线性代数模试题试题库
线性代数模拟试题
线性代数模拟试题1. 矩阵A的转置已知矩阵 A = [1 2 3; 4 5 6; 7 8 9],求其转置矩阵 AT。
解答:设矩阵 B 为 A 的转置矩阵,即 B = AT。
则矩阵 B 的第 i 行第 j 列元素等于矩阵 A 的第 j 行第 i 列元素,即 Bij = Aji。
根据以上规律,可以得到矩阵 A 的转置矩阵 B = [1 4 7; 2 5 8; 3 6 9]。
2. 矩阵相乘已知矩阵 A = [1 2; 3 4],矩阵 B = [5 6; 7 8],求矩阵 A 乘以矩阵 B的结果 AB。
解答:设矩阵 C 为 A 乘以 B 的结果,即 C = AB。
矩阵 C 的第 i 行第 j 列元素等于矩阵 A 的第 i 行与矩阵 B 的第 j 列的对应元素相乘再相加,即Cij = ∑(Aik * Bkj) (k=1 to n)。
根据以上规律,可以得到矩阵 A 乘以矩阵 B 的结果 C = [19 22; 43 50]。
3. 矩阵的逆已知矩阵 A = [2 -1; 4 3],求其逆矩阵 A-1。
解答:逆矩阵 A-1 的定义为 A * A-1 = I,其中 I 为单位矩阵。
设矩阵 B 为A 的逆矩阵,即 B = A-1。
可以通过求解线性方程组的方式来求解矩阵A 的逆矩阵。
首先,构造增广矩阵 [A I],其中 I 为 2 阶单位矩阵。
经过初等行变换,将矩阵 A 转化为单位矩阵的形式,此时 [I B] 的形式就是矩阵 A的逆矩阵。
经过计算,可以得到矩阵 A 的逆矩阵 B = [3 1; -4 2]。
4. 矩阵的特征值和特征向量已知矩阵 A = [3 -2; 1 4],求其特征值和对应的特征向量。
解答:特征值λ 是矩阵 A 满足方程 |A - λI| = 0 的根,其中 I 为单位矩阵。
特征向量 v 是非零向量 x 满足方程 (A - λI)x = 0。
首先,计算矩阵 A - λI 的行列式,即 |A - λI|。
线性代数模拟试卷及答案
线性代数(文)模拟试卷(一)参考答案一。
填空题(每小题3分,共12分)1.设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,⎪⎪⎪⎭⎫⎝⎛=333222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3332221113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=---=12=-B A .2。
已知向量)3,2,1(=α,)31,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-.解 注意到3321)31,21,1(=⎪⎪⎪⎭⎫ ⎝⎛=T βα,故n A =βαβαβαβαT n T T T 个)())((=ββαβαβααβαTn T T T T 个)1()())((-=A n T n 1133--=βα。
注 若先写出A ,再求2A ,…,n A 将花比前更多的时间.3。
若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-.解 由1α,2α,3α线性相关,则有321,,ααα=k k 0143011--=1043011--k k k =04)1(3143=--=-k k k k 。
由此解得3-=k .4。
若4阶矩阵A 与B 相似,矩阵A 的特征值为21,31,41,51,则行列式E B --1 =24.解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4。
故2443211=⋅⋅⋅=--E B . 注 本题解答中要用到以下结论:(1)若A 可逆,A 的特征值为λ,则1-A 的特征值为λ1。
(2)若λ是A 的特征值,则)(A f 的特征值为)(λf ,其中)(x f 为任意关于x 的多项式。
大学数学线性代数期末复习模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-A C.n A r =)( D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( )A.4,221==λλB.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭的线性关系是 。
线性代数模拟考试题(4套)
线性代数模拟考试题(4套)模拟试题⼀⼀、判断题:(正确:√,错误:×)(每⼩题2分,共10分)1、若B A ,为n 阶⽅阵,则 B A B A +=+. ……………………( )2、可逆⽅阵A 的转置矩阵T A 必可逆. ……………………………( )3、n 元⾮齐次线性⽅程组b Ax =有解的充分必要条件n A R =)(.…( )4、A 为正交矩阵的充分必要条件1-=A A T .…………………………( )5、设A 是n 阶⽅阵,且0=A ,则矩阵A 中必有⼀列向量是其余列向量的线性组合.…………………………………………………………( ) ⼆、填空题:(每空2分,共20分)1、,A B 为 3 阶⽅阵,如果 ||3,||2A B ==,那么 1|2|AB -= .2、⾏列式中元素ij a 的余⼦式和代数余⼦式,ij ij M A 的关系是 .3、在5阶⾏列式中,项5541243213a a a a a 所带的正负号是 .4、已知()??-==256,102B A 则=AB .5、若?--=1225A ,则=-1A . 6、设矩阵--2100013011080101是4元⾮齐次线性⽅程组b Ax =的增⼴矩阵,则b Ax =的通解为 .7、()B A R + ()()B R A R +.8、若*A 是A 的伴随矩阵,则=*AA .9、设=A-500210111t ,则当t 时,A 的⾏向量组线性⽆关.10、⽅阵A 的特征值为λ,⽅阵E A A B 342+-=,则B 的特征值为 . 三、计算:(每⼩题8分,共16分) 1、已知4阶⾏列式1611221212112401---=D ,求4131211132A A A A +-+.2、设矩阵A 和B 满⾜B A E AB +=+2,其中=101020101A ,求矩阵B .四、(10分) 求齐次线性⽅程组=++-=-++=--+-=++-0242205230204321432143214321x x x x x x x x x x x x x x x x 的基础解系和它的通解.五、(10分) 设三元⾮齐次线性⽅程组b Ax =的增⼴矩阵为+-+----22)1)(1()2)(1(00)1(11011λλλλλλλλλλ,讨论当λ取何值时,b Ax =⽆解,有唯⼀解和有⽆穷多解,并在⽆穷多解时求出通解.六、(10分) 判断向量组---=? --=? =? -=1622,4647,3221,1123:4321a a a a A 的线性相关性,如果线性相关,求⼀个最⼤⽆关组,并⽤它表⽰其余向量. 七、综合计算:(本题14分)已知⼆次型31232221321422),,(x x x x x x x x f --+= (1)求⼆次型所对应的矩阵A ,并写出⼆次型的矩阵表⽰;(2)求A 的特征值与全部特征向量;(3)求正交变换PY X =化⼆次型为标准形, 并写出标准形;(4)判断该⼆次型的正定性。
线性代数期末模拟测试试卷(含答案)
线性代数期末模拟测试试卷(含答案)班别 姓名 成绩一、选择题1.已知二次型3231212322214225x x x x x tx x x x f +-+++=,当t 取何值时,该二次型为正定?( ) A.054<<-t B.5454<<-t C.540<<t D.2154-<<-t 2.已知矩阵B A x B A ~,50060321,340430241且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=,求x 的值( )A.3B.-2C.5D.-53.设A 为n 阶可逆矩阵,则下述说法不正确的是( ) A. 0≠A B. 01≠-AC.n A r =)(D.A 的行向量组线性相关4.过点(0,2,4)且与两平面2312=-=+z y z x 和的交线平行的直线方程为( ) A.14322-=-=-z y x B.24322-=-=z y x C.14322+=+=-z y x D.24322+=+=z y x5.已知矩阵⎪⎪⎭⎫ ⎝⎛-=1513A ,其特征值为( ) A.4,221==λλ B.4,221-=-=λλC.4,221=-=λλD.4,221-==λλ二、填空题.答题要求:将正确答案填写在横线上6.三阶行列式ij a 的展开式中,321123a a a 前面的符号应是 。
7.设123221,343A ⎛⎫⎪= ⎪ ⎪⎝⎭ij A 为A 中元ij a 的代数余子式,则 111213A A A ++= 。
8.设n 阶矩阵A 的秩1)(-<n A r ,则A 的伴随矩阵A *的元素之和∑∑===n i nj ij A 11 。
9.三阶初等矩阵()1,2E 的伴随矩阵为 。
10.若非齐次线性方程组AX B =有唯一解,则其导出组0AX =解的情况是 。
11.若向量组11121233,a b a b a b αβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线性相关,则向量组112222,a b a b αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 的线性关系是 。
线性代数模试题试题库(带答案)
,
A= 2−1
1 1
−2 −1
1
=
13
−1
3
2 3
1
3
解:
= A−1
= A01−1 A02−1
1
−2
0
0
−2 5 0 0
0 0 13 −1 3
0
0
2 3
1 3
四、证明题(每小题 5 分,共 10 分)
19、设 n 阶方阵 A 满足 ( A + E )3 = 0 ,证明矩阵 A 可逆,并写出 A 逆矩阵的表达式。
即行列式 D 的每一行都有一个(-1)的公因子,所以 D = (−1)n D 。
3、设
A
=
1 0
1 1 ,
则
A100
=
1 0
100
1
。
= A2
1 0
= 11 10 11
= 10 12 , A3
1 0
= 12 10 11
因为: A∗ =A A−1 =−2A−1 ⇒ 4A−1 + A∗ =4A−1 − 2A−1 =2A−1 =8 A−1 =−4 。
1 0 2 2、 A 为 5×3 矩阵,秩( A )=3, B = 0 2 0 ,则秩( AB )= 3 。
0 0 3 因为 B 可逆, AB 相当于对 A 作列初等变换,不改变 A 的秩。
C.5
D.6
1 2 1 0 1 2 1 0
通过初等变换,由秩为 2 可得: 3
−1 0
2
0
−7
−3
线性代数模试题试题库(带答案)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、若12335544ija aa a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********AA ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,TAAE =且=+<E A A 则,0 0 。
由已知条件:211,1T T T AA E AA A A A E A A =⇒====⇒=±⇒=-,而 :0TT A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y应满足条件32x y ≠。
可逆,则行列式不等于零:20002(32)032023A xy x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a a a a a ,则行列式=---------232221333231131211222222222a a a a a a a a aA 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M aa a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数模拟试题及答案
3、
1 1 =__________。 2 2 é 2 3ù é - 1ù ú ê ú =__________。 ë - 1 0û ë 3 û
4、矩阵 ê
5、若 A,B 为 n 阶矩阵,则 ( A + B )( A - B ) =__________。 6.设 A, B 为 3 阶方阵,且 A = 4, B = 2 ,则 2( B* A-1 ) = 7、若 A 是可逆矩阵,则 ( A¢ ) -1 =__________。 .
æ- 2 0 0 ö æ1 0 0 ö ÷ ç ç ÷ A - 3E = ç - 2 2 - 2 ÷ ~ ç 0 1 - 1÷ ç - 2 4 - 4÷ ç0 0 0 ÷ ø è è ø æ0ö ç ÷ ì x 2 - x3 = 0 从而解得基础解系 p1 = ç 1 ÷ 得对应的方程组为 í î x1 = 0 ç1÷ è ø
.
A+ B = A + B
A. 若矩阵 A, B 满足 AB = O ,则有 A = O 或 B = O B. 若矩阵 A, B 满足 AB = E ,则矩阵 A, B 都可逆。 C. 若 A* 是 n 阶矩阵 A 的伴随矩阵,则 A* = A D. 若 A ¹ O ,则 A ¹ 0
7.下列说法不正确的是( ) 。
æ1 ç 0 8.设矩阵 A = ç ç0 ç ç0 è
2 0 0ö ÷ 1 0 0÷ -1 ,则 A = ÷ 0 3 3 ÷ 0 2 1÷ ø
.
9 、 在 线性方程组 AX = O 中,若 末知 量的个数 n=5 , r ( A) = 3 ,则方程组的一 般 解中 自由末知 量的个数为 _________。 10. 设向量组 a1 , a 2 , a3 线性无关,则向量组 a1 , a1 + a 2 , a1 + a2 + a3 (填线性相关,线性无关) 。
线性代数模拟试题及答案
可以由向量唯一的线性表示。
《线性代数期末模拟试题一》1•设det (a j )为四阶行列式 若M 23表示元素a 23的余子式,A 23表示元素a 23的代数余子式,则M 23 + A 23 =(填成立或不成立)。
厂2,〉3均为3维列向量,记矩阵A =(:1,:2,:3),记矩阵3•设〉1 (填行或列)初等变换而得到。
6•设向量组 0102,4304,若 只(01,。
203)=2只(。
2巴3,。
4)=3,贝U 。
1 一定、填空(本题20分每小题2分)2•三阶行列式a 110 0 a 22 a 31 0 a i3 0 a 33 三阶行列式的所有项中有中只有位于两条对角线上的元素均不为零, 则该项不为零,这一结论对n 阶行列式 ‘2 1、 4.设矩阵A =0 3B = <_1 2」 7 -2 5 4丿且矩阵C 二AB ,所以矩阵 C 一定可以由矩阵B 经过1,一2, 5 •设矩阵A 可逆,1 4 27 2 0 -1 3 1B =(〉1 -2〉2, >2 • >3, >1 一 >37 •非齐次线性方程组Ax = b有唯一的解是对应的齐次方程组Ax = O只有零解的充分但不必要条件。
8•设3阶矩阵A的行列式A =0,贝U矩阵A一定有一个特征值9. n阶矩阵A有n个特征值1, 2,…,n , n阶矩阵B与A相似,则B -10.向量组: P:;1,山2];1,(填是或不是)向量空间R2一个规范正交基、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A为n阶方阵,则关于非齐次线性方程组Ax二b的解下列说法() 不正确(A)若方程组有解,则系数行列式A=0;(B)若方程组无解,则系数行列式 A =0;(C)若方程组有解,则或者有唯一解或者有无穷多解。
线性代数全真模拟试卷
线性代数全真模拟试卷第一题 选择题1、已知行列式22221111b a b a b a b a -+-+=4,则2211b a b a =( )A 、2B 、4C 、-4D 、-22、若方程组⎪⎩⎪⎨⎧=-+=+-=-+03,02,022132132132x x x x x x x x x λ有非零解,则λ=( )A 、0B 、1C 、-1D 、23、设A 是n 阶非零方阵,下列矩阵不是对称矩阵的是( ) A 、A+A TB 、AA TC 、A-A TD 、21(A+A T) 4、设ABC 均为n 阶可逆方阵,且ABC=E,则下列结论成立的是( ) A 、ABC=E B 、BAC=E C 、BCA=E D 、CBA=E5、设a1,a2,a3线性无关,而a2,a3,a4线性相关,则( ) A 、a1必可由a2,a3线性表示 B 、a2必可由a3,a4线性表示 C 、a3必可由a2,a4线性表示 D 、a4必可由a2,a3线性表示6、向量组a 1,a 2…,a s 的秩为s 的充要条件为( )A 、此向量组中不含零向量B 、此向量组中没有两个向量的对应分量成比例C 、此向量组中有一个向量不能由其余向量线性表示D 、此向量组线性无关7、设A 为m*n 矩阵,且任何n 维列向量都是齐次线性方程组Ax=0的解,则( ) A 、A=0B 、r (A )=mC 、r (A )=nD 、0<r (A )<n8、设三元非齐次线性方程组Ax=b 的两个解为1η=(2,0,3),2η=(1,-1,2)T,r (A )=2,则此线性方程组的通解为( ) A 、k1(2,0,3)T+k2(1,-1,2)TB 、(2,0,3)T+k (1,1,1)TC 、(2,0,3)T+k (1,-1,2)TD 、(2,0,3)T+k (3,-1,5)T9、下列命题正确的是( )A 、两个同阶的正交矩阵的行列式都等于1B 、两个同阶的正交矩阵的和必是正交矩阵C 、两个同阶的正交矩阵的乘积必是正交矩阵D 、特征值为1的矩阵就是正交矩阵10、设A 为n 阶矩阵,则在( )情况下,它的特征值可以是零。
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数模拟试卷及答案4套
线性代数模拟试卷(一)一、 填空题(每小题3分,共6小题,总分18分)1、四阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 展开式中,含有因子3214a a 且带正号的项为___________2、设A 为n 阶可逆方阵,将A 的第i 行和第j 行对换后得到的矩阵记为B ,则AB -1=_________3、已知向量组)2- 5, 4,- ,0( , )0 t,0, ,2( , )1 1,- 2, ,1(321'='='=ααα线性相关,则t =_________4、设三阶方阵) , ,(B ), , ,(2121γγβγγα==A ,其中 , ,,21γγβα都是三维列向量且2B 1, ==A ,则=- 2B A _________5、A 为n 阶正交矩阵, , ,,21n ααα 为A 的列向量组,当i ≠j 时,)21 ,31(j i αα=_________ 6、三阶方阵A 的特征值为1,-2,-3,则 A =_______; E+A -1的特征值为______ 二、 单项选择题(每小题2分,共6小题,总分12分) 1、 设齐次线性方程组AX=0有非零解,其中A=()nn ija ⨯,A ij 为a ij (i,j=1,2,…n) 的代数余子式,则( ) (A)0111=∑=ni i i A a(B)0111≠∑=ni i i A a(C)n A ani i i =∑=111(D)n A ani i i ≠∑=1112、若A -1+ E, E+A, A 均为可逆矩阵,E 为单位矩阵,则(A -1+ E)-1=( ) (A) A+E (B) (A+E)-1 (C) A -1+ E (D) A(A+E)-13、设A, B 为n 阶方阵 ,A*,B*分别为A, B 对应的伴随矩阵,分块矩阵⎪⎪⎭⎫ ⎝⎛=B 00 A C ,则C 的伴随矩阵C* =( )(A) ⎪⎪⎭⎫⎝⎛*A B 0 0 *B A (B) ⎪⎪⎭⎫⎝⎛*B A 0 0 *A B(C) ⎪⎪⎭⎫⎝⎛*B B 0 0 *A A (D) ⎪⎪⎭⎫⎝⎛*A A 0 0 *B B 4、若向量组 , ,,21m ααα 的秩为r ,则( )(A) 必有 r<m (B)向量组中任意小于 r 个向量的部分组线性无关 (C) 向量组中任意 r 个向量线性无关(D) 向量组中任意 r+1个向量必线性相关5、已知 ,,321ααα是四元非齐次线性方程组AX=B 的三个解,且r(A)=3, 已知)3 2, 1, ,0( , )4 3, 2, ,1(321'=+'=ααα,C 为任意常数,则AX=B 通解X=( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛11114321C (B)⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛32104321C(C) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛54324321C (D) ⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛65434321C6、设A 为三阶方阵,有特征值λ1=1,λ2= -1, λ3=2,其对应的特征向量分别为 ,,321ααα,记P=(132 ,ααα),则P -1AP=( )(A) ⎪⎪⎪⎭⎫⎝⎛1 2 1- (B)⎪⎪⎪⎭⎫⎝⎛1- 1 2(C) ⎪⎪⎪⎭⎫⎝⎛2 1- 1 (D) ⎪⎪⎪⎭⎫⎝⎛2 1 1-三、计算下列行列式 (12分)1、 D=1- 3 3- 131 1 41- 3 0 5-21- 1 3 2、D n = n1 1 1 1.....................1 1 3 1 111 12 111 1 1 1四、已知A 、B 同为3阶方阵,且满足AB=4A+2B (12分) (1)证明:矩阵A-2E 可逆(2)若B=⎪⎪⎪⎭⎫⎝⎛2 0 00 2 10 2- 1 ,求A五、求向量组 )1 1, 1,- ,1( , )3 2, 1, ,1(21'='=αα, , )6 5, 2,- ,4( , )1 3, 3, ,1( 43'='=αα)7- 4,- 1,- ,3(5'-=α的一个极大无关组,并将其余向量用该极大无关组线性表示(10分)六、已知线性方程组⎪⎪⎩⎪⎪⎨⎧=---=+++-=+-=+-+bx x x x x ax x x x x x x x x x 432143214314321 6 - 17231 4 032 ,讨论参数a 、b 为何值方程组有解,在有解时,求出通解 (12分)七、用正交变换化二次型323121232221321222333),,(x x x x x x x x x x x x f ---++=为标准形,并写出相应的正交变换 (16分)八、已知 ,,,4321αααα是AX = 0的一个基础解系,若322211,ααβααβt t +=+=,144433,ααβααβt t +=+=,讨论t 为何值, ,,,4321ββββ是AX = 0的一个基础解系 (8分)线性代数模拟试卷(二)三、 填空题(每小题3分,共5小题,总分15分)1、j i a a a a a 53544231是五阶行列式展开式中带正号的一项,则i=_____, j=_____2、设n 阶方阵A 满足A 2 =A ,则A+E 可逆且(A+E )-1=_______________(E 为n 阶单位阵)3、已知向量组)0 6, 1,- ,1( , )2k - k,- ,3 ,1( , )2- 2, 1, ,1(321'='='=ααα 若该向量组的秩为2,则k =_________4、已知四阶方阵A 相似于B ,A 的特征值为2,3,4,5,E 是单位阵,则=- E B _________5、 向量α=(4,0,5)′在基)1 ,1- ,1(,)0 ,1 ,1( ,)1 ,2 ,1(321'='='=ηηη下的坐标为_________四、 单项选择题(每小题2分,共5小题,总分10分)1、 设 A 是三阶方阵A 的行列式,A 的三个列向量以γβα ,,表示,则 A =( ) (A)αβγ (B) γβα---(C)αγγββα+++ (D) γβαβαα+++2、设A, B ,C 为n 阶方阵, 若 AB = BA, AC = CA, 则ABC=( ) (A) BCA (B) ACB (C) CBA (D) CAB3、 A, B 均为n 阶方阵, A*为A 的伴随矩阵, 3B 2, -==A ,则21-*B A = ( )(A) 32 12--n (B) 32 1--n (C) 23 12--n (D) 23 1--n4、已知向量组 , ,,4321αααα线性无关,则向量组( ) (A)14433221 , , ,αααααααα++++线性无关(B)14433221 , , ,αααααααα----线性无关(C)14433221 , , ,αααααααα-+++线性无关 (D)14433221 , , ,αααααααα--++线性无关5、若A ~ B ,则 有 ( )(A) A 、B 有相同的特征矩阵 (B) B =A(C) 对于相同的特征值λ,矩阵A 与B 有相同的特征向量 (D) A 、B 均与同一个对角矩阵相似三、计算下列行列式 (13分)2、 D=2- 3 0 112 1 - 121 0 331- 2 1 4、D n = 11 1 111 x 1 1 (1)1 1 1 x 1 1 1 1 x x ++++a)设B= ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1 0 0 01- 1 0 00 1- 1 00 0 1- 1 ,C=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2 0 0 01 2 0 03 12 043 12 ,且矩阵A 满足 E C B C E A =''--)(1, 试将关系式化简并求A (12分)b)求向量组, )4 1,- 2, ,1(1'=α )2 3, 1, ,0( 2'=α, , )14 0, 7, 3,(3'=α , )10 1, 5, 2,( 4'=α)0 2,- 2, ,1(5'=α的一个极大无关组,并将其余向量用该极大无关组线性表示 (13分)六、k 为何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=+-=++---=+++=+++kx x x x x k x x x x x x x x x x x 9 10 5 - 3)5(2 31 6 3 13 2 4321432143214321 有无穷多个解并求出通解 (14分)七、用正交变换化二次型31232221321422),,(x x x x x x x x f +-+=为标准形,并写出相应的正交变换 (16分)八、若矩阵A=⎪⎪⎪⎭⎫ ⎝⎛0y 10 1- 01 x0 有三个线性无关的特征向量,证明:x – y = 0线性代数模拟试卷(三)一、填空题(每小题3分,共18分)1、A 是三阶方阵,且|A|=6,则 |(3A)-1|= 。
线性代数模拟题及答案
模拟试题一一. 填空题 (将正确答案填在题中横线上。
每小题2分,共10分)1.n 阶行列式D 的值为c, 若将D 的所有元素改变符号, 得到的行列式值为 .2.设矩阵A = ⎪⎪⎪⎭⎫ ⎝⎛101020101 ,矩阵X 满足 E AX + = X A +2 ,则X = ⎪⎪⎪⎭⎫ ⎝⎛2010301023.设n 阶矩阵A 满足 E A A 552+- = 0 ,其中E 为n 阶单位阵,则 1)2(--E A =4.设A ,B 均为3阶方阵,A 的特征值为 1,2,3,则EA +*= .5.当 λ 满足条件 时线性方程组 ⎪⎪⎩⎪⎪⎨⎧=+--=-++-=-++-=+--00004321432143214321x x x x x x x x x x x x x x x x λλλλ 只有零解.二、单项选择题 (每小题仅有一个正确答案, 将正确答案题号填入括号内。
每小题2分,共20分)1.131211232221333231333231232221131211222333 d a a a a a a a a a a a a a a a a a a ---=则=( ).① 6d ② ―6d ③ 4d ④ ―4d 2. 向量组 s ααα,,,21 的秩为s 的充要条件是( )。
① 向量组不含零向量② 向量组没有两个向量的对应分量成比例 ③ 向量组有一个向量不能由其余向量线性表示 ④向量组线性无关3. 当t =( )时,向量组 ),4,5( , )5,2,3( , )0,1,2(321t ===ααα线性相关。
① 5 ② 10③ 15 ④ 204.已知向量组α1,α2,α3线性无关,则向量组( )线性无关。
① α1+2α2+α3, 2α1+4α2+α3, 3α1+6α2 ② α1, α1+α2, α1+α2+α3 ③ α1+α2, α2+α3, α1+2α2+α3 ④ α1-α2, α2-α3, α3-α15. 已知⎪⎪⎪⎭⎫ ⎝⎛---=63322211t A , B 为三阶非零矩阵且AB = 0, 则( ). ① 当t = 4时,B 的秩必为1 ② 当t = 4时,B 的秩必为2 ③ 当t ≠ 4时,B 的秩必为1 ④ 当t ≠ 4时,B 的秩必为26.设非齐次线性方程组A X = b 中未知量个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则 .① r = m 时,方程组A X = b 有解 ② r = n 时,方程组A X = b 有唯一解 ③ m = n 时,方程组A X = b 有唯一解 ④ r < n 时,方程组A X = b 有无穷多解7. 设矩阵A 和B 等价,A 有一个k 阶子式不等于零,则B 的秩( )k.① < ② = ③ ≥ ④ ≤8. 一个向量组的极大线性无关组( ). ① 个数唯一 ② 个数不唯一③ 所含向量个数唯一 ④ 所含向量个数不唯一9. 下列关于同阶不可逆矩阵及可逆矩阵的命题正确的是( ). ① 两个不可逆矩阵之和仍是不可逆矩阵 ② 两个可逆矩阵之和仍是可逆矩阵 ③ 两个不可逆矩阵之积仍是不可逆矩阵 ④ 一个不可逆矩阵与一个可逆矩阵之积必是可逆矩阵10.已知任一n 维向量均可由n ααα,,,21 线性表示,则n ααα,,,21( )。
2022年线性代数试卷及答案6套
线性代数试卷及答案6套.试卷(一): 一. 填空题(每小题4分,共20分)1.已知正交矩阵P 使得⎪⎪⎪⎭⎫ ⎝⎛--=200010001AP P T ,则.________)(2006=+P A E A P T2.设A 为n 阶方阵,n λλ,,1 为A 的n 个特征值,则 ._________)det(2=A 3.设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有无数多个解的充分必要条件是:._________4.若向量组T T T t )3,2,(,)1,3,2(,)2,4,0(===γβα的秩为2,则._____=t5.,27859453251151)(32--=x x x x D 则0)(=x D 的全部根为:_________.二. 选择题 (每小题4分,共20分)1.行列式001010100 ---的值为( ).A. 1B. -1C. 2)1()1(--n n D. 2)1()1(+-n n2. 对矩阵n m A ⨯施行一次行变换相当于( ).A. 左乘一个m 阶初等矩阵B. 右乘一个m 阶初等矩阵C. 左乘一个n 阶初等矩阵D. 右乘一个n 阶初等矩阵 3. 若A 为n m ⨯矩阵,{},,0|,)(n R X AX X M n r A r ∈==<= 则( ). A. M 是m 维向量空间 B. M 是n 维向量空间 C. M 是r m -维向量空间 D. M 是r n -维向量空间 4. 若n 阶方阵A 满足,,02=A 则下列命题哪一个成立 ( ).A. 0)(=A rB. 2)(n A r =C. 2)(n A r ≥D. 2)(nA r ≤5. 若A 是n 阶正交矩阵,则下列命题哪一个不成立( ). A. 矩阵T A 为正交矩阵 B. 矩阵1-A 为正交矩阵 C. 矩阵A 的行列式是1± D. 矩阵A 的特征值是1±三. 解下列各题(每小题6分,共30分)1. 若A 为3阶正交矩阵, *A 为A 的伴随矩阵, 求).det(*A2. 计算行列式.111111111111aa a a 3. 设,,100002020B A AB A -=⎪⎪⎪⎭⎫ ⎝⎛=求矩阵.B4. 求向量组,)2,1,2,1(1T =α,)2,1,0,1(2T =α,)0,0,1,1(3T =αT )4,2,1,1(4=α的一个 最大无关组.5. 求向量T )1,2,1(=ω在基,)1,1,1(T =α,)1,1,0(T =βT )1,1,1(-=γ下的坐标. 四. (12分) 求方程组⎪⎩⎪⎨⎧=+--+=+++-=++-+631052372322543215432154321x x x x x x x x x x x x x x x的通解(用基础解系与特解表示).五.(12分) 用正交变换化下列二次型为标准型, 并写出正交变换矩阵3123222132122),,(x x x x x x x x x f -++= 六. 证明题(6分)设r ξξξβ ,,,021≠是线性方程组β=AX 对应的齐次线性方程组的一个 基础解系,η是线性方程组β=AX 的一个解, 求证ηηξηξηξ,,,,21+++r 线性无关.试卷(二):一.计算下列各题:(每小题6分,共30分)(1),180380162176380162225379162(2)求,3222E A A ++其中⎪⎪⎭⎫⎝⎛-=3112A(3)已知向量组T T T t ),2,1(,)3,3,2(,)3,2,0(321-===ααα线性相关,求.t (4) 求向量T )4,2,1(-=α在基T T T )1,2,1(,)1,1,0(,)1,0,1(321-===ααα下的坐标.(5) 设⎪⎪⎭⎫⎝⎛=5321A , 求A 的特征值.二.(8分) 设⎪⎪⎪⎭⎫ ⎝⎛=200002130A ,且,B A AB T +=求矩阵B.三. (8分) 计算行列式: 100200300321x c b a四. (8分) 设有向量组,)6,0,2,3,3(,)7,2,0,1,1(,)5,2,1,0,1(,)3,2,1,1,0(4321T T T T -=--===αααα 求该向量组的秩以及它的一个最大线性无关组.五. (8分) 求下列方程组的通解以及对应的齐次方程组的一个基础解系.⎪⎩⎪⎨⎧=--+=+-+-=-+-+.18257,432,1042354315432154321x x x x x x x x x x x x x x六. (8分) 求出把二次型323121232221222)(x x x x x x x x x a f -++++=化为标准形的正交变换,并求出使f 为正定时参数a 的取值范围.七. (10分) 设三阶实对称矩阵A 的特征值为3(二重根)、4(一重根),T )2,2,1(1=α是A 的属于特征值4的一个特征向量,求.A 八. (10分) 当b a ,为何值时,方程组⎪⎩⎪⎨⎧=++=++=++,233,1032,4321321321x bx x x bx x x x ax 有惟一解、无穷多解、无解?九.(10分) (每小题5分,共10分) 证明下列各题(1) 设A 是可逆矩阵, ,~B A 证明B 也可逆, 且.~11--B A (2) 设βα,是非零1⨯n 向量,证明α是n n ⨯矩阵T αβ的特征向量.试卷(三):一. 填空题(共20分)1. 设A 是n m ⨯矩阵,B 是m 维列向量,则方程组B AX =有唯一解的充分必要条件是:2. 已知E 为单位矩阵, 若可逆矩阵P 使得11223,P AP P A P E --+= 则当E A -可逆时, 3A =3. 若t 为实数, 则向量组α=(0,4,t ),β=(2,3,1),γ=(t ,2,3+t )的秩为:4. 若A 为2009阶正交矩阵,*A 为A 的伴随矩阵, 则*A =5. 设A 为n 阶方阵,12,,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则1ni i i i E A λ=-∑ =二. 选择题(共20分)1. 如果将单位矩阵E 的第i 行乘k 加到第j 行得到的矩阵为)),(,(k i j P 将矩阵n m A ⨯的第i 列乘k 加到第j 列相当于把A :A, 左乘一个));(,(k j i P B ,右乘一个));(,(k j i PC . 左乘一个));(,(k i j PD ,右乘一个)).(,(k i j P2. 若A 为m ×n 矩阵,B 是m 维非零列向量,()min{,}r A r m n =<。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
线性代数模拟试题及答案
...《 线性代数期末模拟试题一 》一、填空(本题20分每小题2分) 1.设)det(ij a 为四阶行列式,若23M 表示元素23a 的余子式,23A 表示元素23a 的代数余子式,则23M +23A = 。
2.三阶行列式3331221311000a a a a a 中只有位于两条对角线上的元素均不为零, 则该三阶行列式的所有项中有 项不为零,这一结论对n 阶行列式(填成立或不成立)。
3.设321,,ααα均为3维列向量,记矩阵),,,(321ααα=A 记矩阵),,2(313221αααααα-+-=B ,若6=B ,则=A 。
4.设矩阵⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=458271,131027241,213012C B A ,则=-C B A T2。
5.设矩阵A 可逆,且矩阵AB C =,所以矩阵C 一定可以由矩阵B 经过(填行或列)初等变换而得到。
6.设向量组43,21,,,αααα,若,3),,(,2),,(432321==ααααααR R 则1α一定可以由向量唯一的线性表示。
得分阅卷人...7.非齐次线性方程组b Ax =有 唯一的解是对应的齐次方程组0=Ax 只有零解的充分但不必要条件。
8.设3阶矩阵A 的行列式0=A ,则矩阵A 一定有一个特征值。
9.n 阶矩阵A 有n 个特征值1,2,, n ,n 阶矩阵B 与A 相似,则=B 。
10.向量组:[][]1,121,1,12121-==p p(填是或不是)向量空间2R 一个规范正交基。
二、单项选择(本题10分,每小题2分)注意:请务必将你的选择题的答案按要求填入下表,否则答案无效!1.设矩阵A 为n 阶方阵,则关于非齐次线性方程组b Ax =的解下列说法( )不正确(A ) 若方程组有解,则系数行列式0≠A ; (B ) 若方程组无解,则系数行列式0=A ;(C ) 若方程组有解,则或者有唯一解或者有无穷多解;...(D ) 系数行列式0≠A 是方程组有唯一解的充分必要条件. 2. 设A 为n 阶可逆矩阵,下列正确的是( ) (A ) (2)2T T A A =; (B) 11(2)2A A --=; (C) 111[()][()]T T A A ---=;(D) 111[()][()]T T T A A ---=。
线性代数试题库(含答案,适合期末复习,考研同学使用)
《线性代数》复习一:选择题1. 如果111213212223313233a a a a a a a a a = M ,则111213212223313233222222222a a a a a a a a a = ( )A. 8MB. 2 MC. MD. 6 M2. 若A ,B 都是方阵,且|A |=2,|B |=-1,则|A -1B|=( )A. -2B.2C. 1/2D. –1/2 3. 已知可逆方阵13712A --⎛⎫= ⎪-⎝⎭, 则A =( )A. 2713-⎛⎫ ⎪-⎝⎭B. 2713⎛⎫ ⎪⎝⎭C. 3712-⎛⎫ ⎪-⎝⎭D. 3712-⎛⎫ ⎪-⎝⎭4. 如果n 阶方阵A 的行列式|A | =0, 则下列正确的是( )A. A =OB. r (A )> 0C. r (A )< nD. r (A ) =05. 设A , B 均为n 阶矩阵, A ≠O , 且AB = O , 则下列结论必成立的是( )A. BA = OB. B = OC. (A +B )(A -B )=A 2-B 2D. (A -B )2=A 2-BA +B 2 6. 下列各向量组线性相关的是( )A. α1=(1, 0, 0), α2=(0, 1, 0), α3=(0, 0, 1)B. α1=(1, 2, 3), α2=(4, 5, 6), α3=(2, 1, 0)C. α1=(1, 2, 3), α2=(2, 4, 5)D. α1=(1, 2, 2), α2=(2, 1, 2), α3=(2, 2, 1)7. 设AX =b 是一非齐次线性方程组, η1, η2是其任意2个解, 则下列结论错误 的是( )A. η1+η2是AX =O 的一个解B. 121122ηη+是AX =b 的一个解C. η1-η2是AX =O 的一个解D. 2η1-η2是AX =b 的一个解8. 设A 为3阶方阵, A 的特征值为1, 2, 3,则3A 的特征值为( )A. 1/6, 1/3, 1/2B. 3, 6, 9C. 1, 2, 3D. 1, 1/2, 1/3 9. 设A 是n 阶方阵, 且|A |=2, A *是A 的伴随矩阵, 则|A *|=( )A. 21B. 2nC. 121-nD. 2n -110. 若⎪⎪⎪⎭⎫ ⎝⎛100321z x y 正定, 则x , y , z 的关系为( )A. x +y =zB. xy =zC. z >xyD. z >x +y参考答案:1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设2301λλ=-,则λ取值为( )A. λ=0或λ=-1/3B. λ=3C. λ≠0且λ≠-3D. λ≠0 2. 若A 是3阶方阵,且|A |=2,*A 是A 的伴随矩阵,则|A *A |=( ) A. -8 B.2 C.8 D. 1/2 3. 在下列矩阵中, 可逆的是( )A. 000010001⎛⎫ ⎪ ⎪⎝⎭B. 110220001⎛⎫ ⎪ ⎪⎝⎭C. 110011121⎛⎫ ⎪ ⎪⎝⎭D. 100111101⎛⎫⎪ ⎪⎝⎭4. 设n 阶矩阵A 满足A 2-2A +3E =O , 则A -1=( ) A. E B. 1(2)3-E A C. 23-A E D. A 5. 设A 1111a a a aa a a a a a a a⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭=, 若r (A )=1, 则a =( ) A.1 B.3 C.2 D.46. 若齐次线性方程组1231231230,0,0x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解, 则常数λ= ( )A.1B.4C. -2D. -17. 设A , B 均为n 阶矩阵, 则下列结论正确的是( )A. BA = ABB. (A -B )2=A 2-BA - AB +B 2C. (A +B )(A -B )=A 2-B 2D. (A -B )2=A 2-2 AB +B 28. 已知α1=(1, 0, 0), α2=(-2, 0, 0), α3=(0, 0, 3), 则下列向量中可以由α1, α2, α3线性表示的是( )A. (1, 2, 3)B. (1, -2, 0)C. (0, 2, 3)D. (3, 0, 5) 9. n 阶方阵A 可对角化的充分条件是( )A. A 有n 个不同的特征值B. A 的不同特征值的个数小于nC. A 有n 个不同的特征向量D. A 有n 个线性相关的特征向量10. 设二次型的标准形为2221233f y y y =-+,则二次型的正惯性指标为( )A.2B.-1C.1D.3参考答案: 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4阶方阵,且|A |=2,则|-2A |=( )A. 16B. -4C. -32D. 322. 行列式34657128k 中元素k 的余子式和代数余子式值分别为( )A. 20,-20B. 20,20C. -20,20D. -20,-20 3. 已知可逆方阵2713⎛⎫⎪⎝⎭=A , 则1-A =( ) A. 2713-⎛⎫ ⎪-⎝⎭ B. 2713⎛⎫ ⎪⎝⎭ C. 3712-⎛⎫ ⎪-⎝⎭ D. 3712-⎛⎫ ⎪-⎝⎭4. 如果n 阶方阵A 的行列式|A | =0, 则下列正确的是( )A. A =OB. r (A )> 0C. r (A )< nD. r (A ) =0 5. 设A , B 均为n 阶矩阵, 则下列结论中正确的是( )A. (A +B )(A -B )=A 2-B 2B. (AB )k =A k B kC. |k AB |=k |A |⋅|B |D. |(AB )k |=|A |k ⋅|B |k 6. 设矩阵A n ⨯n 的秩r (A )=n , 则非齐次线性方程组AX =b ( )A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解 7. 设A 为n 阶方阵, A 的秩 r (A )=r <n , 那么在A 的n 个列向量中( ) A. 必有r 个列向量线性无关 B. 任意r 个列向量线性无关C. 任意r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出 8. 已知矩阵44⨯A 的四个特征值为4,2,3,1,则A =( )A.2B.3C.4D.24 9. n 阶方阵A 可对角化的充分必要条件是( )A. A 有n 个不同的特征值B. A 为实对称矩阵C. A 有n 个不同的特征向量D. A 有n 个线性无关的特征向量 10. n 阶对称矩阵A 为正定矩阵的充要条件是( ) A. A 的秩为n B. |A |>0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案: 1.D 2. A 3. D 4. C 5. D 6. C 7. A 8. D 9. D 10. D1. 行列式3462578y x 中元素y 的余子式和代数余子式值分别为( )A. 2,-2B. –2,2C. 2,2D. -2,-2 2. 设A , B 均为n (n ≥2)阶方阵, 则下列成立是( ) A. |A +B |=|A |+|B | B. AB =BAC. |AB |=|BA |D. (A +B )-1=B -1+A -1 3. 设n 阶矩阵A 满足A 2-2A = E , 则(A -2E )-1=( )A. AB. 2 AC. A +2ED. A -2E4. 矩阵111122223333⎛⎫⎪= ⎪⎝⎭A 的秩为( )A.1B.3C.2D.45. 设n 元齐次线性方程组AX =O 的系数矩阵A 的秩为r , 则方程组AX =0的基 础解系中向量个数为( )A. rB. n - rC. nD. 不确定 6. 若线性方程组⎩⎨⎧=+-=+-212321321x x x x x x λ无解, 则λ 等于( )A.2B.1C.0D. -17.n 阶实方阵A 的n 个行向量构成一组标准正交向量组,则A 是( ) A.对称矩阵 B.正交矩阵 C.反对称矩阵 D.|A |=n8. n 阶矩阵A 是可逆矩阵的充要条件是( )A. A 的秩小于nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设η1, η2是非齐次线性方程组Ax =b 的任意2个解, 则下列结论错误的是( ) A. η1+η2是Ax =0的一个解 B.121122+ηη是Ax =b 的一个解 C. η1-η2是Ax =0的一个解 D. 2η1-η2是Ax =b 的一个解10. 设二次型的标准形为2221233f y y y =-+,则二次型的秩为( )A.2B.-1C.1D.3参考答案: 1. D 2. C 3. A 4. A 5. B 6. A 7.B 8. D 9.A 10. D1. 设000101a b b a =-=D ,则a ,b 取值为( )A. a =0,b ≠0B. a =b =0C. a ≠0,b =0D. a ≠0,b ≠0 2. 若A 、B 为n 阶方阵, 且AB = O , 则下列正确的是( ) A. BA =O B. |B |=0或|A |=0 C. B = O 或A = O D. (A -B )2=A 2+B 2 3. 设A 是3阶方阵,且|A |=-2,则|A -1|等于( )A. -2B. 12-C.2D. 124. 设矩阵A , B , C 满足AB =AC , 则B =C 成立的一个充分条件是( )A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵 5. 如果n 阶方阵A ≠O 且行列式|A | =0, 则下列正确的是( )A. 0<r (A ) < nB. 0≤r (A )≤ nC. r (A )= nD. r (A ) =0 6. 若方程组123232378902020x x x x x x bx ++=⎧⎪-+=⎨⎪+=⎩存在非零解, 则常数b =( )A.2B.4C.-2D.-47. 设A 为n 阶方阵, 且|A |=0, 则( ) A. A 中必有两行(列)的元素对应成比例B. A 中任意一行(列)向量是其余各行(列)向量的线性组合C. A 中必有一行(列)向量是其余各行(列)向量的线性组合D. A 中至少有一行(列)的元素全为零8. 设A 为3阶方阵, A 的特征值为1, 2, 3,则3A 的特征值为( )A. 1/6, 1/3, 1/2B. 3, 6, 9C. 1, 2, 3D. 1, 1/2, 1/3 9. 如果3阶矩阵A 的特征值为-1,1,2,则下列命题正确的是( ) A. A 不能对角化 B. 0=AC. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为2221233f y y y =--,则二次型的正惯性指标为( )A.2B.-1C.1D.3参考答案: 1. B 2. B 3. B 4. C 5. A 6. D 7. C 8. B 9. D 10. C1. 如果111213212223313233a a a a a a a a a =M ,则111112132121222331313233444a a a a a a a a a a a a ---=( ) A. -4M B. 0 C. -2 M D. M2. 设A ij 是n 阶行列式D =|a ij |中元素a ij 的代数余子式, 则下列各式中正确的是( ) A.10nij ij i a A ==∑B.10n ij ij j a A ==∑ C. 1nij ij j a A D ==∑D.121ni i i a A D ==∑3. 已知100010301⎛⎫⎪= ⎪⎪⎝⎭A ,200221333⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则|AB |=( )A.18B.12C.6D.364. 方阵A 可逆的充要条件是( )A. A ≠OB. |A |≠0C. A *≠OD. |A |=1 5. 若A 、B 为n 阶方阵, A 为可逆矩阵, 且AB = O , 则( )A. B ≠ O , 但r (B )<nB. B ≠ O , 但r (A )<n , r (B )<nC. B = OD. B ≠ O , 但r (A )=n , r (B )<n 6. 设β1, β2是非齐次线性方程组AX =b 的两个解, 则下列向量中仍为方程组 解的是( )A. β1+β2B. β1-β2C. 121(2)2+ββD. 12325+ββ7. n 维向量组α1, α2, ⋅⋅⋅ , αs 线性无关, β为一n 维向量, 则( )A. α1, α2, ⋅⋅⋅ , αs , β线性相关B. β一定能被α1, α2, ⋅⋅⋅ , αs 线性表出C. β一定不能被α1, α2, ⋅⋅⋅ , αs 线性表出D. 当s =n 时, β一定能被α1, α2, ⋅⋅⋅ , αs 线性表出 8. 设A 为三阶矩阵, A 的特征值为-2, 1, 2, 则A -2E 的特征值为( ) A. -2, 1, 2 B. -4, -1, 0 C. 1, 2, 4 D. 4, 1, -4 9.若向量α=(1,-2,1)与β=(2, 3,t )正交,则t =( )A.-2B.0C.2D.410. 若⎪⎪⎪⎭⎫ ⎝⎛100321z x y 正定, 则x , y , z 的关系为( ) A. x +y =z B. xy =z C. z >xy D. z >x +y参考答案: 1.A 2.C 3. C 4. B 5. C 6. D 7. D 8. B 9.D 10. C1.行列式3462578y x中元素x的余子式和代数余子式值分别为()A.–9,-9B.–9,9C. 9,-9D. 9,92.1111234533334344=()A.2B.4C.0D.13.设A为4阶矩阵, |A|=3,则其伴随矩阵A*的行列式|A*|=()A.3B.81C.27D.94.设A,B均为n阶可逆矩阵,则下列各式中不正确的是()A. (A+B)T=A T+B TB. (A+B)-1=A-1+B-1C. (AB)-1=B-1A-1D. (AB)T=B T A T5.设n阶矩阵A满足A2+A+E=O,则(A+E)-1=()A.AB. -(A+E)C.–AD. -(A2+A )6.设n阶方阵A,B,则下列不正确的是()A. r(AB)≤r(A)B. r(AB)≤r(B)C. r(AB)≤min{ r(A),r(B)}D. r(AB)>r(A)7.已知方程组AX=b对应的齐次方程组为AX=O,则下列命题正确的是()A.若AX=O只有零解,则AX=b有无穷多个解B.若AX=O有非零解,则AX=b一定有无穷多个解C.若AX=b有无穷解,则AX=O一定有非零解D.若AX=b有无穷解,则AX=O一定只有零解8.已知矩阵10102010x⎛⎫⎪=⎪⎝⎭A的一个特征值是0,则x=()A.1B.2C.0D.39.与100021012⎛⎫⎪=-⎪-⎝⎭A相似的对角阵是()A.113⎛⎫⎪=⎪⎝⎭Λ B.123⎛⎫⎪=⎪⎝⎭Λ C.113⎛⎫⎪=-⎪⎝⎭Λ D.114⎛⎫⎪=⎪⎝⎭Λ10.设A为3阶方阵,A的特征值为1,0,3,则A是()A.正定B.半正定C.负定D.半负定参考答案: 1. C 2. C 3. C 4. B 5. C 6. D 7. C 8. A 9. A 10.B1.设A,B都是n阶方阵,k是一个数,则下列()是正确的。
线性代数考试题库及答案(一)
线性代数考试题库及答案(⼀)线性代数考试题库及答案第⼀部分专项同步练习第⼀章⾏列式⼀、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2! (D)k n n --2)1(3. n 阶⾏列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若213332313133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶⾏列式中第1⾏元依次是3,1,0,4-, 第3⾏元的余⼦式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第⼀⾏元的代数余⼦式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四⾏元的余⼦式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性⽅程组=++=++=++000321321321x x kx x kx x kx x x 有⾮零解.⼆、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶⾏列式中项261365415432a a a a a a 所带的符号是.3.四阶⾏列式中包含4322a a 且带正号的项是.4.若⼀个n 阶⾏列式中⾄少有12+-n n 个元素等于0, 则这个⾏列式的值等于.5. ⾏列式=100111010100111.6.⾏列式=-0100002000010 n n .7.⾏列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶⾏列式的值为5,将其第⼀⾏与第5⾏交换并转置,再⽤2乘所有元素,则所得的新⾏列式的值为.10.⾏列式=--+---+---1111=+++λλλ111111111.12.已知三阶⾏列式中第⼆列元素依次为1,2,3, 其对应的余⼦式依次为3,2,1,则该⾏列式的值为.13.设⾏列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四⾏元的代数余⼦式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余⼦式的和为.15.设⾏列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余⼦式,则=+4241A A ,=+4443A A .16.已知⾏列式nn D00103100211253117.齐次线性⽅程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性⽅程组=+--=+=++0230520232132321kx x x x x x x x 有⾮零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解⽅程0011011101110=x x xx ; 4.1321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 2100012000002100012100012a a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=. 4.∏∑≤<≤=----=ni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明01 11333=c b a c ba 的充要条件是0=++cb a .参考答案⼀.单项选择题A D A C C D ABCD B B ⼆.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;⼀、单项选择题1. A 、B 为n 阶⽅阵,则下列各式中成⽴的是( )。
线性代数期末附答案 (1)
《线性代数》模拟试题(一)一、单项选择题(每小题3分,共27分)1. 对于n 阶可逆矩阵A ,B ,则下列等式中( )不成立. (A) ()111---⋅=B A AB (B) ())/1()/1(111---⋅=B A AB (C) ()111---⋅=B AAB (D) ()AB AB /11=-2. 若A 为n 阶矩阵,且0A =3,则矩阵=--1)(A E ( ).(A )2A A E +- (B )2A A E ++ (C )2A A E -+ (D )2A A E -- 3. 设A 是上(下)三角矩阵,那么A 可逆的充分必要条件是A 的主对角线元素为( ). (A) 全都非负 (B ) 不全为零 (C )全不为零 (D )没有限制4. 设 33)(⨯=ij a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a aa a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,那么( ).(A )B P AP =21 (B )B P AP =12 (C )B A P P =21 (D )B A P P =12 5. 若向量组m ααα,,,21 线性相关,则向量组内( )可由向量组其余向量线性表示.(A )至少有一个向量 (B )没有一个向量 (C )至多有一个向量 (D )任何一个向量6. 若⎪⎪⎪⎭⎫⎝⎛=210253143212A ,其秩=)(A R ( ).(A )1 (B )2 (C )3 (D) 47. 若方程组b AX =中方程的个数小于未知量的个数,则有( ).(A )b AX =必有无穷多解 (B )0AX =必有非零解 (C )0AX =仅有零解 (D )0AX =一定无解 8. 若A 为正交阵,则下列矩阵中不是正交阵的是( ).(A )1-A (B )A 2 (C )4A (D )TA 9. 若满足条件( ),则n 阶方阵A 与B 相似.(A )B A = (B ))()(B A R R = (C )A 与B 有相同特征多项式 (D )A 与B 有相同的特征值且n 个特征值各不相同 二、填空题(每空格3分,共21分)1. 若向量组321,,ααα线性无关,则向量组321211,,αααααα+++是线性 .2. 设A 为4阶方阵,且3)(=A R ,*A 是A 的伴随阵,则0=*X A 的基础解系所含的解向量的个数是 . 3. 设()2,1,11-=α,()5,,22k =α,()1,6,13-=α线性相关,则=k .4. 设⎪⎪⎪⎭⎫ ⎝⎛=300050004A ,则=--1)2(E A .5. 设三阶方阵A 有特征值4,5,6,则=A ,TA 的特征值为 ,1-A 的特征值为 .三、计算题(共42分) 1. (6分)计算行列式ba b b b b b a b b bb b a b b b b b a ----+----+2. (8分)已知矩阵⎪⎪⎪⎭⎫⎝⎛=200012021A ,求10A .3. (10分)设三阶方阵A 满足i i i αA α= )3,2,1(=i ,其中T )2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α,求A .4.(6分)在向量空间3R 中,取两组基:(I ),110,011,101321⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα (II ),411,222,301321⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=βββ设α在基I 下的坐标为()T3,1,1,求α在基α在基II 下的坐标.5. (12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=-+=+-=-+1610522321321321x x x x x x x x x λλ (1)有惟一解;(2)无解; (3)有无穷多解,并求其通解.四、证明题(每小题5分,共10分)1. 设A 为n 阶可逆阵,E A A =2. 证明A 的伴随阵A A =*.2. 若A ,B 都是n 阶非零矩阵,且0AB =. 证明A 和B 都是不可逆的.《线性代数》模拟试题(一)参考答案一、单项选择题(每题3分,共27分)1. B2. B3. C4. C5. A6. B7. B8. B9. D 二、填空题(每空3分,共21分)1. 无关;2. 3 ;3. 3 ;4. ⎪⎪⎪⎭⎫ ⎝⎛10000003121; 6. 120; 4,5,6; 615141,, 三、计算题(7+10+10+12=39分)1. 解:b a b b b b b a b b b b b a b b b b b a ----+----+a aa a a ab b bba 000000-+=4000000000a aa ab b b a ==. 2. 解:先求A 的特征值,λλλλ---=-20012021E A =)1)(3)(2(λλλ+--- 1,3,2321-===λλλ ,当21=λ时,由0X E A =-)2(得,A 的对应于2的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=1001ξ,当32=λ时,由0X E A =-)3(得,A 的对应于3的特征向量是⎪⎪⎪⎭⎫ ⎝⎛=0112ξ,当12-=λ时,由0X E A =+)(得,A 的对应于1-的特征向量是⎪⎪⎪⎭⎫ ⎝⎛-=0113ξ,取⎪⎪⎪⎭⎫ ⎝⎛=1001η⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=01121,0112132ηη.令()321,,ηηηP = ,则⎪⎪⎪⎭⎫⎝⎛-==-1321AP P AP P T,所以 T P P A 1010132⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛+--+=1010211021102110212000)13()13(0)13()13(.3. 解:因为)3,2,1(==i i i i αA α,所以⎪⎪⎪⎭⎫ ⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫ ⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫ ⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫⎝⎛---=21212222191,故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=62225020731. 4.解:()()⎪⎪⎪⎭⎫ ⎝⎛--=311211112,,,,321321αααβββ,(),311,,321⎪⎪⎪⎭⎫ ⎝⎛=αααα所以 ()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=-311311211112,,1321βββα ()()⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=323532321939192939591939295321,,311,,ββββββ, α在基II 下的坐标为()T 323532,,-.5. 解:)3)(5(61011211-+=---=λλλλD , (1)当0≠D ,即5-≠λ且3≠λ时,方程组有惟一解.(2)当5-=λ时,⎪⎪⎪⎭⎫ ⎝⎛-----==1610155122151)(βA,B −→−r ⎪⎪⎪⎭⎫ ⎝⎛---100013902151 此时3)(,2)(==B A R R ,方程组无解,(3)当3=λ时,⎪⎪⎪⎭⎫ ⎝⎛---==1610153122131)(βA,B −→−r ⎪⎪⎪⎭⎫⎝⎛--00001001717571778, 此时2)()(==B A R R ,方程组有无限多个解.,并且通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10757871717321c x x x )(R c ∈. 四、证明题(5+5=10分) 1. 证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2. 证:假设A 可逆,即1-A 存在,以1-Α左乘0AB =的两边得0B =,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0AB =的两边得0A =,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L 可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555n n A A +==。
5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。
由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。
可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分)7、设0333231232221131211≠=M a a a a a aa a a ,则行列式 A 。
A . B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
A .n D 中有两行(或列)元素对应成比例B .n D 中有一行(或列)元素全为零C .nD 中各列元素之和为零 D .以n D 为系数行列式的齐次线性方程组有非零解 9、对任意同阶方阵,A B ,下列说法正确的是 C 。
A.111)(---=B A AB B.B A B A +=+ C. T T T A B AB =)( D.AB BA =10、设,A B 为同阶可逆矩阵,0λ≠为数,则下列命题中不正确的是 B 。
A.11()A A --= B.11()A A λλ--= C.111()AB B A ---= D.11()()T T A A --=由运算法则,就有111()A A λλ--=。
11、设A 为n 阶方阵,且0A a =≠,则A *= C 。
A .a B .1aC .1n a -D .n a 因为11111n n n A A A A A A A A A AA--*-*--=⇒===⋅=。
12、矩阵12103102122a ⎛⎫⎪- ⎪ ⎪--⎝⎭的秩为2,则a = D 。
A. 2B. 3C.4通过初等变换,由秩为2可得:12101210310207321220500a a ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭:三、计算题(每小题7分,共42分)13、计算行列式:4111141111411114。
解:341117111111111111411741114110300========7=====7=73=18911417141114100301114711411140003⨯各列加到第一列提第一行乘-1到外面第一列上加到各行上。
14、计算行列式:44332211000000a b a b b a b a 。
解:先按第一行展开,再按第三行展开,有:4433221100000000a b a b b a b a =22221333314142323441()()a b a b a b a b b a a a b b a a b b a b -=--。
15、问λ取何值时,齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解。
解:齐次线性方程组有非零解,则系数行列式为零:()()231321232(1)124034(1)0=231=====011+232,0,2,3111111r r r r λλλλλλλλλλλλλλ-----------=---⇒===-- 16、设矩阵2011,3125A B -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,计算2211()B A B A ---。
解:因为2,7A B ==-,所以都可逆,有22112212311152()()1425919B A B A B A A B B AB B A B -----⎛⎫⎛⎫⎛⎫-=-=-=-==⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭。
17、解矩阵方程AX B X +=,求X ,其中A =⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---350211,101111010B 。
解:1()()AX B X A E X B X A E B -+=⇒-=-⇒=--,102313()1231301313A E ---⎛⎫ ⎪⇒-=--⇒ ⎪ ⎪-⎝⎭ 131()2011X A E B --⎛⎫ ⎪=--= ⎪⎪-⎝⎭。
18、设5200210000120011A ⎛⎫ ⎪⎪= ⎪- ⎪⎪⎝⎭,利用分块矩阵计算1A -。
解:111111221111205212121323,021251113112002500000132300011AA A A A A A A ---------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⇒==== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪-⎛⎫ ⎪== ⎪ ⎪⎝⎭⎪ ⎪-⎝⎭四、证明题(每小题5分,共10分)19、设n 阶方阵A 满足()30A E +=,证明矩阵A 可逆,并写出A 逆矩阵的表达式。
证明:因为()3322330(33)A E A A A E A A A E E +=+++=⇒++=-,从而212(33)33A A A E EA A A E ----=-⇒=---。
20、若矩阵TA A =-,则称矩阵A 为反对称矩阵,证明奇数阶反对称矩阵一定不是满秩矩阵。
证明:设A 为n 阶反对称矩阵,n 为奇数,则 (1)0TT n T A AA A A AA =-⇒=-=-=-⇒=,所以A 不可逆,即A 不是满秩矩阵。
第二套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 A 为3阶方阵,且2,A =-*A 是A 的伴随矩阵,则1*4A A -+= -4 。
因为:11111112442284A A A AA A A A A A *---*----==-⇒+=-===-。
2、A 为5×3矩阵,秩(A )=3,B = ⎪⎪⎪⎭⎫ ⎝⎛300020201,则秩(AB )= 3 。
因为B 可逆,AB 相当于对A 作列初等变换,不改变A 的秩。
3、12123,,,,ααβββ均为4维列向量,1123(,,,)A αβββ=,2123(,,,)B αβββ=,1A =,4B = ,则A B += 40 。
()12123121231212311232123(,2,2,2)(,2,2,2)8,,,)8,,,,,,8(14)40A B A B ααβββααβββααβββαβββαβββ+=+⇒+=+=+=+=+=。
4、121α⎛⎫ ⎪= ⎪ ⎪⎝⎭,32t β⎛⎫⎪= ⎪ ⎪⎝⎭,且4Tαβ=,则t = -4 。
()121362442Tt t t αβ⎛⎫⎪==++=⇒=- ⎪ ⎪⎝⎭。
5、如果n 元非齐次线性方程组AX B =有解,()R A r =,则当 n 时有唯一解;当 < n 时有无穷多解。
非齐次线性方程组有解的定义。
6、设四元方程组AX B =的3个解是123,,ααα。
其中1231213,1415ααα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,如()3R A =,则方程组AXB =的通解是01112131k ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
因为()3R A =,所以0AX =的基础解系含4-3=1个解向量;又2131,αααα--都是0AX =的解,相加也是0AX =的解,从而可得0AX =的一个解为:()()()213123121031122412513ξααααααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+-=+-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是AX B =的通解为:101112131X k k ξα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。
二、单项选择题(每小题4分,共24分) 7、对行列式做 D 种变换不改变行列式的值。
A.互换两行 B.非零数乘某一行C.某行某列互换D.非零数乘某一行加到另外一行8、n 阶方阵,,A B C 满足ABC E =,其中E 为单位矩阵,则必有 D 。
A.ACB E = B.CBA E = C.BAC E = D.BCA E =矩阵乘法不满足变换律,而D 中11ABC E A ABCA A EA BCA E --=⇒=⇒=。
9、矩阵121031021122t ⎛⎫ ⎪- ⎪ ⎪---⎝⎭的秩为2,则t = D A. 3 B. 4 C.5通过初等变换,由秩为2可得:121012103102073211220600t t ⎛⎫⎛⎫ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭:。
10、若方阵n n A ⨯不可逆,则A 的列向量中 C 。
A. 必有一个向量为零向量B. 必有二个向量对应分量成比例C. 必有一个向量是其余向量的线性组合D. 任一列向量是其余列向量的线性组合 方阵n n A ⨯不可逆,则A 的列向量线性相关,,由定义可得。
11、若r 维向量组m αααΛ21,线性相关,α为任一r 维向量,则 A 。
A. αααα,,21m Λ线性相关 B. αααα,,21m Λ线性无关C. αααα,,21m Λ线性相关性不定D. m αααΛ21,中一定有零向量 由相关知识可知,个数少的向量组相关,则个数多的向量组一定相关。
12、若矩阵54⨯A 有一个3阶子式为0,则 C 。
A.秩(A )≤2B. 秩(A )≤3C. 秩(A )≤4D. 秩(A )≤5由矩阵秩的性质可知:()45min{4,5}R A ⨯≤,而有一个3阶子式为0,不排除4阶子式不为0。