(完整版)人教版高中物理选修3-5知识点总结

合集下载

高中物理人教版选修3-5-知识点总结材料

高中物理人教版选修3-5-知识点总结材料

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。

此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。

人教版高中物理选修3-5知识点汇总_一册全_

人教版高中物理选修3-5知识点汇总_一册全_

人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。

2.相互作用力极大,即内力远大于外力。

3、速度都发生变化。

一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。

2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。

例如两个物体可能碰后分开,也可能粘在一起不再分开。

二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。

在固定的轨道上做实验——气垫导轨。

②怎样测量物体的质?用天平测量。

③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。

④数据处理:列表。

参考案例一气垫导轨和光电门研究碰撞。

参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。

参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。

实验设计思想巧妙之处在于用长度测量代替速度测量。

16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。

4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。

5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

物理选修3-5知识点总结一、动量守恒定律1、动量守恒定律的条件:1、不受力2、所受外力的矢量和为零3、外力的作用远小于系统内物体间的相互作用力(如碰撞、爆炸、反冲、核反应)2、动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v 1/+m 2v 2/(规定正方向),△p 1=—△p 2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒。

必须注意区别总动量守恒与某一方向动量守恒。

4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒,;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒,;动能守恒,;特例1:A、B 两物体发生弹性碰撞,设碰前A 初速度为v0,B 静止,则碰后速度0v m m m m v B A B A A +-=,vB=02v m m m B A A +.特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A 的速度等于碰前B 的速度,碰后B 的速度等于碰前A 的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。

5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv =MV (注意:几何关系)6、冲量:F 合t=△p (1、F 为合力2、动量变化注意规定正方向3、易错如物体与墙壁碰撞以等大速度返回,动量变化。

)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε=h ν。

h 为普朗克常数(6.63×10-34J.S)2、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体,黑体辐射只与温度有关,一般热辐射还与材料和表面状况有关。

高中物理选修3-5重要知识点总结

高中物理选修3-5重要知识点总结

选修3-5知识汇总一、动量1.动量:p =mv {方向与速度方向相同}2.冲量:I =Ft {方向由F 决定}3.动量定理:I =Δp 或Ft =mv t –mv o {Δp:动量变化Δp =mv t –mv o ,是矢量式}4.动量守恒定律:p 前总=p 后总或p =p ’也可以是/22/112211v m v m v m v m +=+ 5.(1)弹性碰撞: 系统的动量和动能均守恒'2'1221121v m v m v m v m +=+ ① 2'222'1122221121212121v m v m v m v m +=+ ② 1211'22v m m m v +=其中:当2v =0时,为一动一静碰撞,此时 (2)非弹性碰撞:系统的动量守恒,动能有损失'2'1221121v m v m v m v m +=+(3)完全非弹性碰撞:碰后连在一起成一整体 共v m m v m v m )(212211+=+,且动能损失最多6. 人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv1 = MV2 (注意:几何关系) 注: (1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等); (4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加; 思考1:利用动量定理和动量守恒定律解题的步骤是什么? 思考2:动量变化Δp 为正值,动量一定增大吗?(不一定) 思考3:两个物体组成的系统动量守恒,其中一个物体的动量增大,另一个物体的动量一定减小吗?动能呢?(不一定)思考4:两个物体碰撞过程遵循的三条规律分别是什么?思考5:一动一静两个小球正碰撞,入射球和被撞球的速度范围怎样计算?思考6:有哪些模型可视为一动一静弹性碰撞?有哪些模型可视为人船模型?人船模型存在哪些特殊规律? 思考7:同样是动量守恒,碰撞,爆炸,反冲三者有何不同?(有弹簧的弹性势能或火药的化学能,或者人体内的化学能转化为动能的情况下,总动能增大) 二、波粒二象性1、1900年普朗克能量子假说,电磁波的发射和吸收是不连续的,而是一份一份的E=hv2、赫兹发现了光电效应,1905年,爱因斯坦量解释了光电效应,提出光子说及光电效应方程3、光电效应① 每种金属都有对应的c ν和W 0,入射光的频率必须大于这种金属极限频率才能发生光电效应 ② 光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大(0W h E Km -=ν)。

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P = mv。

单位是skg .动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以m动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

最新人教版高中物理选修3-5知识点总结

最新人教版高中物理选修3-5知识点总结

最新人教版高中物理选修3-5知识点总结光电效应是指当光子与金属表面相互作用时,会使得金属表面的电子被激发并从金属表面射出的现象。

这表明光子具有能量。

2、光子说:爱因斯坦提出了光子说,即光子是一种具有能量和动量的微观粒子,它们在光波中传播。

3、光电效应方程:光电效应的实验结果可以用光电效应方程来描述,即E=hf-φ,其中E为光电子的最大动能,h为普朗克常数,f为光子的频率,φ为金属的逸出功。

这个方程表明,只有当光子的能量大于金属的逸出功时,光电子才能被激发并射出。

四、波粒二象性德布罗意波长1、波粒二象性:波粒二象性是指微观粒子既可以表现出波动性,也可以表现出粒子性。

这一概念最早由德布罗意提出。

2、德布罗意波长:德布罗意提出了一个公式λ=h/p,其中λ为德布罗意波长,h为普朗克常数,p为粒子的动量。

这个公式表明,微观粒子也具有波动性,其波长与动量成反比。

五、原子核的结构与稳定性1、原子核的结构:原子核由质子和中子组成,质子带正电荷,中子不带电荷。

原子核的直径约为10^-15米,而整个原子的直径约为10^-10米,因此原子核是原子中最小的部分。

2、原子核的稳定性:原子核的稳定性取决于质子数和中子数的比例。

当质子数和中子数相等时,原子核最稳定。

当质子数或中子数过多或过少时,原子核就不稳定,容易发生衰变。

以上是最新人教版高中物理选修3-5的知识点总结。

动量守恒定律是物理学中非常重要的一个定律,它可以用来解释许多物理现象。

量子理论的建立和黑体辐射是现代物理学的重要里程碑。

光电效应和波粒二象性则是揭示微观粒子本质的重要概念。

原子核的结构和稳定性则是核物理学的基础。

这些知识点的掌握对于理解物理学的基本原理和应用具有重要意义。

光的电磁说是光的波动理论的一种完美发展,但是它无法解释光电效应的现象。

光电效应是指在光的照射下,物体会发射出电子,这些发射出来的电子被称为光电子。

(实验图请见课本)研究结果表明光电效应存在饱和电流,这意味着入射光越强,单位时间内发射的光电子数越多;同时存在遏止电压和截止频率。

(完整版)高中物理选修3-5知识点汇总.docx

(完整版)高中物理选修3-5知识点汇总.docx

高中物理 3-5 知识点汇编第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft ;单位是N· s。

2.动量物体的质量与速度的乘积;矢量;状态量; p=mv;单位是 kg ·m/s;1kg ·m/s=1 N ·s。

3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

(内力:系统内物体之间的相互作用;外力:系统外物体对系统内物体的作用力)4.动量守恒定律成立的条件①系统不受外力或者所受外力的矢量和为零;②内力远大于外力;③如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

5.动量定理物体所受合外力的冲量等于动量的变化;I=mv 末-mv 初。

6.反冲:在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

物体 m1以速度 v0与静止的物体m2发生弹性碰撞,碰撞后两物体的速度分别为v1m1m2v0v22m1v0m1m2m1 m29.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。

2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。

3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。

4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量的整数倍,这个不可再分的最小能量值叫做能量子;并且=h,是电磁波的频率,h为普朗克常量,h=6.63 10 34 J· s;光子的能量为h。

人教版高中物理选修3-5:知识点归纳(图文并茂)

人教版高中物理选修3-5:知识点归纳(图文并茂)

物理选修3-5知识点总结一、量子理论的建立黑体和黑体辐射、1、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。

2、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。

(普朗克的能量子理论很好的解释了这一现象)3、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S)二、光电效应光子说光电效应方程1、光电效应(表明光子具有能量)(1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。

在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。

(2)光电效应的研究结果:①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:当所加电压U为0时,电流I并不为0。

只有施加反向电压,也就是阴极接电源正极阳极接电源负极,在光电管两级形成使电子减速的电场,电流才可能为0。

使光电流减小到0的反向电压Uc 称为遏止电压E k=eU c。

遏止电压的存在意味着光电子具有一定的初速度;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率高于截止频率时才能发生光电效应v c=w0/h;④光电效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。

规律:①任何一种金属,都有一个极限频率,入射光的频...........,才能产生光电效应;低于这个频率的光不能产生光电效应;.....率必须大于这个极限频率②光电子的最大初动能与入射光的强度无关............,一般..;③入射光照到金属上时,光电子的发射几乎是瞬时的..................,只随着入射光频率的增大..而增大不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。

高中物理人教版选修3-5-知识点总结(优选.)

高中物理人教版选修3-5-知识点总结(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结高二(3233)班选修3-5总结一、动量定理的理解与应用1.容易混淆的几个物理量的区别动量和冲量是两个容易混淆的物理量,它们的内容、名称、大小、矢量性、方向、瞬时性、相对性与绝对性联系等方面都有所不同。

动量是物体的运动状态,冲量是力对物体作用的效果,动量与速度同向,冲量与力同向。

动量变化量和动量变化率也与动量有所不同,需要注意它们之间的联系。

2.动量定理的应用动量定理可以应用于求解变力的冲量、XXX作用下曲线运动中物体动量的变化以及解释各种现象。

在处理连续流体问题时,也可以应用动量定理列式求解。

3.应用动量定理解题的步骤应用动量定理解题的步骤包括选取研究对象、确定物理过程及其始末状态、分析受力情况、规定正方向、列方程式和求解结果等。

在解题过程中,需要注意统一单位。

4.动量守恒定律与机械能守恒定律的比较动量守恒定律与机械能守恒定律都是物理学中重要的守恒定律。

它们的守恒条件、表达式、标矢性、理解和注意事项等方面都有所不同。

动量守恒定律适用于系统动量守恒的情况,而机械能守恒定律适用于机械能守恒的情况。

在应用这两个定律时,需要根据具体情况选择合适的定律。

动量守恒定律是物理学中的重要定律之一。

如果一个系统不受外力或所受合外力为零,那么系统的总动量将保持不变。

这可以用矢量式p1+p2=p1′+p2′来描述。

如果外力总冲量为零,系统总动量不变。

在选择正方向时,应该注意机械能守恒定律的规定。

机械能守恒定律指出,只有重力和弹力做功时,能量才会从动能转化为势能。

在标量式中,E k1+E p1=E k2+E p2.可以有重力和弹力以外的力作用,但必须是不做功的力。

选取零势能面时,可以考虑黑体辐射和能量子。

热辐射是一种与物体温度相关的辐射电磁波。

黑体是一种物体,它能够完全吸收入射的各种波长的电磁波而不发生反射。

黑体辐射的实验规律表明,一般材料的物体辐射的电磁波除与温度有关外,还与材料的种类及表面状况有关。

物理选修3-5-知识点总结提纲-精华版

物理选修3-5-知识点总结提纲-精华版

高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P = mv。

单位是skg .动量是矢量,其方向就是瞬时速度的方向。

m因为速度是相对的,所以动量也是相对的。

2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。

动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。

运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。

②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。

③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。

④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。

⑤动量守恒定律也可以应用于分动量守恒的情况。

有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。

⑥动量守恒定律有广泛的应用范围。

只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。

系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。

3、动量与动能、动量守恒定律与机械能守恒定律的比较。

动量与动能的比较:①动量是矢量, 动能是标量。

②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结
1、能量守恒定律:能量守恒是指能量在转化和传递过程中,总量保持不变。

能量守恒定律是自然界中最基本的定律之一,也是高中物理中的一个重要知识点。

2、动力学:动力学是研究物体运动状态变化的原因和规律的科学。

在高中
物理选修3-5中,主要包括牛顿运动定律、动量定理、动量守恒定律、机械能守恒定律等知识点。

3、振动与波:振动与波是自然界中常见的现象,也是高中物理选修3-5中的重要知识点。

主要包括简谐振动、机械波、电磁波等知识点。

4、光学:光学是研究光的现象和性质的科学。

在高中物理选修3-5中,主要包括光的折射、反射、干涉、衍射等知识点。

5、量子物理:量子物理是研究微观领域内原子、分子等物质的运动和变化
的科学。

在高中物理选修3-5中,主要包括量子力学的基本概念和原理,如波粒二象性、不确定性原理等。

高中物理选修3-5知识点

高中物理选修3-5知识点

高中物理选修3-5知识点物理选修3-5是高中理科生要学习的内容,具体哪些知识点要我们掌握?下面店铺给大家带来高中物理选修3-5知识点,希望对你有帮助。

高中物理选修3-5知识点(一)碰撞两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。

以物体间碰撞形式区分,可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。

碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。

各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。

动量与动能的比较①动量是矢量, 动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。

比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。

所以动量和动能是从不同侧面反映和描述机械运动的物理量。

动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。

这些区别在使用中一定要注意。

高中物理选修3-5知识点(二)动量可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。

②动量是物体机械运动的一种量度。

动量的表达式P=mv。

单位是。

动量是矢量,其方向就是瞬时速度的方向。

因为速度是相对的,所以动量也是相对的。

量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结

高中物理选修3-5知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII第一章动量1.冲量物体所受外力和外力作用时间的乘积;矢量;过程量;I=Ft;单位是N·s。

2.动量物体的质量与速度的乘积;矢量;状态量;p=mv;单位是kg ·m/s;1kg ·m/s=1 N·s。

3.动量守恒定律一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。

4.动量守恒定律成立的条件系统不受外力或者所受外力的矢量和为零;内力远大于外力;如果在某一方向上合外力为零,那么在该方向上系统的动量守恒。

5.动量定理系统所受合外力的冲量等于动量的变化;I=mv末-mv初。

6.反冲在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化;系统动量守恒。

7.碰撞物体间相互作用持续时间很短,而物体间相互作用力很大;系统动量守恒。

8.弹性碰撞如果碰撞过程中系统的动能损失很小,可以略去不计,这种碰撞叫做弹性碰撞。

9.非弹性碰撞碰撞过程中需要计算损失的动能的碰撞;如果两物体碰撞后黏合在一起,这种碰撞损失的动能最多,叫做完全非弹性碰撞。

第二章波粒二象性1.热辐射一切物体都在辐射电磁波,这种辐射与物体的温度有关,所以叫做热辐射。

2.黑体如果某种物体能够完全吸收入射的各种波长的电磁波而不发生反射,这种物质就是绝对黑体,简称黑体。

3.黑体辐射黑体辐射的电磁波的强度按波长分布,只与黑体的温度有关。

4.黑体辐射规律一方面随着温度升高各种波长的辐射强度都有增加,另一方面,辐射强度的极大值向波长较短的方向移动。

5.能量子普朗克认为振动着的带电粒子的能量只能是某一最小能量ε的整数倍,这个不可再分的最小能量值ε叫做能量子;并且ε=hν,ν是电磁波的频率,h为普朗克常量,h=6.63⨯1034-J·s;光子的能量为hν。

(完整版)人教版高中物理选修3-5知识点总结

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。

此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。

(完整版)高中物理选修3-5重点知识总结(精华版)

(完整版)高中物理选修3-5重点知识总结(精华版)

高二(3233)班选修3-5 总结一,动量定理的理解与应用1.容易混淆的几个物理量的区别(1) 动量与冲量的区别:内容名称矢量瞬时大小方向相对性与绝对性联系性与过程与v 同向相对性与参照物动量与动量p=mv 矢量瞬时量选择有关冲量无因果关与绝对性与参照物F冲量I=Ft 矢量过程量系同向选择无关(2) 动量、动量变化量、动量变化率的区别:内容名称与其他大小矢量性方向的联系与v同向动量p=mv 矢量—动量变与合力Δp=mv t-mv 0 矢量Δp=F 合·t 化量同向动量与合力ΔpΔt Δp=F矢量合Δt 变化率同向2.动量定理的应用(1)应用I=Δp求变力的冲量。

如果物体受到变力作用,则不能直接用I=F·t 求变力的冲量,这时可以求出该力作用下物体动量的变化Δp,即等效代换为变力的冲量I。

(2)应用Δp=F·t 求恒力作用下的曲线运动中物体动量的变化。

曲线运动中物体速度方向时刻在改变,求动量变化Δp=p′-p 需要应用矢量运算方法,比较复杂。

如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。

(3) 用动量定理解释现象。

用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,分析力与作用时间的关系;另一类是作用力一定,分析力作用时间与动量变化间的关系。

分析问题时,要把哪个量一定、哪个量变化搞清楚。

(4) 处理连续流体问题(变质量问题)。

通常选取流体为研究对象,对流体应用动量定理列式求解。

3.应用动量定理解题的步骤(1) 选取研究对象。

(2) 确定所研究的物理过程及其始、末状态。

(3) 分析研究对象在所研究的物理过程中的受力情况。

(4) 规定正方向,根据动量定理列方程式。

(5) 解方程,统一单位,求解结果。

4.动量守恒定律与机械能守恒定律的比较项目动量守恒定律机械能守恒定律不受外力或所受合外力守恒条件只有重力和弹力做功为零一般表p1+p2=p1′+p2′E k1+E p1=E k2+E p2 达式标矢性矢量式标量式守恒条件外力总冲量为零,系统只发生势能和动能相互转化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中物理选修3-5知识点总结一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。

2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。

②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。

3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。

②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。

③到1925年左右,量子力学最终建立。

4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。

②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。

③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。

量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。

(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。

这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。

①.物体在任何温度下都会辐射能量。

②.物体既会辐射能量,也会吸收能量。

物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。

辐射和吸收的能量恰相等时称为热平衡。

此时温度恒定不变。

实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。

2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。

黑体是指在任何温度下,全部吸收任何波长的辐射的物体。

3.实验规律:1)随着温度的升高,黑体的辐射强度都有增加;2)随着温度的升高,辐射强度的极大值向波长较短方向移动。

二.光电效应光子说光电效应方程Ⅰ1、光电效应(1)光电效应在光(包括不可见光)的照射下,从物体发射出电子的现象称为光电效应。

(2)光电效应的实验规律:装置:①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能发生光电效应,低于极限频率的光不能发生光电效应。

②光电子的最大初动能与入射光的强度无关,光随入射光频率的增大而增大。

③大于极限频率的光照射金属时,光电流强度(反映单位时间发射出的光电子数的多少),与入射光强度成正比。

④金属受到光照,光电子的发射一般不超过10-9秒。

2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。

所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说(1)量子论:1900年德国物理学家普郎克提出:电磁波的发射和吸收是不连续的,而是一份一份的,每一份电磁波的能量E=hv(2)光子论:1905年受因斯坦提出:空间传播的光也是不连续的,而是一份一份的,每一份称为一个光子,光子具有的能量与光的频率成正比。

即:E=hv 其中h为普郎克恒量h=6.63×10-34JS4、光子论对光电效应的解释金属中的自由电子,获得光子后其动能增大,当功能大于脱出功时,电子即可脱离金属表面,入射光的频率越大,光子能量越大,电子获得的能量才能越大,飞出时最大初功能也越大。

5.光电效应方程0W h E Km -=ν 当Vm=0 时,n 为极限频率n 0 , n 0=W 0/h三.康普顿效应Ⅰ康普顿效应是光子和电子作弹性碰撞的结果,具体解释如下:1. 若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。

2. 若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。

3. 因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。

康普顿效应说明光具有粒子性。

四.光的波粒二象性 物质波 概率波 不确定性关系Ⅰ 光既表现出波动性,又表现出粒子性大量光子表现出的波动性强,少量光子表现出的粒子性强;频率高的光子表现出的粒子性强,频率低的光子表现出的波动性强. 实物粒子也具有波动性 hεν=ph=λ 这种波称为德布罗意波,也叫物质波。

从光子的概念上看,光波是一种概率波 不确定性关系:π4h p x ≥∆∆五.原子核式结构模型Ⅰ1、电子的发现和汤姆生的原子模型: (1)电子的发现:1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、粒子散射实验和原子核结构模型(1)粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成①装置:②现象:a. 绝大多数粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数粒子发生较大角度的偏转c. 有极少数粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:由于粒子的质量是电子质量的七千多倍,所以电子不会使粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对粒子的运动产生明显的影响。

如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的粒了所受正电荷的作用力在各方向平衡,粒了运动将不发生明显改变。

散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

六.氢原子光谱Ⅰ氢原子是最简单的原子,其光谱也最简单。

1885年,巴耳末对当时已知的,在可见光区的14条谱线作了分析,发现这些谱线的波长可以用一个公式表示:除了巴耳末系,后来发现的氢光谱在红外和紫个光区的其它谱线也都满足与巴耳末公式类似的关系式。

氢原子光谱是线状谱,具有分立特征,用经典的电磁理论无法解释。

七.原子的能级Ⅰ玻尔的原子模型(1)原子核式结构模型与经典电磁理论的矛盾(两方面)a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽221111()3,4,5,...2R n n m λ-=-=⨯7 巴耳末公式 R=1.1010 里德伯常量然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E 2)跃迁到另一定态(设能量为E 1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv =E 2-E 1③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。

原子的能量不连续因而电子可能轨道的分布也是不连续的。

即轨道半径跟电子动量mv 的乘积等于h/2的整数倍,即:轨道半径跟电了动量mv 的乘积等于h/的整数倍,即n 为正整数,称量数数 (3)玻尔的氢子模型:①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。

)氢原子中电子在第几条可能轨道上运动时,氢原子的能量E n ,和电子轨道半径r n 分别为:……、、3211221=⎪⎭⎪⎬⎫==n r n r n E E n n其中E 1、r 1为离核最近的第一条轨道(即n =1)的氢原子能量和轨道半径。

即:E 1=-13.6ev,r 1=0.53×10-10m (以电子距原子核无穷远时电势能为零计算)②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。

按能量的大小用图开像的表示出来即能级图。

其中n =1的定态称为基态。

n =2以上的定态,称为激发态。

八.原子核的组成Ⅰ原子核1、天然放射现象(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。

这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性放射性元素:具有放射性的元素称放射性元素天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象天然放射现象:表明原子核存在精细结构,是可以再分的(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图(1):性质成份组成电离作用贯穿能力射线氦核组成的粒子流很强很弱射线高速电子流较强较强射线高频光子很弱很强2、原子核的组成(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子在原子核中:质子数等于电荷数核子数等于质量数中子数等于质量数减电荷数九.原子核的衰变半衰期Ⅰ(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒类 型衰变方程规 律 α 衰 变新 核衰 变新核⎩⎨⎧质量数不变电荷数增加1射线是伴随衰变放射出来的高频光子流在衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即:(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

一放射性元素,测得质量为m,半衰期为T ,经时间t 后,剩余未衰变的放射性元素的质量为m t tm m )21(0=十.放射性的应用与防护 放射性同位素Ⅰ人工放射性同位素:有些同位素具有放射性,叫做放射性同位素放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用粒子轰击铝时,发生核反应。

相关文档
最新文档