勾股定理的应用最短距离

合集下载

勾股定理最短距离问题

勾股定理最短距离问题

《勾股定理》的应用专题之——最短距离问题姓名:一、课前热身1.如图,一条河同一侧的两村庄A、B,其中A、B到河岸最短距离分别为AC=1km,BD=2km,CD=4cm,现欲在河岸上建一个水泵站向A、B两村送水,当建在河岸上何处时,使到A、B两村铺设水管总长度最短,并求出最短距离。

2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC.二、典型例题例1:如图,C为线段BD上一动点,分别过点B D作AB⊥BD,ED⊥BD,连结AC、EC,已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC十CE的长;(2)试求AC十CE的最小值;例2:一只蚂蚁从长为4cm、宽为3 cm,高是5 cm的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是多少?BA例3:如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.三、巩固练习1.(青岛市)如图1,长方体的底面边长分别为1cm 和3cm ,高为6cm.如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;2.如图3,是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是 dm3..如图,长方体的长、宽、高分别为4,2,1,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?A B A1 B1 D CD1 C121 42032A B 图3 B A 6cm 3cm1cm 图1。

勾股定理应用之最短路径问题

勾股定理应用之最短路径问题

线路是多少?
A
A
20
3

3
2 B
3
2 B
台阶中的最值问题
如图是一个三级台阶,它的每一级的长、宽和高分别等于20cm,3cm和2cm,
请你想一想,一只蚂蚁从A点出发,沿着台阶面爬到B点去吃可口的食物,最短
线路是多少?
解: 如图,将台阶展开,
A
20
C
3
BC=(3+2) ×3=15 AC=20

∵△ABC为直角三角形
3
2
答:最短路线是25cm。
3
2
B
利用勾股定理解决实际问题的一般思路:
1.在解决实际问题时,首先要画出适当的示意图,将实际问题抽象为 数学问题,并构建直角三角形模型,再运用勾股定理解决实际问题。
2.立体图形中路线最短的问题,往往是把立体图形展开,得到平面图 形。根据“两点之间,线段最短” 确定行走路线,再根据勾股定理 计算出最短距离。
正方体中的最值问题 如果把圆柱换成棱长为1cm的正方体盒子,蚂蚁沿着表面从A点爬行到
B点需要的最短路程又是多少呢?
B 我怎么走 会最近呢?
A
正方体中的最值问题
如果把圆柱换成棱长为1cm的正方体盒子,蚂蚁沿着表面从A点爬行到
B点需要的最短路程又是多少呢?
B3
1
B2
B B1
1
B
1
B
1
1
1
A
1
1
A
1
A
我怎么走 会最近呢?
A
8
B
2 4
长方体中的最值问题 如图,长方体的长、宽、高分别为4、2、8。现有一蚂蚁从顶点A出发,沿

如何利用勾股定理求得最短距离

如何利用勾股定理求得最短距离

如何利用勾股定理求得最短距离人教版初中八年级(下册)第十八章介绍了勾股定理的内容和它的一些运用,勾股定理主要用来解决直角三角形三条边之间的关系的一个重要定理。

它在解三角函数、四边形以及实际生活中的运用也极其广泛,也是近几年全国各地中考的高频考点。

其中勾股定理在解决某些出现的最短距离的问题中发挥了很好的作用。

现分别举出勾股定理在长方体、圆柱体、圆锥体中是如何求得最短距离的例子,以便找出用它来解决问题的技巧和方法。

例1、 如图所示,有一个长方体木箱,长为40cm ,宽为30cm ,高为50cm ,点Q 距离点C 为10cm , 一只蚂蚁从A 点爬行到Q 点的最短距离是多少?【分析】这一道题从表面上看似乎与勾股定理没有什么联系,但通过仔细分析后,将长方体展开,就会与勾股定理产生联系,要解决本题必须分两种情况。

解: 第一种情况:将长方体右侧面CBGF 展开,使得与面ABCD 在同一个平面上,过Q 点作QH ⊥BC 于H ,连接AQ ,如图2,AQ 就是蚂蚁从A 点爬行到Q 点的距离。

由题意可知,cm AB 40=,cm BH CQ 10==,cm QH 50=,则cm AH 50=,根据勾股定理可得:222QH AH AQ +=,cm QH AH AQ 7125050502222≈=+=+=。

第二种情况:将上面的面CDEF 展开,使得与面ABCD 在同一个平面上,连接AQ ,如图3,AQ 就是蚂蚁从A 点爬行到Q 点的距离。

由题意可知,cm AB 40=,cm BQ 60=,根据勾股定理可得:222BQ AB AQ +=,22BQ AB AQ +=,cm AQ 72320604022≈=+=。

显然,第一种情况所求得的AQ 的值要比第二种情况所求得的AQ 的值要小,所以蚂蚁从A 点爬行到Q 点的最短距离是cm 250。

例2、如图4,有一个圆柱体,它的高为12cm ,底面半径为3cm ,在圆柱体下底面的A 点有一只蚂蚁,它想吃到上底面与A 点相对的B 点处的食物,沿着圆柱体侧面爬行的最短距离是多少?(π的近似值取3)A B D C E F G• •Q 图1A B D C E FG• • Q 图2 FGQ • H A BDCEF G•• Q 图3EF • Q【分析】这看上去是一个曲面的路线问题,但实际上可以通过圆柱体的侧面展开图来转化为 平面上的路线问题。

第2周-勾股定理应用(最短路径)

第2周-勾股定理应用(最短路径)

第2周-勾股定理应用(最短路径) 勾股定理在最短路径问题中有一种应用,即在二维平面上寻找两点之间的最短路径。

在平面坐标系中,假设有两个点A(x1,y1)和B(x2,y2),我们需要找到从A到B的最短路径。

可以利用勾股定理来计算两点之间的距离,然后通过不同的算法找到最短路径。

具体步骤如下:
1.计算两点的欧氏距离:根据勾股定理,两点之间的距离可以通过以下公式计算:d=√((x2-x1)^2+(y2-y1)^2)。

2.根据给定的图或网络结构,利用最短路径算法(如Dijkstra 算法、Bellman-Ford算法、Floyd-Warshall算法等)找到从A到B 的最短路径。

3.比较不同路径的长度,找出最短路径,并记录经过的节点或路径信息。

勾股定理应用长方体最短路径

勾股定理应用长方体最短路径

勾股定理的应用之最短距离问题1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是cm.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是m.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?答案解析1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是8cm.【分析】根据图形是立方体得出最短路径只有一种情况,利用勾股定理求出即可.【解答】解:如图所示:需要爬行的最短距离是AC的长,即AC=.故答案为:8.【点评】此题主要考查了平面展开图最短路径问题以及勾股定理的应用,得出正确的展开图是解决问题的关键.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10cm.【分析】先把圆柱的侧面展开,连接AB,利用勾股定理求出AB的长即可.【解答】解:如图所示:连接AB,∵圆柱高8cm,底面圆周长为12cm,∴AC=×12=6cm,在Rt△ABC中,AB==10cm.故答案为:10【点评】本题考查的是平面展开﹣最短路径问题,解答此类问题的关键是画出圆柱的侧面展开图,利用勾股定理进行解答.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为2dm.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和D点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AD2=42+62=2,故AD=2dm.故答案为2.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是2m.【分析】根据题意作出图形,然后根据勾股定理即可得到结论.【解答】解:如图,∵AC=1+2+1=4m,BC=10m,∴AB==2,∴最短的路径长是2.故答案为:2.【点评】本题考查了平面展开﹣最短路程问题,勾股定理,正确的作出图形是解题的关键.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=8cm,AB=5+10=15cm,在Rt△ADB中,AD= =cm;(2)如图2,AN=5cm,ND=8+10=18cm,Rt△ADN中,AD===cm.(3)如图3,AD==,综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为6.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故答案为:6,【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?【分析】直接利用勾股定理得出AC的长,进而得出AD的长.【解答】解:连接AC,AD,在Rt△ABC中,AC2=AB2+BC2,则AC===4,在Rt△ACD中,AD2=AC2+DC2,则AD==13,答:能放入的细木条的最大长度是13cm.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.。

勾股定理的应用的例子

勾股定理的应用的例子

勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。

勾股定理的应用-最短距离问题-ppt课件

勾股定理的应用-最短距离问题-ppt课件

举一反三
如果我们将例题中的圆柱体换成正方 体或者长方体,情况又该怎么样呢?
如图,边长为1的正方体中, 一只蚂蚁从顶点A 出 发沿着正方体的外表面爬到顶点B 的最短距离是( ).
(A)3 (B)2 (C) 1 (D) 小于3大于2
分析: 由于蚂蚁是沿正方体的外表面爬行的, 故需把正方体展开成平面图形(如图).
A₁
B
3 A'
C1
解:(1)当蚂蚁经过前面和上底面时,如图,最短路程为
3
AC₁=√AB²+BC₁=√3²+3²≈4.24(cm)
(2)当蚂蚁经过前面和右面时,如图,最短路程为
AB= √AC²+CC² =√5²+1² ~5. 10(cm
(3)当蚂蚁经过左面和上底面时,如图,最短路程为 D₁
B
B
AC₁= √AB²+B²C₁ =√4²+2²≈4.47(cm)
14.2.1勾股定理的应用
最短距离问题
情景1:
两点之间,线段最短
从老师家到麦当劳怎么走最近?
小蚂蚁想从A 处爬向C 处,怎么走最近?
情景2:
方案1
方案2
(C)C
例题1:如图所示, 一个圆柱体的底面周长为2dcm,高 AB为
4cm,BC是上底面的 一 蚁从点出发,沿崔 的侧
面爬行赳点;-试求出爬行的最短路程(精确到0.01cm)
合作交流
方案4
C
方案4
解:如图,在Rt△ABC中, BC=底面周长的一半=10cm.由勾股定理,可得
AC=√AB²+BC² = √4²+10² =√ 116≈10.77(cm
答:爬行的最短路程约为10.77cm.

勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧

勾股定理求最短路径方法技巧摘要:1.引言2.勾股定理简介3.求最短路径方法技巧4.应用实例与分析5.结论正文:【引言】在数学领域中,勾股定理及其求最短路径方法一直是备受关注的热点。

本文将详细介绍勾股定理求最短路径的方法和技巧,帮助读者更好地理解和应用这一理论。

【勾股定理简介】勾股定理,又称毕达哥拉斯定理,是指在直角三角形中,直角边平方和等于斜边的平方。

其数学表达式为:a + b = c。

其中a、b为直角边,c为斜边。

【求最短路径方法技巧】利用勾股定理求最短路径,关键在于找到起点和终点之间的直角三角形,然后运用勾股定理计算出路径长度。

这里有两种求最短路径的方法:1.直接法:在平面上给定两个点A和B,找出一条直线路径,使得这条路径上的所有点与A、B两点的距离之和最小。

可以通过构建直角三角形,利用勾股定理求解路径长度。

2.间接法:先找到起点和终点之间的中间点C,然后分别计算从起点到C 点和从C点到终点的路径长度。

最后在所有路径中选择长度最短的一条。

同样可以利用勾股定理计算路径长度。

【应用实例与分析】以一个简单的平面直角坐标系为例,设有两点A(0, 0)和B(3, 4)。

现在需要求从A点到B点的最短路径。

首先,求出AB的中点C:(1.5, 2)。

然后,分别计算从A到C和从C到B 的路径长度。

AC的长度:√((1.5-0) + (2-0)) = √(2.25 + 4) = √6.25BC的长度:√((3-1.5) + (4-2)) = √(1.25 + 4) = √5.25现在可以计算出从A点到B点的最短路径长度:√6.25 + √5.25 ≈ 7.27【结论】通过以上分析,我们可以看出,利用勾股定理求最短路径方法是简单且实用的。

只需找到起点和终点之间的直角三角形,然后运用勾股定理计算路径长度,最后在所有路径中选择长度最短的一条。

勾股定理最短路径

勾股定理最短路径

勾股定理最短路径引言勾股定理是初中数学中的重要定理之一,它描述了直角三角形中三条边之间的关系。

而最短路径是图论中的一个经典问题,它涉及寻找两个顶点之间最短的路径。

本文将探讨如何利用勾股定理来解决最短路径问题。

最短路径问题最短路径问题是在一个图中寻找两个顶点之间的最短路径。

在图论中,图由一组顶点和一组边组成,边连接两个顶点并表示它们之间的关系。

最短路径问题有着广泛的应用,例如在网络路由、物流规划和导航系统中都需要找到最短路径。

勾股定理勾股定理是由古希腊数学家毕达哥拉斯提出的。

它表述为:直角三角形的斜边的平方等于两个直角边的平方和。

即a2+b2=c2,其中c为斜边的长度,a和b为两个直角边的长度。

最短路径算法解决最短路径问题的算法有很多种,其中最著名的一种是迪杰斯特拉算法。

该算法通过动态规划的思想,逐步更新起始点到其他所有点的最短路径。

具体步骤如下:1.创建一个集合S,用于存放已经找到最短路径的顶点。

2.初始化起始点到其他所有点的距离为无穷大,起始点到自身的距离为0。

3.选择一个距离最小的顶点v,将其加入集合S。

4.更新起始点到v的邻接点的距离,如果经过v的路径比当前路径短,则更新距离。

5.重复步骤3和4,直到集合S包含了所有顶点。

6.最终得到起始点到其他所有点的最短路径。

勾股定理最短路径算法在某些特殊情况下,我们可以利用勾股定理来求解最短路径问题。

假设我们有一个平面上的图,其中每个顶点表示一个点的坐标,边表示两个点之间的距离。

如果我们要求解从起始点到目标点的最短路径,并且只能沿着直角边移动,那么我们可以利用勾股定理来解决这个问题。

具体步骤如下:1.将平面上的点表示为二维坐标(x,y),其中x和y分别表示点在x轴和y轴上的坐标。

2.计算起始点到所有其他点的直线距离,并将其作为初始最短路径。

3.对于每个顶点,计算其到目标点的直线距离,并利用勾股定理计算出最短路径。

4.选择最短路径最小的顶点作为下一个移动的目标点。

人教版数学八年级下册17.1勾股定理的应用+最短路径问题+教学设计

人教版数学八年级下册17.1勾股定理的应用+最短路径问题+教学设计
(1)针对学生的个体差异,实施分层教学,让每个学生都能在课堂上得到提高。
(2)注重启发式教学,引导学生主动发现问题、解决问题。
(3)鼓励学生相互讨论、交流,培养学生的团队协作能力。
(4)关注学生的情感态度,营造轻松、愉快的学习氛围,让学生在愉悦中学习。
四、教学内容与过程
(一)导入新课
在这一环节,我将通过一个贴近生活的实际问题来导入新课。我会向学生展示一张地图,上面标注了两地之间的直线距离无法直接测量。然后提问:“同学们,你们知道如何计算地图上两点之间的直线距离吗?”这个问题将激发学生的思考,他们可能会联想到之前学过的勾股定理。接着,我会简要回顾一下勾股定理的定义和公式,为新课的学习做好铺垫。
2.在坐标系中,给出两个点的坐标,计算它们之间的距离。请同学们尝试使用两种不同的方法进行计算,并比较结果。
3.设计一道关于最短路径问题的题目,要求包含直角三角形和坐标系元素。请同学们自行解答,并在下节课与同学们分享解题思路和答案。
4.请同学们撰写一篇关于勾股定理应用的小论文,可以从历史、生活、科技等角度展开论述,不少于500字。
(1)导入:通过一个实际问题,如计算两地之间的直线距离,引出勾股定理。
(2)新课:讲解勾股定理的证明和应用,结合实际问题,让学生感受勾股定理的价值。
(3)探究:引导学生运用勾股定理解决最短路径问题,培养学生的空间想象能力和逻辑推理能力。
(4)巩固:设计不同类型的练习题,让学生巩固所学知识,提高解题能力。
5.完成课后练习册中与勾股定理和最短路径问题相关的内容,巩固所学知识。
作业要求:
1.书写规范,保持卷面整洁。
2.解题过程要求步骤清晰,逻辑性强。
3.小论文要有自己的观点,论述充分,可以适当引用资料。

勾股定理的应用举例-最短距离

勾股定理的应用举例-最短距离
鲁教版七年级数学上册第三章《勾股定理》
——勾股定理的应用举例(2)
一、平面内的最短距离
1.如图,在公路AB旁有一座山C,现在C处需要爆破,已知 点C与公路上的停靠站A之间的距离为300m,与公路上另一 停靠站B之间的距离为400m,且CA丄CB,为了安全起见, 爆破点C周围半径250m范围内不得进入,问在进行爆破时, 公路AB段是否因有危险而需要暂时封锁?
∴CD=240m
∵240<250 ∴公路AB段会有危险需要暂时封锁
二、立体图形中的最短距离:正方体中的最短距离 2.如图,在棱长为10厘米的正方体的 一个顶点A处有一只蚂蚁,现要向 顶点B处爬行,那么蚂蚁爬行的最 短路线的平方为多少?
B
A A B 蛋糕
B
A
二、立体图形中的最短距离:长方体中的最短距离
B
B
A
A
二、立体图形中的最短距离:台阶中的最短距离
2、如图,是一个三级台阶,它的每一级的长、宽和高 分别等于55cm,10cm和6cm,A和B是这个台阶 的两个相对的端点,A点上有一只蚂蚁,想到B点去吃 可口的食物。请你想一想,这只蚂蚁从A点出发,沿着 台阶面爬到B点,最短线路是多少?
A A A
解:台阶的展开图如图:连结AB 在Rt△ABC中根据勾股定理 AB2=BC2+AC2 =552+482=5329 ∴AB=73cm
解:过点C作CD丄AB,垂足为D
∵CA丄CB
300 D 500
400
∴∠ACB=900
在Rt△ABC中 AB2=AC2+BC2=3002+4002
SABC

1 1 AC BC ABCD 2 12 1
2 300 400 2

勾股定理在最短路径问题中的应用

勾股定理在最短路径问题中的应用

『勾股定理在最短路径问题中的应用』一、引言在数学和实际生活中,勾股定理是一个被广泛应用的基本定理,它不仅仅是一个几何定理,还在诸多领域中有着重要的应用,其中就包括最短路径问题。

本文将探讨勾股定理在最短路径问题中的应用,从而帮助我们更深入地理解这一数学原理在实际生活中的作用。

二、最短路径问题概述最短路径问题是指在图中找到两个顶点之间的最短路径,通常以距离或权重来衡量路径的长度。

这个问题在现实生活中有着广泛的应用,比如在网络传输中寻找最短路径可以提高传输效率,在交通规划中寻找最短路径可以节省时间和成本等等。

寻找最短路径是一个被广泛关注的问题。

三、勾股定理在最短路径问题中的应用1. 从原理上来看,勾股定理可以帮助我们计算两点之间的直线距离,这在寻找最短路径时是至关重要的。

通过勾股定理,我们可以准确地计算出两点之间的距离,从而找到最短路径。

2. 勾股定理还可以帮助我们理解和推导其他寻找最短路径的算法,比如迪杰斯特拉算法和弗洛伊德算法。

这些算法都是建立在对距离的准确计算基础上的,而勾股定理为我们提供了这样的基础知识。

3. 在实际的地图导航中,勾股定理也被广泛应用。

通过勾股定理,地图导航可以准确计算出最短路径,并为我们提供最优的导航方案,从而节省时间和成本。

四、结论和回顾通过本文的探讨,我们更加深入地了解了勾股定理在最短路径问题中的重要应用。

勾股定理不仅仅是一个单纯的数学定理,它还在实际生活中发挥着重要作用,特别是在寻找最短路径这样的实际问题中。

我们应该重视和深入理解勾股定理这一基础数学原理,从而更好地应用它解决现实生活中的问题。

五、个人观点在我看来,数学定理和实际问题之间的联系总是让人感到惊讶和敬畏。

勾股定理作为一个古老的数学定理,竟然在现代的最短路径问题中发挥着如此重要的作用,这让我对数学的普适性有了更深刻的理解。

我相信,随着数学和现实生活的更加深入的结合,我们将能够更好地解决各种实际问题,提高生活质量和效率。

勾股定理的应用最短距离介绍课件

勾股定理的应用最短距离介绍课件

勾股定理在物理学中也 有应用,如求物体运动 轨迹、力的合成与分解等。
勾股定理在工程学中有 着重要的应用,如建筑
设计、机械制造等。
勾股定理在日常生活中 也有应用,如建筑测量、
航海等。
01
勾股定理在几何学 中的应用
直角三角形中的勾股定理应用
01
勾股定理在直角三角形中是最重 要的应用之一。它用于确定直角 三角形的三边关系,即直角边的 平方和等于斜边的平方。
机械学
在机械学中,勾股定理被用来确定物体的运动轨迹和受力分析,以解释物体的 运动规律和力学性质。
勾股定理在航海中的应用
航行定位
在航海中,勾股定理被用来确定船只的位置和航向,以实现 精确的航行定位和导航。
海洋测量
在海洋测量中,勾股定被用来确定海底地形和深度,以进 行精确的海洋资源调查和开发。
01
最短距离问题与勾 股定理
两点间最短距离的求解方法
直线段
在平面内,两点之间的最短距离是连 接这两点的直线段。
曲线或曲面
在三维空间中,两点之间的最短距离 是连接这两点的线段,如果两点不在 同一平面内,则需要考虑曲线或曲面 上的最短路径。
利用勾股定理解决最短距离问题
勾股定理
直角三角形中,直角边的平方和等于斜边的平方。
勾股定理在多边形中的应用
勾股定理不仅适用于直角三角形,还 可以扩展到其他多边形中。通过勾股 定理可以确定多边形的边长和角度, 从而计算出多边形的面积和周长。
在解决一些复杂的几何问题时,勾股 定理可以帮助我们找到最短距离和最 佳角度,从而简化计算过程。
01
勾股定理在现实生 活中的应用
勾股定理在建筑学中的应用
02
勾股定理在解决实际问题中非常 有用,例如建筑、航海和航空等 领域。它可以用来计算最短距离、 确定角度和解决几何问题。

勾股定理在最短路径问题中的应用

勾股定理在最短路径问题中的应用

勾股定理在最短路径问题中的应用标题:勾股定理的在最短路径问题中的应用导言:最短路径问题是一类在图论中广泛应用的数学问题,它关注着在给定的网络中寻找两个节点之间最短路径所需经过的边或弧的集合。

数学家们在求解最短路径问题的过程中,经过了数不清的探索和尝试。

本文将介绍勾股定理在最短路径问题中的应用,通过深入讨论和具体案例分析,旨在帮助读者更加深入、全面地理解这一主题。

一、勾股定理概述1.1 勾股定理定义勾股定理,也称毕达哥拉斯定理,是三角学中一个经典的定理。

它表明,在一个直角三角形中,设直角边的长度分别为a和b,斜边长度为c,则有a² + b² = c²。

二、最短路径问题介绍2.1 最短路径问题的定义最短路径问题是一个经典的图论问题,它要求在给定的加权有向图或无向图中,求解两个顶点之间的最短路径。

这种路径可能经过一些中间节点,但其总权值和需要最小。

三、勾股定理在最短路径问题中的应用3.1 最短路径问题的建模在最短路径问题中,我们需要将问题建模为一个加权有向图或无向图。

对于一个直角三角形,我们可以将直角边的长度作为边的权值,斜边的长度作为两个节点之间的距离。

3.2 以勾股定理为基础的最短路径算法基于勾股定理的最短路径算法利用了直角三角形的特性,将直角边长度作为边的权值,通过计算两个节点之间的距离来求解最短路径。

3.3 实例分析:勾股定理在最短路径问题中的具体应用通过一个具体的实例,我们可以更好地理解勾股定理在最短路径问题中的应用。

假设我们有一个城市地图,有一辆车位于城市的某个节点A上,我们需要找到车从节点A到达另一个节点B的最短路径。

4. 总结与回顾通过本文的讨论,我们了解了勾股定理在最短路径问题中的应用。

勾股定理提供了一种有效的方法来计算两个节点之间的距离,从而为最短路径问题的求解提供了便利。

通过建立一个适当的数学模型,我们可以利用勾股定理来解决各种实际应用中的最短路径问题。

八年级数学 应用勾股定理解决“最短距离”问题

八年级数学     应用勾股定理解决“最短距离”问题
北师大版《数学》八年级上册
解题思路:
1. 几何体表面路径的“最短距离”问题,一 般是将表面展开成平面。
2.利用两点之间线段最短,及勾股定理求解。
一、圆柱体中的最值问题
例1、如图一圆柱体底面周长为32cm,高AB为12cm,BC是 上底面的直径。一只蚂蚁从A点出发,沿着圆柱的表面 爬行到C点,试求出爬行的最短路径。
二、长方体中的最值问题 例2.如果盒子换成长为4cm,宽为2cm,高为1cm的 长方体盒子,蚂蚁沿着表面从A点爬行到B点的最短 路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有多少种情况?
B
(1)经过前面和上底面;
2
(2)经过前面和右面;
(3)经过左面和上底面.
1
A
4
C
G
F H
BA
4
E
B
C
A
D
A’ d C
A’
C
A
A
蚂蚁A→C的路线
O
C
C
A A
如图,将圆柱侧面剪开展成一个长方形, 点A到点C的最短路线是哪一条?
(1)
C
C
(2)
C
C
A
A
(3)
C
C
A
A
A
A
(4)
C
C
A
A
B
B
C
C
B
12
A
D
32÷2=16
A
D
A
想一想
如果我们将例题中的圆柱体换成正方体 或者长方体,情况又该怎么样呢?
D
A
C
A1
因此最短路程:经过前面和上底面距离为5cm。

初中数学教学课例《勾股定理的应用-最短距离问题》教学设计及总结反思

初中数学教学课例《勾股定理的应用-最短距离问题》教学设计及总结反思

“蚂蚁怎样走最近?”这个有趣的实际情景,让学生了
解实际问题可以转化成数学问题,让学生体验数学源于 教学目标
生活,又应用于生活;在经历寻找和计算“最短距离”
的过程中,让学生理解,为什么要把立体图形展开成平
面图形,使学生逐渐形成思维上的转化思想,进一步体
会数学的应用价值;学生要探究并掌握立体图形转化成
平面图形后,最短距离的寻找方法和利用勾股定理的计
如地应用知识,这也是新的时代对高中数学教学提出的
新的要求。在讲解数学问题的时候,教师不能固定学生
的思维,同一道题教师要引导学生进行不同的思考,鼓
励学生从不同的思考角度想出新的方法来解决同一个
问题。发散思维能够充分调动学生的系统的知识网络,
使学生的阶梯思路更加开阔,知识之间的联系也变得更 加密切。教学中,透过引入开放性的数学题目,使学生 突破常规的思维方法,解决学生的思维障碍,在课堂上 引导学生从不同的角度来处理问题,做到解题的思路和 方法的灵活应用,从而突破学生的数学思维障碍。
5.为什么长方体有六种展开方式?(长,宽,高的
组合),为什么排除后只有三种?(重复)
6.多媒体展示三种展开方式的计算结果
课例研究综
对于初二阶段的数学学习,更多强调的是学生的思

维品、归纳、综合,不断地对所学知识进行
演绎,经过不断地推导总结,对知识构成本质上的认识。
算方法,这也使学生积累利用数学知识解决日常生活中
实际问题的经验和方法,逐步形成积极参与数学活动的
意识。
学生在七年级已学习过图形的展开与折叠,并了解
两点之间线段最短,有一定基础。本节课要求学生在实 学生学习能
际问题中自己寻找并计算最短距离,而八年级学生审题 力分析

勾股定理的应用-最短距离

勾股定理的应用-最短距离

实际问题
转化
数学问题
直角三角形
扩展选作
你能用上述方法快速计算下面这只蚂蚁要爬
行的距离吗?
1.如图,正方体的所有而是由3x3个边长为1cm的小
正方形组成.蚂蚁从底而A出沿着表而爬到右侧点B
处,至少要爬行
cm.
2、如图,蚂蚁从地面上A点爬到墙上B 点的最短路程是___________cm,其中 CD=30cm,AC=23cm,BD=17cm。
解:把正面和右面展开在一个平面上,
三、正方体中的最值问题
例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出
发沿着正方体的外表面爬到顶点B的最短距离是( ).
(A)3
(B) √5
(C)2 (D)1
分析: 由于蚂蚁是沿正方体的外表面爬行的, 故需把正方体展开成平面图形(如图).
CB
B
C
2
B
B
1
A
A
A
四、课后反思 学生反思:你学会了怎样的解题路?
B
B
A A
答:13米
例2. 一个三级台阶,它的每一级的长、宽和高分 别等于5cm,3cm和1cm,A和B是这个台阶的两个相对 的端点,A点上有一只蚂蚁,想到B点去吃可口的食物. 请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B 点,最短线路是多少?
A
5
A
3
15CFra bibliotek12 B
分析:∵ AB2=AC2+BC2=52+122=169
勾股定理
勾股定理的应用
最短距离问题
实际应用(一)
例1、如图一圆柱体底面周长为32cm,高AB位12cm,BC是 上底面的直径。一只蚂蚁从A点出发,沿着圆柱的表面 爬行到C点,试求出爬行的最短路径。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转化
应用勾股定理
直角 三角形
牛刀小试
1、己知如图所示,有一圆柱形油罐, 底面周长是12米,高AB 是5米,要以A点环绕油罐建旋梯,正好到A点的正上方B点,问 旋梯最短要多少米? 思维引导:旋梯在展开图形中会是什么?
B
B
A A
答:13米
例2. 一个三级台阶,它的每一级的长、宽和高分 别等于5cm,3cm和1cm,A和B是这个台阶的两个相对 的端点,A点上有一只蚂蚁,想到B点去吃可口的食物. 请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B 点,最短线路是多少?
C
28尺
A
3×7=21(尺) B
5.如图,已知圆 柱体的底面圆的半径

4
,高AB=3,AD、BC分别是两底面的直径。
若一只小虫从A点出发,从侧面爬行到C点,
则小虫爬行的最短路线的长度
是 5 。(结果保留根式)
(该题是2006年广东省B的最短距离的平方是
( ).
(A)3
(B) 5
(C)2 (D)1
分析: 由于蚂蚁是沿正方体的外表面爬行的,
故需把正方体展开成平面图形(如图).
CB
B
C
2
B
B
1
A
A
A
四、课后反思 学生反思:你学会了怎样的解题路?
实际问题
转化
数学问题
直角三角形
扩展选作
你能用上述方法快速计算下面这只蚂蚁要爬 行的距离吗?
勾股定理
勾股定理的应用
最短距离问题
实际应用(一)
例1、如图一圆柱体底面周长为32cm,高AB位12cm,BC是 上底面的直径。一只蚂蚁从A点出发,沿着圆柱的表面 爬行到C点,试求出爬行的最短路径。
B
C
A
D
B
C
B
C
B
12
A
D
32÷2
A
D
A
思路小结:
圆柱体 展开 (立体图形)
矩形 构建 (平面图形)
例4.如图,一个的长方体盒子的长、 宽、高分别为8cm、8cm、12cm,一 只蚂蚁想从盒底的点A爬到盒顶的点 B,你能帮蚂蚁设计一条最短的线路 吗?蚂蚁要爬行的最短里程是多少? 如果不是无盖的呢?
解:把正面和右面展开在一个平面上,
三、正方体中的最值问题
例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出
A
5
A
3
1
5
C
12 B
分析:∵ AB2=AC2+BC2=52+122=169
∴ AB=13.
B
想一想
如果我们将例题中的圆柱体换成正方体 或者长方体,情况又该怎么样呢?
例3.如果盒子换成长为4cm,宽为2cm,高为 1cm的长方体盒子,蚂蚁沿着表面从A点爬行 到B点的最短路程又是多少呢?
B
A
分析:蚂蚁由A爬到B过程中较短的路线有
1.如图,正方体的所有而是由3x3个边长为1cm的小 正方形组成.蚂蚁从底而A出沿着表而爬到右侧点B 处,至少要爬行 5 cm.
2、如图,蚂蚁从地面上A点爬到墙上B 点CD的=3最0c短m路,A程C=是23_c_m__,5B_0_D_=_1_7_c_mcm。,其中
BC
A
D
3.如图,长方体的长为
15 cm,宽为 10 cm,高
多少种情况? B
(1)经过前面和上底面;
2
(2)经过前面和右面;
1
(3)经过左面和上底面.
A
4
C
B
G
F H
B
E
A
4
D
1 2D
B 2
A
C
A1
4
E
总结提升
给出一个长方体,设它的长、宽、高分别是a、b、c,且a<b<c. 到以下三种情况:将其展开,可以得
蚂蚁沿着长方体表面从注爬到B的最短距离的平方分别是:
为20 cm,点B离点C 5
cm,一只蚂蚁如果要沿着
长方体的表面从点 A爬
到点B,需要爬行的最短
距离的平方是多少?
A
5B
C
20
15
10
E
5B C
20
15
A 10 F
E C5 B
20
A 10
15 A 20
B 5 E 10 C
5B C
20
A
F 10
聪明的葛藤
4.现有 一棵树直立在地上,树高2.8丈,粗3 尺,有一葛藤从树根处缠绕而上,缠绕7周到达 树顶,请问这根葛藤条有多长?(1丈等于10尺)
相关文档
最新文档