概率论第三章习题详解
概率论与数理统计第三章习题及答案
![概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/250bbbdc6f1aff00bed51e25.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论第三章习题解答
![概率论第三章习题解答](https://img.taocdn.com/s3/m/e89ee20ab8f67c1cfbd6b85d.png)
第三章习题解1 在一箱子中装有12只开关,其中2 只是次品,在其中任取两次,每次任取一只,考虑两种实验:(1)放回抽样;(2)不放回抽样。
概念随机变量X ,Y 如下:0,1X ⎧=⎨⎩若第一次取出的是正品,,若第一次取出的是次品。
0,Y 1⎧=⎨⎩若第二次取出的是正品,,若第二次取出的是次品。
试别离就(1),(2)两种情形写出X ,Y 的联合散布律。
解 (1)放回抽样由于每次抽取时都是12只开关,第一次取到正品有10种可能,即第一次取到正品的概率为 105{0}126P X ===, 第一次掏出的是次品的概率为 21{1}126P X === 同理,第二次取到正品的概率105{0}126P Y === 第二次取到次品的概率为21{1}126P Y === 由乘法公式得X ,Y 的联合散布率为{,}{|}{}{}{}P X i Y j P Y j X i P X i P X i P Y j =========,0,1i =,0,1j =。
具体地有5525{0,0}6636P X Y ===⨯=,515{0,1}6636P X Y ===⨯=,155{1,0}6636P X Y ===⨯=,111{1,1}6636P X Y ===⨯=用表格的形式表示为(2)不放回抽样5{0}6P X ==,1{1}6P X == 因为第二次抽取时,箱子里只有11只开关,当第一次抽取的是正品,那么箱子中有9只正品)。
因此9{0|0}11P Y X ===, 2{1|0}11P Y X === 10{0|1}11P Y X ===, 1{1|1}11P Y X ===则5945{0,0}61166P X Y ===⨯= 5210{0,1}61166P X Y ===⨯=, 11010{1,0}61166P X Y ===⨯=,111{1,1}61166P X Y ===⨯= 用表格表示为2 (1)盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合散布律。
概率论与数理统计第三章习题及答案
![概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/250bbbdc6f1aff00bed51e25.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论第三章习题及答案
![概率论第三章习题及答案](https://img.taocdn.com/s3/m/5d226b6b580102020740be1e650e52ea5418ce7a.png)
02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。
概率论与数理统计第三章课后习题及参考答案
![概率论与数理统计第三章课后习题及参考答案](https://img.taocdn.com/s3/m/b11f7271a9956bec0975f46527d3240c8547a14b.png)
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==∞+∞-∞+∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰∞+∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰∞+∞+--∞+∞-∞+∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰∞+∞+--=02d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰∞+∞-∞+∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u ,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)1,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,41)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰∞+∞++-∞+∞-∞+∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰∞+∞+--=02d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰∞+∞-=y y x f x f X d ),()(⎰∞++-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=20202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f 求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰∞+∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰∞+∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x y x y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰∞+∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰∞+∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)∵),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d 3()),((xxx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y xy x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a a y a y y x f x f xa x a X +===⎰⎰++-∞+∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---∞+∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f y Y X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=12d e12x x ⎰--=12d e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰∞+∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---∞+∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰∞+∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰∞+∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e)(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.证:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y x f +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰∞++-∞+∞-∞+∞-==01)(d d e d d ),(1yx b y x y x f y x⎰⎰∞+--=1d e d e y x b y x )e 1(|)e (|)e (1102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰∞+∞-=x y x f y f Y d ),()(y y x x -+--=-=⎰e d e e1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e 1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e1e1,0,01u u u uu .。
概率论第三章课后习题答案_课后习题答案
![概率论第三章课后习题答案_课后习题答案](https://img.taocdn.com/s3/m/0f84358c50e79b89680203d8ce2f0066f4336456.png)
第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论与数理统计第3章复习题(含解答)
![概率论与数理统计第3章复习题(含解答)](https://img.taocdn.com/s3/m/7dded4d4b9f3f90f76c61bda.png)
《概率论与数理统计》第三章复习题解答1. 设Y X ,的分布律分别为且已知0)(=<Y X P ,4)1(=+>Y X P .(1)求),(Y X 的联合分布律;(2)判定Y X ,独立否;(3)求),min(),,max(,321Y X Z Y X Z Y X Z ==+=的分布律.解:(1) 由0)(=<Y X P 知0)1,1()0,1(==-=+=-=Y X P Y X P ,故0)1,1()0,1(==-===-=Y X P Y X P ;由41)1(=+>Y X P 知41)1,1(=-==Y X P .于是可以填写出如下不完整的联合分布律、边缘分布律表格:再由联合分布律、边缘分布律的关系可填出所余的3个空, 得到(2) 41)1,1(=-=-=Y X P ,而2141)1()1(⋅=-=-=Y P X P ,故Y X ,不独立. (3) 在联合分布律中增加0=X 的一行,该行ij p 均取为0,分别沿路径:对ij p 相加, 得2. 设平面区域G 由曲线xy 1=, 直线2,1,0e x x y ===所围成. ),(Y X 在G 上服从均匀分布, 求)2(X f .解:区域G 的面积.2][ln 12211===⎰e e G x dx xS 故),(Y X 的联合概率密度为⎪⎩⎪⎨⎧><<<=其它 ,0 10,1,21),(2x y e x y x f . ⎪⎩⎪⎨⎧<<===⎰⎰∞∞-其它 ,0 1 ,2121),()(210e x x dy dy y x f x f x X , .41)2( =∴Xf 3. 一个电子仪器由两个部件构成,Y X ,分别表示两个部件的寿命(单位:千小时),已知),(Y X 的联合分布函数为⎩⎨⎧>>---=+---其它 0,0 0 ,1),()(5.05.05.0y ,x e e e y x F y x y x(1) 问Y X ,是否独立;(2)求两个部件的寿命都超过0.1千小时的概率.解:(1) ⎪⎩⎪⎨⎧>-=∞+=-其它 0, 0 ,1),()(5.0x e x F x F x X , ⎪⎩⎪⎨⎧>-=+∞=-其它 0, 0 ,1),()(5.0y ey F y F y Y , 从而有)()(),(y F x F y x F Y X =, 所以Y X ,相互独立.(2) 由Y X ,相互独立知)]1.0(1)][1.0(1[)1.0()1.0()1.0,1.0(≤-≤-=>>=>>Y P X P Y P X P Y X P.)]1.0(1)][1.0(1[1.005.005.0---==--=e e e F F Y X4. 设),(Y X 的联合概率密度⎪⎩⎪⎨⎧><+=其它,0 0,1,2),(22y y x y x f π,⎩⎨⎧≥<=Y X Y X U ,1,0,⎪⎩⎪⎨⎧<≥=Y X Y X V 3 ,13,0,求:(1) ),(V U 的联合分布律;(2))0(≠UV P .解:(1) 0)()3,()0,0(00=Φ=≥<====P Y X Y X P V U P p ;432),()3,()1,0(01===<<====⎰⎰OCD OCDS dxdy y x f Y X Y X P V U P p 扇形扇形π; 612),()3,()0,1(10===≥≥====⎰⎰OAB OABS dxdy y x f Y X Y X P V U P p 扇形扇形π; 1212),()3,()1,1(11===<≥====⎰⎰OBC OBCS dxdy y x f Y X Y X P V U P p 扇形扇形π. 于是有联合分布律:(2) 121)0(11==≠p UV P . 5. 设),(Y X 的联合概率密度为⎩⎨⎧<<<<=其它,010,10 ,1),(y x y x f求:(1))21,21(≤≤Y X P ;(2))21(>+Y X P ;(3))31(≥Y P ;(4))21(>>Y Y X P .解:(1)4121211),()21,21(21,21=====≤≤⎰⎰⎰⎰≤≤G Gy x S dxdy dxdy y x f Y X P ;(2)=>+)21(Y X P 8721212111),(21=-===⎰⎰⎰⎰>+G Gy x S dxdy dxdy y x f ;(3)=≥)31(Y P 32)311(11),(31=-===⎰⎰⎰⎰≥G Gy S dxdy dxdy y x f ;(4)41211212121)21()21,()21(=⋅=>>>=>>Y P Y Y X P Y Y X P .6. 设),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<-=其它 ,0 2,2010 ,20),(x y x x x xcy x f求:(1) 常数c ;(2) )(x f X ;(3) )(x y f X Y ;(4) )128(=≥X Y P .解:(1) ,25)210(20),(1201020102c dx xcdy xx c dx dxdy y x f xx =-=-==⎰⎰⎰⎰⎰∞∞-∞∞-.251 =∴c(2) ⎪⎩⎪⎨⎧<<-=-==⎰⎰∞∞-else x x dy x xdy y x f x f x x X0, 2010 ,50202520),()(2.(3) 2010 <<x 时,0)(≠x f X ,)(x y f X Y 有定义,且⎪⎪⎩⎪⎪⎨⎧<<=--==elsex y xx x x x x f y x f x y f X X Y 0, 2,250202520)(),()( (4) )20,10 (12∈=x ,⎪⎩⎪⎨⎧<<==∴elsey X y f XY 0,126 ,61)12( ,从而 3261)12()128(1288=====≥⎰⎰∞dy dy X y f X Y P X Y .7. 设Y X ,相互独立且都服从]1,0[上的均匀分布, 求Y X Z +=的概率密度.解:⎰∞∞--=dx x z f x f z f Y X Z )()()(, 其中⎩⎨⎧<<=其它x x f X ,0 10 ,1 )(, ⎩⎨⎧<-<=-其它 x z x z f Y ,0 10 ,1 )(. ⎩⎨⎧<<-<<⇔⎩⎨⎧<-<<<⇔≠-z x z x x z x x z f x f Y X 11010100)()(. (区域见图示)(1)10<<z 时, zdx z f zZ =⋅=⎰011)(;(2) 21<≤z 时, z dx z f z Z -=⋅=⎰-211)(11;(3) )2,0(∉z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧<≤-<<=其它 z z z z z f Z ,0 21 ,210 , )(.8*. 设),(Y X 的联合概率密度⎩⎨⎧<<=-其它 ,0 0 ,),(yx xe y x f y ,求(1) )21(<<Y X P ,)21(=<Y X P ;(2)Y X Z +=的概率密度;(3) )1),(min(<Y X P .解:(1) ① 102142512121)()()2()2,1()21(22221202102202102---=---=--==<<<=<<-------⎰⎰⎰⎰⎰⎰e e e e e e dxe e x dx e e x dy xe dx dyxe dxY P Y X P Y X P x x xy x y; ②⎪⎩⎪⎨⎧≤>===--∞∞-⎰⎰0 0, 0,21),()(20y y e y dx xe dx y x f y f y y yY , 02)2( 2≠=∴-e f Y ,于是 ⎪⎩⎪⎨⎧<<====--elsex xe xef x f Y x f Y Y X 0, 20 ,22)2()2,()2(22 ,从而 412)2()21(101=====<⎰⎰∞-dy x dx Y x f Y X P Y X . (2) ⎰∞∞--=dx x z x f z f Z ),()(, 其中2000),(zx xx z x x z x f X <<⇔⎩⎨⎧>->⇔≠-. (区域见图示)(1) 0>z 时, ⎰⎰---==2020)()(z xzz x z Z dx xe edx xez f 2)12(zze ze---+=; (2)0≤z 时, 0)(=z f Z .综上知⎪⎩⎪⎨⎧≤>-+=--0 ,0 0,)12()(2z z e ze zf z z Z .(3))1,1(1)1),(min(1)1),(min(≥≥-=≥-=<Y X P Y X P Y X P1111,12111),(1-∞-∞∞-≥≥-=-=-=-=⎰⎰⎰⎰⎰e dx xe dy xe dxdxdy y x f x xyy x .9*. 设),(Y X 的联合概率密度⎩⎨⎧>>=+-其它 ,0 0,0,),()(y x e y x f y x ,求Y X Z -=的概率密度.解:)()()(z Y X P z Z P z F Z ≤-=≤= (1) 0<z 时, 0)()(=Φ=P z F Z ;(2) 0=z 时, 0),()()(0====⎰⎰>=x y Z dxdy y x f X Y P z F(3)0>z 时, 如图⎰⎰⎰⎰⎰⎰∞+---+--+<<-+==zz x zx y x zz x y x zx y z x Z dy e e dxdy e e dxdxdy y x f z F 0),()(⎰⎰∞--+------+-=zz x z x x z zx x dx e e e dx ee )()1(0z zx z z z xz xe dx e e e dx ee e-∞------=-+-=⎰⎰1)()(202综上知⎪⎩⎪⎨⎧≤>-=-0 ,0 0 ,1)(z z e z F z Z , 求导得⎩⎨⎧≤>=-0,0 0,)(z z e z f z Z .10. 设B A ,是两个随机事件, 且,41)(,21)(,41)(===B A P A B P A P 引进随机变量 ⎩⎨⎧=⎩⎨⎧=不发生当发生当 不发生当发生当 B B Y A A X ,0 ,1 , ,0 ,1.判断下列结论的正误, 并给予分析:(1)B A ,互不相容;(2)B A ,相互独立;(3)Y X ,相互独立;(4)1)(==Y X P ;(5)41)1(22==+Y X P . 解:(1)检验0)(=AB P 是否成立. 事实上0812141)()()(≠=⋅==A B P A P AB P , 故B A ,相容, 原结论错. (2)检验)()()(B P A P AB P =是否成立. 事实上由于41)(,41)(==B A P A P ,.)()()()()( A P B P B A P B P AB P ==∴ 即)()()(B P A P AB P =成立, 故B A ,独立, 原结论对.(3)检验Y X ,的联合分布律与边缘分布律之积是否都相等. 事实上81)(11==AB P p ;838121)()()()(01=-=-=-==AB P B P AB B P B A P p ; 818141)()()()(10=-=-=-==AB P A P AB A P B A P p ;83818381100=---=p . 于是有经检验, Y X ,的联合分布律与边缘分布律之积都相等, 故原结论对.(4)只需正确求出)(Y X P =的值. 事实上0218183)(1100≠=+=+==p p Y X P , 故原结论错. (5)只需正确求出)1(22=+Y X P 的值. 事实上41218183)1(100122≠=+=+==+p p Y X P , 故原结论错.。
《概率论》数学3章课后习题详解
![《概率论》数学3章课后习题详解](https://img.taocdn.com/s3/m/b5adaba9cf84b9d529ea7a92.png)
概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。
概率论第三章习题及答案
![概率论第三章习题及答案](https://img.taocdn.com/s3/m/60ea328dd4d8d15abe234ef3.png)
PX x , Y y
j i
j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21
y2 p12
p22
… … … … …
yj
p1 j
… … …
pi
p1
p2
x1
x2
p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.
2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,
X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2
概率论第三章习题解答(全)
![概率论第三章习题解答(全)](https://img.taocdn.com/s3/m/c633aa75783e0912a2162a2e.png)
.j
Y
0 1 2 3
1 8 1 8
0 0
0
0 0
2 8 2 8
0
1 8 1 8 1 4
1 8 3 8 3 8 1 8
pi.
7
1 4
1 2
设二维随机变量 ( X , Y ) 的概率密度为
4.8 y (2 x), 0 x 1, 0 y x f ( x, y ) 0, 其它.
2 C32C2 3 P{ X 2, Y 0} 35 35 2 C32C2 3 , 35 35
P{ X 2, Y 1}
P{ X 2, Y 2}
P{ X 3, Y 0}
P{ X 3, Y 1}
3 1 C3 C2 2 , 35 35
P{ X 3, Y 2} P{} 0
P{ X 0, Y 0} P{} 0 (因为盒子里总共只有 7 只球,每次取 4 只球,而红
球 2 只,故不可能白球和黑球同时都取不到)
P{ X 0, Y 1} P{} 0 ,
P{ X 0, Y 2}
2 2 0 C2 C2 C3 1 4 C7 35
(1)确定常数 k ; (2)求 P{ X 1, Y 3} ; (3)求 P{ X 1.5} ; (4) P{ X Y 4} 。 解 由
f ( x, y )dxdxy 1 得
2 4 0 2
f ( x, y )dxdxy dx k (6 x y )dy
P{ X 1, Y 0} P{} 0
1 2 1 C3 C2 C2 6 P{ X 1, Y 2} 。 35 35 1 1 C32C2 C2 12 , 35 35 3 1 C3 C2 2 , 35 35
概率论第二版第3章习题答案讲解重点讲义资料
![概率论第二版第3章习题答案讲解重点讲义资料](https://img.taocdn.com/s3/m/c10bbe2c04a1b0717ed5ddbf.png)
习题3.11.在10件产品中有2件一等品,7件二等品和1件次品.从这10件产品中任意抽取3件,用X表示其中的一等品数,Y表示其中的二等品数,求(X,Y) 的分布列.解X的可能取值为0,1, 2; Y的可能取值为0, 1, 2, 3,因此(X,Y)的可能取值为{(i, j):i =O,1,2; j =O,1,2,3},且有C; C121 C? 35P(X=0,Y=2) 一 , P(X=O,Y=3) -312Oc;P(X JY =1)=C i0C2C1C1l 匕,P(X=1,Y = 2)12OC oP(X =2,Y =0)=3C10 12OC2C2 42一C o -12O,c; c;7C o - 12O .1丄CCF云,pa2—P(X Y w 1)= ex y<1O ::x ::y1xdy d o2-y5. 设(X,Y)的密度函数为f(x,y) = {A o Xy O w x w4,O w y w■.x ;其它•,求:(1)常数A; (2) P{X < 1,Y < 1}.(1)由联合密度函数的性质__ __f(x, y)dxdy=1,有4 - x /口 3odxo AxgyN,得 A =323 3 1 v x 1 P(X w 1,Y w 1)xydxdy xdx ydy 二 x <;,y<132 32 ‘0 640W xW 4,0W yW . -x10. 袋中有2只白球和3只黑球,从中连取两次,每次取一只. 列随机变量:分别就有放回抽取和无放回抽取两种情形,求:(1) (X,Y )的联合分布列;(2)两次摸到同样颜色球的概率.(1)有放回抽样:由事件的独立性条件得(X,Y )的联合分布列为如下表两次摸到同样颜色球的概率为9413P (X =0,Y =0) P (X =1,Y =1)=25 25 25(2)无放回抽样:由乘法定理得(X,Y )的联合分布列为64定义下X =0,第一次取到白球; 第一次取到丫 =八 0,第二次取到白球;第二次取到黑球.3 3 9P(X =0,Y =0)=5 5 252 36P(X =1,Y =0)=3 2 6 P(X =0,Y =1)= 5 5 25 2 2 4P(X =1,Y =1)=3 26P(X =0,Y =0):5 420 2 36P(X = 1,Y = 0):3 2 6 P(X =0,Y =1)二 54 202 1 2P(X =1,Y =1)=如下表两次摸到同样颜色球的概率为P(X =0,Y =0) P(X =1,Y =1^0.3 0.1 =0.4 .习题3.22.已知(X,Y)的联合分布函数为求: (1)边缘分布函数;(2)联合密度函数及边缘密度函数;(3)判断X 与Y 的 独立性.解 (1) F x (x)二 lim F(X , y) =1 -e 」,(x ■ 0)y —/hee'x y)dy =e 」 e_y dyf Y (y)二...f(x, y)dx 二 e'x y)dx =e* e 」dx = e~y ,(y 0)(3) 由于 f (x,y)二 f x (x)f Y (y),所以 X,Y 相互独立.3. 一个盒子中有三只乒乓球,一只白色,两只黄色,现从袋中 有放回的任 取两次,每次取一只,以X ,Y 分别表示第一次、第二次取到球的颜色.求:(1) X 和Y 的联合分布列;(2) X 和Y 的边缘分布列;(3)判断X 和Y 的独立性.解定义下列随机变量:[1,第一次取到白球; 「1,第二次取到白球;XY =2,第一次取到黄球•2 ,第二次取到黄球•(1)在有放回取球条件下1 1 11 2 2P(X =1,Y =1), P(X =1,Y =2)=3 3 9 3 3 9 2 1 22 2 4P(X =2,Y =1), P(X =2,Y =2)=_(X -y )X ■ 0, y •0;即有(2) F Y W)巳i m : F X (X )=FF(x,y) =1 -ej(y 0) ::2F(X ,Y )f (x" “F Y (y)-;e*), XA O, y>0;0,其它•f x (x)二 f(x, y)dy --cO-bo-e —y y 0;y W 0.二 e 」,(x 0)F(x,y)e 03 3 9 3 3 9X 1 2 Y P1/32/3P(2)边缘分布列1/32/3(3)由于 P{X =i,丫二 j}二 P{X =i} P{Y 二 j}, i =1,2; j =1,2 ,所以 X,Y 相互 独立.5.随机变量(X,Y)在区域{(x, y) | a :: x : b,c : y : d }上服从均匀分布,求(X,Y)的联合密度函数与边缘密度函数,判断随机变量X,Y 是否独立.解区域{匕,y )桃& b,c y 的|面积为S D =( b — a ( d — C 所以(X,Y)的联合密度函数f (x, y) W (b _a)(d _c)'丨0,a :: x :: b, c :: y :: d;其它.X 和Y 的边缘密度函数■beddy ,(a ■■ xb) cb _a1 b 1f Y (y)r f(x,y)dx =(b_a)(d_c)a dx =?1;,(c V d)1 ,故 f X (x)=右 a *bC f Y (y)=岚,c y d•;[0, 其它•[ 0, 其它•由于 f(x,y)二 f x (x) f Y (y),所以 X,Y 独立.8.甲、乙两人各自独立进行两次射击,命中率分别为 0.2, 0.5,求甲、乙命中次数X 与Y 的联合概率分布.解 依题意,X ~ b(2, 0. 2Y), b~ (2 据公式 P(X=R=C kp(1— P 可 算得X 和Y 的概率分布分别为(01 2)( 01 2、X ~, Y~.064 0.32 0.04,025 0.5 0.25,由X 和Y 的独立性可得X 和Y 的联合概率分布为习题3.31-丫 -2).(修改后的题)解 P(X -丫 乞丄)= f(x,y)dxdy2 LL 11 911=23xdx 0dy +丄3xdxx」dyr +荷晶m =mi n(X,Y)123P 0.44 0.34 0.14 0.08 ;M + m0 1 2 3 45 67P 0.044 0.1 0.175 0.29 0.227 0.11 0.046 0.008 (2)1. 5. 设随机变量(X,Y )的密度函数为 f(x,y) 3x , 0 :: x :1,0 :: y x ;其它.(1)6. 设随机变量X 与Y 独立,它们的概率密度分别为0 _x “ 2y , 0乞 y 「1其它.Y(y)= 0, 其它.(0,0),(0,1),(1,0),(1,1),且由题意,有I2x ,f x (x八 0,求 P (X Y <1).(修改后的题)解 因为X 与Y 独立,所以(X,Y )的密度函数为工 4xy , f (x,y)二 f x (x)f Y (y)二 0S°,0 _ x _1,0 _ y _1; 11- xP(X YEir .. f(x,y)dxdy = .0dx.0 4xydy 「°2x(1 - x)x4yg习题3.4e’x^y )x > 0 y > 0, 2.设X 与丫的联合密度为f (x,y )»e, 0,7u‘,求P (X<Y )及10,其它•E (XY )."boP(X ::Y) = e" y )dxdy = o e 」dx x 「e —y dyr 1 e dx e 2J0x(2) E(XY)二U U xyf (xy)dxdy 「° 一 o xye" y)dxdy 7 x ::xe dx_yye dy =1 . 4.设Y~E ⑴且Y w kY > k. (kT ,2),求:(1)X1与X o 的联合概率分布;(2) E(X 1 X o ).解(1) Y~ f (y)二y 0y 0.X 1Y;1,T0,鳥(X 1,X o )有四个可能取值:P(X1 =0,X2 =0) = P(丫w 1,Y w 2) = P(Y w 1)= J;ebdy = 1—e_,P(X i =0,X 2 =1) = P(Y W 1,Y 2)=0,P(X “ =1,X 2 =0) = P (丫 1,Y W 2) = P(1::Y W 2)= :e 」dy 二 -e ,, P(X i =1,X 2 =1) = P(Y>1,Y >2) = P(Y A 2)= .X i 与X 2的联合概率分布为故 E(X 1 X 2)=0 (1-e 」)1 (e —Le —f 2 e_ 2 e_ 牯一.解方法12 3 2 说说2 1 2 11E(X ) = . :: :.x f (x,y)dxdy = .02x dx ^dy 匕, 1 2 从而 D(X)二E(X 2)-[E(X)]2.同理,E(Y) ,D(Y)18 3 1 1 5 1E(XY) = ,02xdx 1^ydy , Cov(X ,Y) = E(XY) - E(X )E(Y)「忑, 12 36D(X Y) =D(X) D(Y) 2Cov(X,Y)二 118方法2114E(X Y) = :: ::(x y)f (xy)dxdy = :0 dx z2(x y)dy =3 ,-be 2 1 1 211 E[(X +Y) ] = J J (x + y) f(xy)dxdy = [dx] 2(x + y)dy 0 1 -x1 D(X Y)二 E[(XY)2]-[E(X Y)]2(2) X 1 X 2的概率分布为(X 1 X 2)~1 -e —1J _2_2e5.设随机变量X 和Y 的联合分布在以点(0,1)、(1,0)、 (1,1)为顶点的三角 形区域D 上服从均匀分布,求随机变量U 二XY 的方差.I 2X 和Y的联合密度函数为f(x,yi 。
概率论与数理统计习题及答案----第3章习题详解
![概率论与数理统计习题及答案----第3章习题详解](https://img.taocdn.com/s3/m/1b979cbcccbff121dd3683cc.png)
概率论与数理统计习题及答案----第3章习题详解习题三1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和Y的联合分布律.【解】X和Y的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和Y的联合分布律如表:f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yx F x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3){01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e)0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰ 5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ; (2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}.【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰130213(6)d d 88k x y y x =--=⎰⎰ (3)11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y<<=⎰⎰⎰⎰如图 1.542127d (6)d .832x x y y =--=⎰⎰(4)24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y+≤+≤=⎰⎰⎰⎰如图b 240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()XY f x y X Y f x f y g 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他.(2)5()(,)d d 25e d d y y xDP Y X f x y x y x y-≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e,0,0,(,)(,)0,x y x yF x yf x yx y-+⎧>>∂==⎨∂∂⎩其他.8.设二维随机变量(X,Y)的概率密度为f(x,y)= 4.8(2),01,0,0,.y x x y x-≤≤≤≤⎧⎨⎩其他求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰x24.8(2)d 2.4(2),01,=0,.0,y x y x x x⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图题9图9.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<-.,0,,其他e yxy求边缘概率密度.【解】()(,)dXf x f x y y+∞-∞=⎰e d e,0,=0,.0,y xxy x+∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰e d e,0,=0,.0,y yxx y y--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧≤≤.,0,1,22其他yxycx(1)试确定常数c;(2)求边缘概率密度.【解】(1)(,)d d(,)d dDf x y x y f x y x y+∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c==⎰⎰得214c=.(2) ()(,)dXf x f x y y+∞-∞=⎰212422121(1),11,d840,0,.xx x xx y y⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他()(,)dYf y f x y x+∞-∞=⎰5227d,01,420,0,.yyx y x y y-⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩其他11.设随机变量(X,Y)的概率密度为f(x,y)=⎩⎨⎧<<<.,0,10,,1其他xxy求条件概率密度f Y|X(y|x),f X|Y(x|y).题11图【解】()(,)dXf x f x y y+∞-∞=⎰1d2,01,0,.xxy x x-⎧=<<⎪=⎨⎪⎩⎰其他111d1,10,()(,)d1d1,01,0,.yY yx y yf y f x y x x y y-+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y XXy xf x yf y x xf x⎧<<⎪==⎨⎪⎩其他|1,1,1(,)1(|),1,()10,.X YYy xyf x yf x y y xf y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表 345 {}i P X x =1 3511C 10=3522C 10= 3533C 10= 610 2 0 3511C 10=3522C 10= 310 30 02511C 10=110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠===g 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8P {Y=y i }YX XYX Y0.4 0.15 0.30 0.350.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率. 【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他;21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他.故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩g 独立其他题14图(2) 方程220aXa Y ++=有实根的条件是 2(2)40X Y ∆=-≥故X 2≥Y ,从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}ZXF z P Z z P z Y =≤=≤(1) 当z ≤0时,()0ZF z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zxy zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d 2z zy yzy +∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z ≥1时,(这时当y =103时,x =103z )(如图b )3366222210101010()d d d d zy Z xy zF z x y y xx y x y +∞≥==⎰⎰⎰⎰336231010101=d 12y yzy z +∞⎛⎫-=- ⎪⎝⎭⎰即11,1,2(),01,20,.Z z z zf z z ⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Z z z f z z ⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202),从而123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立34{180}{180}P X P X ≥≥g1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<g g g44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,…. 证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数, 所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U于是{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑g()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布.【证明】方法一:X +Y 可能取值为0,1,2,…,2n .0{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki k i n i k i n k ii kk n ki k n k P X i P Y k i n n p q p q i k i n n p q i k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑g方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn,Y =μ1′+μ2′+…+μn ′,X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为0 1 2 3 4 50 1 2 30 0.01 0.03 0.05 0.07 0.090.01 0.02 0.04 0.05 0.06 0.080.01 0.03 0.05 0.05 0.05 0.060.01 0.02 0.04 0.06 0.06 0.05 (1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律.【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑X Y{3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑(2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i ====<+≤= 1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑0,1,2,3,4,5i =所以V 的分布律为V =max(X ,Y ) 0 12345P 0 0.04 0.16 0.28 0.24 0.28(3){}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k i k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.28 0.30 0.25 0.17 (4)类似上述过程,有W =X +Y 0 1 2345678P0 0.00.00.10.10.20.10.10.02 63 94 9 25 20.雷达的圆形屏幕半径为R,设目标出现点(X,Y)在屏幕上服从均匀分布.(1)求P{Y>0|Y>X};(2)设M=max{X,Y},求P{M>0}.题20图【解】因(X,Y)的联合概率密度为22221,,(,)π0,.x y Rf x y R⎧+≤⎪=⎨⎪⎩其他(1){0,}{0|}{}P Y Y XP Y Y XP Y X>>>>=>(,)d(,)dyy xy xf x yf x yσσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X 的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22e e0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.y 1 y 2 y 3 P {X =x i }=p i x 1 x 21/8 1/8P {Y =y j }=p j 1/6 1【解】因21{}{,}jjiji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+==从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}ijiiP X x P Y y P X x Y y =====g ,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y === 同理21{},2P Y y == 223{,}8P X x Y y ===YX又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y 2y 3y {}i iP X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p ==161213123.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.YX【解】(1){|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=L .(2){,}{}{|}P X n Y m P X n P Y m X n ======ge C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=g L24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩推得1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为-1 01-1 0 1a 00.20.1 b0.20 0.1c其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1) a ,b ,c 的值;XY(2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由{0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===. (2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为Z -2 -1 01 2P 0.2 0.1 0.30.3 0.1(3)====++=++=. {}{0}0.10.20.10.10.20.4 P X Z P Y b。
概率论与数理统计习题3详解讲解
![概率论与数理统计习题3详解讲解](https://img.taocdn.com/s3/m/91869305998fcc22bdd10d96.png)
、第三章习题详解:1_2 勺一2-〉+2「x〉0 y〉0 3.1设二维随机向量(X』)的分布函数为:尸(兀刃二—八’0. 其他求p {l<x <2,3<y<5 }・解:因为F(2, 5)二 1 —2-2—2〃+ 2 ・,F(L5)二1-2--2-+2-6尸(2)3)二 1 ----- 2-3 + 2y , F(U)二 1 — 2八一27 +所以P(1<X<23<K<5) = F(2, 5)-尸(1,5)-尸(2, 3) + F(l,3)” 25 + 21帶唱3. 2盒中装有3个黑球,2个白球•现从中任取4个球,用X表示取到的黑球的个数,用Y表示取到的白球的个数,求住力的概率分布.解:因为X+K二4,所以(X,F)的可能取值为(2,2), (3, 1)c c 3p(x 二2』二1)二o, P(X 二2, y 二2)二二-二0. 6de 2P& 二3, y 二1)二二—二0.4, P(X二3, y 二2)二0故(Xf)的概率分布为3・3将一枚均匀的硕币抛掷3次,用X表示在3次中出现正面的次数,用丫表示3次中出现正面次数与出现反面次数之差的绝对值,求(x,r)的概率分布.解:因为Y二|X—(3—X)冃2X—31,又X的可能取值为0丄2,3所以(X, 7)的可能取值为(0, 3), (1, 1), (2, 1), (3, 3)且p(x 二o, r 二3)二4)3 = , P(x 二i, r 二i)二C;(较(穿二 |2 o 2 2 oP(X =2, y 二1)二,P(X=3, r 二3)二(i)3二i卩(6_ —刃, lo,⑴确定常数a;⑵求 p{x<o. 5, y<1.5 } (3)求 P{(X, Y) e D},这里 D 是由 x = O f y = 0. x+y = 1 这三条直 线所围成的三角形区域.解:(1)因为匸匸 / (x, y 〃xdy 二[[d(6 - X - y)dxdy=a[[_刁(6_兀_刃‘ k/x = y£ [ (6~x)2- ^~x)2Vx =2G ( (5 - x)dx - 9a I (兀)刃访二1,得9a=L 故&二1/9・ J-x J-x⑵ P(X <0. 5, y <1. 5)二 f°『£ (6 — x — y)dxdy1 严 51 r " f 1 o 5 39 ,二詁0 [(6—小-㊁厂° g 二胡g (6~x)飞炖P {(X, y) GD}二 jj/U 刃必心=£dx1~A二討[3-小-弱 肚二包(11-12—讼諾3.4设二维随机向量(X,Y )的概率密度函数为: 0<x<L0<y <2,其他y)dy3. 6向一个无限平面靶射击,设命中点(X,Y )的概率密度函数为/ (兀刃二 ---- -- : -- ,_oovx, y v+oo,7r (i + £ +求命中点与靶心(坐标原点)的距离不超过G 的概率.解:叱+厂如广颂册严二2兀丄•芥宀] =171 2 1+厂 o 「1771 + £3. 7设二维随机向量(X 』)的概率分布如下表所示,求X 和Y 的边缘概率分布.12e 〃<2r-v)3. 5设二维随机向量(X 』)的概率密度函数为:/ (X, V )二< (0. Q 0, y > 0,其他(1) 求分布函数F (兀刃;(2) 求P{Y<X}解:(1)求分布函数尸么—丿;当x>0』>0.F(x, y) - j f(u f v)dudv =£ £ 2「匚小dudv =2J ; e ^udu e ^'dv =(l-e (1 -e其他情形,由于/(x 』)二0,显然有尸(兀刃二0。
概率论知识题第三章答案解析
![概率论知识题第三章答案解析](https://img.taocdn.com/s3/m/02015962a32d7375a4178070.png)
第三章连续型随机变量3.1设随机变量 ξ 的分布函数为F (x ),试以F (x )表示下列概率: 。
)()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。
)(解:)0(1)()4();(1)()3();0()(P 2);()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ3.2函数x211F(x)+=是否可以作为某一随机变量的分布函数,如果在其它场合恰当定义。
在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞<<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能是随机变量的分布函数; (3)F(x)在),(-0∞内单调上升、连续且,若定义 ⎩⎨⎧≥<<∞=010)()(~x x X F x F -则)(~x F 可以是某一随机变量的分布函数。
3.3函数 sinx 是不是某个随机变量ξ的分布函数?如果ξ的取值范围为[]。
,);(,);(,)(⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ230302201 解:(1)当⎥⎦⎤⎢⎣⎡∈2,0πx 时,sinx 0≥且1sin 20=⎰πxdx ,所以 sinx 可以是某个随机变量的分布密度; (2) 因为12sin 0≠=⎰πxdx ,所以sinx 不是随机变量的分布密度; (3) 当 ⎥⎦⎤⎢⎣⎡∈23,ππx 时,sinx<=0所以sinx 不是随机变量的分布密度。
3.4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有[][]。
--故上式右端=知由证:)1)(21a)P(1a)(3)P(1;-2F(a))(21)(1)1(,)(2)()()2(;)(21)()(1)(1)(1)(1)(1)()()1(.)(F 12)()3(;1)(2)()2(;(p 21)(1)()1(00000-=<=>-=-==<-=--=-=-=+=-==--=>-=<-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-∞-∞-∞-∞--∞-a F dxx p a F dx x p dx x p a P dx x p dx x p dx x p a F dx x p dxx p dx x p dx x p a F a a P a F a P dx x a F a F a a a a a aaaaaa ξξξξξ3.5设)(1x F 与 )(2x F都是分布函数,证明F(x)=aF(x)+bF(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型? 证:因为)(1x F与)(2x F都是分布函数,于是F(x1)=aF1(x1)+bF2(x2)<= aF1(x1)+bF2(x2)= F(x2) 又F(x-0)= aF1(x1-0)+bF2(x2-0) = aF1(x)+bF2(x)= F(x) 所以,F(x)也是分布函数。
概率论第三章部分习题解答
![概率论第三章部分习题解答](https://img.taocdn.com/s3/m/1237211ec5da50e2524d7f64.png)
x EX
f ( x )dx
2
有关方差的定理: 定理1
推论:Db
DaX b a 2 DX
0; D X b DX ; D(aX ) a 2 DX .
6
定理2: 若X与Y 独立, D X Y DX DY
n n 推论:D X i D X i i 1 i 1
所以X 的概率分布列为
X
PX xi
0
3 4
1
9 44
2
9 220
3
1 220
3 9 9 1 EX 0 1 2 3 0.3. 4 44 220 220 9 1 3 2 9 9 2 2 2 2 3 EX 0 1 2 . 44 220 220 22 4 9 9 2 2 DX EX EX 0.319. 22 100 X DX 0.565.
推论 (1)Ea a
定理2
E X Y E X E Y
n n 推论: E X i EX i . i 1 i 1
定理3 若X、Y 独立,则有:
E XY E X E Y
n n 推论 若X1 , X 2 ,, X n相互独立,则 X i EX i . E i 1 i 1
1、X与Y 的协方差(或相关矩):
定义 cov( X , Y ) E{[ X E ( X )][Y E (Y )]}. 注 ⑴ 离散型随机变量:
cov X , Y xi EX y j EY p xi , y j .
i j
天津理工大学概率论与数理统计第三章习题答案详解
![天津理工大学概率论与数理统计第三章习题答案详解](https://img.taocdn.com/s3/m/1ca5b70c182e453610661ed9ad51f01dc28157e1.png)
第三章多维随机变量及其分布一、填空题1、随机点(x,y )落在矩形域[%] < X ≤乙,y ∣ < y ≤ y 2]的概率为F(X 2 ,J 2)- F(X 2 ,必)+ F(x 1,必)一厂(XQ2)・2、(X,V )的分布函数为 ∕7(x, y ),则 F (-∞∖ y ) = O .3、(X,y )的分布函数为尸(x,y ),则尸& + O,y ) = FV,y )4、(X,y )的分布函数为尸(x,y ),则尸(国+8)= FX (%)5、设随机变量(X,Y )的概率密度为 k(6 -X- y) 0<x<2, 2<y<41…」 ,则& 二 一0 其它^8^÷x/ (X ) = 一 °0X∫f(χ, y)= <6、随机变量(x,y )的分布如下,写出其边缘分布.8、二维正态随机变量(x,y), X和y相互独立的充要条件是参数夕=Q.9、假如随机变量(x,y )的联合概率分布为二、证明和计算题1、袋中有三个球,分别标着数字1,2,2,从袋中任取一球,不放回,再取一球,设第一次取的球上标的数字为X,其次次取的球上标的数字丫,求(x,y )的联合分布律. P{X =2y Y = 1} = --- = - 3 2 3 P{X=2,y = 2} = -∙- = -3 2 32、三封信随机地投入编号为1,2,3的三个信箱中,设X 为投入1号信箱的信数,y 为投入2 号信箱的信数,求(x,y )的联合分布律.则a,β应满意的条件是_a +β 1 8 1111 -6184 2 ;若X 与y 相互独立,则α= —,〃=— ^18^^18" 10、设x,y 相互独立,x~N (o,i ),y~N (θ∙i ),则(x,y )的联合概率密度241 尸+厂 f(x.y)=-e 224z = x+y 的概率密度f z (Z) =12、设(ξ、η)的联合分布函数为FD = V λ +1 1 15777;F 所—核x≥O,y≥O则A=_l解:p{x = ι,y = i} = l∙oP{x = ι,y = 2} = (∙ι = ! 解:X 的可能取值为(),123Y 的可能取值为(),1,2,3p{x=o,y = o} = *3 C 2 3P{X=O,Y = ∖} = -^ P{X=0y Y = 2} = ^- = -^2=-"Γ°牛力=『g ⑺勿=1符合概率密度函数的性质,可以是二维连续型随机变量的概率密度函数。
概率论第3章习题详解
![概率论第3章习题详解](https://img.taocdn.com/s3/m/e64d983a48d7c1c708a14580.png)
3.设二维随机变量(X, Y)的联合分布函数为F(x,y)=血乂前丫,0, 冗y 2 其他.求二维随机变量(X, Y)在长方形域0 x冗冗4'6内的概率.【解】如图P{0 X 7C 冗'6冗冗F(2? 」}公式(3.2)3冗冗..F (“)F (0-)4 6 37C nF(0,n 习题二1.将一硬币抛掷三次,以X表示在三次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值•试写出X和Y的联合分布律•2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y 表示取到红球的只数.求X和Y的联合分布律•n n n n n n sin-gsin — s in —gsin — sin Ogsin — sinOgsin-4 3 4 6 3 6 ¥( 3 i ). 4题3图 说明:也可先求出密度函数,再求概率。
4.设随机变量(X , Y )的分布密度求:(1)常数A ;(2)随机变量(X ,Y )的分布函数; (3) P {0 w X <1, 0< Y <2}.【解】(1)由f(x,y)dxdy o ° Ae -(3x 4y)dxdy A 1得A =12(2)由定义,有y xF (x, y) f(u,v)dudv0, 其他⑶ P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5.设随机变量(X , Y )的概率密度为k(6 x y), 0 x 2,2y 4, 0,其他.f (x ,y )Ae (3x4y), x 0, y 0,0,其他.x12e (3u 4v)dudv(1 e 3x )(1 e 4y ) y 0,x 0,0,12e(3x 4y)dxdy(1 e 3)(1 e 8) 0.9499.(1)确定常数k;(2)求P[X< 1, Y< 3};(3)求P{X<1.5};(4)求P{X+Y w 4}.【解】(,1)由性质有f (x, y)(2) P{X 1,Yf (x, y)dxdy3}P{X 1.5}0 2k(6 xf(x,y)dydx312§k(6 x y)dydx f (x,y)dxdy如图x 1.51.5 dxa=D1y)dydx 8k 1,38f (x, y)dxdyP{X Y 4}X Y24 1 —(6 x y)dy2 8f (x, y)dxdy如图b f (x, y)dxdy27324 D24 x 1 2(6 x y)dy - 8 30.2 )上服从均匀分布,题5图X在(0,dx 0 26.设X和Y是两个相互独立的随机变量, Y的密度函数为f Y(y)5e5y0,y 0,其他.求:(1)X与Y的联合分布密度; (2) P{Y< X}.题6图所以【解】(1)因X在(0, 0.2 )上服从均匀分布, X的密度函数为丄f x (x) 0.2,0,x 0.2,其他.0,f (x, y)X,丫独立 f x (x)gf y (y)25e 5y , 0 x 0.2且 y 0, 0, 其他•⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD■1=e 0.3679.求(X Y )的联合分布密度求边缘概率密度所以f Y (y)5e 5y , y 0, 0, 其他.0.2 dx 025e -5ydy0 2( 5e 5x5)dx5e 5y 0,7.设二维随机变量X, Y )的联合分布函数为F (x , y )(1 0,4xe )(1 e 2y ), x 0, y 0, 其他.【解】f (x, y)2F(X , y)8e (4x 2y)8.设二维随机变量( X, Y ) (X ,0,的概率密度为4.8y(2 0,0,y 其他.x), 0, 1,0 y x,其他.【解】f X (X )f (x, y)dyx0 4.8y(2 x)dy0,2.4x 2(2 0,x), 0 其他. 1,f Y (y)f (x, y)dx 1y4.8y(2 x)dx2.4 y(3 4y y 2), 0 y 1, 0,其他.1.4y\1y=x'wp oX题10图(1)试确定常数c ; (2)求边缘概率密度 【解】(1)f (x, y)dxdy 如图 f (x,y)dxdyD21 c .⑵ f x (x) f (x , y )d y9.设二维随机变量ye , 0 x y,0,其他.求边缘概率密度 【解】f X (x)f(x, y)dyx0,e y dyxce , x 0,0, 其他.f y (y)f (x,y)dxye y dx0,ye x , y 0, 0, 其他.10.设二维随机变量X ,Y 的概率密度为f ( x ,y )=2cx y, 0, 2x y 1, 其他.1dx -12cx 2ydyx4 c21题8图X, Y )的概率密度为1 21 212 4\2x ydy x (1 x ), 1 x 1,x 4 80, 0, 其他.f Y(y) f(x, y)dx0, 0, 其他.11.设随机变量(X, Y)的概率密度为x1dyx0,其他.求条件概率密度【解】f x(x)f (x, y)f Y i x (y | x),f (x, y)d y1, y x, 0 x 1,0, 其他.题11图f x i Y (x | y).所以f Y(y) f(x, y)dx11dxy11dxy0,y,y,1 y 0,0 y 1,f Yix(y |x)f(x,y)f x(x)12x0,|y| x 1,其他.y 21y 4x2ydx52y2, 0 y 1,2x, x 1,, y x 1,i y亠,y x i,i y0, 其他.12.袋中有五个号码1 , 2, 3, 4, 5,从中任取三个,记这三个号码中最小的号码为X,最大的号码为Y.(1)求X与Y的联合概率分布;(2)X与Y是否相互独立?【解】(1)X与Y的联合分布律如下表3 4 5P{X X i} 1 1 1 2 2 3 3 6亠3 亠3 —10C5 10 C5 10C5 102 0 31 12 210 10103 0 0 A 11 1 ■^―~2■^―10C5 101 3 6P{Y y i}10 10 106 16 1(2)因P{X 1}gP{Y 3} P{X 1,Y 3},10 10 100 10f xY(x| y)f(x,y)f Y(y)故X与Y不独立(2)X与Y是否相互独立?⑵ 因 P{X 2}gP{Y 0.4}0.2 0.8 0.16 0.15 P(X 2,Y 0.4),15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从 同一分布,其概率密度为1000f (X )= 丁0,故从而方程有实根的概率为:(2X)2 4Y 0灯Y,P{X 2 Y}x 2 f (x, y)dxdyydxx 2 1e 0y/2dy故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量, f v (y )=X 在(0, 1 y/2 2e , 0,1)上服从均匀分布, Y 的概率密度为y 0, 其他.(1) 求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xs +Y =0, 试求 a 有实根的概率.1, 0 x 1,【解】(1)因f X (X )°,其他;f v (y)1 2 e 22 0,y 1, 其他.1 e 故 f(x,y)X,Y 独立 f x (x)gf Y (y)2 y/2x 1,y 0,x 1000, 其他.F z(z)x y- z10616. 设某种型号的电子管的寿命(以小时计)近似地服从(160,202)分布.随机地选取4 求其中没有一只寿命小于180的概率.2 2dxdy x y求Z=X/ Y的概率密度【解】如图,Z的分布函数F Z(z)XP{Z z} P{X z}(1) 当z W0 时,F Z(z) 0(2) 当0<z<1时,(这时当x=1000 时,y=^0)z(如图a)103106dy23当z >1103F z(z)1031062 2dxdyx yzy 106df^dx1031063zydy12zf z(z)f z(z)1丄2zz20,1尹12,0 ,1,z 1,其他.1,z 1,其他.io3dy1:z孽dx10 x y只,【解】设这四只寿命为X(i=1,2,3,4),则X〜N ( 160 , 202),从而P{min(X!,X2,X3,X4)180}X i之间独立P{X i 180}gP{X2 180}P{X3180}gP{X4180}[1 P{X1180}] C P{X2 180}] g1 P{X3 180}] g1 P{X4 180}][1P{X14180}]4, 180 160120[1 4 (1)] 4(0.158) 0.00063.17.设X, Y是相互独立的随机变量,其分布律分别为F^[X=k}= p (k),k=0,1,2,…, P{Y=r}= q (r), r=0, 1, 2,… 证明随机变量Z=X+Y的分布律为iP{Z=i}= p(k)q(ik 0k) , i=0, 1, 2,….【证明】因X和Y所有可能值都是非负整数,所以{Z i} {X Y i}{X 0,Y i}U{X 1,Y i 1} UL U{X i,Y 0}于是P{Z i}iP{Xk 0 k,Y ik}X,Y相互独〔i立P{X k}gP{Y i k}k 0ip(k)q(i k)k 018.设X, Y是相互独立的随机变量,它们都服从参数为n, p的二项分布.证明Z=X+Y服从参数为2n, p的二项分布.【证明】方法一:X+Y可能取值为0, 1, 2,…,2n.kP{ X Y k} P{X i,Y k i}i 0X +Y = (1 l + 口 2+…+ 口 n + 口 1,+2,+ …+ 口 n所以,X +Y 服从参数为(2n , p )的二项分布.2) 求V=max ( X, Y )的分布律; (3) 求U =min (X, Y )的分布律;(4)求W =X +Y 的分布律.P{Y 3|X 0} P{Y 3, X 0}P{X 0}2 P{V i} P{max( X,Y) i}P{Xi 0 nk i n k iP qk iki 0n i i n ipqknnk 2n kp qi 0ik i2nk 2n kP qk方法二:设 1 1, 1 2,…,1 n ; 1 1, 1 2 ,,1均服从两点分布(参数为 p ),则X= 1 1+ 1 2+…+ 1 n , Y = 1 1 ' +a 2+…+/ 1,k【解】(1) P{X 2|Y 2}P{X 2,Y2}P{Y 2} P{X 2,Y2}5P{X i,Y 2}i 00.05 10.25 2P{X 0,Y3} 3P{X 0,Y j}j 00.01 1 0.033P(X i)gP{Y k i}i,Y i} P{X i,Y i}P{X k 0 i,Yik} P{Xk 0k,Y i}, i 0,123,4,5所以V 的分布律为V=max(X Y ) 0⑶ P{U i} P{min( X,Y) i}(4)类似上述过程,有1234567 8 0.020.06 0.13 0.19 0.24 0.190.120.051 2 2 22, x y R , R 0, 其他.f(x, y)dy 0 y xf(x, y)dy xn dn4 R 12rdr 0 n 25—n 4 dn4R 12rdr 0 n 2(2)【解】因(X, Y )的联合概率密度为20.雷达的圆形屏幕半径为R 设目标出现点(X, Y )在屏幕上服从均匀分布.(1)求 RY >0 | Y >X }; (1) P{Y 0|Y X}P{Y 0,Y X}P{Y X}0.040.16 0.28 0.24 0.28P{X i,Y i}3P{X i,Y i}P{X i,Yk i5k} P{X k,Y i}k i 1i 0,123,U =min(X Y ) P0.280.300.25 0.17 WX +Y Pf (x, y)e1【解】区域D 的面积为 Sdx1x1 f (x,y )2 0,(X, Y )关于X 的边缘密度函数为2ln x e 2. (X , Y )的联合密度函数为 “2 c 1 ,1 x e ,0 y , x其他. f x (X )1/x 1 1 0 2dy2?0,1 x e 2,其他.1所以f X (2)[4y 1y 2y 3P { X =X i }= p iX 1 X 21/8 1/8P { Y =y j }= p1/612【解】因 P{Y y j } P jP{X x,Y y j },1故P{Y 比} P{X X 1,Y yd P{X X 2,Y yd,从而 P{X x 1,Y 1 243/8 3 1/2 4(2) P{ M0} P{max(X,Y) 0}1 P{max( X,Y)0}1 P{X 0,Y0} 1f (x, y)d1 1 3.x 0 y 04 421.设平面区域 D 由曲线y =1/x 及直线y =0, x =1,x=e $所围成, 二维随机变量(X Y ) 在区域D 上服从均匀分布,求(X , Y )关于X 的边缘概率密度在 x =2处的值为多少?22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X Y )联合分布律及关于 X 和Y 的边缘分布律中的部分数值.试将其余数值填入表中的空白处而 X 与 Y 独立,故 P{X X j }gP{Y y j } P{X x i ,Y y i },11 从而 P{X x ,} — P{X 为,丫 y ,}6241 1 1即:P{X x ,} / .24 6 43 同理 P{X x 2} . 4从而P{X X 2,Y y 3} P{Y 滋 P{X23.设某班车起点站上客人数 X 服从参数为 入(入>0)的泊松分布,每位乘客在中途下车的概 率为p ( 0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求: (1)在发车时有n 个乘客的条件下,中途有 m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) P{Y m | X n}C :p m (1 p )n m ,0 m n,n 0,1,2丄.(2)P{X n,Y m} P{X n}gP{Y m| X n}又P{XX 1} P{X X 1,Y ydP{X1即丄1 1 P{X冷丫y 3},424 8从而 P{X X 1,Y y 3} 1 1.同理 P{Yy ?}1 2'P{XX 2,Y 3又P{Y y j }1 ,故 P{Y Y 3) 11 -y 』P {X X i ,Y y 3),X i ,Y y 3}11 1 12 4X i ,Y y ?}j im mn meC n P (1P)呻 n,n 0,1,2,L .24.设随机变量X 和Y 独立,其中X 的概率分布为 X ~ 0.3 0.7,而Y 的概率密度为f (y ),求随机变量U=X^Y 的概率密度g ( u ). 【解】设F ( y )是Y 的分布函数,则由全概率公式,知 U=X FY 的分布函数为G(u) P{X Y u} 0.3P{X Y u| X 1} 0.7P{X Y u |X 2} 0.3P{Y u 1| X 1} 0.7P{Y u 2|X2}由于X 和Y 独立,可见 G(u) 0.3P{Y u 1} 0.7P{Yu 2} 0.3F(u1) 0.7F(u2).由此,得U 的概率密度为g(u) G(u)0.3F (u 1) 0.7F (u 2) 0.3f(u1) 0.7f(u2).25. w 1}. 解:25.设随机变量X 与Y 相互独立,且均服从区间[0,3] 上的均匀分布, 求 P {max{X , Y }因为随即变量服从[0,3]上的均匀分布,于是有1f(x) 3 0,3, f(y)因为X , Y 相互独立,所以推得 26. 0,x 3;1 c3, 0 y0, y 0,y3, 3.f (x, y)1 9 0,3,03, 0,y 0,x 3,yP{max{ X ,Y} 1}193.设二维随机变量(X, Y )的概率分布为其中a ,b ,c 为常数,且 X 的数学期望 E (X )= 0.2, P {Y < 0| X w 0}=0.5,记Z =X +Y .求:(1)a, b, c 的值;(2)Z的概率分布;(3)P{ X=Z}.解(1) 由概率分布的性质知,a+b+c+0.6=1 即a+b+c = 04由E(X) 0.2,可得a c 0.1.再由P{Y 0X 0} P{X 0,Y 0} a b Z 0.5,P{X 0} a b 0.5得 a b 0.3.解以上关于a, b, c的三个方程得a 0.2,b 0.1,c 0.1 .⑵Z的可能取值为2,1,0,1,2,P{Z 2} P{X 1,Y 1} 0.2,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.1,P{Z 0} P{X 1,Y 1} P{X 0,Y 0} P{X 1,Y 1}0.3,P{Z 1} P{X 1,Y 0} P{X 0,Y 1} 0.3,P{Z 2} P{X 1,Y 1} 0.1,即Z的概率分布为2⑵方程a 2Xa Y 0有实根的条件是。
概率论与数理统计课程第三章练习题及解答
![概率论与数理统计课程第三章练习题及解答](https://img.taocdn.com/s3/m/5049b63cbd64783e08122b05.png)
第三章 多维随机变量及其分布一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、若X ,Y 均服从正态分布,则(X ,Y )服从二维正态分布 ( × )2、随机变量(X ,Y )的概率密度为22,1(,)0,k x y f x y ⎧+≤=⎨⎩其它,则π1=k (√ )3、有限个相互独立的正态随机变量的线性组合仍然服从正态分布。
(√) 二、单选题1、随机变量X ,Y 相互独立且~(0,1)X N ,~(1,1)Y N ,则下列各式成立的是( B )A .21}0{=≤+Y X P ; B .21}1{=+≤Y X P ; C .21}0{=≥+Y X P ; D .-≤=1{1}2P X Y 。
分析 因X ,Y 相互独立,它们又都服从正态分布,因此X +Y 与X -Y 也都服从正态分布,且(1,2)X Y N + ,(1,2)X Y N --,由于1{1}(0)2P X Y +≤=Φ=Φ=,选B2、设随机变量21,X X 的分布律为:101111424iX p- i =1,2且满足1}0{21==X X P ,则==}{21X X P ( A )A .0;B .41;C .21; D .1。
分析 从1}0{21==X X P ,可知12{0}0P X X ≠=,即12121212{1,1}{1,1}{1,1}{1,1}0P X X P X X P X X P X X =-=-==-====-==== 根据联合分布与边缘分布的关系,求出21,X X 的联合概率分布12121212{}{1,1}{0,0}{1,1}0P X X P X X P X X P X X ===-=-+==+===,选A 3、设随机变量X ,Y 相互独立且同分布:1{1}{1}2P X P Y =-==-=,1{1}{1}2P X P Y ====,则下列各式成立的是( A )A .1{}2P X Y ==; B .{}1P X Y ==; C .1{0}4P X Y +==; D .1{1}4P XY ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
bc
1、设随机变量X与Y相互独立,其联合分布律为
则a=,b=,c=
解:由独立性有
2、设随机变量与相互独立,其概率分布分别为
X
01
p
Y
01
p
则
解:由独立性有
3、设随机变量,则X与Y相互独立得充要条件就是
解:P115定理2
4、设随机变量与相互独立,则它们得函数与就是(用“就是”或“不就是”
填空)相互独立得随机变量。
1、求常数得值;2、求得概率密度函数、
解:1、由*
;
联立三式可解得
而带回*式得
即
2、
五、设随机变量得密度函数为
1、求常数得值;2、求得联合分布函数;
3、求与。
解:1、
2、
当时
于是
3、①
②
③
习题九边缘分布、条件分布
一、判断题
1、二维均匀分布得边缘分布不一定就是均匀分布.(就是)
解:详见P101例题2
解:因为与均为连续函数,由P116结论可得、
二、选择题
1、如下二维随机变量得分布律或密度函数给出,则X与Y不相互独立得就是(D)
Y\X
—102
1
2
A、B、
Y\X
123
1
2
3
0。010、03 0、06
0、02 0、060。12
0.070、210、42
C、联合密度
D、联合密度
解:对D选项有
当时,
当时,
即
解:1、
2、
3、4、显然可得
第三章多维随机变量及其分布
习题八二维随机变量
一、判断题
1、设就是二维随机变量,事件表示事件与得
积事件。(就是)
解:由P86定义2可得。
2、就是某个二维随机变量得分布函数。(否)
解:
二、填空题
Y\X
1 2 3
1
2
1、若二维随机变量得概率分布律为
则常数=
解:显然,即
于就是
2、若二维随机变量恒取一定值(a,b),则其分布函数为
当时,
当时,
即
于就是
2、设二维连续型随机变量服从区域D上均匀分布,其中
,则(C)
A、落入第一象限得概率为0、5B、都不服从一维均匀分布
C、相互独立D、不相互独立
解:D表示得区域如图所示,即
则由题意有
1)对A选项,
故A错
2)对B选项,由P101例2可知B错
3)
于就是故C对
三、已知二维随机变量得密度函数为
,求。
解:由
于就是如图,D为边长等于得正方形,则由题意有
, 于就是对
当时
当时
其它
即:
五、设随机变量得密度函数为,求
与。
解:1),由题意有
当时,
当时,
即
2)如图有
当时,
当时,
当时,
即
3)
六、设==求、
解:1)由已知得
令,则D为如图所示
2)于就是对,如图有
当时
当时
即
3)
习题十随机变量得独立性
一、填空题
Y\X
解:显然当时,由于,则
3、若随机变量得概率密度为
则.
解:1、由,有
2、
3、如图:
4、
三、将三个球随机放入三个盒子中,用与分别表示放入第一个与第二个盒子中得球得
个数,求得联合分布律。
解:每个球有三种放法(放入三个盒子中得任意一个),则三个球共有种放法,于就是
;
;
;
;
;
;
即
Y
0
1
2
3
0
1
2
3
四、设二维连续型随机变量得分布函数为
解:1、由题意 而X与Y相互独立
则
2、
如图所示
其中
习题十一 两个随机变量得函数得分布
一、判断题
1、若X与Y都就是标准正态随机变量,则、(否)
解:P125定理2——X与Y需要相互独立,结论才成立.
2、若,且X与Y相互独立,则。(就是)
解:P125定理3
3、若X与Y相互独立且都服从指数分布,则。(否)
解:由题意有
解:如图
于就是
当时
即
3、设二维随机变量得密度函数为其中G就是区域,则系数A=,
条件密度=,=
解:1、
2、如图
当时,
当时,
即
于就是
3、如上图
当时,
当时,
即ﻩ
于就是
4、已知,,,X与Y独立,则a=,
b=,联合分布为
X
Y
1
2
3
-1
-2
—3
(可将a,b代入算出具体值)
概率分布为
-2
-1
0
1
2
p
。(可将a,b代入算出具体值)
2、
3、
2、设随机变量,则得概率分布为,得概率
分布为
解:P103面例题4得结论:
若
3、设二维随机变量得联合密度函数为
则常数得边缘密度为,得边缘密度
为
解:1、由
2、
3、
三、已知随机变量得密度函数为
1、求与得边缘密度函数;2、求条件密度函数与;
3、求、
解:由
1、
即
即
2、
3、
四、设二维连续型随机变量在区域D上服从均匀分布,其中
则,
而表示两周得需求量,由卷积公式
而只有在即得区域内不为零,
于就是如图
当时,,
则
当时,
即
第三章复习题
一、填空题
1、设随机变量X与Y同分布,X得分布律,且,则0、
解:由题意有
X
Y
-1
0
1
-1
0
1
由
而
于就是
且而
所以
2、设平面区域D由曲线及直线围成,二维随机变量在区域D上服从均匀分布,则关于X得边缘密度在处得值为
C、D、
解:令,于就是
Y\X
-2—10
—1
3
0
0
四、若二维随机变量得概率分布律为
求下列随机变量得概率分布:
1、;;
2、.
解:1、
其中
2、
其中
五、1、已知二维随机变量得密度函数为
求概率密度函数;
解:
如图,当时,
当时,
即
于就是
2、已知二维随机变量得密度函数为
求概率密度函数;
解:
如图1,当时,
如图2,当时,
2、边缘分布就是正态分布得随机变量,其联合分布一定就是二维正态分布。(否)
解:边缘分布不能确定联合分布(P103)
二、填空题
Y\X
123
1
2
a0。20、1
0.20.10。3
1、已知随机变量得联合分布律为
则a=0。1,X得概率分布律为,Y得概率分布律为
Y
12
P
0.40。6
X
123
P
0、30。30、4
解:1、
1、判断X与Y就是否相互独立;2、判断与就是否相互独立。
解:1、由
当时,
当时,
即
由
当时,
当时,
即
于就是,即X与Y相互独立.
2、因为与均为连续函数,则由P116结论可知它们相互独立。
四、设随机变量X与Y相互独立,X在(0,1)上服从均匀分布,Y得概率密度为
1、求X与Y得联合密度函数;
2、设含有a得二次方程,试求a有实根得概率。
当时,
即
于就是
六、设随机变量X与Y相互独立,其概率密度函数分别为
求随机变量概率密度。
解:由卷积公式
而由题可知只有在即得区域内,不为零
于就是如图所示
当时,,则
当时,
当时,
即:
七、设某种商品一周得需求量就是一随机变量,其密度函数为
如果各周得需求量就是相互独立得,试求:两周得需求量得概率密度;
解:设分别表示某两周得需求量
令,则由卷积公式
当时
当x,z不在该区域时,
即,于就是不服从指数分布、
二、填空题
1、设相互独立得两个随机变量X与Y具有同一分布,且X得分布律为,则得分布律就是
解:由题意有,且
2、设X与Y独立同分布,密度函数为,分布函数为,则得密度函数为。
解:
于就是
三、选择题
1、设随机变量X与Y相互独立,,则(B)
A、B、