平方差公式教学设计知识讲解
《平方差公式》教学教案
《平方差公式》教学教案一、教学目标1. 让学生理解平方差公式的含义,掌握公式的推导过程。
2. 能够运用平方差公式解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力,提高学生对数学知识的兴趣。
二、教学内容1. 平方差公式的定义及推导过程。
2. 平方差公式的应用举例。
三、教学重点与难点1. 重点:平方差公式的推导过程及应用。
2. 难点:平方差公式的灵活运用。
四、教学方法1. 采用问题驱动法,引导学生思考并探索平方差公式的推导过程。
2. 运用实例讲解法,让学生通过具体例子理解并掌握平方差公式。
3. 采用小组合作学习法,培养学生的团队协作能力。
五、教学过程1. 导入新课:通过复习平方根的概念,引导学生进入平方差公式的学习。
2. 讲解与演示:讲解平方差公式的推导过程,并进行演示。
3. 实例分析:分析并解决实际问题,让学生理解平方差公式的应用。
4. 练习与巩固:布置练习题,让学生巩固所学知识。
请提供后续五个章节的教案内容要求,以便我继续编写。
六、教学活动1. 课堂互动:通过提问、讨论等方式,让学生积极参与课堂,提高学生的思维能力。
2. 小组竞赛:设置小组竞赛,激发学生的学习兴趣,培养学生的团队精神。
七、教学评价1. 课堂练习:检查学生对平方差公式的理解和掌握程度。
2. 课后作业:布置有关平方差公式的练习题,巩固所学知识。
3. 单元测试:进行单元测试,评估学生对本节课内容的掌握情况。
八、教学资源1. PPT课件:制作精美的PPT课件,帮助学生直观地理解平方差公式。
2. 练习题库:准备丰富的练习题,满足不同层次学生的学习需求。
3. 拓展资料:提供相关数学故事、历史背景等拓展资料,激发学生的学习兴趣。
九、教学进度安排1. 第1-2课时:讲解平方差公式及其推导过程。
2. 第3-4课时:应用实例讲解,让学生掌握平方差公式的应用。
3. 第5-6课时:进行练习与巩固,提高学生的应用能力。
十、课后反思2. 针对学生的掌握情况,调整后续教学策略。
平方差公式-优秀教案
平方差公式-优秀教案【教学目标】1. 理解平方差公式的含义和应用2. 学会运用平方差公式化简一元二次方程3. 培养学生运用公式解决实际问题的能力【教学重点】理解平方差公式的含义和应用,学会运用公式化简一元二次方程【教学难点】运用平方差公式化简一元二次方程【教学内容】1. 平方差公式的含义和应用2. 运用平方差公式化简一元二次方程3. 实际问题解析【教学过程】一、引入1. 教师通过提示,让学生回忆二次方程的解法以及解法的局限性,引出平方差公式。
2. 展示平方差公式的公式表达式,让学生观察该公式的形式和含义。
3. 将一个简单的二次方程转化为标准形式,使用平方差公式求解,让学生理解和掌握该公式的具体应用。
二、知识讲解1. 平方差公式的含义和应用(1)平方差公式的定义:在代数学中,平方差公式用于将二次多项式写成一个平方项和一个差项的和的形式。
(2)平方差公式的公式表达式:(a+b)² = a²+2ab+b²和(a-b)² = a²-2ab+b²。
(3)平方差公式的应用:主要用于化简一元二次方程和求解两个数的平方之差等问题。
2. 运用平方差公式化简一元二次方程(1)将一元二次方程转化为标准形式:ax²+bx+c=0;(2)将公式中的a、b、c代入平方差公式;(3)化简得二次方程的解。
(4)特别地,当二次方程中有平方项且系数a=1时,可以直接使用平方差公式。
三、练习与实际问题解析1. 练习题:练习一元二次方程的化简和求解2. 实际问题解析:通过实际问题的分析与计算,激发学生的兴趣,帮助学生理解和掌握平方差公式的应用。
【教学总结】通过本节课的学习,学生可以理解平方差公式的含义和应用,掌握平方差公式化简一元二次方程的方法,并能够通过实际问题的解析,运用所学知识解决实际问题。
同时,本节课旨在培养学生的问题解决能力,提高学生的数学素养与实际应用能力。
《平方差公式》教案(精选15篇)
《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
中学数学平方差公式教案详解
中学数学平方差公式教案详解一、教学目标:1. 通过教学讲解,学生能够掌握使用平方差公式解决问题的方法。
2. 学生能够自如地运用平方差公式进行乘法和因式分解。
3. 学生能够在以后的数学学习中,独立运用平方差公式进行计算。
二、教学重点:1. 掌握平方差公式的概念及其运用方法。
2. 理解平方差公式的几何意义,并能与乘积和式子相互转化。
三、教学难点:1. 学生对平方差公式的几何意义和运用方法的理解。
2. 学生运用平方差公式解题的能力。
四、教学方法:1. 演示法:通过演示让学生理解平方差公式的几何意义和运用方法。
2. 实践操作法:通过实践让学生掌握平方差公式的应用。
五、教学过程:1. 引入(10分钟)通过导入所学的乘法和因式分解,引出今天要讲的平方差公式,同时告诉学生今天的教学目标和重点。
2. 理论讲解(30分钟)(1)平方差公式的定义及运用方法。
平方差公式(a + b)² = a² + 2ab + b²(a 和 b 可以是任意实数),是一种计算平方和的方法。
通过平方差公式,可以将一个式子的平方和转化为两个式子的平方差。
例1:计算 (2+3)²= 2² + 2×2×3 + 3²= 4 + 12 + 9= 25例2:计算(4a+2b)²= (4a)² + 2 × (4a) × (2b) + (2b)²= 16a² + 16ab + 4b²(2)平方差公式的几何意义平方差公式的几何意义是将一个正方形的面积分为一个小正方形的面积加上四个直角三角形的面积。
体现了一个数的平方与两数的乘积之间的关系。
(3)平方差公式的应用平方差公式应用广泛,不仅可以用来简化式子,解决多项式乘法问题,还可以解方程,证明不等式等。
3. 实践训练(50分钟)通过课堂练习和课后作业来让学生巩固和练习平方差公式的运用。
平方差公式的教学设计及分析
平方差公式的教学设计及分析【教学目标】1.理解平方差公式的定义和含义;2.学会正确运用平方差公式计算示例题;3.能够应用平方差公式解决实际问题。
【教学内容】1.平方差公式的定义和推导过程;2.平方差公式的应用;3.相关习题和实际问题。
【教学步骤】一、导入环节(5分钟)1. 创设情境,比如老师提问:“小明手中有一块木板,宽度是 a cm,长度是b cm。
请问,木板的面积为多少?”引导学生思考。
2.引介平方差公式:“学过面积公式了,面积就是长度和宽度的乘积。
但有没有其它方法计算面积呢?”二、讲解平方差公式的定义和推导过程(20分钟)1.带着学生一起推导平方差公式。
2.讲解平方差公式的定义和含义:“平方差公式是用于计算两个数的平方差的公式。
”3.引导学生记忆平方差公式。
三、运用平方差公式计算示例题(15分钟)1.出示几道简单的计算题,引导学生运用平方差公式计算。
2.逐步提高难度,引导学生解决更复杂的计算问题。
四、学生练习(15分钟)1.分发练习册,要求学生独立完成相关习题。
2.自主学习,教师巡视指导。
五、解答习题和梳理知识(15分钟)1.学生互相核对习题答案,教师解答学生提出的问题和疑惑。
2.回顾和梳理平方差公式的基本知识点。
六、应用实际问题(15分钟)1. 出示一些实际问题,引导学生运用平方差公式解决问题,如“长方形的长是5 cm,宽是3 cm。
如果长方形的一条边增加2 cm,另一条边减少1 cm,面积的变化是多少?”2.引导学生分析问题、列方程,然后计算并得出答案。
七、巩固和拓展(10分钟)1.师生互动,复习平方差公式的应用技巧和注意事项。
2.出示一些拓展题,引导学生运用平方差公式解决更复杂的问题。
3.鼓励学生独立思考,提出自己的解题方法和思路。
【教学分析】教学设计的亮点有以下几个方面:1.通过创设情境引导学生思考,激发学生的学习兴趣和主动性;2.以学生为中心,通过学生自主学习和自主解题来加深理解和巩固知识;3.引导学生从解决实际问题的角度去理解和应用平方差公式。
《平方差公式》的优秀教学设计
《平方差公式》的优秀教学设计一、教学内容本节课的教学内容选自人教版小学数学五年级上册第五章《因数与积》中的平方差公式。
平方差公式是指两个数的平方差可以表示为它们的和与差的乘积的二倍,即a^2 b^2 = (a + b)(a b)。
二、教学目标1. 学生能够理解平方差公式的意义,并能够运用平方差公式进行计算。
2. 学生能够通过平方差公式,解决实际问题,提高解决问题的能力。
3. 学生能够培养合作交流的能力,提高学习的兴趣。
三、教学难点与重点1. 教学难点:平方差公式的推导过程和运用。
2. 教学重点:平方差公式的记忆和运用。
四、教具与学具准备1. 教具:黑板、粉笔、课件。
2. 学具:笔记本、练习本、铅笔。
五、教学过程1. 实践情景引入:让学生拿出自己的身高和座位距离,计算自己的座位面积。
2. 例题讲解:教师通过讲解一个简单的平方差问题,引导学生发现平方差公式的规律。
3. 随堂练习:学生独立完成一些平方差公式的练习题,巩固所学知识。
4. 小组合作:学生分组讨论,探索平方差公式的推导过程,并互相交流心得。
六、板书设计平方差公式:a^2 b^2 = (a + b)(a b)七、作业设计1. 题目:计算下列各题的平方差。
1) 9^2 4^22) 8^2 5^23) 7^2 3^22. 答案:1) 81 16 = 652) 64 25 = 393) 49 9 = 40八、课后反思及拓展延伸1. 课后反思:教师应反思本节课的教学效果,看学生是否掌握了平方差公式,是否能够运用到实际问题中。
2. 拓展延伸:教师可以引导学生进一步研究平方差公式的应用,如解决更复杂的实际问题,或者探索其他数学公式。
重点和难点解析:一、教学内容重点关注细节1. 平方差公式的推导过程:教师需要引导学生通过具体的例子,逐步推导出平方差公式,让学生理解并掌握公式的来源。
2. 平方差公式的运用:教师需要给出一些实际问题,让学生运用平方差公式进行计算,巩固所学知识。
《平方差公式》教学设计教学设计
《平方差公式》教学设计教学设计平方差公式教学设计一、教学目标1. 理解平方差公式的定义和含义;2. 掌握平方差公式的应用方法;3. 发展学生的逻辑思维和推理能力。
二、教学内容1. 平方差公式的概念和定义;2. 平方差公式的推导过程;3. 平方差公式的应用。
三、教学过程导入:1. 通过问答的方式引入平方差公式的概念,如:你们知道平方差公式是什么吗?它有什么作用?2. 引导学生回顾平方差公式之前所学过的知识,如平方根等。
知识讲解:1. 讲解平方差公式的定义和含义,如:平方差公式是指两个数的平方差等于这两个数的和与差的乘积。
用数学符号表示为:(a+b)(a-b)=a^2-b^2。
2. 讲解平方差公式的推导过程,通过具体的例子展示如何由(a+b)(a-b)=a^2-b^2推导出这一公式。
实例演示:1. 通过给出一些具体的数值例子,让学生进行演算,进一步加深对平方差公式的理解。
2. 提供一些实际问题,引导学生运用平方差公式解决实际问题。
练习巩固:1. 在教师的指导下,学生进行平方差公式的相关练习,如计算等。
2. 留出时间让学生进行自主练习,提高他们的巩固能力。
拓展应用:1. 鼓励学生思考更多的数学问题和应用,提高他们的数学思维能力。
2. 提供一些深入的扩展问题,让学生进行探索和研究。
四、教学评价1. 结合教学过程中的课堂练习和自主练习,收集学生的练习作业,进行评价和反馈。
2. 参考学生对平方差公式的掌握情况,对教学过程进行评估,并对下一步的教学进行调整。
五、教学资源1. 平方差公式的定义和推导过程的讲解材料;2. 平方差公式的练习题和答案;3. 相关的课件和教学工具。
六、教学反思本次教学设计主要围绕平方差公式展开,通过引导学生认识和理解平方差公式的概念和定义,提供具体的推导过程,并通过实例演示和练习巩固,达到对平方差公式的掌握和灵活运用。
同时,通过拓展应用和思考更多的数学问题,培养学生的数学思维和解决问题的能力。
平方差公式教案
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的概念及其应用;2. 能够使用平方差公式解决实际问题;3. 培养学生的逻辑思维和推理能力。
二、教学准备:1. 教材:具有平方差公式相关内容的数学教科书;2. 教具:小黑板、彩色粉笔、平方差公式示例题卡片;3. 学具:各种大小的正方形纸板。
三、教学步骤:步骤一:导入(5分钟)1. 引入平方差公式的概念:将一个数的平方减去另一个数的平方,得到的差叫做平方差。
2. 提出问题:举例说明平方差公式的应用,如:若一边长为x的正方形的面积减去另一边长为y的正方形的面积等于16,求x和y之间的关系。
步骤二:讲解平方差公式(10分钟)1. 通过几个示例题引导学生理解平方差公式的推导过程。
2. 示范解答提出的问题,解释平方差公式的应用。
步骤三:练习与巩固(15分钟)1. 学生个别练习:发放平方差公式示例题卡片,让学生独立完成。
2. 小组合作练习:将学生分成小组,彼此交流并互相讨论不同类型的平方差公式题目,提高解题能力。
步骤四:拓展与应用(15分钟)1. 提供一些实际问题,要求学生运用平方差公式解决,如:某正方形花坛围墙的面积减去花坛的面积等于25,求围墙的边长。
2. 鼓励学生思考其他应用平方差公式的实例,并与同伴分享。
步骤五:总结与延伸(5分钟)1. 小结平方差公式的应用及解题技巧。
2. 布置相关的课后作业,巩固所学知识。
四、教学辅助与评估:1. 教学辅助:使用小黑板、彩色粉笔进行教学演示;2. 教学评估:观察学生在练习与巩固环节的表现,检查其运用平方差公式解决实际问题的能力。
五、教学延伸:1. 将平方差公式与图形面积的思想联系起来,引导学生在解决相关问题时运用平方差公式。
2. 引导学生自主发现平方差公式的应用场景,拓展他们的解题思路。
六、教学反思:针对学生的实际学情,设计具有启发性的教学活动,提高学习兴趣和学习效果。
及时反馈学生的问题和困惑,积极激发学生的思考和探索能力。
教师如何教授平方差公式的教案
教师如何教授平方差公式的教案一、教学目标1.知识目标:使学生掌握平方差公式的概念、公式及其应用。
2.能力目标:让学生能够熟练地运用平方差公式解决实际问题。
3.情感目标:让学生了解平方差公式的应用及其实用性,激发学生的学习兴趣和科学探究的热情。
二、教学重点与难点1.教学重点:让学生掌握平方差公式的概念、公式及其应用。
2.教学难点:让学生能够熟练地运用平方差公式解决实际问题。
三、教学策略本次教学使用的策略主要包括课堂讲解、案例分析、组织练习和小组合作等形式。
四、教学过程1.引入教师以生动活泼的语言介绍平方差公式的背景和实际应用场景,激发学生的学习兴趣和好奇心。
2.概念讲解教师对平方差公式的概念进行详细讲解,并在课堂上提供相关的案例,从理论和实践两个方面让学生了解平方差公式的基本概念和原理。
3.公式推导为了更好地掌握平方差公式的应用,教师通过演示推导的方法分析平方差公式,让学生能够理解公式的本质和重要性,同时讲解相关的数学公式及其衍生公式。
4.案例分析为了加强学生的应用能力,教师给出几个实际问题,让学生通过平方差公式解决问题,学以致用、能够掌握平方差公式的实际应用。
5.组织练习教师在课堂上组织学生进行练习,加强学生的运用能力和熟练度,通过实际操作促进学生的思维能力和创造性思维。
6.小组合作教师组织学生分组,让每个小组自行思考和解决一个数学问题,通过小组合作促进学生彼此交流、思路拓展和创造性思维的提升。
7.总结在课堂上,教师对本节课的内容和关键点进行总结,强调平方差公式的重要性和应用场景,同时鼓励学生在学习中多思考、多提问、多交流和多创新。
五、教学评价1.从知识掌握的程度来考察学生是否掌握平方差公式的概念、公式及其应用。
2.从应用能力的发挥来考察学生是否能够熟练地运用平方差公式解决实际问题。
3.从情感的反映角度来考察学生对平方差公式的认知和认可程度,以及愉悦感、成就感和探究兴趣是否得到促进。
六、教学延伸为了让学生更好地掌握平方差公式的应用,教师可以让学生自己选取一些数据进行计算,使用平方差公式进行解决,并在班级上进行展示,促进学生思维的交流,拓展学生的思维空间,为学生的未来科学研究打下坚实的基础。
平方差公式教案(共5篇)
平方差公式教案(共5篇)第一篇:平方差公式教案学习周报专业辅导学生学习第七节平方差公式(一)学习目的:1、通过经历探索平方差公式的过程,进一步发展符号感和推理能力。
2、会推导平方差公式、理解平方差公式的特点,并能运用公式进行简单的计算。
3、通过对平方差公式结构的认识,体会数学中的结构美、简约美。
学习重点:理解平方差公式的特点,会运用平方差公式计算学习难点:会推导平方差公式,并能灵活运用公式进行计算学习过程:一、复习探究1、请写出多项式与多项式相乘的法则:2、计算下列各题(1)(x+2)(x-2);(2)(1+3a)(1-3a)(3)(x+5y)(x-5y);(4)(y+3z)(y-3z)解:3、通过以上计算,你发现了什么规律?能不能猜想出一个一般性的结论?规律:结论:二、学习新课1、推导公式:现在要对大家提出的猜想进行证明,请试着写出证明过程:证明:我们经历了由发现——猜测——证明的过程,最后得出一个公式性的结论,根据它的特点,我们给它取个容易记的名字,就叫做平方差公式学习周报专业辅导学生学习即:(a+b)(a-b)=a-b两个数的和与这两个数的差相乘,它们的积就等于这两个数的平方差.你知道公式中的a、b表示什么?请同学们分析公式的结构并记忆。
2、应用公式例1、用平方差公式计算:(1)(5+6x)(5-6x);(2)(x-2y)(x+2y)分析:要利用平方差公式解题,必须找到相同的项和互为相反数的项,结果为相同项的平方减互为相反数的项的平方.解:(1)(5+6x)(5-6x)=5-(6x)=25-36x(2)(x-2y)(x+2y)=x-(2y)=x-4y 例2、利用平方差公式计算(1)(-m+n)(-m-n);(2)(-2x-5y)(5y-2x);222222222(3)(ab+8)(-ab+8)分析:注意找准相同项与互为相反数的项.解:(1)(-m+n)(-m-n)=(-m)-n=m-n(2)(-2x-5y)(5y-2x)=(-2x)2-(5y)2=4x2-25y2(3)(ab+8)(-ab+8)=82-(ab)2=64-a2b2 现在让我们来试试吧!练习1:下列各题能否用平方差公式来进行计算?若能,请写出结果。
初中数学《平方差公式》教案
初中数学《平方差公式》教案
一、教学目标
1.掌握平方差公式。
2.掌握常见的平方差的应用。
二、教学重点
掌握平方差的定义和公式,并熟悉它的常见应用。
三、教学难点
理解平方差的计算方法,应用正确的公式在给定的数据上求平方差。
四、教学准备
教学用书、白板、粉笔等。
五、教学过程
(一)热身环节
1.播放歌曲,介绍今天要学习的内容。
2.提问学生,让他们交流自己对平方差的理解。
(二)复习环节
1.复习统计中的分散程度的概念。
2.介绍统计中的几个概念,如:均值、样本方差、样本标准差等。
(三)新课内容环节
1.告诉学生,平方差是一种衡量样本的分散程度的一种数学量,用来衡量一组数据的分布趋势。
2.介绍平方差的定义,用公式来表示,以及其一般的计算方法,并演示计算过程。
3.平方差与样本方差的区别。
4.平方差的重要性,以及它的应用。
(四)操作环节
1.让学生利用上课所学的知识,计算给定的一组数据的平方差。
2.引导学生分析给定的一组数据的分布趋势,根据平方差的大小,做出判断。
(五)归纳环节
1.总结本节课所学的内容,归纳、整理课堂知识。
2.用小结的形式,总结平方差的定义、计算方法以及常见的应用。
六、教学反思。
《平方差公式》教学设计
《平方差公式》教学设计一、教学目标:1.了解平方差公式的概念和作用;2.熟练掌握平方差公式的运用方法;3.能够解决相关的实际问题。
二、教学重点:1.平方差公式的概念和作用;2.平方差公式的运用方法。
三、教学难点:1.理解平方差公式的本质;2.灵活运用平方差公式解决问题。
四、教学准备:1.教师准备一份精心设计的课堂教学PPT;2.学生准备铅笔、橡皮擦、作业本等。
五、教学过程:Step 1 引入问题教师通过一个具体的问题引入平方差公式的概念和作用。
例如,一个长方形的长和宽分别是x和y,求长方形的面积。
Step 2 提问激发思考教师提问学生如何计算长方形的面积,引导学生通过(x+y)×(x+y)的方式进行计算,然后尝试进行展开。
Step 3 引出定义教师引出平方差公式的定义:任意两个实数a和b的平方差,等于它们的和乘以它们的差。
Step 4 练习运用教师设计一些练习题,让学生运用平方差公式进行计算。
例如,给出(x+2)(x-3),让学生运用平方差公式计算结果。
Step 5 开展小组合作教师将学生分为若干小组,每个小组配发一些应用平方差公式的问题,要求学生小组内互相讨论、思考解决问题的方法。
Step 6 学生展示讨论结果教师随机选择一些学生进行展示,让他们分享自己的解题思路和方法,并与其他同学进行互动,让学生在合作中彼此学习。
Step 7 拓展应用教师提供一些拓展应用题,让学生灵活运用平方差公式解决实际问题。
例如,如果一个长方形的面积是16,其中一条边是x,另一条边是x+3,求x的值。
Step 8 提出总结教师引导学生对平方差公式进行总结,并强调学生要能够正确灵活地运用平方差公式解决各种问题。
六、教学扩展:1.学生可以自行发现和总结平方差公式的一些应用,拓展其运用范围;2.学生可以通过实际问题的解决过程,了解平方差公式在现实生活中的应用。
七、教学反思:通过本节课的教学设计,学生能够了解平方差公式的概念和作用,并能够熟练掌握平方差公式的运用方法。
平方差公式优秀教案(多场景)
平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。
2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。
二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。
2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。
3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。
三、教学重点与难点1.教学重点:平方差公式的推导和应用。
2.教学难点:平方差公式的理解和灵活运用。
四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。
2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。
3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。
4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。
5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。
6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。
7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。
8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。
五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。
2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。
3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。
平方差公式教案
平方差公式教案教案标题:平方差公式教案一、教学目标:1. 理解平方差公式的定义和意义。
2. 能够灵活运用平方差公式求解简单的数学问题。
3. 培养学生的逻辑思维和推理能力。
二、教学重难点:1. 平方差公式的理解和运用。
2. 针对不同难度的问题选择合适的解题方法。
三、教学准备:1. 教师准备:教案、黑板、白板笔。
2. 学生准备:纸和铅笔。
四、教学过程:步骤一:引入教师通过简单的例子引入平方差公式的概念,如:计算(7+3)²和(7-3)²的值,并帮助学生发现其中的规律。
步骤二:介绍平方差公式1. 教师向学生介绍平方差公式的定义和意义:“平方差公式是指一个二次式乘积的展开式,其中含有两个数的平方和两倍乘积的差。
”2. 教师在黑板上展示平方差公式的一般形式:(a + b)² = a² + 2ab + b² 和 (a - b)² = a² - 2ab + b²。
3. 通过实际例子帮助学生理解平方差公式的应用,如:计算(5 +2)²和(5 - 2)²的值。
步骤三:解题方法与例题1. 教师向学生介绍两种常用的解题方法:a. 直接利用平方差公式展开计算。
b. 先计算平方和,在减去两倍乘积。
2. 通过具体的例题,引导学生贯通两种解题方法的思路,并帮助学生掌握正确的运算步骤。
例题1:计算(9 + 4)²的值。
解法1:直接利用平方差公式展开计算。
(9 + 4)² = 9² + 2 * 9 * 4 + 4² = 81 + 72 + 16 = 169。
解法2:先计算平方和,再减去两倍乘积。
(9 + 4)² = (9² + 4²) - 2 * 9 * 4 = 81 + 16 - 72 = 169。
例题2:计算(7 - 2)²的值。
解法1:直接利用平方差公式展开计算。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标让学生理解平方差公式的概念及意义。
培养学生对平方差公式的兴趣和好奇心。
1.2 教学内容平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤1. 引入平方差公式的概念,让学生回顾已学的平方和乘法运算。
2. 通过示例,引导学生观察和总结平方差公式的规律。
3. 让学生尝试推导平方差公式,并提供必要的提示和指导。
1.4 教学评价观察学生在推导过程中的理解和应用能力。
评估学生对平方差公式的掌握程度。
第二章:平方差公式的应用2.1 教学目标培养学生应用平方差公式解决问题的能力。
培养学生运用平方差公式进行简便计算的能力。
2.2 教学内容平方差公式的应用场景和问题类型。
平方差公式在实际问题中的应用方法。
1. 引入平方差公式的应用场景,让学生理解平方差公式的实际意义。
2. 通过示例,展示平方差公式在实际问题中的应用方法。
3. 让学生尝试解决一些实际问题,应用平方差公式进行计算和解答。
2.4 教学评价观察学生在解决实际问题时的应用能力和计算准确性。
评估学生对平方差公式应用的理解和掌握程度。
第三章:平方差公式的拓展3.1 教学目标让学生理解平方差公式的拓展概念和性质。
培养学生运用平方差公式解决更复杂问题的能力。
3.2 教学内容平方差公式的拓展概念和性质。
平方差公式在其他数学领域的应用。
3.3 教学步骤1. 引导学生思考平方差公式的拓展概念和性质,让学生进行自主探索。
2. 通过示例,介绍平方差公式在其他数学领域的应用,如二次方程的解法等。
3. 让学生尝试解决一些更复杂的题目,运用平方差公式进行计算和解答。
3.4 教学评价观察学生在探索平方差公式拓展概念和性质时的理解和思考能力。
评估学生对平方差公式在解决更复杂问题中的运用能力和创造力。
第四章:巩固练习巩固学生对平方差公式的理解和掌握。
提高学生运用平方差公式解决问题的能力。
4.2 教学内容设计一些练习题目,让学生运用平方差公式进行计算和解答。
《平方差公式》教学教案
《平方差公式》教学教案第一章:导入1.1 教学目标:让学生理解平方差公式的概念和意义。
引导学生通过实际例子发现平方差公式的规律。
1.2 教学内容:平方差公式的定义和表达式。
平方差公式的推导过程。
1.3 教学步骤:1.3.1 引入平方差的概念,让学生回顾平方的定义和性质。
1.3.2 通过实际例子,引导学生发现平方差的现象,并总结规律。
1.3.3 给出平方差公式的表达式,解释其含义和适用范围。
1.4 教学评估:提问学生对平方差公式的理解和应用。
让学生完成一些相关的练习题,检验其对平方差公式的掌握程度。
第二章:平方差公式的推导2.1 教学目标:让学生理解平方差公式的推导过程。
培养学生通过逻辑推理和数学思维解决问题的能力。
2.2 教学内容:平方差公式的推导方法。
平方差公式的证明过程。
2.3 教学步骤:2.3.1 引导学生回顾平方的定义和性质,复习平方差的概念。
2.3.2 引导学生通过实际例子和数学推理,推导出平方差公式。
2.3.3 给出平方差公式的证明过程,解释其逻辑和数学依据。
2.4 教学评估:提问学生对平方差公式的推导过程和证明的理解。
让学生完成一些相关的练习题,检验其对平方差公式的推导和证明的掌握程度。
第三章:平方差公式的应用3.1 教学目标:让学生掌握平方差公式的应用方法。
培养学生运用平方差公式解决实际问题的能力。
3.2 教学内容:平方差公式的应用场景和例题。
平方差公式的变形和扩展。
3.3 教学步骤:3.3.1 引导学生理解平方差公式的应用场景,例如解决几何问题、物理问题等。
3.3.2 给出一些例题,引导学生运用平方差公式进行计算和解决问题。
3.3.3 引导学生对平方差公式进行变形和扩展,探讨其适用范围和限制条件。
3.4 教学评估:提问学生对平方差公式的应用场景和例题的理解。
让学生完成一些相关的练习题,检验其对平方差公式的应用和解决问题的掌握程度。
第四章:练习与巩固4.1 教学目标:让学生通过练习题巩固对平方差公式的理解和应用。
4.3第1课时平方差公式(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平方差公式的概念、推导、重要性和应用。通过实践活动和小组讨论,我们加深了对平方差公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用组讨论和实验操作环节,学生们非常积极参与,能够将平方差公式应用到解决实际问题中。这让我感到欣慰,因为他们能够将理论知识与实际情境联系起来。然而,我也注意到有些小组在展示成果时表达不够清晰,可能需要我在未来教学中加强对学生表达能力的培养。
此外,我在教学中也尝试了引导学生通过自己的思考来发现问题、解决问题。这种开放式的讨论方式让学生们能够更主动地学习,但我发现部分学生在面对开放性问题时显得有些无所适从。这提示我,在未来的教学中,我应该更多地提供思维框架和策略,帮助他们逐步培养解决问题的能力。
-学生在运用平方差公式时,可能会出现符号混淆、计算错误等问题。
举例解释:
-为了帮助学生理解“两数之和与两数之差”,可以通过图形化表示,如边长为a和b的两个正方形拼接成一个长方形,通过计算长方形的面积差异来直观展示平方差公式。
-在应用方面,可以设计一些与生活相关的题目,如计算田地的面积变化,让学生通过解决实际问题来加深对平方差公式的理解。
本节课旨在让学生掌握平方差公式,并能够熟练运用公式进行相关计算,提高学生的运算能力和解决问题的能力。
二、核心素养目标
初中数学教案:平方差公式
初中数学教案:平方差公式一、教学目标1.理解平方差公式的概念和作用;2.掌握平方差公式的推导和应用;3.进一步提升解决二次方程相关问题的能力;4.培养学生的逻辑思维和数学推理能力。
二、教学准备1.教材:《初中数学课程标准实验教科书》;2.教具:白板、黑板、彩色粉笔、教学PPT;3.学具:数学作业本、试题集。
三、教学过程导入1.引入平方差公式的概念:在代数学中,平方差公式(也叫差平方公式)是指两个数之差的平方可以分解为两个数的平方的差。
例如:(a+b)2=a2+ 2ab+b2,其中(a+b)叫做一个二项式,a和b叫做二项式的项。
2.引导学生思考平方差公式的应用场景:如何将一个二次方程因式分解为两个一次因式的乘积?演示1.演示平方差公式的推导过程:–(a+b)2=(a+b)(a+b)=a(a+b)+b(a+b)=a2+ab+ ab+b2=a2+2ab+b22.给出一个具体的例子:$(x+3)^2 = x^2 + 2x \\cdot 3 + 3^2 = x^2 + 6x + 9$,通过展开式验证公式的正确性。
实践1.学生在练习册上完成一些平方差公式的展开练习题,并在黑板上写出答案,通过对比和讨论的方式加深对公式的理解。
2.学生通过观察展开式的规律,尝试推导一个新的平方差公式:(a−b)2=a2−2ab+b2,并通过类似的方法进行验证。
总结1.根据学生的表现和反馈,进行一次简单的总结和概念的复习。
2.提问学生序列回答,让学生再次复习掌握。
拓展1.引导学生思考更复杂的应用题,如给出一个二次方程,如何利用平方差公式求解其根。
2.在课后作业中,布置更多的练习题,要求学生通过平方差公式解决相关问题。
四、课堂小结通过本节课的学习,学生们对平方差公式的概念和应用有了更深入的理解。
他们通过展开式的推导过程,进一步巩固了二次方程的解法和因式分解的能力。
同时,通过与同学的合作讨论,培养了学生的思维能力和团队合作的精神。
五、课后作业1.完成《初中数学课程标准实验教科书》中关于平方差公式的练习题;2.思考并解答以下问题:–平方差公式有哪些实际应用场景?–如何证明平方差公式的正确性?–除了平方差公式,还有哪些类似的公式?六、教学反思通过本节课的教学,我发现学生们对平方差公式的理解程度并不一致,有的学生在推导过程中遇到了困难,需要进一步加强辅导和讲解。
《平方差公式》优质教学设计
《平方差公式》优质教学设计《平方差公式》优质教学设计作为一名教师,时常需要准备好教学设计,借助教学设计可以提高教学效率和教学质量。
那么问题来了,教学设计应该怎么写?下面是小编精心整理的《平方差公式》优质教学设计,欢迎阅读,希望大家能够喜欢。
《平方差公式》优质教学设计11.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)2.掌握平方差公式的应用.(重点、难点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】直接应用平方差公式进行计算利用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(-7m+8n)(-8n-7m);(4)(x-2)(x+2)(x2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.变式训练:见《学练优》本课时练习“课堂达标训练”第1题【类型二】应用平方差公式进行简便运算利用平方差公式计算:(1)20xx×1923;(2)13.2×12.8.解析:(1)把20xx×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)20xx×1923=(20+13)×(20-13)=400-19=39989;(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第13题【类型三】运用平方差公式进行化简求值先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.变式训练:见《学练优》本课时练习“课堂达标训练”第14题【类型四】平方差公式的几何背景如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型五】平方差公式的实际应用王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.三、板书设计1.平方差公式两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.2.平方差公式的运用学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的.练习可以让学生在课后完成。
平方差公式的教学设计及分析
平方差公式的教学设计及分析教学目标:1.了解平方差公式及其应用场景;2.熟练掌握平方差公式的计算方法;3.能够通过平方差公式解决实际问题;4.培养学生的逻辑思维和问题分析能力。
教学内容:1.平方差公式的基本概念和定义;2.平方差公式的证明过程;3.平方差公式的应用案例。
教学过程:第一步:导入新知识(10分钟)教师通过提问的方式,激发学生的学习兴趣。
比如:“有一组数,它们的平方相减的结果是多少?”提供一组数:3,5,7,9,让学生小组合作计算并给出答案。
然后让学生讨论并找出规律。
最后教师引出平方差公式的定义。
第二步:平方差公式的证明(20分钟)教师通过多种方法对平方差公式进行证明,可以通过几何方法、代数方法或者直接展开式的比较等多种方式进行证明。
这个环节可以以小组合作的方式进行,引导学生自主发现、探索并总结出平方差公式的证明过程。
通过自主发现,学生对公式的理解更加深入。
第三步:平方差公式的应用(30分钟)教师提供一些实际问题,让学生运用平方差公式进行解答。
比如:“一些矩形的长和宽之差是5cm,而长和宽之和是13cm,求该矩形的长和宽。
”这个问题的解答可以通过设置方程并运用平方差公式来解决。
可以让学生自行思考和解答,然后再进行讲解和总结。
通过实际问题的应用,学生能够更好地理解公式的真正用途。
第四步:归纳总结(10分钟)第五步:拓展练习(10分钟)教师出示一些拓展练习题,要求学生独立完成并及时检查。
这些练习题的目的是巩固和加深学生对平方差公式的理解和运用。
教学分析:这份教学设计通过问题导入的方式引入平方差公式的概念,激发学生的学习兴趣。
接下来,通过多种方法的证明,培养学生的逻辑思维和问题分析能力。
然后通过实际问题的应用,让学生将公式从抽象的数学概念转化为实际解决问题的工具。
最后,通过总结和拓展练习,巩固和加深学生对平方差公式的理解和运用。
这个教学过程既符合学生的认知规律,又能够培养学生的思维能力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《14.2.1平方差公式》教学设计
明水二中刘培国
一、内容和内容解析
内容
人教版数学八年级上册“14.2乘法公式”(第一课时)
内容解析
《平方差公式》是在学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法.因此,平方差公式在初中阶段的教学中也具有很重要地位,是初中阶段的第一个公式.
本节课的教学重点是:经历探索平方差公式的全过程,并能运用公式进行简单的运算.
二、目标和目标解析
目标
1、经历平方差公式的探索过程,进一步发展学生的符号感和推理能力、归纳能力;
2、掌握平方差公式的结构特征,能运用公式进行简单的运算;
3、会用几何图形说明公式的意义,体会数形结合的思想方法.
目标解析:
1、让学生经历“特例──归纳──猜想──验证──用数学符号表示”这一数学活动过程,积累数学活动的经验,进一步发展学生的符号感、推理能力、归纳能力,同时体会数学的简洁美、培养他们的合情推理和归纳的能力以及在解决问题过程中与他人合作交流的重要性.
2、让学生了解平方差公式产生的背景,理解平方差公式的意义,掌握平方差公式的结构特征,并能灵活运用平方差公式解决问题.在数学活动中,引导学生观察、分析公式的结构特征以及公式中字母的广泛含义,并在练习中,对发生的错误做具体分析,加深学生对公式的理解.
3、通过自主探究与合作交流的学习方式,让学生经历探索新知、巩固新知和拓展新知这一过程,发挥学生的主体作用,增强学生学数学、用数学的兴趣.同时,让学生在公式的运用中积累解题的经验,体会成功的喜悦.
三、教学问题诊断分析
学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会确定错某些项符号及漏项等问题.学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛含义学生的理解.因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.
本节课的教学难点:利用数形结合的数学思想方法解释平方差公式,灵活运用平方差公式进行计算.
四、教学过程设计
(一)创设情境,引出课题
问题1:计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)= ;
(2)(m+2)(m-2)= ;
(3)=;
(4)(2x+1)(2x-1)= .
【设计意图】通过对特殊的多项式与多项式相乘的计算,既复习了旧知,又为下面学习平方差公式作了铺垫,让学生感受从一般到特殊的认识规律,引出乘法公式----平方差公式.(二)探索新知,尝试发现
问题2:依照以上四道题的计算回答下列问题:
①式子的左边具有什么共同特征?
②它们的结果有什么特征?
③能不能用字母表示你的发现?
师生活动:教师提问,学生通过自主探究、合作交流,发现规律,式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,并猜想出:.
【设计意图】根据“最近发展区”理论,在学生已掌握的多项乘法法则的基础上,探索具有特殊形式的多项式乘法──平方差公式,这样更加自然、合理.
(三)数形结合,几何说理
问题3:活动探究:将长为(a+b),宽为(a-b)的长方形,剪下宽为b的长方形条,拼成有空缺的正方形,并请用等式表示你剪拼前后的图形的面积关系.
【设计意图】通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想,让学生体会到代数与几何的内在联系.引导学生学会从多角度、多方面来思考问题.对于任意的a、b,由学生运用多项式乘法计算:,验证了其公式的正确性.
(四)总结归纳,发现新知
问题4:你能用文字语言表示所发现的规律吗?
两个数的和与这两个数的差的积,等于这两个数的平方差.
【设计意图】鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力.(五)剖析公式,发现本质
在平方差公式中,其结构特征为:
①左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即;
②让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b 的广泛含义,归纳得出:a和b可能代表数或式.
【设计意图】通过观察平方差公式,体验公式的简洁性并通过分析公式的本质特征掌握公式.在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住了概念的核心,使学生在公式的运用中能得心应手,起到事半功倍的效果.
(六)巩固运用,内化新知
问题5:判断下列算式能否运用平方差公式计算:
(1)(2x+3a)(2x–3b);(2);
(3)(-m+n)(m-n);(4);
(5);(6).
【设计意图】学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.巩固平方差公式,进一步体会字母a、b可以是数,也可以是式,加深对字母含义广泛性的理解.
问题6:判断下列计算是否正确:
(1)(2a–3b)(2a–3b)=4a2-9b2()
(2)(x+2)(x – 2)=x2-2 ()
(3)(-3a-2)(3a-2)=9a2-4 ()
(4)()
【设计意图】对学生常出现的错误,作具体的分析,以加深学生对公式的理解,进一步掌握平方差公式的本质特征和运用平方差公式必须具备的条件.
问题7:计算:
(1)(2x +3)(3x-3);(2)(b+2a)(2a-b);(3).解:(1)(2x + 3)(2x –3)=(2x)2-32 = 4x 2-9
(2)(b+2a)(2a-b)
=(2a)2-b2
=4a2-b2
(3)
=
=
【设计意图】解决操作层面问题.可提议用不同方法计算,以体现学生的创造性.
(七)拓展深化,发展思维
问题8:计算:
(1)98×(-102);(2).
【设计意图】把相乘两数转化成两数和与两数差的乘积形式,此题体现了转化的思想和数式通性;另一题是平方差公式与一般多项式乘法的综合,注意不能用公式的仍按多项式乘法法则进行.
问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.
【设计意图】运用平方差公式解决实际问题,体现了数学来源于生活,服务于生活,学生感受到学习了有用的数学,设计此题与平方差公式的几何意义相吻合,加深学生对平方差公式的理解.
(八)小试牛刀,挑战自我
1.计算:
2.在下列括号中填上合适的多项式:
3.看谁算得快:
【设计意图】设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时锻炼了学生逆向思维能力,也为后续的学习做了铺垫.第2个填空题有两种填法,属开放设计.目的是加强学生对公式结构特征的理解,同时也锻炼学生的发散思维.
(九)总结概括,自我评价
问题10:这节课你有哪些收获?还有什么困惑?
【设计意图】从知识和情感态度两个方面加以小结,使学生对本节课的知识有一个系统全面的认识.
(十)课后作业
必做题:P156习题15.2 1
选做题:1.,则A的末位数是_______.
2.计算:(1);
(2);
(3).
【设计意图】作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异,满足多样化的学习需要,让不同的人在数学上得到不同的发展.。