材料力学习题册答案-第3章 扭转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章扭转
一、是非判断题
1.圆杆受扭时,杆内各点处于纯剪切状态。(×)
2.杆件受扭时,横截面上的最大切应力发生在距截面形心最远处。(×)
3.薄壁圆管和空心圆管的扭转切应力公式完全一样。(×)
4.圆杆扭转变形实质上是剪切变形。(×)
5.非圆截面杆不能应用圆截面杆扭转切应力公式,是因为非圆截面杆扭转时“平截面假设”不能成立。(√)
6.材料相同的圆杆,他们的剪切强度条件和扭转强度条件中,许用应力的意义相同,数值相等。(×)
7.切应力互等定理仅适用于纯剪切情况。(×)
8.受扭杆件的扭矩,仅与杆件受到的转矩(外力偶矩)有关,而与杆件的材料及其横截面的大小、形状无关。(√)
9.受扭圆轴在横截面上和包含轴的纵向截面上均无正应力。(√)
10.受扭圆轴的最大切应力只出现在横截面上。(×)
11.受扭圆轴内最大拉应力的值和最大切应力的值相等。(√)
12.因木材沿纤维方向的抗剪能力差,故若受扭木质圆杆的轴线与木材纤维方向平行,当扭距达到某一极限值时,圆杆将沿轴线方向出现裂纹。(×)
二、选择题
1.内、外径之比为α的空心圆轴,扭转时轴内的最大切应力为τ,这时横截面上内边缘的切应力为 ( B )
A τ;
B ατ;
C 零;
D (1- 4α)τ 2.实心圆轴扭转时,不发生屈服的极限扭矩为T ,若将其横截面面积增加一倍,则极限扭矩为( C )
0 B 20T 0 D 40T 3.两根受扭圆轴的直径和长度均相同,但材料C 不同,在扭矩相同的情况下,它们的最大切应力τ、τ和扭转角ψ、ψ之间的关系为( B )
A 1τ=τ2, φ1=φ2
B 1τ=τ2, φ1≠φ2
C 1τ≠τ2, φ1=φ2
D 1τ≠τ2, φ1≠φ2 4.阶梯圆轴的最大切应力发生在( D ) A 扭矩最大的截面; B 直径最小的截面; C 单位长度扭转角最大的截面; D 不能确定。
5.空心圆轴的外径为D ,内径为d, α=d /D,其抗扭截面系数为 ( D ) A ()3
1 16
p D W πα=
- B ()3
2
1 16
p D W πα=
-
C ()3
3
1 16
p D W πα=
- D ()3
4
1 16
p
D W
πα=
-
6.对于受扭的圆轴,关于如下结论: ①最大剪应力只出现在横截面上;
②在横截面上和包含杆件的纵向截面上均无正应力;
③圆轴内最大拉应力的值和最大剪应力的值相等。 现有四种答案,正确的是( A )
A ②③对
B ①③对
C ①②对
D 全对 7.扭转切应力公式n
P p
M I τρ=
适用于( D )杆件。 A 任意杆件; B 任意实心杆件; C 任意材料的圆截面; D 线弹性材料的圆截面。
8.单位长度扭转角θ与( A )无关。 A 杆的长度; B 扭矩; C 材料性质; D 截面几何性质。
9.若将受扭实心圆轴的直径增加一倍,则其刚度是原来的( D ) A 2倍; B 4倍; C 8倍; D 16倍。 三、计算题
1.试用截面法求出图示圆轴各段内的扭矩T ,并作扭矩图
2.图示圆轴上作用有四个外力偶矩1 e M =1KN/m, 2e M =0.6KN/m, 3e M
= 4e M =0.2KN/m, ⑴试画出该轴的扭矩图;⑵若1 e M 与2e M 的作用位置互换,扭矩图有何变化?
(1)(2)
解:1 e M 与2e M 的作用位置互换后,最大扭矩变小。
3.如图所示的空心圆轴,外径D=100㎜,内径d=80㎜,l=500㎜,M=6kN/m,M=4kN/m.
请绘出轴的扭矩图,并求出最大剪应力
解:扭矩图如上,则轴面极惯性矩
I P =
4
44443)
64()
(10080)(10 5.81032
32
D d m ππ----=
=⨯
则最大剪应力τmax =33
6
R 4105010P 34.45.810
P T a MPa I ⨯⨯⨯==⨯
4.图示圆形截面轴的抗扭刚度为G I P ,每段长1m,试画出其扭矩图并计算出圆轴两端的相对扭转角。
解:φAD= φAB+ φBC +φCD φAB=190
P P
T L GI GI -= φBC=2100P P T L GI GI = φCD=340P P T L GI GI = 所以φAD=901004050
P P
GI GI -++=
5.如图所示的阶梯形传动轴中,A 轮输入的转矩M=800N •m,B ﹑C 和D 轮输出的转矩分别为B M =C M =300N •m ,D M =200N •m 。传动轴的许用切应力[τ]=400Mpa,许用扭转角[θ]=1°/m,材料的剪切弹性模量G=80Gpa.
⑴试根据轴的强度条件和刚度条件,确定传动轴各段的直径。 ⑵若将传动轴改为等截面空心圆轴,并要求内外直径之比α=d/D=0.6,试确定轴的外径;并比较两种情况下轴的重量。
解: (1)max τ=
max 3
16max
T T T W d
π=≤[ τ] []max max max 4
32P T T GI G d θθπ=
=≤ 对于AB 段 11d d ≥≥138.5d mm ≥ 同理得AC 段的d 2 43.7mm ≥ CD 段d 3 34.8mm ≥
所以d 1应取值38.5mm ,d 2应取值43.7mm,d 3应取值34.8mm (2) []max max max max 3416(1)
t t T T T W W D ττπα===≤- []max max max 4432(1)
P T T GI G D θθπα=
=≤- 所以D=4.17m
6.图示的传动轴长l=510㎜,直径D=50㎜。现将此轴的一段钻成内径d=25㎜的内腔,而余下一段钻成d=38㎜的内腔。若材料的许用切应力[τ]=70Mpa,试求: ⑴此轴能承受的最大转矩max e M M
⑵若要求两段轴内的扭转角相等,则两段的长度应分别为多少?