传感器与检测技术知识点

合集下载

传感器与检测技术(重点知识点总结)

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

传感器与检测技术基础知识

传感器与检测技术基础知识
传感器与检测技术基础知识
6.传感器的代号 依次为主称(传感器) 被测量—转换原理—序 号 主称——传感器,代号C; 被测量——用一个或两个汉语拼音的第一个大 写字母标记。见附录表2; 转换原理——用一个或两个汉语拼音的第一个 大写字母标记。见附录表3; 序号——用一个阿拉伯数字标记,厂家自定, 用来表征产品设计特性、性能参数、产品系列 等。例:应变式位移传感器: C WY-YB-20; 光纤压力传感器:C Y-GQ-2。
常见的被测物理量
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力, 压力,真空度,力矩,风速,流速, 流量;
声: 声压,噪声. 磁: 磁通,磁场. 温度: 温度,热量,比热. 光: 亮度,色彩
传感器与检测技术基础知识
2)按工作原理分类: 机械式,电气式,光学式,流体式等。
切削力测量应变片
传感器与检测技术基础知识
1.2.3 检测技术的发展趋势 检测技术的发展趋势主要有以下两个方面: 第一,新原理、新材料和新工艺将产生更多品质优
良的新型传感器。例如光纤传感器、液晶传感器、以高分 子有机材料为敏感元件的压敏传感器、微生物传感器等。
第二,检测系统或检测装置目前正迅速地由模拟式、 数字式向智能化方向发展。带有微处理机的各种智能化仪 表已经出现,这类仪表选用微处理机做控制单元,利用计 算机可编程的特点,使仪表内的各个环节自动地协调工作, 并且具有数据处理和故障诊断功能,成为一代崭新仪表, 把检测技术自动化推进到一个新水平。
传感器与检测技术基础知识
3. 显示记录装置 显示记录装置是检测人员和检测系统联系的主要环节, 主要作用是使人们了解被测量的大小或变化的过程。常用的 有模拟显示、数字显示和图像显示三种。 模拟式显示是利用指针对标尺的相对位置表示被测量的 大小。其特点是读数方便、直观,结构简单、价格低廉,在 检测系统中一直被大量应用;数字式显示则直接以十进制数 字形式来显示读数,实际上是专用的数字电压表,它可以附 加打印机,打印记录测量数值;图像显示,将输出信号送至 记录仪,从而描绘出被测量随时间变化的曲线,作为检测结 果,供分析使用。

传感器与检测技术(知识点总结)汇编

传感器与检测技术(知识点总结)汇编

传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成2 :传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型: 不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有: 压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“ 1 ”和“ 0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3 )数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结
1. 传感器的基本概念及分类
传感器是一种能够将被检测物理量转换为可被检测设备处理的电信号输出的器件。

根据被检测物理量的不同,传感器可分为光学传感器、声学传感器、温度传感器、压力传感器、流量传感器等。

2. 传感器的检测原理
传感器的检测原理通常分为以下几种:电学检测、磁学检测、光学检测、化学检测、声学检测、机械检测等。

3. 传感器的基本参数
传感器的基本参数包括:灵敏度、线性度、分辨率、重复性、稳定性、响应时间等。

4. 传感器的生产工艺
传感器的生产工艺主要包括晶体生长、半导体制备、陶瓷材料制备、薄膜技术、微加工技术等。

5. 传感器的应用领域
传感器广泛应用于工业控制、仪器仪表、环境监测、医疗设备、航空航天等领域。

6. 传感器与物联网技术的结合
传感器与物联网技术的结合,将传感器与互联网技术相结合,实现远程监测、智能控制与预警等功能,具有广泛的应用前景。

7. 检测技术的应用
除了传感器技术,还有其他的检测技术,如光谱分析、物质检测、图像识别等,在环境监测、工业检测与医疗诊断等领域有着重要的应用。

传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结

传感器与检测技术重点知识点总结传感器是一种能够感知、收集并转换物理量或化学量等信息的装置。

它广泛应用于各个行业和领域,如工业生产、环境监测、医疗设备、汽车等。

以下是传感器与检测技术的一些重点知识点总结。

1.传感器的基本原理-传感器是通过感知或测量物理量或化学量等信息,并将其转化为可用的电信号输出。

-常见的物理量包括温度、压力、湿度、光照强度、流量等;化学量包括气体浓度、pH值等。

-传感器的工作原理包括电学、热学、光学、化学以及机械等不同的原理。

-传感器的输出信号可以是电压、电流、频率、电阻等形式。

2.传感器的分类-按照感知的物理量或化学量的不同,传感器可以分为温度传感器、压力传感器、光敏传感器、流量传感器等。

-按照测量原理的不同,传感器可以分为电阻传感器、电容传感器、电感传感器、化学传感器等。

-按照输出信号类型的不同,传感器可以分为模拟输出传感器和数字输出传感器。

3.传感器的特性与参数-灵敏度:传感器响应物理量变化的能力,它决定了传感器的测量范围和分辨率。

-精度:传感器测量值与真实值之间的偏差,包括系统误差、随机误差等。

-响应时间:传感器从感知到输出响应所需的时间。

-可靠性:传感器在一定环境条件下长时间稳定工作的能力。

-线性度:传感器输出信号与输入物理量之间的线性关系。

-温度影响:传感器在不同温度下性能的稳定性。

-零点漂移:在长时间使用过程中,传感器输出信号发生的零点偏移。

-跨度漂移:在长时间使用过程中,传感器输出信号的量程偏移。

-电磁兼容性:传感器在干扰条件下的工作能力。

4.传感器的应用领域-工业生产:用于监测和控制工艺过程中的温度、压力、流量等参数,提高生产效率和质量。

-环境监测:用于监测大气污染、水质污染、噪声等环境参数,保护生态平衡和人类健康。

-汽车行业:用于汽车发动机的温度、压力、氧气浓度等参数的监测和控制,提高汽车性能和安全性。

-医疗设备:用于监测病人的体温、心率、血压等生理参数,辅助医疗诊断和治疗。

传感器与检测技术(重点知识点总结)

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

《传感器与检测技术》知识点总结

《传感器与检测技术》知识点总结

《传感器与检测技术》(传感器部分)知识点总结第一章 概述1.传感器的定义与组成(1)定义:能感受被测量并按照一定规律转换成可用输出信号的器件或装置。

(2)共性:利用物理定律或物质的物理、化学、生物等特性,将非电量转换成电量。

(3)功能:检测和转换。

(4)组成:5.开展基础理论研究寻找新原理6.传感器的集成化第二章 传感器的基本特性1.线性度(传感器的静态特性之一)(1)定义:传感器的输入、输出间成线性关系的程度。

(2)非线性特性的线性化处理:Y FSy Y FSy Y FSyo(a )切线或割线X mxo(b )过零旋转X mxo(c )端点平移X mx(3)非线性误差:γL = ± Δ L ma xY FS式中,γL ——非线性误差(线性度);ΔL m a x ——输出平均值与拟合直线间的最大偏差绝对 值;Y F S ——满量程输出。

2.灵敏度(传感器的静态特性之二)传感器在稳态信号作用下输出量变化对输入量变化的比值。

0 S n = y x xS n = dy dx (a) 线性测量系统(b) 非线性测量系统 0S n y = f x ) dy dx = C x 0 S n y = f ( )dy x 0 S n y = f (x ) dy dx(c) 灵敏度为常数(d) 灵敏度随输入增加而增加 (e) 灵敏度随输入增加而减小3.分辨率/分辨力(传感器的静态特性之三)分辨率是指传感器能够感知或检测到的最小输入信号增量。

分辨率可以用增量的绝对值 或增量与满量程的百分比来表示。

4.迟滞/回程误差(传感器的静态特性之四)(1)定义:在相同测量条件下,对应于同一大小的输入信号,传感器正、反行程的输出信 号大小不相等的现象。

开发新材料 采用新工艺 探索新功能具有同样功能的传感器集成化,即将同一类型的单个传感元件用集成工艺在同一平面上 排列起来,形成一维的线性传感器,从而使一个点的测量变成对一个面和空间的测量。

传感器及检测技术重点知识点总结

传感器及检测技术重点知识点总结

传感器及检测技术重点知识点总结传感器是一种能够感知环境中各种参数并将其转化为可量化的电信号输出的设备。

检测技术则是利用传感器对环境中各种参数进行检测和监测的技术。

以下是传感器及检测技术的重点知识点总结:1.传感器的基本原理:传感器的基本原理是将被测物理量转化为与之成正比的电信号输出。

传感器中常用的原理包括电阻、电容、电感、磁电效应、光电效应等。

2.传感器的分类:传感器可以根据测量参数的类型进行分类,如力传感器、温度传感器、湿度传感器、压力传感器等;也可以根据传感器的工作原理进行分类,如光传感器、声传感器、气体传感器、生物传感器等。

3.传感器的特性:传感器的特性包括精度、灵敏度、稳定性、线性度、响应时间等。

精度是指传感器输出与实际值之间的偏差;灵敏度是指传感器输出信号随被测量变化的程度;稳定性是指传感器输出信号在长时间内的稳定程度;线性度是指传感器输出与被测量之间的线性关系;响应时间是指传感器从检测到信号输出的时间。

4.传感器信号的处理和调节:传感器输出的信号常常需要经过放大、滤波、校准和线性化处理后才能得到有效的结果。

放大可以增大传感器输出信号的幅度;滤波可以去除传感器输出信号中的噪声;校准可以修正传感器输出的非线性特性;线性化可以将传感器输出信号与被测量参数之间建立线性关系。

5.传感器网络和通信技术:近年来,随着物联网的兴起,传感器网络和通信技术也得到了迅速发展。

传感器网络是一种由分布在空间中的大量传感器节点组成的网络,通过无线通信技术实现节点之间的数据传输。

这种网络可以实现大范围的环境监测和数据采集。

6.检测技术的应用领域:传感器及检测技术广泛应用于各个领域,如环境监测、医疗健康、交通运输、工业自动化等。

在环境监测方面,传感器可以用于测量环境中的温度、湿度、气体含量等;在医疗健康方面,传感器可以用于监测人体的心率、体温、血压等;在交通运输方面,传感器可以用于监测车辆的速度、加速度、位置等;在工业自动化方面,传感器可以用于监测生产线上的温度、压力、流量等。

传感器与检测技术知识点汇总

传感器与检测技术知识点汇总

N 2 Al 0 N 2la L L1 L2 0 e 2 Aa ( la ) l l 螺线管型的自感值:
0 e N 2 dL dL2 Kl Aa 2 dl dl l a a 灵敏度:
2.零点残余电压:产生原因:1.复阻抗不容易达到真正的平衡;2.磁化曲线的非线性产生高 次波;3.各种损耗;4.分布电容的影响;5.两个传感器的完全不对称;工频干扰。 引起问题:1.零点附近灵敏度下降;2.限制分辨率提高;3.线性度差;4.堵塞有用信号 解决方法:设计与工艺上力求磁路与线圈对称;拆线圈法来调整;电路补偿。 3.测气体压力传感器:改变空气间隙长度的电感传感器压差传感器(差接电感传感器) 4.变压器式传感器的灵敏度:输出电压与衔铁位移之比。 灵敏度:1.与二次线圈匝数 N2 成正比;2.与激励电压幅值成正比;3.在低频时,与频率成正 比。 低频时
)*100%
当电刷处于行程中心位置时,负载误差最大。并且随
着负载系数的增大时,即减小负载电阻时,负载误差也随之增大。减小负载误差的方法:采 用高输入阻抗放大器; 或者限制电位器工作的区间来减少负载误差; 或将电位器空载特性设 计成某种上凸特性,即设计非线性电位器。 5.非线性电位器的空载特性曲线与线性电位器的负载特性曲线是以特性直线为镜像的。 6.电位器式电阻传感器:压力传感器、位移传感器、测小位移传感器、加速度传感器 7.应变片式电阻传感器:缺点:在大的应变状态下具有较大的非线性;输出信号弱;不适 用于高温环境中(1000 度以上) ;应变片实际测出的只是某一面积上的平均应变。 8.金属电阻应变片敏感栅:灵敏度系数 K0 比较大,电阻温度系数小,电阻率大,机械强度 高。 9.应变片的主要特性:横向效应、机械滞后、零漂及蠕变、应变特性、疲劳寿命、动态响应 特性 10.横向效应:为减少横向效应产生的误差,一般是减少 r,增大 L,采用直角线栅式或箔式 应变片,因为箔式应变片的截面积比栅丝大,电阻值小,电阻变化量小。 11.机械滞后:产生的原因:粘合剂性能差;过载;过热 12.零漂和蠕变:两者同时存在,蠕变值里面包含同一时间的零漂值;产生原因:在粘贴应 变片时,本身被压缩或拉伸的力 13.应变极限、疲劳寿命;1.应变片的敏感栅或引线断路;应变片输出指示应变的极值 l 变化 10%;应变片输出信号波形上出现穗状尖峰。 14.单丝自补偿法:

传感器与检测技术知识点概括

传感器与检测技术知识点概括

1、传感器是能感受被测量并按照一定规律转换成可用输出信号的器件或装置。

2、传感器通常由直接响应于被测量的敏感元件、产生可用信号输出的转换元件、以及相应的信号调节转换电路组成。

3、要实现不失真测量,检测系统的幅频特性应为常数4、传感器静态特性是指传感器在被测量的各个值处于稳定状态时,输出量和输入量之间的关系称为传感器的静态特性。

5,测量系统的静态特性指标主要有线性度、迟滞、重复性、分辨率、灵敏度、漂移、稳定性、温度稳定性、各种抗干扰稳定性等。

(请写出反映传感器的五种性能指标,及写出三种解释传感器指标?精度、分辨率、灵敏度、线性度、迟滞。

反映传感器准确度的指标是精度,反映传感器灵敏度的指标是灵敏度,反映传感器稳定性的指标是迟滞)6,传感器对随时间变化的输入量的响应特性叫传感器动态性。

7,动态特性中对一阶传感器主要技术指标有时间常数。

动态特性中对二阶传感器主要技术指标有固有频率、阻尼比。

8,从时域(延迟时间,上升时间,响应时间,超调量)和频域(幅频特性,相频特性)两个方面分别采用瞬态响应法和频率响应法来分析动态特性。

9,幅频特性是指传递函数的幅值随被测频率的变化规律,相频特性是指传递函数的相角随被测频率的变化规律。

传感器中超调量是指超过稳态值的最大值□A (过冲)与稳态值之比的百分数。

电阻式传感器10,金属材料的应变效应是指金属材料在受到外力作用时,产生机械变形,导致其阻值发生变化的现象叫金属材料的应变效应。

11,半导体材料的压阻效应是半导体材料在受到应力作用后,其电阻率发生明显变化,这种现象称为压阻效应。

12,金属丝应变片和半导体应变片比较其相同点是它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化。

13,金属丝应变片和半导体应变片比较其不同点是金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。

传感器与检测技术知识点

传感器与检测技术知识点

第一章传感与检测技术理论基础1.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。

可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。

在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。

在计算相对误差时也必须知道绝对误差的大小才能计算。

采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。

引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。

2.用测量范围为-50~+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。

解:绝对误差2140142=-=∆kPa 实际相对误差%43.1%100140140142=⨯-=δ标称相对误差%41.1%100142140142=⨯-=δ引用误差%1%10050150140142=⨯---=)(γ3.什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。

随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。

通过增加测量次数估计随机误差可能出现的大小,从而减少随机误差对测量结果的影响。

第二章传感器概述2-1什么叫传感器?它由哪几部分组成?它们的作用及相互关系如何?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。

通常由敏感元件和转换元件组成。

敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部份。

传感器与检测技术(知识点总结)

传感器与检测技术(知识点总结)

传感器与检测技术知识总结第一章概述1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置.一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量.二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化.(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器).(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度.4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源.而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式).6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

传感器与检测技术部分重点

传感器与检测技术部分重点

1. 传感器是一种检测装置,能感受到被测量的非电量信息,如温度、压力、流量、位移等,并将检测到的信息,按一定规律转换成电信号或其他所需形式的信息输出,用以满足信息的传输、处理、存储、显示、记录或控制等要求。

2. 传感器一般由敏感元件,转换元件和转换电路组成。

3. 传感器的定义:(1)传感器是一种能够检测被测量的器件或装置;(2)被测量可以是物理量、化学量或生物量等;(3)输出信号要便于传输、转换、处理、显示等,一般是电参量;(4)输出信号要正确地反映被测量的数值、变化规律等,即两者之间要有确定的对应关系,且应具有一定的精确度。

4. 传感器特性主要是指输出与输入之间的关系。

当输入量为常量,或变化极慢时,这一关系称为静态特性。

当输入量随时间较快地变化时,这一关系称为动态特性。

5. 实际曲线与其两个端点连线(拟合曲线)之间的偏差称为传感器的非线性误差。

取其最大偏差与理论满量程之比作为评价线性度(或非线性误差)的指标。

6. 传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。

产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等7. 重复性是指传感器的输入量按同一方向变化,作全量程连续多次测量时所得到的曲线不一致的程度。

8. 传感器输出的变化量Δy 与引起该变化量的输入量变化Δx 之比即为其静态灵敏度。

9. 漂移指在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化 。

10. 传感器的标定工作分为静态标定和动态标定两种。

传感器的静态标定主要是检验、 测试传感器或整个系统的静态特性指标。

11. 预处理电路把传感器输出的非电压量转换成具有一定幅值的电压量; 数据采集系统把模拟电压量转换成数字量;计算机接口电路把A/D 转换后的数字信号送入计算机,并把计算机发出的控制信号送至输入接口的各功能部件。

12. 调制是利用信号来控制高频振荡的过程,进行放大和传输,已期得到最好的放大和传输效果,通常有调幅、调相和调频调制三种方法。

传感器与检测技术(重点知识点总结)

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。

一、传感器的组成2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。

①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。

②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。

③基本转换电路是将该电信号转换成便于传输,处理的电量。

二、传感器的分类1、按被测量对象分类(1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。

(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。

2、传感器按工作机理(1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。

(2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。

3、按被测物理量分类如位移传感器用于测量位移,温度传感器用于测量温度。

4、按工作原理分类主要是有利于传感器的设计和应用。

5、按传感器能量源分类(1)无源型:不需外加电源。

而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型;(2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。

6、按输出信号的性质分类(1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF);(2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性;(3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0.1传感器:处于检测与控制系统之首,是感知、获取与检测信息的窗口0.2传感器是能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常敏感元件和转换元件以及相应的信号调节转换电路组成。

1.1输入量为常量或变化极慢时传感器输入-输出特性。

指标:线性度(大)、迟滞(小)、重复性(好)、分辨力(强)、稳定性(高)、温度稳定性(高)、各种抗干扰稳定性(高)。

传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。

测量系统的静态特性指标通常用输入量与输出量的对应关系 来表征。

人们根据传感器的静态特性来选择合适的传感器1.2最小二乘法准则的几何意义在于拟和直线精密度高即误差小。

相关公式:1.3非接触式测量:1热电式传感器:测量温度2光纤传感器:测量光信号3电容式传感器:测量位移接触式测量:1电位器式压力传感器:测量压力2 应变片式电阻传感器:测量电阻值 3应变式扭矩传感器:测量扭矩二应变式2.1电阻应变片式传感器按制造材料可分为①金属 材料和②半导体 材料。

它们在受到外力作用时电阻发生变化,其中①的电阻变化主要是由 电阻压阻效应_ 形成的,而②的电阻变化主要是由 电阻率变化 造成的。

半导体 材料传感器的灵敏度较大。

2.2简述电阻应变片式传感器的工作原理。

(压阻效应)(4分)答:电阻应变片的工作原理是基于电阻压阻效应,即在导体产生机械变形时,它的电阻值相应发生变化。

2.3 金属电阻应变片由四部分组成:敏感栅、基底、盖层、黏结剂、引线。

②其主要特性参数:灵敏系数、横向效应、机械滞后、零漂及蠕变、温度效应、应变极限、疲劳寿命、绝缘电阻、最大工作电流、动态响应特性。

2.4温差①在外界温度变化的条件下,由于敏感栅温度系数及栅丝与试件膨胀系数()之差异性而产生虚假应变输出有时会产生与真实应变同数量级的误差,所以必须补偿温度误差的措施。

②方法:1自补偿法:包括单丝自补偿法和组合式自补偿法 2线路补偿法 (平衡条件:电桥相邻两臂电阻的比值相等。

)三 电感式 利用线圈自感或互感的变化来实现测量的一种装置。

3.1变气隙式自感传感器,当街铁移动靠近铁心时,铁心上的线圈电感量 增加 .变面积式自感传感器,当衔铁移动使磁路中空气缝隙的面积增大时,铁心上线圈的电感量增大3.2 在变压器式传感器中,一次侧和二次侧互感M 的大小与 绕组匝数 成正比,与 穿过线圈的磁通成正比,与磁回路中磁阻成反比。

为反映差值互感,应将两个一次绕组的同名端顺向串联,将两个两次绕组的同名端反向串联3.3以自感式传感器为例说明差分式传感器可以提高灵敏度的原理。

差分式灵敏度 t αs g ββ与000202l S W L μ=⎪⎪⎭⎫ ⎝⎛-∆+=-∆+=-=∆122)(2000002000200020l l l l S W l S W l l S W L L L μμμ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛∆+∆--=...1220000l l l l l L S与单极式灵敏度比较后可见差分式灵敏度提高一倍,非线性大大减少。

3.4测量电路 (相敏检波电路 差分整流电路)如果用电压表直接测量:总有零位电压输出,零位附近的小位移量测量困难。

要求:反映位移的大小和方向;补偿零点残余电压。

(相敏检波电路(工作原理):通过鉴别相位来辨别位移的方向,差动变压器输出的调幅波经相敏检波后,输出反映位移大小和极性的测量信号。

即正位移输出正电压,负位移输出负电压,电压值的大小表明位移的大小,电压的正负表示位移的方向。

3.5非线性原因是改变了空气隙长度 ②改善方法是让初始空气隙距离尽量小,同时灵敏度的非线性也将增加,这样的话最好使用差分式传感器,S=...其灵敏度增加非线性减少。

差动变压器原理:根据变压器的基本原理制成的,并且次级绕组用差动形式连接。

什么是零残电压?零残电压产生的原因以及如何减小零残电压?衔铁处于零点附近时存在的微小误差电压称为零点残余电压。

产生零点残余电压的具体原因有:① 两个次级线圈的电气参数、几何尺寸或磁路参数不完全对称;② 存在寄生参数,如线圈间的寄生电容及线圈、引线与外壳间的分布电容;③ 电源电压含有高次谐波;④ 磁路的磁化曲线存在非线性。

减小零点残余电压的方法通常有:① 提高框架和线圈的对称性;② 减小电源中的谐波成分;③ 正确选择磁路材料,同时适当减小线圈的励磁电流,使衔铁工作在磁化曲线的线性区; ④ 采用相敏检波电路; ⑤ 串联电阻用来减小零残电压的基波分量;并联电阻、电容用来减小谐波分量;加反馈支路用来减小基波和谐波分量。

四电容式 转换电路:调制型 脉冲型(脉冲型转换电路的基本原理是利用电容的充放电实现。

性能较好较常用的电路为双T 形充放电网络 和脉冲调宽型电路)4.1差分式电容传感器的灵敏度比单极式提高一倍,而且非线性也大为减小。

4.2电容式传感器类型:变极距型电容传感器(其为非线性)、变面积型电容传感器、变介电常数型电容传感器。

(测量液位的高度) 4.3电容式使用时要注意保护绝缘材料的的绝缘性能;消除和减小边缘效应;消除和减小寄生电容的影响;防止和减小外界的干扰。

五霍尔式5.1霍尔元件灵敏度的物理意义是表示在单位磁感应强度和单位控制电流时的霍尔电压的大小。

5.2区别:磁电式传感器是利用导体和磁场发生相对运动而在导体两端(发电机的原理) 产生感应电势的;而霍尔式传感器为霍尔元件(半导体)在磁场中有电磁效应(霍尔效应)而输出电势的。

霍尔式传感器可用来测量电流,磁场,位移,压力,振动,转速。

霍尔元件的不等位电压是霍尔组件在额定控制电流作用下,在无外加磁场时,两输出电极之间的空载电势,可用输出的电压表示。

不等位的解决方法:并联电阻调电桥平衡温度补偿方法:a 分流电阻法:适用于恒流源供给控制电流的情况。

b 电桥补偿法组成:霍尔元件、激励源、磁路系统和测量电路 应用:微位移测量原理(梯度磁场:磁场梯度变化越大,灵敏度越高;梯度变化越均匀,霍尔电势与位移的关系越接近线性。

)引线:上下是霍尔输出端阴线 左右是控制电流端引线六 压电式⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛∆+∆--=...120000l l l l l L S6.1 原理:利用晶体的压电效应将振动加速度转化为电荷量。

压电材料有:石英晶体、一系列单晶硅、多晶陶瓷、有机高分子聚合材料压电效应:某些电介质在沿一定的方向受到外力的作用变形时,由于内部电极化现象同时在两个表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。

晶体受力所产生的电荷量与外力的大小成正比。

这种(极化)现象称为正压电效应。

反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。

压电陶瓷是多晶铁电体。

不具有压电性,必须在一定温度下做极化处理.•6.3答:如作用在压电组件上的力是静态力,则电荷会泄露,无法进行测量。

所以压电传感器通常都用来测量动态或瞬态参量。

6.4压电式传感器的前置放大器的作用是 一把它的高输出阻抗变换为低输出阻抗;二是放大传感器输出的微弱信号。

基本考虑点是如何更好的改变传感器的频率特性,以使传感器能用于更广泛的领域。

电荷放大器的输出电压只与反馈电容有关,而与连接电缆无关七光电式7.1. 光电效应可分为:1、 外光电效应:指在光的照射下,材料中的电子逸出表面的现象。

光电管及光电倍增管均属这一类。

它们的光电发射极是用具有这种特性的材料制造的。

2、 内光电效应:指在光的照射下,材料的电阻率发生改变的现象。

光敏电阻即属此类。

3、光生伏特效应:材料内部产生一定方向的电压(光电池)光电池应工作在电压源状态7. 2光栅传感器中莫尔条纹有位移放大作用。

光栅移动的方向:垂直对垂直莫尔条纹宽度:BH 约等于W 除以θ 长度:2BH 放大倍数K 约等于BH 除以θ L=nW7.4光电效应:当用光照射物体时,物体受到一连串具有能量的光子的轰击,于是物体材料中的电子吸收光子能量而发生相应的电效应(如电阻率变化、发射电子或产生电动势等)。

7.5光纤传感器工作原理:利用外界物理因素改变光纤中光的强度,相位,偏振态或波长从而对外界因素进行测量和数据传输。

7.7光电传感器在使用中需要进行温度补偿,因为半导体材料容易受温度影响,而其直接影响光电流的值,所以还需要温度补偿装置。

7.8 光纤传感器的工作原理:光导纤维的光的全内反射。

特点:以电荷作为信号,通过电荷的存贮和转移,来实现信号的存储和转移。

7.9光纤传感器利用光导纤维,按其工作原理来分有功能型(或称物性型、传感型)与非功能型(或称结构型、传光型)两大类。

功能型光纤传感器其光纤不仅作为光传播的的波导,而且具有测量的功能。

非功能型光纤传感器其光纤只是作为传光的媒介,还需加上其他敏感元件才能组成传感器。

功能型(振幅调制型,光相位调制型) 选单模 非功能型 选多模。

光导纤维的分类:按折射率分:阶跃型和渐变型 按传输模式分:单模光纤和多模光纤 八热电式传感器8.1热电阻传感器分类:①铂(pt )电阻传感器 ②铜(Cu)电阻传感器 ③铁电阻和镍电阻8.2答:①热电动势 ②接触电动势 ③温差电动: 热电偶测温原理热电偶所产生的热电动势是两种导体的接触电动势(珀尔帖电动势)和单一导体的温差电动势(汤姆逊电动势)组成的,其表达式为T B A TT B A d N N T T e k )(ln )(00σσ-⎰+-热电偶三定律:a 中间导体定律 b 中间温度定律:EAB(T, T0)=EAB(T,Tn)+EAB(Tn,T0) c 参考电极定律:误差因素:参考端温度受周围环境的影响 减小误差的措施有:a 0oC 恒温法b 计算修正法(冷端温度修正法)c 仪表机械零点调整法d 热电偶补偿法e 电桥补偿法 、f 冷端延长线法 :是在连接导线和热电偶之间,接入延长线,它的作用是将热电偶的参考端移至离热源较远并且环境温度较稳定的地方,以减小冷端温度变化的影响。

8.4 三线连接法的作用是使电桥不会产生温度误差;四线连接法使调零电位器的接触电阻和指示仪表串联,接触电阻的不稳定不会破坏电桥的的平衡和正常的工作状态。

答:电阻温度计利用电阻随温度变化的特性来测量温度。

热电偶温度计是根据热电效应原理设计而成的。

前者将温度转换为电阻值的大小,后者将温度转换为电动势大小。

热电式传感器是将温度变化转换为电量的装置。

热电阻测温特点:精度高、线性好、物理和化学性质稳定等,热敏电阻的电阻-温度特性呈指数关系,必须对热敏电阻输出特性线性化;多数热敏电阻(半导体)温度系数为负,而热电阻(金属导体)为正。

十二 标定12.1:传感器的标定分为静态标定和动态标定两种。

静态标定的目的是确定传感器静态特性指标,如线性度、灵敏度、滞后和重复性等。

相关文档
最新文档