压力容器常用开孔补强方法对比分析
压力容器的开孔与补强
![压力容器的开孔与补强](https://img.taocdn.com/s3/m/26da7219dc36a32d7375a417866fb84ae45cc3cf.png)
压力容器的开孔与补强压力容器是一种用于储存和运输高压气体、液体或气体液体混合物的装置。
由于容器内部承受着巨大的压力,因此对于压力容器的结构设计和制造质量的要求非常高,尤其是它的壁厚和容积大小等参数必须经过精密计算和实验验证。
然而,即使设计和制造工艺都非常优秀,压力容器在使用过程中,也一定会出现开孔或由于压力过高而造成形变或者破裂的情况。
为了避免这种情况的发生,我们可以采用开孔和补强两种方法进行预防和解决。
开孔是一种常见的预防压力容器事故的方法。
通过在容器的垂直和水平方向上开孔,可以使容器内部受到更好的冷却和通风,从而减少容器内部压力的累积。
另一方面,开孔的位置也可根据容器内部压力变化而进行调整,使事故的风险降到最低。
此外,设定开孔的位置和数量还可以为维护和保养提供更大的便利。
例如在容器的底部开孔,可以更轻松地清除容器内部积存的物质。
尽管开孔是一种有效的预防措施,但在一些情况下,由于开孔会改变容器的整体结构,从而降低容器的承载能力。
这时,可以采用补强的方法来保证容器的安全。
补强的方法主要是在容器受力较大的地方加装加强筋或者钢板等材料来提高容器的强度和承载能力。
这种方法的优点是可以增加整个容器的稳定性和韧性,从而避免容器内部压力过高而造成的泄漏和破裂等意外事件的发生。
需要注意的是,在进行压力容器的开孔和补强的时候,我们必须严格遵守国家标准,以确保容器的质量和安全。
另外,在进行相关的维修和改装时必须由具备相关资质、资历的专业人员进行操作,这样可以有效地避免其他安全隐患的发生。
最后,压力容器在工业生产和人们的日常生活中发挥着重要的作用,但与之相关的安全问题也时刻需要引起人们的重视。
因此,在日常生活和工作中,我们应该尽可能地避免对压力容器的摩擦和碰撞,同时,也应该注意对其的定期检查和维修,以避免意外事件的发生。
不同标准大开孔补强计算方法的分析比较
![不同标准大开孔补强计算方法的分析比较](https://img.taocdn.com/s3/m/3cb01d9451e79b89680226d6.png)
于2 . 2 倍 许 用应 力 。基 于 上 述分 析 , 对 于 内压
下 圆柱壳 开孑 L 补 强 问题 , 一 次 局 部 薄膜 应 力 强度 的设计 准则 如下 :
¥ 占双林 , 男, 1 9 7 9年 9月 生 , 工 程 师 。北 京 市 , 1 0 0 0 8 5 。
2 0 1 l的 压 力 面积 法 、 A S MEⅧ . 1附 录 1 — 7的膜 一弯 曲应 力 法及 AS ME W一 1附 录 1 — 1 0的 压 力 一面积 应 力
法 是 目前 解 决 该 问 题 的 几种 计 算 方 法 。通 过 对 4种 方 法 的计 算理 论 和 应 用 于 实 际结 构 的 计 算 结 果 进 行
内, 校 核大 开孔结 构 的安 全性 ’ 。 文献 [ 6 , 7 ] 中的应 力分 类 法是 将 一次 局 部 薄 膜应 力控 制在 1 . 5倍许 用 应 力 以内 , 此 设 计 准 则 的提 出是 基于简 单梁 的理论 。 由于压力 容器绝 大
通常 可采用 常规 的等面 积补强 法对 壳体 上开 孔率 不大 于 0 . 5的小 开 孔 进 行 补 强 计 算 ’ , 容 器壳 体开 孔 以后 , 由 于部 件 之 间 的变 形 协调 必 将 在 开孔边 缘引起 局 部 的弯 曲应 力 , 这 种 弯 曲应 力
文献 标 识 码 A
文章编号
0 2 5 4 — 6 0 9 4 ( 2 0 1 3 ) 0 6 - 0 7 4 8 - 0 5
在压 力容器 筒体 上开 孔接管 对容 器 的不 利影
1 不 同计算 方法 的分析 比较 1 . 1 分 析法
响主要有 3方 面 : 一 是 开孔 削 弱 了容 器 壳 体材 料
(特种设备)压力容器常用开孔补强方法对比分析
![(特种设备)压力容器常用开孔补强方法对比分析](https://img.taocdn.com/s3/m/4cf9004276c66137ee06195d.png)
压力容器常用开孔补强方法对比分析压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。
对于压力容器的开孔补强计算方法一般有两种:一是等面积法,二是分析法。
本文对这两种方法作以比较和分析。
在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。
容器开孔后,一方面由于器壁承受载荷截面被削弱,引起局部应力的增加和容器承载能力的减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。
因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。
开孔补强基本原理2.1.等面积法该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,且以补强壳体的一次总体平均应力作为补强原则。
当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力。
等面积法的开孔补强结构所形成的应力集中在某一区域内,当离孔边缘的距离越大,越接近薄膜应力。
它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。
2.2.分析法这种补强方法是以壳体极限分析为基础的,相对等面积法合理得多,但须受开孔壳体和补强接管的尺寸限制。
这种方法优点是:克服等面积法的缺点,在转角处采用圆滑过渡,减少结构形状的突变,减小应力集中程度。
将补强面积集中在应力最高点,充分利用补强面积,使补强更经济、合理。
对比分析3.1.等面积法等面积法顾名思义:壳体截面因开孔被削弱的承受强度的面积,须有补强材料予以等面积补偿,其实质是壳体截面因开孔丧失的强度,即被削弱的“强度面积”A乘以壳体材料在设计温度下的许用应力[σ]t,即A[σ]t,应由补强材料予以补偿,当补强材料与壳体材料相同时,则补强面积就等于削弱的面积,故称等面积法。
压力容器设计 开孔补强-4页文档资料
![压力容器设计 开孔补强-4页文档资料](https://img.taocdn.com/s3/m/d9792f9c763231126fdb114e.png)
开孔补强4.5.5.5等面积补强的分析与计算■等面积补强----壳体承受应力所必需的金属截面,因开孔被削去多少,就必须在开孔周围的补强范围内补回同样截面的金属面积。
有效补强的金属面积大于或等于开孔削弱的金属面积A 、判断是否可以不补强和不作进一步补强计算(1)强度裕量(开孔后仍有的)●容器实际壁厚大于计算壁厚(δδφe )●接管厚度大于计算厚度(t et δδφ)●接管根部有填角焊缝 ●所开孔不在焊缝处,但壁厚计算的中径公式仍考虑了焊缝系数,计算壁厚有裕量。
(2)GB150-1998对不另行补强的规定同时满足下列条件时,开孔后可不另行补强:②相邻两孔中心的距离()2d d +≥B、等面积补强计算(1)所需最小补强面积接管有效面积:接管转化为壳体的当量面积:ΔA-----弥补[][]tttσσ≤而需增加的面积;或接管有效承载面积的折减量。
■圆柱壳■外压柱壳或球壳■平盖注:上述平盖和外压容器的公式来由参见丁伯民《压力容器设计----原理及应用》对平盖和外压容器,决定壳体厚度或承载能力的是弯曲应力,开孔削弱的是抗弯截面模量(而不是壁厚截面积)。
为保证开空前后的抗弯截面模量相等(w=w 0),要求k=A/A 0=1/(2+S/S 0),为保守起见,取k=0.5。
s —补强圈厚度,s 0----平盖厚度;A----补强面积,A 0----开孔削弱面积。
(2)补强范围■有效宽度B■接管外侧高度h 1■接管内侧高度h 2{}接管实际内伸高度,min 2nt d h δ=1(3)补强范围内富裕的可作补强的金属面积A e■A 1----壳体有效厚度减去计算厚度之后的多余面积■接管有效厚度减去计算厚度之后的多余面积()()r et r t et f C h f h A 221222-+-=δδδ■A 3----有效补强区内焊缝金属的截面积(4)有效补强区内另外再增加的补强元件的金属截面积A 4若A A e >,则开孔后无需补强。
球形封头开孔补强四种设计方法对比
![球形封头开孔补强四种设计方法对比](https://img.taocdn.com/s3/m/9aa5b0a90875f46527d3240c844769eae009a327.png)
球形封头开孔补强四种设计方法对比孙 禹∗ 华陆工程科技有限责任公司 西安 710065摘要 本文简要介绍了如何使用解析法、应力分类法、极限载荷法和弹塑性分析法确定压力容器结构的最大允许载荷,并以球壳模型和球壳+接管模型为算例,分别使用上述四种方法确定结构的最大允许载荷,通过对数值计算结果的对比分析得出以下结论:常规设计方法的安全裕量随着厚径比的增大而逐渐减小,在使用常规设计法确定结构尺寸时,对于壁厚较大的设备应适当提高设计裕量;使用应力分类法确定厚壁容器的结构尺寸时可能偏于危险,此时应采用更为合理的极限载荷分析法或者弹塑性应力分析法。
关键词 解析法 应力分类法 极限载荷分析法 弹塑性应力分析法 最大允许载荷。
∗ 孙 禹:工程师。
2015年毕业于北京化工大学 动力工程及工程热物理专业获硕士学位。
现主要从事压力容器设计工作。
联系电话:029-********,E-mail :************************。
压力容器的设计根据计算方法不同可以分为常规设计法和分析设计法。
因为一般压力容器厚度方向尺寸远远小于另外两向尺寸,所以常规设计将压力容器简化为薄壳结构,以回转薄壳无力矩理论为基础,求得结构尺寸的解析解。
经过多年的发展,常规设计理论已经日趋完善,目前工程领域中绝大多数压力容器均可以通过常规设计完成设计工作。
近年来,随着计算机处理能力的不断提升,以有限单元法为理论基础的分析设计取得了很大的发展,在压力容器设计领域逐渐占有一席之地,尤其在常规设计无法解决的领域发挥了极大的作用,帮助设计人员完成设计工作,使得在复杂温度场、交变载荷等苛刻工况作用下的设备得以安全运行[1]。
壳体与接管相贯的结构在压力容器中最为常见,壳体开孔处的强度问题也直接影响设备的安全。
常规设计对壳体的开孔补强主要采用等面积补强法;分析设计根据材料模型和结构响应不同可分为弹性分析和塑性分析,目前,国际上广泛应用的主要有应力分类法、极限载荷分析法、弹塑性应力分析法。
浅谈压力容器开孔补强的方法.
![浅谈压力容器开孔补强的方法.](https://img.taocdn.com/s3/m/a5474021f46527d3250ce005.png)
浅谈压力容器开孔补强的方法浅谈压力容器开孔补强的方法2011-04-17 09:23 来源:未知浏览次数:关键字:方法,补强,开孔,压力容器,浅谈,浅谈压力容器开孔补强的方法李文英摘要:本文主要对压力容器开孔后进行补强的方法进行探讨,主要针对等面积补强;压力容器大开孔补强方法;平盖开孔补强;高压蒸汽过热器联箱开孔补强这几种方法进行了比较。
关键词:压力容器开孔补强方法随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
这样在压力容器设计中一些较易出现问题的地方,更引起人们的注意了,如压力容器封头上的开孔及补强是一个非常爱出问题的地方,一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
下面就对压力容器的开孔补强进行分析。
1.等面积补强化工容器常用的开孔补强方法是等面积补强法,其基础理论是在有效补强范围内所加补强材料的截面积必须大于或等于因为开孔而失去的截面积。
其实质在于补强壳体的平均强度,即维持容器整体的屈服强度,理论模型是无限大平板开小孔,不至于因开边缘附加弯曲应力引起大的误差,故对小直径开孔安全可靠,其计算方法如下:满足下列条件不需补强:A1+A2+A3≥A不满足这一条件则需要补强,补强金属的面积为:AO= A一(A1+A2+A3 )式中:A---壳体因开孔而削弱的截面积;AO----补强金属的面积;A1---筒体或封头上超过计算厚度S所多余的金属截面积;A2---接管上超过强度计算厚度所多余的金属截面积;A3---补强区内焊缝的截面积。
其适用范围是局部补强的材料基本上应与壳体相同,其强度不应小于壳壁材料强度的75%。
适用于筒体的最大开孔直径dI≤1000毫米,而封头的开孔最大直径是dI≤1/2DJ。
d i—开孔最大直径;DJ—封头内径。
这类计算方法只能在一般情况下应用,在特殊情况下则不适用,例如容器大开孔时补强,平盖的开孔补强以及高压蒸汽过热器的开孔补强,下面将分别讨论。
压力容器开孔补强分析及各种补强方法的比较
![压力容器开孔补强分析及各种补强方法的比较](https://img.taocdn.com/s3/m/8f2f432baaea998fcc220ef9.png)
( un zo a i G a gh uHu —L —HegC e ia Id s yE u m n C . Ld ,G ag o gG a gh u5 4 C ia n h m cl n ut q i e t o , t. u n d n u nzo 4 2, hn ) r p 1 1
力集 中系数大于法 向接管开孔 , 图 2中的( ) b 的应 力集 如 a 比( )
中系 数 大 。
1 开 孔 附 近 的 应 力 分 析
1 1 平板 开孔 附近 的应 力 .
经分析 … : ①平板 开圆形 孔 ; ②壳体 开孑 ; 平 板开 椭 圆形 L③
孔; ④无 限大平板开 多个孔 。得 出以下结 论 : ①开孔 的应 力集 中区域 内的应 力是 属于 局部 应力 , 衰减很
轴线 , 否则将 使柱壳强度大大降低 ; 图 1中的 ( ) a 好。 如 b 比( )
⑤多个开孔 , 随着 间距 减小 , 孔边 应力 梯度 也减小 , 大 其 最 应力逐渐接近与按作用面积计算 的平均应力 ; ⑥无论是球壳或简体 , 若将开圆孔与椭 圆孔相 比 , 者应 力 后 集 中系数 比前者大 , 故当接管的方 向不在壳体 的法线 时 , 的应 它
的要求 , 使设备能够进行正常的操作 、 测试 和检修 , 在壳 体和端盖 上不可避免地有各种 开孔并连接接管 , 例如 , 物料进 口、 口, 出 测量
和控制点 ( 压力表 、 测温 口)视镜 、 、 液面计 、 人孔和手孔等 。 开孑 的结果 , L 不但会 削弱容器壁 的强 度 , 且在 开孔附 近会 而 形成应 力集中 , 峰值 应力通常达到容 器壁 中薄 膜应力 的数倍 , 其 例如 3倍 , 时甚至达到 5~ 有 6倍 。这样高的局部应力 , 加上接管 上有 时还有其他 的外载荷所产生 的应力 , 温度应 力 , 以及容 器材 质 和开孔 结构在制造过程 中不可 避免地会 形成制造 缺 陷。残 余 应力 、 是开孔 附近 就往往 成为容 器的破 坏源 一主要 是疲 劳破 于 坏 和脆性 裂 口。因此 , 开孔补 强设计 是压 力容 器设 计 中较重 要 的组成部分 , 是保 证容 器安 全操作 的重 要 因素。我 们必 须正 确 分析 开孔 附近的应力集 中, 并采取适 当的补强方法 。
浅谈压力容器壳体大开孔补强方法
![浅谈压力容器壳体大开孔补强方法](https://img.taocdn.com/s3/m/e605d246daef5ef7bb0d3cce.png)
浅谈压力容器壳体大开孔补强方法对于结构和工艺有严格要求的压力容器,在壳体上设置大开孔是经常遇到的情况,根据失效准则,对压力容器壳体大开孔补强采用的几种方法进行了分析与比较并探讨几种补强方法的适用范围。
标签:大开孔补强;等面积法;压力面积法;极限载荷法;有限元法Introduction to pressure vessel shell large opening reinforcement methodsZheng Yingfeng Li Jiachao[Abstract]Structure and process have strict requirements for pressure vessel,is frequently encountered in set up a big hole on the shell,according to the failure criterion,the pressure vessel shell large opening reinforcement using several kinds of methods are analyzed and compared and the applicability of several reinforcement methods are discussed.[Key words]large opening reinforcement,such as area method and pressure area method,the ultimate load method and the finite element method一、压力容器现状随着工业、化工、航天技术的发展,压力容器的结构也变得越来越多样。
由于结构和工艺的要求,需要在容器壳体上设置开孔结构。
壳体开孔后,极限承载能力下降,开孔处有较大的应力集中,很可能因高应力而出现裂纹;因此在压力容器设计中必须充分考虑壳体开孔的补强问题,特别是大开孔的补强问题。
压力容器大开孔补强计算方法对比
![压力容器大开孔补强计算方法对比](https://img.taocdn.com/s3/m/15633d0ca300a6c30c229f1e.png)
关键词
压 力容器 大开孔
补强
现代化 承压 设备应 用 中, 由于 工 艺 和 结 构 的需 求 , 不 可避 免 地 出现 较大 的开孔 接
拉承 载 能 力相 平 衡 的计 算方 法 , 其 计 算方 法
只涉及 补 强材料 的薄 膜应 力 。
管, 而 容器 大 开孔 会 在 开孔 边 缘形 成 比较 复
图1用于设计计算的接管有效厚度比的限制
余 热 锅 炉 2 0 1 4 . 3
2 5
管 有 效 厚度 与 壳 体有 效 厚
度 之 比应 不超 过 图 1 查 处 的值 , 如 超 出, 超 出部 分 不
应 计 入 补 强 ;用 于 制 造
时, 即实 际 采用 厚 度 时 , 接
十- 尊
构, 接 管 与 壳 体 连 接 内 外 壁 应 避 免 尖 角 过
渡, 而采用 r 圆角 过渡 ;
图3圆筒壳体单个开孔且补强圈补强
计 算 公 式 :( Af t +A f w) ( [ O ] s - O . 5 p) +
Af p( 【 0】 p - 0 . 5 p) + Al p( [ O】 b - 0 . 5 p)≥p ×
处壳 体 曲率 直 径从 有 关 曲线 图中 查取 , 设 计
计算 时壁 厚 比最 大 为 2 , 制造 时 实 际采 用 的
壁 厚 比最 大 为 3 , 由此 说 明 制造 时不 要 随 意 增加壁厚, 不是壁厚越厚越好 , 太 厚 了不 仅
不经济, 而 对 应 力没 有 好 处 。 从 适 应 范 围 的
管 有效 厚度 与 壳体 有 效 厚
度 应 不 超 过 图 2查 出 的
值。
压力容器卷筒大开孔补强计算方法
![压力容器卷筒大开孔补强计算方法](https://img.taocdn.com/s3/m/c141693910661ed9ad51f37a.png)
压力容器卷筒大开孔补强计算方法摘要:压力容器是能够承载一定压力的气体或液体容器,大开孔的压力容器为保证其抗压能力,需在开孔接管位置进行补强。
本文主要对压力容器大开孔补强的相关计算方法进行了分析,并对其进行比较,以找出最适合的补强方法。
关键词:压力容器;大开孔补强;计算方法随着工程技术的发展,对压力容器的要求也越来越高,压力容器常需要进行大的开孔接管工序,而在压力容器上进行开孔操作就会破坏原来的应力状态,使压力容器内的力平衡遭到破坏,因而为了恢复容器内应力平衡状态,需要对容器开孔位置进行补强,而对于补强的计算主要有以下几种方法。
1.压力面积法压力面积法是通过使圆筒、补强原件和接管有效截面产生的承载力与有效补强范围内产生的载荷相等来实现补强的一种计算方法,这种方法在计算时主要考虑补强材料薄膜应力即可,并没有涉及到容器开孔孔边弯曲强度问题,这一方法的计算方式虽然和以往等面积方法有所不同,但原理是一样的。
其计算通式是(Ap/Aσ+1/2)p≤[σ],其中Ap是指压力容器有效补强范围内的压力作用面积,而Aσ是指补强元件、接管等有效承载面积,p是容器圆筒的设计压力,[σ]则是指所应用的补强材料的许用应力,从上面的计算式就可以看出这一方法的计算是建立在补强截面薄膜应力计算的基础上,而不涉及孔边弯曲应力,因而在实际应用中,常会因实际应力与计算结果相差太大而失去补强的目的,因此这种方法在实际工程中应用较少。
2.ASME计算法鉴于压力面积法在弯矩问题上的缺点,ASME方法就在压力面积法上增加了弯矩作用计算,在理论上就是在计算薄膜应力的同时增加弯矩应力计算,因而其计算通式是,Sb=,M=(/6+RRne)p,其中As是指开孔区域内的横截面面积,而I是指As面积中所对应的中性轴惯性矩,a是指中性轴和容器壁表面之间的距离,Rm是指课题平均的半径长度,Rnm是指接管颈平均的半径长度,e是指As面积中性轴和壳壁中面处之间的距离,由上面的计算式可以看出该计算方法对薄膜应力的计算和压力面积方法相同,并对补强范围进行了调整,然后在这一基础上增加了弯矩计算,弯矩应力主要包括两个部分,一是在实施开孔操作后在孔边缘产生的轴向拉力,二是开空前在开孔区域内压位置上差异不同所带来的弯矩,这一种计算方法较压力面积法更为进步,考虑了开孔位置边缘弯矩应力问题。
压力容器基础知识 - 开孔和补强
![压力容器基础知识 - 开孔和补强](https://img.taocdn.com/s3/m/7231fec750e2524de5187e49.png)
二、对容器开孔的限制 ◆ 当圆筒内径Di≤1500mm时,开孔最大直径d ≤Di/2, 且d ≤520mm;当圆筒内径Di>1500mm时,开孔最大直径 d ≤Di/3,且d ≤1000mm。 ◆ 凸形封头或球壳上开孔时,开孔最大直径d ≤Di/2。 ◆ 锥壳上开孔时,开孔最大直径d≤Di/3,Di为开孔中心 处锥壳内径。 ◆ 在椭圆形或碟形封头的过渡区开孔时,孔的中心线宜 垂直封头表面。
标准补强圈结构
◆ 补强圈结构的适用范围 A型适用于无疲劳、无低温及大的温度梯度的一类压力 容器,且要求设备内有较好的施焊条件。 B型适用于中压、低压及内部有腐蚀的工况,不适用于 高温、低温、大的温度梯度及承受疲劳载荷的设备。S 取管子名义壁厚的0.7倍,一般δn t=δn/2 (δn t为 接管名义厚度;δn为壳体名义厚度)。 C型适用于低温、介质有毒或有腐蚀性的操作工况,采 用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2; 当δn>16 mm时,δn t≥8mm。 D型适用于壳体内不具备施焊条件或进入设备施焊不便 的场合,采用全焊透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn>16 mm时,δn t≥8mm。 E型适用于储存有毒介质或腐蚀介质的容器,采用全焊 透结构,要求当δn≤16 mm时,δn t≥δn/2;当δn >16 mm时,δn t≥8mm。 F型适用于中温、低温、中压容器及盛装腐蚀介质的容 器,要求当δn≤16 mm时,δn t≥δn/2,当δn>16 mm时,δn t≥8mm,且接管公称直径DN≤150 mm.
◆ 标准补强圈的选用
若需采用补强圈补强 ,可采用以下程序来选择标准补 强圈:
● 确定补强圈的尺寸; ● 由设备的工艺参数决定补强圈的结构; ● 补强圈材料取与被补强壳体材料相同。
压力容器开孔及补强设计
![压力容器开孔及补强设计](https://img.taocdn.com/s3/m/6887fba952d380eb63946dac.png)
平板开椭圆孔的应力集中
1、几点结论
•在球壳上开圆孔的应力集中系数( )小于开
椭圆孔的应力集中系数(
)
•在圆柱壳上开圆孔时的应力集中系数(
)
•若要开设椭圆孔,则应使椭圆孔的长轴与壳体
轴线垂直此时(
)
压力容器开孔及补强设计
内压壳体开孔的应力集中
•由于开孔后多焊有不同厚度的接管,应力集中系 数比较复杂,采用理论计算和实验测定相结合的 办法。
•当 越大,即开孔直径越大时应力集中系数越高。 相反,减小孔径,增大壳壁厚度均可降低应力集 中系数。 •内伸式接管的应力集中系数较低,尤其是内伸接 管壁厚较厚时能有效地降低应力集中。
压力容器开孔及补强设计
内压壳体开孔的应力集中
过小或过大时上述曲 线均会有较大的误差
球壳带平齐式接管的应力集中系数
壳壁过厚,即 过 小时,应力沿壁厚分 布的不均匀性增大, 应力集中系数将明显 比图示值减小
(mm)
检查孔最少数 量
检查孔最小尺寸(mm)
人孔
手孔
备注
300-500 500-1000
>1000
手孔2个
人孔1个或手孔 2个(当容器无法
开人孔时)
人孔1个或手孔 2个(当容器无法
开人孔时)
Ф400或长 圆孔
400×250, 380×280
Ф400或长 圆孔
400×250, 380×280
Ф75或长 圆孔
•(2)两相邻开孔中心的距离(对曲面间距以弧长计算)应 不小于两孔直径之和的两倍;
•(3)接管公称外径小于或等于89mm;
•(4)接管最小壁厚满足下表3-9的要求。
接管公称 外径
25 32 38 45 48 57 65 76
浅析压力容器常规设计规范中的开孔补强设计
![浅析压力容器常规设计规范中的开孔补强设计](https://img.taocdn.com/s3/m/5065903a0812a21614791711cc7931b765ce7b57.png)
浅析压力容器常规设计规范中的开孔补强设计压力容器的开孔补强设计是压力容器设计的重要环节。
目前,国内压力容器按常规规范设计开孔补强时的常用标准主要有GB150—1998《钢制压力容器》(以下简称GB150)、HG2058-1998《钢制化工容器强度计算规定》(以下简称HG20582)及ASME 锅炉及压力容器规范第Ⅷ卷第一册《压力容器建造规则》(以下简称ASME). GB150是强制性国家标准,是设计的最低要求,超出GB150开孔范围时,可以采用HG20582计算并遵循HG20583—1998《钢制化工容器结构设计规定》(以下简称HG20583)规定结构进行设计。
压力容器开孔补强设计的方法有很多,如等面积法、压力面积法、安定性分析法、极限分析法、PVRC法、增量塑性理论方法及实验屈服法等等.鉴于软硬件条件的限制和从设计成本考虑,国内一般采用等面积法和压力面积法进行开孔补强设计,上面提及的设计规范就是采用这两种方法设计开孔补强的.1。
各规范开孔补强方法的理论基础GB150和ASME规范均采用等面积法进行开孔补强设计,而HG20582中的补强计算采用的是压力面积补强法。
压力面积法与等面积法的实质是一致的,都是从确保容器受载截面的一次平均应力(平均强度)在一倍许用应力水平的计算方法,都未计及开孔边缘的局部应力和峰值应力对开孔的作用,只是两种方法对壳体有效补强范围的确定上有所不同;在补强金属面积的配置上,压力面积法比等面积法更具有密集补强的特点,对缓和接管根部应力集中的作用较大。
2各规范开孔补强方法的适用范围比较GB150和ASME规范均适用于壳体上开圆形、椭圆形(或类似形状)或长圆形孔.GB150规定孔的短径与长径之比应不大于0。
5;而ASME规定当短径与长径之比小于0. 5时,应增强短径方向的补强。
各规范对开孔直径的相对大小均有限制:GB150适用于d /D t ≤0.5;HG20582适用于d /Dt ≤0.8;而ASME适用于d /D t ≤0。
压力容器的开孔与补强
![压力容器的开孔与补强](https://img.taocdn.com/s3/m/5895f117cec789eb172ded630b1c59eef8c79a82.png)
压力容器的开孔与补强压力容器是一种用于贮存和运输高压气体、液体或者混合物的设备。
它们通常需要承受巨大的压力,在日常使用中,压力容器容易出现开孔和损伤的情况。
这种情况下,我们需要对压力容器进行修复和加固。
下面,我们将重点探讨压力容器的开孔与补强的相关知识。
1. 压力容器开孔的原因压力容器开孔的主要原因是意外撞击和磨损。
在使用过程中,如果受到了外力的冲击或者过度的磨损,压力容器的表面很容易出现开孔或者裂缝。
另外,压力容器还可能在制造和储存过程中出现缺陷,导致它们容易出现开孔和损伤。
2. 压力容器补强的方法常见的压力容器补强方法包括金属厚板贴补、涂覆材料和拉毛加固等。
(1) 金属厚板贴补:该方法是在压力容器的开孔处贴补一块同样厚度的金属板,然后使用焊接技术将其固定。
这种方法的优点是容易操作,效果比较显著,但是需要小心操作,否则可能会导致更严重的气体泄漏。
(2) 涂覆材料:这种方法是把一个薄的涂覆材料铺在压力容器的表面,在开孔处多涂几层。
涂覆材料通常是耐高温、抗腐蚀的特殊塑料或者橡胶材料。
该方法的优点是简单易行,不会对整个压力容器造成太大的影响。
(3) 拉毛加固:这种方法是在压力容器的开孔处用拉毛工具让金属拉伸,使其保持平整。
然后在开孔处焊接一块金属板,以加强其整体性能。
拉毛加固的优点是成本较低,对环境污染较小,适合于一些小型压力容器的修补。
3. 压力容器补强的预防措施在压力容器的设计与制造中,预防措施是非常重要的。
以下几点应该注意:(1) 在制造过程中确保压力容器表面光滑、整齐,不要有裂缝或者瑕疵。
(2) 在储存和运输时要轻拿轻放,防止碰撞和磨损。
(3) 在使用过程中,要对压力容器的外部结构进行定期检查,发现缺陷及时修复。
总之,压力容器是现代工业中必不可少的储存和运输设备。
在使用过程中,如果出现了开孔和损伤的情况,我们应该及时进行修复和加固,以确保其安全稳定运行。
同时,在设计、制造和储存过程中,也要注意预防措施,减少压力容器出现开孔和损伤的可能性。
压力容器开孔补强中分析法、等面积法及压力面积法的对照
![压力容器开孔补强中分析法、等面积法及压力面积法的对照](https://img.taocdn.com/s3/m/d6808bbdb0717fd5360cdc9e.png)
( 1 ) 当 圆 筒 内径 D. 1 5 0 0 mm, d o p <D. _ / 2 且 d o p < 5 2 0 mm, 圆 筒 内径D >1 5 0 0 mm,d o p < _ Di / 3 且
d ( . 。 <1 _ 0 0 0 mm;
( 2 ) 凸形 封 头或 球 壳 的开孔 的 最大 直径 d 。 D. / 2 ( d o 。 为 开孔 直径 ,D . 为壳体 的 公称 直径 );
比 较 大 。 由 于 补 强 圈 并 未 和 壳 体 、 接 管 形 成 整 体 ,之 间存 在 着 一 层 静 止 的 间 隙 ,传 热 效 果 差 , 容 易 引起 温 差应 力 ,补 强 圈 和壳 体 相 焊 时 ,此 处
l 等面 积法
该 方 法 是 基 于 采 用 无 限 大 平 板 开 小 孔 的 原 理 为 基 础 的 ,仅 考 虑 容器 壳体 的一 次 拉 伸 薄 膜 应 力 , 以 补 强 壳 体 的 一 次 总 体 平 均 应 力 为 补 强 准 则 。适 用 于 压 力 作 用 下 壳体 和 平 封 头 的 圆形 、椭 圆形 或 长 圆 形 开 孔 , 当在 壳 体 开 椭 圆形 或 长 圆形
承 压 设 备 壳 体 开 孔 以后 ,一 般 需 设 置 接 管 和 人 孔 ,但 孔 边 存 在 三 种 应 力 :① 局部 薄 膜 应 力 。
孑 L 时 ,孔 的长 径 与椭 圆 之 比应 不大 于2 ,且 适用 范 围:
壳 体 开 孔 后 ,开 孔 边缘 附近 应 力分 布 很 不 均 匀 , 在 离 开 边 缘 较 远 处 应 力 几乎 没 有 变 化 ,增 大 的应
压力容器设计技术 方面工作。 Nhomakorabea 4 一 ■ 论文广场
压力容器开孔补强方法比较
![压力容器开孔补强方法比较](https://img.taocdn.com/s3/m/8e9a54d24028915f804dc2b4.png)
压力容器开孔补强方法比较摘要在工程应用中经常需要为了满足各种工艺和结构上的要求在压力容器上开孔和安装接管。
容器开孔以后,一方面削弱了器壁的强度,于是降低了容器的承载能力;另一方面,器壁开孔和接管破坏了原来结构的连续性,在开孔附近导致很高的应力集中,成为容器的薄弱环节。
关键词压力容器;开孔;补强方法;比较目前,用于压力容器的开孔补强设计方法主要有等面积补强法、弹性应力分析法、极限分析法、美国压力容器研究委员会建议草案(以下简称PVRC法)、实验屈服法和压力面积法。
现就PVRC法、实验屈服法和压力面积法进行比较。
UDS系统提供了一种在数据库管理系统外围增加一套安全控制机制的方式,有针对性地解决了数据库连接密码固定不变的问题,能够根据用户制定的密码保护等级的要求周期性地随机生成新的合法密码,使得在不影响数据库信息和较少影响数据库访问及基于数据库的应用系统的开发这些前提下能够充分保障数据库中数据信息的机密性和有效性,并且能够支持多种关系数据库产品。
1 基本原理1.1 PVRC法美国PVRC通过对大量整体锻件补强结构的实验分析后提出下面的补强准则:接管与筒体或壳体发生全域塑性失效时的极限压力等于未开孔时筒体或壳体的屈服压力(即p1=0.98ps),并且允许开孔或接管处最大应力为3倍许用应力(亦即σmax=3[σ])。
GB150-89《钢制压力容器》规定的适用范围为:1)适用于承受内压的圆筒、球壳及凸形封头(在以封头中心为中心80%封头内直径范围内)的径向单个圆形开孔的补强设计;2)两相邻开孔边缘的间距不得小于2.5[S(Di+Sn)/2]1/2;3)在圆筒上,最大开孔尺寸应为d/Di≤1/3,d/(DiStr2/S)1/2≤1.5,且Di/Sd 为10~100;4)在球壳和封头上最大开孔尺寸应为d/(2R)≤0.5, d/(2RS)1/2≤0.8,而且2R/Sd为10~100;5)如用接管和补强件补强,则应与壳体焊成整体,且采用全熔透焊缝,过渡部分需要考虑过渡半径并打磨光滑;6)接管、补强件和壳体所用材料的标准常温抗拉强度与屈服强度之比σb/σs≥1.5。
浅谈压力容器开孔补强的方法及计算
![浅谈压力容器开孔补强的方法及计算](https://img.taocdn.com/s3/m/9155fc4e591b6bd97f192279168884868662b856.png)
浅谈压力容器开孔补强的方法及计算发布时间:2021-08-13T10:44:23.333Z 来源:《科学与技术》2021年4月10期作者:韩秋菊[导读] 本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
浅谈压力容器开孔补强的方法及计算韩秋菊中石化上海工程有限公司上海 ?200120摘要:本文论述了在压力容器的设计中,采用开孔补强的设计方法,由于开孔补强有很多种,本文对其中几种进行深入的分析比较。
关键词:压力容器,开孔补强,计算1.引言随着工业化的发展,压力容器在化工行业越来越普遍,其安全性也越来越受到重视。
开孔补强计是压力容器设计中必不可少的一部分,压力容器开孔后,不仅整体强度削弱,而且还因为开孔造成的应力集中造成开孔边缘局部的高应力,在制造过程中,开孔部分不可避免的形成缺陷与残余应力,于是,开孔附近就往往成为容器的破坏源,因此,在压力容器设计中必须充分考虑开孔补强问题。
2.开孔补强常用的方法2.1等面积补强法等面积补强法是我国压力容器标准GB150中介绍的一种补强方法。
等面积补强法的原则是:在容器和接管连接处周围补强的截面积等于壳体因开孔所减少的截面积。
这种补强的方法是以双向受拉伸的无限大平板上开有小孔时孔边的应力集中作为理论基础的,即仅考虑壳体中存在的拉伸薄膜应力,且以补强壳体的一次应力强度作为设计准则,故对小直径的开孔安全可靠。
同时该方法比较安全可靠,使用简便,在中低压容器设计中较多采用,这也是我们平时设计中最为常见的一种补强方法。
2.2压力面积补强法压力面积补强法是西德AD压力容器规范中采用的补强方法,它的设计原理和等面积法补强方法相同,不同的是对于壳体补强有效范围规定不同。
压力面积补强法开孔率可达0.8,所以当开孔率超过等面积补强时,可以采用压力面积补强。
经过许多实例考证,由于此法计算结果与实际应力相差较大,所以在设计中此种补强方法并不常见。
圆筒径向大开孔补强计算两种分析方法的比较
![圆筒径向大开孔补强计算两种分析方法的比较](https://img.taocdn.com/s3/m/1171d3284b35eefdc8d333a8.png)
图1
生 ,工程 师。现 主要从事压 力容器 的设计工作 。
等 效薄 膜应 力
S: “ K 2 4 : 3 4 7 . 5 MP a < 2 . 2 f ‘ T : 2 . 2 × 1 8 5 : 4 0 7 A 4 f
等 效 总应 力
:
偏保守的。下面 以举例进行计算并讨论 。
』 7 43 2 :4 M P a < 2 . 6 『 f ; 2 . 6 × 1 8 5 : 4 8 1 M P
查 GB 1 5 0 — 2 0 1 1 图6 . 1 3, 采 用 插 值 法 得
Km =4. 7 7 4, K=6 . 51 5:
理 论 得 到 的 圆 筒 上径 向开 孔 补 强 的应 力分 析 法 , 其 开 孔率 可 达 0 . 9 。此 方 法 的提 出 ,可有 效 地解 决 部 分 原 先 只 能通 过 有 限元 分 析 才 能 计算 的超 标 大 开 孔 问题 。 本 文通 过 比较GB 1 5 0 . 2 0 1 1 分 析法 和有 限元分 析 法 的计 算 结 果 发 现 ,有 限元 分 析 的评 定 结 果 是
=
结论 :开孔 补强 合格 。
1 2 有限元分析法计算结果
有 限 元 分 析 计 算 用 AN S Y S 1 4. 0 软 件 的 Wo r k b e n c h 界面 ,采 用 三维 8 节 点 实体 单元 进 行 网 格划 分 。有 限元 网格模 型 见 图2 ,应 力强 度 云 图见 图3 ,线性 化评 定途 径见 图4 。 根 据 应 力 线 性 化 结 果 , 依 据J B / T 4 7 3 2 — 1 9 9 5 《 钢 制压 力 容器一 分 析设 计标 准 》口 对 应力 进行 评
浅谈常规压力容器的开孔补强设计
![浅谈常规压力容器的开孔补强设计](https://img.taocdn.com/s3/m/28fdc5bfd1f34693daef3e2d.png)
浅谈常规压力容器的开孔补强设计摘要:在压力容器上开孔,将会使压力容器的承压能力降低,在其设计工艺条件下会产生危险,因此压力容器开孔后需进行补强,本文介绍了压力容易开孔补强的两种方法和应注意的问题,并针对实例进行了计算演示。
关键词:压力容器补强开孔随着化工行业的发展,压力容器在化工厂中越来越普遍,其安全性也越来越受到重视。
开孔补强设计是压力容器设计中必不可少的一部分,标准和规范中虽然对设计和计算都作了较为详细的规定,但安全、经济、合理的设计仍是摆在我们面前的一个课题。
一旦计算有误就会造成容器的破坏,甚至引起工作人员的伤害,或者造成经济上的浪费。
按照GB150-1998《钢制压力容器》规定,在压力容器的设计过程中,应采用适当的开孔补强设计。
下面就对压力容器的开孔补强进行分析。
一、开孔补强方法的选择1.压力面积法压力面积是西德AD规范中采用的开孔补强方法,其开孔率可达0.8,较等面积法为大。
当开孔率超出等面积法适用范围时,常采用该法进行补强:压力面积法的意义如下。
式中,AP-为补强有效范围内的压力作用面积;Aσ-为补强有效范围内的壳体、接管、补强金属的截面积;P-设计压力;[σ]-材料许用应力公式(1)是以在壳体有效补强区域中的压力载荷与壳体的承载能力相平衡为基础的,即压力在壳体受压面积上形成的载荷与有效补强范围中的壳体、接管、补强材料的面积所具有的承载能力相平衡。
由式(1)的变形得出式(1a):式中左端项即压力在壳体受压面积上形成的载荷。
式中右端项为材料所具有的承载能力材料的承载能力,应大于压力引起的载荷,所以使用不等号相联接。
右端项中是由于采用“中径”公式的缘故。
2.等面积补强法等面积法是以拉伸的开孔大平板为计算模型的。
但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,而且还产生很高的弯曲应力,故该方法不能相适应。
补强计算时,在有效补强范围内的所有多余面积(即有效厚度提供的面积扣除壳体或接管本身强度所需的面积)均可作为补强面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力容器常用开孔补强方法对比分析
压力容器一旦发生事故,危害很大,因此压力容器的开孔补强设计显得尤为重要。
对于压力容器的开孔补强计算方法一般有两种:一是等面积法,二是分析法。
本文对这两种方法作以比较和分析。
在石油化工行业中,压力容器上的开孔是不可避免的,如要开进料口、出料口、人孔等。
容器开孔后,一方面由于器壁承受载荷截面被削弱,引起局部应力的增加和容器承载能力的减弱;另一方面,器壁开孔和接管也破坏了原有结构的连续性,在工艺操作条件下,接管处将产生较大的弯曲应力,开孔边缘会出现很高的应力集中,形成了压力容器的薄弱环节。
因此,设计上必须对开孔采取有效的补强措施,使被削弱的部分得以补偿。
开孔补强基本原理
2.1.等面积法
该法是以受拉伸的开孔大平板作为计算模型的,即仅考虑容器壳体中存在的拉伸薄膜应力,且以补强壳体的一次总体平均应力作为补强原则。
当开孔较小时,开孔边缘的局部应力是以薄膜性质的应力为主的,但随着壳体开孔直径增大,开孔边缘不仅存在很大的薄膜应力,
而且还产生很高的弯曲应力。
等面积法的开孔补强结构所形成的应力集中在某一区域内,当离孔边缘的距离越大,越接近薄膜应力。
它的特点是:角焊缝,具有应力突变,易产生应力集中点,受力状态不好。
2.2.分析法
这种补强方法是以壳体极限分析为基础的,相对等面积法合理得多,但须受开孔壳体和补强接管的尺寸限制。
这种方法优点是:克服等面积法的缺点,在转角处采用圆滑过渡,减少结构形状的突变,减小应力集中程度。
将补强面积集中在应力最高点,充分利用补强面积,使补强更经济、合理。
对比分析
3.1.等面积法
等面积法顾名思义:壳体截面因开孔被削弱的承受强度的面积,须有补强材料予以等面积补偿,其实质是壳体截面因开孔丧失的强度,即被削弱的“强度面积”A乘以壳体材料在设计温度下的许用应力[σ]t,即A[σ]t,应由补强材料予以补偿,当补强材料与壳体材料相同时,。