4,5,7考点:三角形三边关系.分析:根据三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.解答:解:A、∵2+2=4<5,∴2,2,5不能组成三角形,故本选项错误;B、∵3+7=10,∴3,7,10不能组成三角形,故本选项错误;C、∵3+5=8<9,∴3,5,9不能组成三角形,故本选项错误;D、4,5,7能组成三角形,故本选项正确.故选D.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.△12.(2011•宿迁)如图,已知∠1=∠2,则不一定能使ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 考点:全等三角形的判定.专题:压轴题.分析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解答:解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故本选项正确,不合题意.B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故本选项错误,符合题意.C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故本选项正确,不合题意.D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故本选项正确,不合题意.故选B.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.13.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形C.∠1和∠B都是∠A的余角B.∠1=∠2 D.∠2=∠A考点:直角三角形的性质.专题:证明题.分析:在△ABC中,∠ACB=90°,CD⊥AB,因而△ACD∽△CBD∽△ABC,根据相似三角形的对应角相等,就可以证明各个选项.解答:解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∴图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∴∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∴∠2=∠A;故本选项正确.故选B.点评:本题主要考查了直角三角形的性质,直角三角形斜边上的高,把这个三角形分成的两个三角形与原三角形相似.14.如图,AC⊥BC,CD⊥AB,DE⊥BC,分别交B C,AB,BC于点C,D,E,则下列说法中不正确的是()A.AC是△ABC和△ABE的高C.DE是△DBE和△ABE的高B.DE,DC都是△BCD的高D.AD,CD都是△ACD的高考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的一个顶点向对边引垂线,顶点和垂足间的线段.根据概念可知.解答:解:A、AC是△ABC和△ABE的高,正确;B、DE,DC都是△BCD的高,正确;C、DE不是△ABE的高,错误;D、AD,CD都是△ACD的高,正确.故选C.点评:考查了三角形的高的概念.15.角α和β互补,α>β,则β的余角为()A.α﹣βB.180°﹣α﹣βC.D.考点:余角和补角.分析:根据互为补角的两个角的和等于180°表示出α+β,再根据互为余角的两个角的和等于90°列式整理即可得解.解答:解:∵角α和β互补,∴α+β=180°,∴β的余角为:90°﹣β=(α+β)﹣β=(α﹣β).故选C.点评:本题考查了余角和补角,利用90°和180°的倍数关系消掉常数是解题的关键.△16.根据下列已知条件,能唯一画出ABC的是()A.AB=3,BC=4,AC=8C.∠A=60°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°D.∠C=90°,AB=6考点:全等三角形的判定.专题:作图题;压轴题.分析:要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.解答:解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.点评:此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.△17.下列各组条件中,能判定ABC≌△DEF的是()A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.AB=DE,BC=EF,△ABC的周长=△DEF的周长D.∠A=∠D,∠B=∠E,∠C=∠F考点:全等三角形的判定.分析:根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.解答:解:A、满足SSA,不能判定全等;B、AC=EF不是对应边,不能判定全等;C、符合SSS,能判定全等;D、满足AAA,不能判定全等.故选C.点评:本题考查了全等三角形的判定方法,在应用判定方法做题时找准对应关系,对选项逐一验证,而AAA,SSA不能作为全等的判定方法.△18.如图,DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个考点:全等三角形的判定与性质;等边三角形的性质.分析:根据等边三角形性质得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根据SAS证△ACE≌△BCD,推出∠NDC=∠CAM,求出∠DCE=∠ACD,证△ACM≌△DCN,推出CM=CN,AM=DN,即可判断各个结论.解答:解:∵△DAC和△EBC均是等边三角形,∴AC=CD,BC=CE,∠ACD=∠BCE=60°,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠BCD,在△ACE和△BCD中∴△ACE≌△BCD(SAS);∴①正确;∵∠ACD=∠BCE=60°,∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,∵△ACE≌△BCD,∴∠NDC=∠CAM,在△ACM和△DCN中∴△ACM≌△DCN(ASA),∴CM=CN,AM=DN,∴②正确;∵△ADC是等边三角形,∴AC=AD,∠ADC=∠ACD,∵∠AMC>∠ADC,∴∠AMC>∠ACD,∴AC>AM,即AC>DN,∴③错误;故选B.点评:本题考查了等边三角形的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力和辨析能力.三、解答题(共7小题)19.如图,在小河的同侧有A,B,C,D四个村庄,图中线段表示道路.邮递员从A村送信到B村,总是走经过C村的道路,不走经过D村的道路,这是为什么呢?请你用所学的数学知识说明其中的道理.考点:三角形三边关系.分析:延长AC交BD于E,根据三角形的任意两边之和大于第三边可得AD+DE>AC+CE,CE+BE>BC,然后整理得到AD+BD>AC+BC,从而得解.解答:解:如图,延长AC交BD于E,在△ADE中,AD+DE>AC+CE,在△CBE中,CE+BE>BC,∴AD+DE+CE+BE>AC+CE+BC,∴AD+BD>AC+BC,因此,邮递员由A村到B村送信,经过C村路程近些,所以,他总是走经过C村的道路,不走经过D村的道路.点评:本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.20.如图,AB=AD,BC=DC,AC与BD相交于点E,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母.不写推理过程,只要求写出四个你认为正确的结论即可)考点:全等三角形的判定与性质.专题:开放型.分析:由AB=AD,BC=DC知,AC是BD的中垂线,∴DE⊥AC,可由SSS证得△ABC≌△ADC及AC平分∠BAD等.解答:解:由已知得,AC垂直平分BD,即直线AC为四边形ABCD的对称轴,由对称性可知:DE=BE,DE⊥AC于△E,ABC≌ADC,△AC平分∠BAD等.点评:本题考查了三角形全等的判定和性质.做题时要从已知开始思考,结合全等的判定方法进行取舍.21.如图是一个平分角的仪器,其中AB=AD,BC=DC,将点A放在角的顶点,AB和AD 沿着角的两边放正,沿AC画一条射线AE,AE就是角平分线,请说明它的道理.考点:全等三角形的应用.专题:证明题.分析:AC为公共边,其中AB=AD,BC=DC,利用SSS判断两个三角形全等,根据全等三角形的性质解题.解答:证明:△ABC与△ADC中,∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.即AE平分∠BAD.不论∠DAB是大还是小,始终有AE平分∠BAD.点评:本题考查了全等三角形的应用;这种设计,用SSS判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.22.如图,A、B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,则DE的长就是A、B之间的距离,请说明理由.考点:全等三角形的应用.分析:可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E、C、A在一条直线上,证明出这两个三角形全等,从而可得到结论.解答:解:∵∠ACB=∠DCE,BC=CD,∠B=∠EDC=90°,∴△ACB≌△ECD,∴AB=DE.点评:本题考查全等三角形的应用,关键是证明三角形全等,从而得到线段相等,得到结论.23.如图,公园有一条“Z”字形道路ABCD,其中AB∥CD,在E、M、F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.考点:全等三角形的应用.分析:首先连接EM、△MF,再证明BEM≌△CFM可得∠BME=∠FMC,再根据∠BME+∠EMC=180°,可得∠FMC+∠EMC=180,进而得到三个小石凳在一条直线上.解答:解:连接EM、MF,∵AB∥CD,∴∠B=∠C,又∵M为BC中点,∴BM=MC.,∴在△BEM和△CFM中∴△BEM≌△CFM(SAS),∴∠BME=∠FMC,∵∠BME+∠EMC=180°,∴∠FMC+∠EMC=180°,∴三个小石凳在一条直线上.点评:此题主要考查了全等三角形的应用,证明△BEM≌△CFM,证明出∠FMC+∠EMC=180°是解决问题的关键.△24.如图,ABC中,AB=BC=CA,∠A=∠ABC=∠ACB,在△ABC的顶点A,C处各有一只小蚂蚁,它们同时出发,分别以相同速度由A向B和由C向A爬行,经过t(s)后,它们分别爬行到了D,E处,设DC与BE的交点为F.(△1)证明ACD≌△CBE;(2)小蚂蚁在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请说明理由.考点:全等三角形的应用.分析:(1)根据小蚂蚁的速度相同求出AD=CE,再利用“边角边”证明△ACD和△CBE 全等即可;(2)根据全等三角形对应角相等可得∠EBC=∠ACD,然后表示出∠BFC,再根据等边三角形的性质求出∠ACB,从而得到∠BFC.解答:(1)证明:∵小蚂蚁同时从A、C出发,速度相同,∴t(s)后两只小蚂蚁爬行的路程AD=CE,∵在△ACD和△CBE中,,∴△ACD≌△CBE(SAS);(△2)解:∵ACD≌△CBE,∴∠EBC=∠ACD,∵∠BFC=180°﹣∠EBC﹣∠BCD,∴∠BFC=180°﹣∠ACD﹣∠BCD,=180°﹣∠ACB,∵∠A=∠ABC=∠ACB,∴∠ACB=60°,∴∠BFC=180°﹣60°=120°,∴∠BFC无变化.点评:本题考查了全等三角形的应用,主要利用了全等三角形对应角相等的性质,等边三角形的性质,根据小蚂蚁的速度相同求出AD=CE是证明三角形全等的关键.25.(2006•绍兴)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?.△1B △1(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知: ABC 、 A △1B C 均为锐角三角形,AB=A B ,BC=B C ,∠C=∠C .1 1 1 1 1 l l 求证:ABC≌ A △1B C . 1 1 (请你将下列证明过程补充完整.) 证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1则∠BDC=∠B D C =90°,1 1 1 ∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 (2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.考点: 全等三角形的判定.专题: 压轴题;阅读型.分析: 本题考查的是全等三角形的判定,首先易证得 ADB≌ A △1B C 然后易证出 1 1 ABC≌ A C .1 1解答: 证明:(1)证明:分别过点 B ,B 作 BD⊥CA 于 D ,1 B D ⊥C A 于 D . 1 1 1 1 1 则∠BDC=∠B D C =90°,1 1 1∵BC=B C ,∠C=∠C ,1 1 1 ∴ BCD≌ B △1C D ,1 1 ∴BD=B D . 1 1 补充:∵AB=A B ,∠ADB=∠A D B =90°.1 1 1 1 1 ∴ ADB≌ A △1D B (HL ),1 1 ∴∠A=∠A , 1又∵∠C=∠C ,BC=B C ,1 1 1 在△ABC 与 A △1B C 中,1 1∵,∴ ABC≌ A △1B C (AAS );1 1(△2)解:若两三角形( ABC 、 AB C )均为锐角三角形或均为直角三角形或均 1 1为钝角三角形,则它们全等(AB=A B,BC=B C,∠C=∠C△1,则ABC≌A△1B C).111111点评:命题立意:考查三角形全等的判定,阅读理解能力及分析归纳能力.做题时要认真读题,明白题意,然后按要求答题.。

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)

【精选】北师大版七年级下册数学第三章《三角形》综合测试卷(含答案)一、选择题(每题3分,共30分)1.下列用木棒拼成的图形,符合三角形的概念的是( )2.如图,若△ABC≌△ADE,则下列结论中一定成立的是( ) A.AC=DE B.∠BAD=∠CAEC.AB=AE D.∠ABC=∠AED(第2题) (第4题) (第5题)3.【教材P87习题T3变式】【2022·南通】用一根小木棒与两根长分别为3 cm,6 cm的小木棒组成三角形,则这根小木棒的长度可以为( )A.1 cm B.2 cm C.3 cm D.4 cm4.【2021·毕节】将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A.70° B.75° C.80° D.85°5.【2022·吉林第二实验中学模拟】如图,AD是△ABC的角平分线,过点D向AB,AC两边作垂线,垂足分别为E,F,那么下列结论中不一定...正确的是( ) A.BD=CD B.DE=DFC.AE=AF D.∠ADE=∠ADF6.如图,AC与BD相交于点O,OA=OB,OC=OD,AD=BC,则图中全等三角形有( )A.1对B.2对C.3对D.4对(第6题) (第7题) (第8题)7.【2021·陕西】如图,点D,E分别在线段BC,AC上,连接AD,BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )A.60° B.70° C.75° D.85°8.【教材P111复习题T6改编】如图,这是工人师傅用同一种材料制成的金属框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24 cm,CF=3 cm,则制成整个金属框架所需这种材料的总长度为( )A.45 cm B.48 cm C.51 cm D.54 cm9.根据下列已知条件,能画出唯一..一个△ABC的是( )A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6 10.如图,在△ABC中,AC⊥CB,CD平分∠ACB,点E在AC上,且CE=CB,则下列结论:①DC平分∠BDE;②BD=DE;③∠B=∠CED;④∠A+∠CED=90°.其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(每题3分,共24分)11.如图,照相机的底部用三脚架支撑着,请你说说这样做的依据是___________________________________________.(第11题) (第12题) (第14题) (第15题)12.【开放题】【2022·宁夏】如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是____________(只写一个).13.【教材P86随堂练习T2变式】已知三角形的两边长分别为2 和7,第三边长为偶数,则三角形的周长为____________.14.如图,在△ABC中,BC=8 cm,AB>BC,BD是AC边上的中线,△ABD与△BDC 的周长的差是2 cm,则AB=__________.15.如图,D,E,F分别为AB,AC,BC上的点,且DE∥BC,△ABC沿DE折叠,使点A落在点F处.若∠B=50°,则∠BDF=________.16.如图,已知边长为1的正方形ABCD中,AC,BD交于点O,过点O任作一条直线分别交AD,BC于点E,F,则阴影部分的面积是________.(第16题) (第17题) (第18题)17.如图,AD,AE分别是△ABC的角平分线和高线,且∠B=50°,∠C=70°,则∠EAD=________.18.如图,已知四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE=12 (AB+AD),若∠D=115°,则∠B=________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.【2022·益阳】如图,在Rt△ABC中,∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.试说明:△CED≌△ABC.20.【2022·牡丹江四中模拟】如图,在△ABC中,AD是角平分线,∠B=54°,∠C=76°.(1)求∠ADB和∠ADC的度数;(2)若DE⊥AC于E,求∠EDC的度数.21.【2021·黄石】如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)试说明:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.22.【教材P110复习题T4改编】如图,在△ABC中,AC=BC,D是边AB上一点,AE⊥CD于点E,BF⊥CD交CD的延长线于点F,若CE=BF,AE=EF+BF.(1)试说明:∠ACE=∠CBF;(2)判断直线AC与BC的位置关系,并说明理由.。

最新北师大版七年级数学下册《第四章三角形》单元测试题(含答案)

最新北师大版七年级数学下册《第四章三角形》单元测试题(含答案)

第四章自我综合评价本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷36分,第Ⅱ卷64分,共100分,考试时间90分钟.第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.下列长度的三条线段能组成三角形的是( )A.1,2,3.5 B.4,5,9C.20,15,8 D.5,15,82.如图4-Z-1,在△ABC中,AD是高,AE是∠BAC的平分线,AF是BC 边上的中线,则下列线段中,最短的是( )图4-Z-1A.AB B.AE C.AD D.AF3.一个缺角的三角形ABC残片如图4-Z-2所示,量得∠A=40°,∠B=65°,则这个三角形残缺前的∠C的度数为( )A.55°B.65°C.75°D.85°图4-Z-24.如图4-Z-3,两个三角形为全等三角形,则∠α的度数是( )图4-Z-3A.72°B.60°C.58°D.50°5.在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为( ) A.90°B.58°C.54°D.32°6.如图4-Z-4所示,已知正方形网格中每个小方格的边长均为1,A,B 两点在小方格的顶点上,点C也在小方格的顶点上,且以A,B,C为顶点的三角形的面积为1个平方单位,则点C的个数为( )图4-Z-4A.3 B.4 C.5 D.67.如图4-Z-5,在△ABC和△DEC中,AB=DE.若添加条件后使得△ABC≌△DEC,则在下列条件中,不能添加的是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.∠B=∠E,∠A=∠D D.BC=EC,∠A=∠D图4-Z-58.如图4-Z-6所示,CD⊥AB,BE⊥AC,垂足分别为D,E,CD,BE相交于点O,BE=CD.则图中全等的三角形共有( )图4-Z-6A.0对B.1对C.2对D.3对9.根据下列已知条件,能画出唯一的△ABC的是( )A.AB=3,BC=4,CA=8 B.AB=4,BC=3,∠A=30°C.∠A=35°,∠B=65°,AB=7 D.∠C=90°,AB=810.如图4-Z-7,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B =∠F,AE=10,AC=7,则CD的长为( )A.5.5 B.4 C.4.5 D.311.如图4-Z-8,在等边三角形ABC中,M,N分别在BC,AC上移动,且BM=CN,则∠BAM+∠ABN的度数是( )图4-Z-8A.60°B.55°C.45°D.不能确定12.如图4-Z-9,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE,且∠FBD=35°,∠BDF=75°,下列说法:①△BDF ≌△CDE,②△ABD和△ACD的面积相等,③BF∥CE,④∠DEC=70°,其中正确的有( )图4-Z-9A.1个B.2个C.3个D.4个请将选择题答案填入下表:二、填空题(每小题3分,共12分)13.如图4-Z-10,一架梯子斜靠在墙上,梯子与地面的夹角∠ABC=60°,则梯子与墙的夹角∠BAC=________.图4-Z-1014.空调安装在墙上时,一般都会用如图4-Z-11所示的方法固定在墙上,这种方法应用的数学知识是________________.图4-Z-1115.如图4-Z-12所示,AD为△ABC的中线,DE⊥AB于点E,DF⊥AC于点F,AB=6,AC=8,DE=3,则DF=________.图4-Z-1216.如图4-Z-13,∠ACB=90°,AC=BC,AD⊥CE于点D,BE⊥CD交CD 的延长线于点E,AD=2.4 cm,DE=1.7 cm,则BE的长为________.图4-Z-13三、解答题(共52分)17.(8分)如图4-Z-14,在△ABC中,∠ACB=90°,CD是AB边上的高,且AB=13 cm,BC=12 cm,AC=5 cm,求:(1)△ABC的面积;(2)CD的长.图4-Z-1418.(8分)完成下面的说理过程.已知:如图4-Z-15所示,OA=OB,AC=BC.图4-Z-15试说明:∠AOC=∠BOC.解:在△AOC和△BOC中,因为OA=______,AC=______,OC=______,所以________≌________(SSS),所以∠AOC=∠BOC(__________________).19.(8分)如图4-Z-16所示,已知AB=AC,EB=EC,试说明BD=CD的理由.图4-Z-1620.(8分)如图4-Z-17,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.试说明:△AEC≌△BED.图4-Z-1721.(10分)七年级(2)班的篮球啦啦队为了在明天的比赛中给同学们加油助威,提前每人制作了一面同一规格的三角形彩旗.小贝放学回家后,发现自己的彩旗破损了一角(如图4-Z-18①),他想用彩纸重新制作一面彩旗.(1)请你帮助小贝,用直尺与圆规在彩纸上(如图②)作出一个与破损前完全一样的三角形(不写作法,保留作图痕迹);(2)你作图的理由是判定三角形全等条件中的“________”.图4-Z-1822.(10分)如图4-Z-19所示,已知CE⊥AB于点E,BD⊥AC于点D,BD 与CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请你一一列举出来(不要求说明理由).(2)小明说:欲说明BE=CD,可先说明△AOE≌△AOD得到AE=AD,再说明△ADB≌△AEC得到AB=AC,然后利用等式的性质即可得到BE=CD,请问他的说法正确吗?如果不正确,请说明理由;如果正确,请按他的思路写出推导过程.(3)要得到BE=CD,你还有其他的思路吗?请仿照小明的说法具体说一说你的想法.图4-Z-19详解详析1.[解析] C 利用三角形的三边关系判断.2.C3.C4.A5.D6.D7.[解析] D A项,添加BC=EC,∠B=∠E可用SAS判定两个三角形全等,故A选项正确;B项,添加BC=EC,AC=DC可用SSS判定两个三角形全等,故B 选项正确;C项,添加∠B=∠E,∠A=∠D可用ASA判定两个三角形全等,故C 选项正确;D项,添加BC=EC,∠A=∠D后是SSA,无法证明三角形全等,故D 选项错误.故选D.8.C9.C10.[解析] B 因为AB∥EF,所以∠A=∠E.在△ABC和△EFD中,∠A=∠E,AB=EF,∠B=∠F,所以△ABC≌△EFD(ASA),所以AC=DE=7,所以AD=AE -DE=10-7=3,所以CD=AC-AD=7-3=4.11.[解析] A 因为△ABC为等边三角形,所以∠ABC=∠ACB=60°,AB=BC.在△ABM和△BCN中,AB=BC,∠ABM=∠BCN,BM=CN,所以△ABM≌△BCN(SAS),所以∠BAM=∠NBC.因为∠NBC+∠ABN=∠ABC=60°,所以∠BAM+∠ABN=60°.12.D13.30°14.三角形具有稳定性15.9 416.0.7 cm17.解:(1)△ABC的面积=12BC·AC=30(cm2).(2)因为△ABC的面积=12AB·CD=30 cm2,所以CD=30÷(12AB)=30÷132=6013(cm).18.OB BC OC△AOC△BOC全等三角形的对应角相等19.[解析] 已知条件中有两组对边相等,可以考虑利用“边边边”来说明两个三角形全等,从而缩短已知和结论之间的距离.解:由题意知AB=AC,EB=EC,又AE=AE,所以△ABE≌△ACE(SSS),所以∠AEB=∠AEC,所以∠DEB=∠DEC(等角的补角相等).在△DBE和△DCE中,因为EB=EC(已知),∠DEB=∠DEC(已证),ED=ED(公共边),所以△DBE≌△DCE(SAS),所以BD=CD.20.解:设AE和BD相交于点O,则∠AOD=∠BOE.因为在△AOD和△BOE中,∠A=∠B,所以∠BEO=∠2.又因为∠1=∠2,所以∠1=∠BEO,所以∠AEC=∠BED.在△AEC和△BED中,因为∠A=∠B,AE=BE,∠AEC=∠BED,所以△AEC≌△BED(ASA).21.解:(1)如图中的△ABC.(2)ASA22.解:(1)共4对,分别是△AOE≌△AOD,△BOE≌△COD,△AOB≌△AOC,△ABD≌△ACE.(2)正确.因为CE⊥AB于点E,BD⊥AC于点D,所以∠AEO=∠ADO.因为AO平分∠BAC,所以∠OAE=∠OAD.在△AOE和△AOD中,因为∠AEO=∠ADO,∠OAE=∠OAD,AO=AO,所以△AOE≌△AOD,所以AE=AD.在△ADB和△AEC中,因为∠BAD=∠CAE,AD=AE,∠ADB=∠AEC,所以△ADB≌△AEC,所以AB=AC,所以AB-AE=AC-AD,即BE=CD.(3)答案不唯一,如可先说明△AOE≌△AOD,得到OE=OD,再说明△BOE≌△COD,得到BE=CD.。

七年级数学下册 《三角形》整章水平测试(3) (2012新版)北师大版

七年级数学下册 《三角形》整章水平测试(3) (2012新版)北师大版

第五章《三角形》整章水平测试一、选择题(每小题3分,共30分)1.如果线段a 、b 、c 能组成三角形,那么它们的长度比可能是[ ].A .1:2:4B .1:3:4C .3:4:7D .2:3:42.在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,且∠BOC=︒110,则∠A 的度数是 [ ].A. ︒70B. ︒55 C .︒40 D .︒353.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 [ ].A .锐角三角形B .直角三角形C .钝角三角形D .不能确定4.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这种做法的根据是 [ ].A .两点之间线段最短B .长方形的四个角都是直角C .三角形的稳定性D .长方形的对称性FE DCB A第4题5.已知△ABC ≌△DEF ,BC =EF=6cm ,△ABC 的面积为182cm ,则EF 边上的高的长是 [ ].A .3cmB .4cmC .5cmD .6cm6.在△ABC 与△FED 中,如果∠A=∠F ,∠B=∠E ,要使这两个三角形全等,还需要的条件是 [ ].A .AB=DEB .BC=EFC .AB=EFD .∠C=∠D7.下列各图形中,一定全等的是 [ ].A .各有一个角是︒30的两个直角三角形B .各有一个角是︒30,腰长为5cm 的两个等腰三角形C .两个等边三角形D .斜边长相等的两个等腰直角三角形8.如图,AB=AC ,AF ⊥BC 于F ,D 、E 分别为BF 、CF 的中点,则图中全等三角形共有[ ].A .1对B .2对C .3对D .4对D FE B CA第8题9.如图,在Rt △ABC 中,∠C=Rt ∠,AD 是∠BAC 的平分线,交BC 于D ,若CD=n ,AB=m ,则△ABD 的面积是[ ].A .mnB .mn 21C .2mnD .mn 31D C B A ED C B A第9题 第10题10.如图,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点作位置不同....的三角形,使所作三角形与△ABC 全等,这样的三角形最多可以画出 [ ].A .2个B .4个C .6个D .8个二、填空题(每小题3分,共30分)1.一个三角形三边a 、b 、c 的长度之比为2:3:4,周长为36cm ,则此三角形的三边a=______,b=________,c=________.2.一个三角形的两边长分别是3和8,周长是偶数,那么第三边长是_______.3.在△ABC 中,若∠B=∠C=2∠A ,则∠C=_______.4.在△ABC 中,AB=AC=5,那么BC 的范围是_______.5.如图,已知△AOB ≌△COD ,△CO E ≌△AOF ,则在图中所有全等三角形中,对应角共有______对;共有______组对应线段相等.OFE D C BA第5题6.如图,已知AB=AC ,BE=CD ,∠B=∠C ,则△ABD ≌_____,根据是__________.E D CB A第6题7.如图,点F 、C 在线段BE 上,且∠1=∠2,BC =EF ,要使△ABC ≌△DEF ,则还须补充的一个条件 ______.(填一个你认为正确的即可) 21B DF C A第7题8.如图8,∠B=∠E= 90,AC=D F ,BF=EC ,则除条件以外,相等的线段还有____________.DF E B C A第8题9.如图,等腰直角三角形ABC 的直角顶点B 在直线PQ 上,AD ⊥PQ 于D ,CE ⊥PQ 于E ,且AD=2cm ,DB=4cm ,则梯形ADEC 的面积是 _____.Q CE B P D A第9题10.直角三角形两锐角平分线的夹角为____________.三、解答题(共60分)1.(8分)如图,已知△ABC ,请你画出△ABC 的角平分线AD ,中线AE ,高线AF ,此时图中除△ABC 外,还有多少个三角形?C B A第1题2.(10分)如图,△ABC ≌△DEF ,且顶点A 与D 对应,B 与E 对应,点E ,C ,F ,B 在同一条直线上.(1)请写出所有相等的线段,并说明理由.(2)请写出所有平行的线段,并说明理由. EFCD B A第2题3.(8分)公园里有一条“Z ”字型道路ABCD ,如图,其中AB ∥CD ,在AB 、BC 、CD 三段路旁各有一只石凳E 、M 、F ,M 恰为BC 的中点,且E 、F 、M 在同一直线上,在BE 道路中停放着一排小汽车,从而无法直接测量B 、E 之间的距离,你能想出解决的方法吗?请说明其中的道理.第3题4.(8分)如图,已知AB ⊥CD ,垂足为B ,AB=DB ,AC=DE .请你判断∠D 与∠A 的关系,并说明理由.C ED B A第4题5.(8分)沿着图中的虚线,请把下面的图形划分为4个全等图形.把你的方案画在右面的图中.第5题6.(8分)如图,AD=BC ,DC=AB ,AE=CF ,找出图中的一对全等三角形,并说明你的理由. FED CB A第6题7.(10分)如图,已知M 在AB 上,BC=BD ,MC=MD .请说明:AC=AD .M CBA第7题附答案:一、选择题1.D 2.C 3.B 4.C 5.D 6.C 7.D 8.D9.B 10.B二、填空题1.8cm ,12cm ,16cm2.7、93. ︒724.0<BC <105.7,66. △ACE ,SAS7.∠A=∠D 或AC=DF8.AB=DE ,BC=EF9.182cm10.︒45或︒135三、解答题1.有9个三角形.△ABF ,△ABD ,△ABE ,△AFD ,△AFE ,△AFC ,△ADE ,△ADC ,△AECF E D C B A第1题2.(1)AB=DE ,AC=DF ,BC=EF ,BF=EC .理由:△ABC ≌△DEF →⎪⎩⎪⎨⎧==→==DFAC EC BF EF BC DEAB .(2)AB ∥DE ,AC ∥DF .理由:△ABC ≌△DEF →⎩⎨⎧→∠=∠→∠=∠DF AC DFE ACB E B ∥∥DEAB3.答:能.如图,连结EF .理由:AB ∥CD →⎪⎭⎪⎬⎫=∠=∠∠=∠CM BM C B FMC EMB →△EBM ≌△FCM (ASA )→BE=CF .因此测量C 、F 之间的距离就是B 、E 之间的距离.第3题4.∠D=∠A .理由:AB⊥CD→∠ABC=∠DBE=︒90AB=DB→△ABC≌△DBEAC=DE→∠D=∠A.5.解:6.△ABC≌△CDA.理由:→⎪⎭⎪⎬⎫===CAACADBCCDAB△AB C≌△CDA.7.说明:→⎪⎭⎪⎬⎫===BMBMMDMCBDBC△BCM≌△BDM→⎪⎭⎪⎬⎫=∠=∠=BABADBACBABDBC→△ABC≌△ABD→AC=AD.。

北师大版数学七年级下册第四章三角形单元测试题及答案

北师大版数学七年级下册第四章三角形单元测试题及答案

北师⼤版数学七年级下册第四章三⾓形单元测试题及答案北师⼤版数学七年级下册第四章三⾓形单元测试题及答案⼀、选择题:1.如图所⽰,⼩敏做《典中点》中的试题时,不⼩⼼把题⽬中的三⾓形⽤墨⽔弄污了⼀部分,她想在⼀块⽩纸上作⼀个完全⼀样的三⾓形,然后粘贴在上⾯,她作图的依据是()A.SSSB.SASC.ASAD.AAS2.根据下列已知条件,能作出唯⼀ΔABC的是( )A.∠A=36°,∠B=45°,AB=4B.AB=4,BC=3,∠A=30°C.AB=3,BC=4,CA=8D.∠C=90°,AB=63.命题:①对顶⾓相等;②垂直于同⼀条直线的两直线平⾏;③相等的⾓是对顶⾓;④同位⾓相等.其中假命题有( )A.1个B.2个C.3个D.4个4.举⼀个反例说明“⼀个⾓的余⾓⼤于这个⾓”是假命题,其中错误的是 ( )A.设这个⾓是45°,它的余⾓是45°,但45°=45°B.设这个⾓是30°,它的余⾓是60°,但30°<60°C.设这个⾓是60°,它的余⾓是30°,但30°<60°D.设这个⾓是50°,它的余⾓是40°,但40°<50°5.如图所⽰,若ΔABE≌ΔACF,且AB=5,AE=3,则EC的长为()A.2B.3C.5D.2.56.如图所⽰,ΔABC≌ΔAEF,AB=AE,∠B=∠E,则对于结论:①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC.其中正确结论的个数是( )A.1个B.2个C.3个D.4个7.如图所⽰,在ΔABC和ΔDEF中,AB=DE,∠B=∠E,则下列能直接应⽤“SAS”判定ΔABC≌ΔDEF的条件可以是( )A.BF=ECB.∠ACB=∠DFEC.AC=DFD.∠A=∠D8.如图所⽰,BD,AC交于点O,若OA=OD,⽤“SAS”说明ΔAOB≌ΔDOC,还需()A.AB=DCB.OB=OCC.∠BAD=∠ADCD.∠AOB=∠DOC9.如图所⽰,在ΔABC与ΔDEF中,给出以下六个条件:(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F.以其中三个作为已知条件,不能判断ΔABC与ΔDEF全等的是( )A.(1)(5)(2)B.(1)(2)(3)C.(4)(6)(1)D.(2)(3)(4)10.如图所⽰,有两个四边形ABCD,EFGH,其中甲、⼄、丙、丁分别表⽰ΔABC,ΔACD,ΔEFG,ΔEGH.若∠ACB=∠CAD=∠EFG=∠EGH=70°,∠BAC=∠ACD=∠EGF=∠EHG=50°,则下列叙述正确的是( )A.甲、⼄全等,丙、丁全等B.甲、⼄全等,丙、丁不全等C.甲、⼄不全等,丙、丁全等D.甲、⼄不全等,丙、丁不全等11.利⽤尺规作图,在下列条件中不能作出唯⼀直⾓三⾓形的是( )A.已知两个锐⾓B.已知⼀直⾓边和这边的对⾓C.已知两条直⾓边D.已知⼀个锐⾓和斜边⼆、填空题:1.已知下列命题:①相等的⾓是对顶⾓;②互补的两个⾓⼀定是⼀个锐⾓,另⼀个是钝⾓;③在同⼀平⾯内,平⾏于同⼀条直线的两条直线平⾏;④互为邻补⾓的两⾓的平分线互相垂直.其中正确命题的序号是.2.如图所⽰,ΔABC≌ΔDBC,且∠A和∠D,∠ABC和∠DBC是对应⾓,请写出三组对应边:(1) ;(2) ;(3) ;另⼀组对应⾓:(4) .3.如图所⽰,在ΔABC中,AB=AC,BE=CE,则由“SSS”可以判定.(填序号)①ΔABD≌ΔACD; ②ΔBDE≌ΔCDE; ③ΔABE≌ΔACE.4.如图所⽰,已知AD=CB,若利⽤“SSS”来判定ΔABC≌ΔCDA,则添加直接条件是.5.看图填空:已知:如图所⽰,BC∥EF,AD=BE,BC=EF.试说明ΔABC≌ΔDEF.解:∵AD=BE,∴=BE+DB,即= .∵BC∥EF,∴∠=∠(两直线平⾏,同位⾓相等).在ΔABC和ΔDEF中,∴ΔABC≌ΔDEF(SAS).6.如图所⽰,AD=BD,AD⊥BC,垂⾜为D,BF⊥AC,垂⾜为F,BC=6 cm,DC=2 cm,则AE= cm.三、解答题:1.(1)如图所⽰,⽅格纸中的ΔABC的三个顶点分别在⼩正⽅形的格点(顶点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与ΔABC全等且有⼀个公共顶点的格点三⾓形A'B'C';在图②中画出与ΔABC全等且有⼀条公共边的格点三⾓形A″B″C″.(2)先阅读,然后回答问题:如图所⽰,D是ΔABC中BC边上的⼀点,E是AD上⼀点,AB=AC,EB=EC,∠BAE=∠CAE,试说明ΔAEB≌ΔAEC.解:在ΔAEB和ΔAEC中,因为AB=AC,∠BAE=∠CAE,EB=EC, (1)所以根据“SAS”可以知道ΔAEB≌ΔAEC (2)上⾯的解题过程正确吗?若正确,请写出每⼀步推理的依据;若不正确,请指出错在哪⼀步,并写出你认为正确的过程.2.如图所⽰,ΔABC中,AB=AC,∠BAC=90°,D,E是BC上的两点,且∠DAE=45°.将ΔAEC绕着点A顺时针旋转90°后,得到ΔAFB,连接DF.(1)DF与DE之间有何数量关系?(2)证明你猜想的结论.3.作图题:(要求:尺规作图,保留作图痕迹,不写作法)已知:∠α,线段c,求作:ΔABC,使∠A=∠α,AB=2c,AC=3c.4.如图所⽰,要测量河岸相对的两点A,B之间的距离,先从B处出发与AB成90°⾓⽅向,向前⾛40⽶到C处⽴⼀根标杆,然后⽅向不变继续朝前⾛40⽶到D处,在D处转90°沿DE⽅向再⾛28⽶,到达E处,此时A,C与E在同⼀直线上,求点A,B之间的距离.5.下列各命题是真命题还是假命题?(1)有公共顶点的两个⾓是对顶⾓.(2)四边形的内⾓和是360度.(3)内错⾓相等.6.如图,△ABC中,∠BAC=90°,AD⊥BC,垂⾜为D.求作∠ABC的平分线,分别交AD,AD 于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)7.如图,∠1=∠2,∠3=∠4,求证:AC=AD.8.如图,正⽅形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.9.如图所⽰,已知AB∥DC,AB=DC,AE=CF.求证ΔABF≌ΔCDE.10.已知:如图所⽰,AD=BE,∠A=∠FDE,BC∥EF.求证:ΔABC≌ΔDEF.11.如图所⽰,已知ΔABC≌ΔDEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=30°,∠C=60°.(1)求线段AE的长度;(2)求∠ABC的度数.12.如图所⽰,点E,F在线段BD上,线段AC与BD交于点O且互相平分,且BE=DF.求证:(1)AB=CD;(2)AE∥CF.13.如图所⽰,点B,C,E,F在同⼀直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)ΔABC≌ΔDEF;(2)AB∥DE.参考答案⼀、选择题:1-5 CACBA 6-10 CABDB 11 A⼆、填空题:1.③④2.(1)AB和DB (2)AC和DC (3)BC和BC (4)∠ACB和∠DCB3.答案:③.4.AB=CD5.答案:AD+DB AB DE ABC DEF AB=DE ∠ABC=∠DEF BC=EF6.2三、解答题:1.解:(1)答案不唯⼀,如图所⽰.(2)上⾯的解题过程错误,错在第1步.在ΔAEB和ΔAEC中,∵AB=AC,∠BAE=∠CAE,EA=EA,∴ΔAEB ≌ΔAEC(SAS).2.解:(1)猜想:DF=DE.证明:(2)∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠EAC=45°.∵将ΔAEC绕着点A顺时针旋转90°后,得到ΔAFB,∴AF=AE,∠FAB=∠EAC,∴∠FAD=∠FAB+∠BAD=45°=∠DAE.在ΔADF和ΔADE中,∴ΔADF≌ΔADE(SAS),∴DF=DE.3.解:如图所⽰.4.解:∵从B处与AB成90°⾓的⽅向出发,∴∠ABC=90°,∵BC=40⽶,CD=40⽶,∠EDC=90°,∴在ΔABC与ΔEDC中,∴ΔABC≌ΔEDC,∴AB=DE,∵沿DE⽅向再⾛28⽶,到达E处,即DE=28⽶,∴AB=28⽶.答:点A,B之间的距离为28⽶.5.解:(1)假命题. (2)真命题.(3)假命题6.解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.7.证明:∵∠3=∠4,∴∠ABC=∠ABD,在△ABC和△ABD中,,∴△ABC≌△ABD(ASA),∴AC=AD.8.证明:在正⽅形ABCD中,AB=AD,∠BAE=∠D=90°,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS),∴BE=AF.9.证明:∵AB∥DC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,在ΔABF 和ΔCDE 中CE =AF C ∠=A ∠DC=AB ∴ΔABF ≌ΔCDE(SAS). 10.证明:∵AD=BE(已知), ∴AB=DE(等式的性质). ∵BC ∥EF(已知),∴∠ABC=∠E(两直线平⾏,同位⾓相等). 在ΔABC 和ΔDEF 中, ∵??E ∠=ABC ∠DE =AB FDE∠=A ∠∴ΔABC ≌ΔDEF(ASA). 11.解:(1)∵ΔABC ≌ΔDEB, ∴AB=DE=7,BE=BC=4, ∴AE=AB-BE=7-4=3.(2)∵ΔABC ≌ΔDEB,∴∠A=∠D=30°, ∴∠ABC=180°-∠A-∠C=90°.12.证明:(1)∵线段AC 与BD 互相平分,∴AO=CO,BO=DO.在ΔAOB 与ΔCOD 中,∴ΔAOB ≌ΔCOD(SAS),∴AB=CD.(2)∵BE=DF,BO=DO,∴EO=FO.在ΔAEO 和ΔCFO 中, ∴ΔAEO ≌ΔCFO(SAS),∴∠EAO=∠FCO,∴AE ∥CF.13.证明:(1)∵AC ⊥BC 于点C,DF ⊥EF 于点F, ∴∠ACB=∠DFE=90°, 在ΔABC 和ΔDEF 中,DF =AC DFE ∠=ACB ∠EF=BC ∴ΔABC ≌ΔDEF(SAS). (2)由(1)知ΔABC ≌ΔDEF, ∴∠B=∠DEF,∴AB ∥DE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故正确的有①,②,③.
20. 用同样粗细、同种材料的金属线,制作两个全等的△ABC 和△DEF.已知∠B=∠E,若 AC 边的质量为 20 千克,则 DF 边的质量为________ 千克. 【答案】20 【解析】∵△ABC≌△DEF, ∴AC=DF, ∵AC 边的质量为 20 千克, ∴DF 边的质量为 20 千克.
A. ①
B. ②
C. ③
D. ①和②
【答案】C
【解析】试题分析:根据全等三角形的判定方法带③去可以利用“角边角”得到全等的三角形.
故选 C.
考点:全等三角形的应用.
二、填空题(共 9 题;共 27 分)
12. 如图,要测量池塘的宽度 AB,在池塘外选取一点 P,连接 AP、BP 并各自延长,使 PC=PA,PD=PB, 连接 CD,测得 CD 长为 25m,则池塘宽 AB 为________ m,依据是________
【答案】120°;70°;12;6 【解析】∵四边形 ABCD 与四边形 A′B′C′D′全等, 由题意得:∠A′=∠D =∠120°,∠D′=∠A=70°,B′C′=CB=12,AD = D′A′=6. 18. 若三角形的三边长分别为 2,a,9,且 a 为整数,则 a 的值为________. 【答案】8 或 9 或 10 【解析】根据三角形的三边关系可得:9-2<a<9+2,即 7<a<11,由 a 为整数,可得 a=8 或 9 或 10. 19. 在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C 中, 能确定△ABC 是直角三角形的条件有________(填序号) 【答案】①②③ 【解析】∵∠A+∠B=∠C, ∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,∴△ABC 是直角三角形;
三、作图题(8 分)
21. 如图所示,107 国道 OA 和 320 国道 OB 在某巿相交于 O 点,在∠AOB 的内部有工厂 C 和 D,现要建一 个货站 P,使 P 到 OA 和 OB 的距离相等,且使 PC=PD,用尺规作出 P 点的位置.(不写作法,保留作图痕
迹,写出结论)
【答案】详见解析. 【解析】试题分析:作∠AOB 的平分线与线段 CD 的垂直平分线,两线相交于点 P,点 P 即为所求. 试题解析:
A. 3cm
B. 4cm
C. 9cm
D. 10cm
【答案】C
【解析】试题分析:由题意可知,A 项,3+3<7,故不符合题意;B 项,3+4=7,故不符合题意;D 项,3+7=10,
故不符合题意;C 项,3+9>7,符合题意,故选 C 项.
考点:三角形的三边关系. 8. 如图所示,AB∥CD,AD∥BC,BE=DF,则图中全等三角形共有( )对.
∵∠A:∠B:∠C=1:2:3,设∠A=x,则 x+2x+3x=180,x=30°,∠C=30°×3=90°,∴△ABC 是直角三角形;
∵∠A=90°−∠B,∴∠A+∠B=90°,则∠C=180°−90°=90°,∴△ABC 是直角三角形;
∵∠A=∠B=∠C,∠A+∠B+∠C=180°, ∴∠A=∠B=∠C=60°,∴△ABC 不是直角三角形;
直角三角形的高线有两条是三角形的直角边,
钝角三角形的高线有两条在三角形的外部,
所以,不一定在三角形内部的线段是三角形的高.
故选 C.
5. 701 班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度 能符合他的要求?( )
A. 4,2,2
B. 3,6,6
C. 2,3,6
A. 30 米
B. 25 米
C. 20 米
D. 5 米
【答案】C
【解析】设 A,B 间的距离为 x.
根据三角形的三边关系定理,得:15-10<x<15+10,
解得:5<x<25,
所以,线段可能是此三角形的第三边的是 20m.
故选 C. 10. 尺规作图作
的平分线方法如下:以 为圆心,任意长为半径画弧交 、 于 、 ,再分别
∵BF 是∠ABC 的角平分线 , ∴∠ABO=30°, ∴∠BOA=180°﹣∠BAO﹣∠ABO=123°. 考点:1.三角形的外角性质;2.角平分线的定义;3.三角形内角和定理. 23. 把两个含有 45°角的直角三角板如图放置,点 D 在 AC 上,连接 AE、BD,试判断 AE 与 BD 的关系, 并说明理由.
∵ABC 的周长等于 16,
∴△A BC 的周长为 AC+BC+AB=9+ AB =16.
∴AB=7,
∴AE=BE=3.5.
故选 B.
点睛:此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.
7. 小明有两根 3cm、7cm 的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为( )
3. 下列说法正确的是( )
A. 全等三角形是指形状相同的三角形
B. 全等三角形是指面积相等的两个三角形
C. 全等三角形的周长和面积相等
D. 所有等边三角形是全等三角形
【答案】C
【解析】本题考查的是全等三角形的定义
根据全等三角形的的定义对各项分析即得结果。
A. 全等三角形是指形状、大小均相同的三角形,故本选项错误;
B. 面积相等的三角形不一定全等,故本选项错误;
C. 全等三角形的周长和面积都相等,正确;
D. 边长不相等的等边三角形不全等,故本选项错误。
故选 C。 4. 不一定在三角形内部的线段是( )
A. 三角形的角平分线
B. 三角形的中线
C. 三角形的高
D. 以上皆不对
【答案】C
【解析】试题解析:三角形的角平分线、中线一定在三角形的内部,
以点 、 为圆心,以大于 CD 长为半径画弧,两弧交于点 ,作射线 ,由作法得△OCP≌△ODP 的根
据是( )
A. SAS
B. ASA
C. AAS
D. SSS
【答案】D
【解析】由题意可知,OC=OD,PC=PD,OP=OP,∴△OCP≌△ODP(SSS).故选 D. 11. 小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完 全一样的玻璃,你认为应带( )
在△ACE 和△ABD 中,

∴△ACE≌△ABD(ASA); 若∠ADB=∠AEC,
在△ACE 和△ABD 中,

∴△ACE≌△ABD(AAS); 故答案为:AD=AE 或 CD=BE 或∠B=∠C 或∠ADB=∠AEC.
点睛:本题考查了全等三角形的判定方法,是开放型题目,存在四种情况,熟练掌握全等三角形的判定方 法是解决问题的关键. 17. 如图,四边形 ABCD 与四边形 A′B′C′D′全等,则∠A′=________ ,∠A=________ ,B′C′=________ , AD=________ .
【答案】50° 【解析】试题分析:根据三角形内角和定理求出∠GBC+∠GCB,根据角平分线的定义求出∠ABC+∠ACB, 根据三角形内角和定理计算即可. 解:∵∠BGC=115°, ∴∠GBC+∠GCB=180°﹣115°=65°, ∵BE,CF 是△ABC 的∠ABC 和∠ACB 的平分线, ∴∠GBC= ABC,∠GCB= ACB, ∴∠ABC+∠ACB=130°, ∴∠A=180°﹣130°=50°, 故答案为:50°. 14. 如图所示,有(1)~(4)4 个条形方格图,图中由实线围成的图形与前图全等的有 ________ (只要填序号即可).
【答案】AD=AE 或 CD=BE 或∠B=∠C 或∠ADB=∠AEC 【解析】AD=AE 或 CD=BE 或∠B=∠C 或∠ADB=∠AEC;理由如下: 若 AD=AE,
在△ACE 和△ABD 中,

∴△ACE≌△ABD(SAS); 若 CD=BE, ∵AB=AC, ∴AD=AE, 同理:△ACE≌△ABD(SAS); 若∠B=∠C,
A. 2
B. 3
C. 4
D. 5
【答案】B
【解析】
试题解析:①∵AB∥CD,AD∥BC,
∴四边形 ABCD 是平行四边形,
∴ABD≌△CDB;
②∵AB∥CD,

∴∠ABD=∠CDB,
在△ABE 和△CDF 中,

∴△ABE≌△CDF(ASA); ③∵BE=DF, ∴BE+EF=DF+EF, 即 BF=DE, 同理可证△AED≌△CFB; 所以图中全等三角形共有 3 对. 故选 B. 考点:全等三角形的判定 9. 如图,为估计池塘岸边 A,B 的距离,小明在池塘的一侧选取一点 O,测得 OA=15 米,OB=10 米,A, B 间的距离可能是( )
【答案】25;SAS 【解析】在△APB 和△DPC 中, PC=PA,∠APB=∠CPD,PD=PB, ∴△APB≌△CPD(SAS); ∴AB=CD=25 米(全等三角形的对应边相等). 答:池塘两端的距离是 25 米. 故答案为:25,SAS. 点睛:本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等, 寻找所求线段与已知线段之间的等量关系. 13. 如图,已知△ABC 的∠ABC 和∠ACB 的平分线 BE,CF 交于点 G,若∠BGC=115°,则∠A=________.
D. 7,13,6
【答案】B
【解析】A、2+2=4,错误;
B、3+6>6,正确.
C、2+3=5<6,错误;
D、6+7=13,错误.
故选 B.
6. 如图,在△ABC 中,分别以点 A 和点 B 为圆心,大于 AB 长为半径画弧,两弧相交于点 M、N,连接
相关文档
最新文档