华东理工大学高等数学(下册)第9章作业答案

合集下载

第九章习题答案高数下

第九章习题答案高数下

作 业 9—1一.填空:1.已知D 是长方形域:,10;≤≤≤≤y b x a 且⎰⎰=Dd x yf 1)(σ,则⋅=b adx x f )(2 .解:⎰⎰=Dd x yf σ)(⎰⎰⋅=baydy dx x f 1)(21⎰⋅badx x f )( 故⎰⋅=badx x f )( 22.若D 是由1=+y x 和两个坐标轴围成的三角形域,且⎰⎰⎰⋅=Ddx x dxdy x f 1)()(ϕ,那么.=)(x ϕ)()1(x f x -解:⎰⎰=Ddxdy x f )(⎰⎰-⋅=xdy x f xdx 1010)(⎰⋅-10)()1(dx x f x ⎰⋅=1)(dx x ϕ二、单项选择题:1. 设1D 是正方形域,2D 是1D 的内切圆,3D 是1D 的外接圆,1D 的中心在(-1,1)处,记1I =⎰⎰---12222D xy x y dxdy e;2I =⎰⎰---22222D xy x y dxdy e;3I =⎰⎰---32222D xy x y dxdy e.则1I ,2I ,3I 大小顺序为( B )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤2I ≤1I D. 3I ≤1I ≤2I解:因为三个被积函数一样,均为正值,213D D D ⊃⊃,故2I ≤1I ≤3I 2. 设D 是第二象限的一个有界闭区域,且10<<y ,记1I =⎰⎰Dd yx σ3;2I =⎰⎰Dd x y σ32;3I =⎰⎰Dd x y σ321.1I ,2I ,3I 的大小顺序是( )。

A .1I ≤2I ≤3I B.2I ≤1I ≤3I C. 3I ≤1I ≤2I D. 3I ≤2I ≤1I 解:因10<<y ,故212y y y <<,而03<x ,从而323321x y yx x y <<,选(C )。

三.利用二重积分定义证明: 1.σσ=⎰⎰Dd (其中σ为D 的面积)解:ini iiDf d σηξσλ∑⎰⎰=→∆=⋅10),(lim 1i ni σλ∑=→∆⋅=11limσσσλλ==∆=→=→∑01lim limini故 σσ=⎰⎰Dd (其中λ是各iσ∆的最大直径)2.k d y x kf D=⎰⎰σ),(⎰⎰Dd y x f σ),( (其中k 为常数)解:=⎰⎰Dd y x kf σ),( ini iif σηξλ∑=→∆1),(lim i ni i i f k σηξλ∑=→∆=1),(limi ni i i f k σηξλ∑=→∆=1),(lim ⎰⎰=Dd y x f k σ),( (k 为常数)四.利用二重积分的性质估计下列积分的值: 1.}10,10|),{(,)(⎰⎰≤≤≤≤=+=Dy x y x d y x xy I 其中Dσ解: 10,10≤≤≤≤y x∴2)(0≤+≤y x xy∴⎰⎰⎰⎰≤≤+≤DDd d y x xy 22)(0σσ2.}4|),{(,)49(22⎰⎰≤+=++=Dy x d y x I 22yx其中Dσ 解: 中在D ,422ππσ=⋅=,()22222249499yx y x y x ++≤++≤++2549922≤++≤y x∴ σσσ25)49(922≤++≤⎰⎰⎰⎰DDd y x d即 ππ10036≤≤I五.根据二重积分的性质比较下列积分的大小: 1.⎰⎰⎰⎰++DDd y x d y x σσ32)()(与其中积分区域D 是由圆周2)1()2(22=-+-y x 所围成。

华东理工大学继续教育学院《高等数学》(下)练习试卷(4)(答案)

华东理工大学继续教育学院《高等数学》(下)练习试卷(4)(答案)

华东理工大学继续教育学院成人教育《高等数学》(下)(专升本68学时)练习试卷(4)(答案)一、单项选择题1、设(,)ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则(1,0)x f = 答( A )(A) 1 (B) -1(C)(D) 解:(知识点:偏导数的概念、偏导数的计算方法)22312()(,)(1)22x y x y f x y y x x xy x x-=-=++ (1,0)1x f ⇒=, 所以选(A ) 2、下列方程中哪一个是椭球面方程 答( B )(A )2229x y z ++= (B )2222149y z x ++= (C )2229x y z +-= (D )2222149y z x +-= 解:(知识点:二次曲面)2222149y z x ++=可表示为222222123x y z ++=,它是椭球面方程,所以选(B ) 3、设y x xy u +=,则22yu∂∂= 答( C )(A) 2()x x y +(B) 222()x x y -+ (C) 232()x x y -+ (D) 2x y y -解:(知识点:二阶偏导数的概念、二阶偏导数的计算方法)222222233(2)2, ()()()()u x y y x u x x x y x y x y y x y x y ∂+-∂-===⋅=-∂++∂++, 所以选(C )4、如果(,)f x y 在点00(,)x y 的某邻域内连续,则0(,)f x y 答( A ) (A )在0x 点连续 (B )在0x 点可导 (C )在0x 点可微 (D )在0x 点有极值 解:(知识点:函数连续、可导、可微、极值的概念)因为(,)f x y 在点00(,)x y 的某邻域内连续 0(,)f x y ⇒在0x 点连续,所以选(A )5、微分方程 '''28sin 2y y y x +-=的一个特解形式p y = 答( C )(A )cos2p y a x = (B )(cos2sin2)p y x a x b x =+ (C )cos2sin 2p y a x b x =+ (D )sin 2p y b x=解:(知识点:二阶线性常系数非齐次微分方程的特解形式) 特征方程:220λλ+-=,特征根:122,1λλ=-=,根据特解形式可设方程的特解为: c o s 2s i n 2p y a x b x =+, 所以选(C )二、填空题1、设方程 2sin 0x z y ye z ++= 确定的隐函数(,)z z x y =,则 zx∂=∂ 解:(知识点:多元隐函数的概念、隐函数求导法)将方程两边对x 求偏导得sin 20x z zy ye z x x∂∂++=∂∂, 解得 2sin xz ye x z y∂=-∂+2、函数y = ⎽⎽⎽ ⎽⎽⎽⎽ 。

数学分析第09章答案

数学分析第09章答案

第九章 再论实数系§1 实数连续性的等价描述1.求数列}{n x 的上、下确界(若}{n x 无上(下)确界,则称)(-∞∞+是}{n x 的上(下)确界):(1)nx n 11-=; (2)])2(2[n n n x -+=;(3))3,2,1(11,122 =+==+k k x k x k k ; (4)nn x n n 1])1(1[+-+=;(5)nn n nx )1(21-+=;(6)32cos 11πn n n x n +-=. 解(1)0}inf{,1}sup{==n n x x ; (2)-∞=+∞=}inf{,}sup{n n x x ; (3)1}inf{,}sup{=+∞=n n x x ; (4)0}inf{,3}sup{==n n x x ; (5)1}inf{,5}sup{==n n x x ; (6)21}inf {,1}sup{-==n n x x . 2.设)(x f 在D 上定义,求证: (1) )}({inf )}({sup x f x f Dx Dx ∈∈-=-;(2) )}({sup )}({inf x f x f Dx Dx ∈∈-=-.证明 (1)设a x f =)}(inf{,则D x ∈∀,都有a x f ≥)(,因而a x f -≤-)(,又由于0>∀ε,都D x ∈∃ε,使得εε+<a x f )(,因而εε-->-a x f )(,因此)}({inf )}({sup x f x f Dx Dx ∈∈-=-.(2) 设b x f Dx =∈)}({sup ,则D x ∈∀有b x f ≤)(,从而b x f -≥-)(,又由于,0>∀ε都D x ∈∃ε,使得εε->b x f )(,从而εε+-<-b x f )(,因此)}({sup )}({inf x f x f Dx Dx ∈∈-=-.3.设E sup =β,且E ∉β,试证自E 中可选取数列}{n x 且n x 互不相同,使β=∞→n n x lim ;又若E ∈β,则情形如何?证明 由已知条件知E sup =β且E ∉β,因而(1) E x ∈∀,有β<x ;(2) 0>∀ε,都存在E x ∈ε,使得εβε->x . 由(1)、(2)知:对1=ε,存在E x ∈1,使得ββ<<-11x ;对},21min{1x -=βε,E x ∈∃2,使得ββ<<-221x 并且112)(x x x =-->ββ;对},31min{2x -=βε,E x ∈∃3,使得ββ<<-231x 并且223)(x x x =-->ββ;…如此继续下去,得数列}{n x 且n x 互不相同,并且β=∞→n n x lim .若E ∈β,则结论不真,如⎭⎬⎫⎩⎨⎧=n E 1,则1s u p =E ,但没有n x 互不相同的数列}{n x ,使1lim =∞→n n x .4. 试证收敛数列必有上确界和下确界,趋于∞+的数列必有下确界,趋于∞-的数列必有上确界.证明 (1) 由于收敛数列是非空有界数列,且既有上界又有下界,因而有确界定理知其必有上确界和下确界;(2) 设+∞=∞→n n x lim ,则N ∃,当N n >时0>n x ,因而}0,,,,min{21N x x x 是数列}{n x 的下界,由确界原理知数列}{n x 存在下确界;(3) 设-∞=∞→n n x lim ,则N ∃,当N n >时0<n x ,因而}0,,,,max{21N x x x 是数列}{n x 的上界,由确界定理知数列}{n x 存在上确界.5.试分别举出满足下列条件的数列:(1)有上确界无下确界的数列;(2)含有上确界但不含有下确界的数列; (3)既含有上确界又含有下确界的数列;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限.解(1)有上确界无下确界的数列,如}{}{n x n -=有上确界1}sup{-=n x ,但无下确界;(2)含有上确界但不含有下确界的数列,如取⎭⎬⎫⎩⎨⎧=n x n 1}{,则该数列含有它的上确界1}sup{=n x ,但下确界0}inf{=n x ,该数列不含有0;(3)既含有上确界又含有下确界的数列,如⎭⎬⎫⎩⎨⎧-+=n x n n )1(1}{,既含有上确界1,又含有下确界0;(4)既不含有上确界又不含有下确界的数列,其中上、下确界都有限,如⎪⎪⎩⎪⎪⎨⎧∈=-∈+==++.,213;,121Z k k n nZ k k n n x n则数列}{n x 有上确界3和下确界0,该数列}{n x 上含其上、下确界3和0.§2 实数闭区间的紧致性1.利用有限覆盖定理9.2证明紧致性定理9.4.证明 设数列}{n x 有界,即存在R b a ∈,,使得对N n ∈∀,都有b x a n ≤≤.下证}{n x 有收敛子列.(1)若}{n x 存在子列}{k n x 是常数列,则}{k n x 是}{n x 的收敛子列.(2)若}{n x 不存在是常数列的子列,下证}{n x 有收敛子列,为此设}|{N n x X n ∈=,则X 是无限点集.反设}{n x 没有收敛的子数列,则],[b a x ∈∀都不是}{n x 的任一子数列的极限,因此对],[b a x ∈∀,都存在开区间),(x x x v u I =,使得x I x ∈且X I x 是有限集(否则对包含x的任一开区间),(x x v u 都有X 的无穷项,则x 是}{n x 的某一子列的极限),因此所有开区间x I 构成闭区间],[b a 的一个开覆盖Ω,由有限覆盖定理知存在有限数m ,使i x mi I b a 1],[=⊂ ,因而有)()()()()(],[3211X I X I X I X I X I X b a m i x x x x x mi =⊂=,注意到上式右端每一项都是有限集,故X b a ],[为有限集,矛盾!综合(1)(2)知}{n x 必有一收敛的子数列. 2.利用紧致性定理证明单调有界数列必有极限.证明 设数列}{n x 单调递增且有上界,则}{n x 是有界数列,由紧致性定理知数列}{n x 必有收敛子数列}{k n x ,设c x k n k =∞→lim ,则由}{n x 单调递增知c 必为数列}{n x 的上界,且根据数列极限的定义知,,0K ∃>∀ε当K k >时,有ε<-c x k n ,即εε+<<-c x c k n ,特别地 ε->+c x K n 1,取1+=k n N ,则当1+=>k n N n 时,由数列}{n x 单调递增且c 为它的上界知εε+<≤≤<-+c c x x c n n K 1,即ε<-c x n ,从而c x n n =∞→lim ,即单调递增有上界数列必有极限.同理可证}{n x 单调递减有下界时必有极限,因而单调有界原理成立.3.用区间套定理证明单调有界数列必有极限.证明 不妨假设数列}{n x 单调递增有上界(}{n x 单调递减有下界可同理证明),即存在R b ∈,使得b x x x a n ≤≤≤≤≤= 21,下证数列}{n x 有极限.若b a =,则}{n x 为常驻列,故}{n x 收敛,因而以下假设b a <. 取b b a a ==11,,二等分区间],[11b a ,分点为211b a +,若211b a +仍为}{n x 的上界,则令2,11212b a b a a +==;若211b a +不是}{n x 的上界,即存在m ,使211b a x m +>,则令12112,2b b b a a =+=. 二等分区间],[22b a ,分点为222b a +,若222b a +为}{n x 的上界,则令2,22323b a b a a +==;若222b a +不是}{n x 的上界,则令 .,223223b b b a a =+=依此类推得一闭区间套{}],[n n b a ,每一个区间的右端点都是}{n x 的上界,由闭区间套定理知存在唯一的R c ∈,使得c 属于所有闭区间,下证数列}{n x 的极限为c .由于02lim)(lim 1=-=--∞→∞→n n n n n ab a b ,故根据数列极限的定义,0>∀ε,存在N ,当N n >时,都有2ε<-n n a b ,而],[n n b a c ∈,故),(],[εε+-⊂c c b a n n . (*)另一方面,由闭区间套的构造知K ∃,使得n K n b x a ≤≤,故对K n >∀,由于K n x x >,故n n K n b x x a ≤≤≤. 而由(*)知εε+<<-c x c n ,即ε<-c x n ,从而c x n n =∞→lim ,因而单调有界数列必有极限.4.试分析区间套定理的条件:若将闭区间列改为开区间列,结果怎样?若将条件⊃⊃],[],[2211b a b a 去掉或将条件0→-n n a b 去掉,结果怎样?试举例说明.分析(1)若将闭区间列改为开区间列,结果不真.如开区间列⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛n 1,0满足001lim =⎪⎭⎫ ⎝⎛-∞→n n 且 ⊃⎥⎦⎤⎢⎣⎡⊃⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡⊃⎥⎦⎤⎢⎣⎡n 1,031,021,011,0,但不存在r ,使r 属于所有区间.(2)若将定理其它条件不变,去掉条件 ⊃⊃],[],[2211b a b a ,则定理仍不成立,如⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+n n n 1,是闭区间列,且0→-n n a b ,但显然不存在r ,使r 属于所有区间. (3)若去掉定理条件0→-n n a b ,则定理仍不成立,如闭区间序列⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-n n 13,11满足 ⊃⊃],[],[2211b a b a ,此时区间]3,1[内任意一点都属于闭区间序列的任何区间,与唯一性矛盾.5.若}{n x 无界,且非无穷大量,则必存在两个子列∞→k n x ,a x k m →(a 为有限数). 证明 由于}{n x 无界,故N k ∈∀,都存在k n x ,使得k x k n >,因而∞=∞→k n k x lim .又由于}{n x 不是无穷大量,根据无穷大量否定的正面陈述知0M ∃,对0>∀K ,存在K m k >,使得0||M x k m <. 从而对于0>∀K ,数列}{k m x 为有界数列,从而必有收敛子列}{k m x .故结论成立.6.有界数列}{n x 若不收敛,则必存在两个子列b x a x k k m n →→,)(b a ≠. 证明 由于}{n x 为有界数列,由紧致性定理知数列}{n x 必有收敛的子列}{k n x ,不妨设)(∞→→k a x k n ,又因为数列}{n x 不收敛于a ,故从}{n x 中去掉}{k n x 后所得的项还有无穷多项(否则数列}{n x 就收敛于a ).记其为数列}{k n x ,又因为}{k n x 为有界数列,故有收敛子列,设此子列的极限为b ,则b a ≠,而此子列也是}{n x 的子列,故设其为}{k m x ,因而)(lim b a b x k m k ≠=∞→.7.求证:数列}{n a 有界的充要条件是,}{n a 的任何子数列}{k n a 都有收敛的子数列. 证明 必要性:由紧致性定理知结论成立.充分性:反设数列}{n a 无界.若}{n a 是无穷大量,则}{n a 的任何子列都不存在收敛的子列,矛盾;若}{n a 不是无穷大量,则由第5题知}{n a 有一子列}{k n a 是无穷大量,从而}{k n a 没有收敛的子数列,也矛盾.因而数列}{n a 有界.8.设)(x f 在],[b a 上定义,且在每一点处函数的极限存在,求证:)(x f 在],[b a 上有界.证明 对],[b a t ∈∀,由于)(x f 在t 处的极限存在,故设A x f tx =→)(lim ,则对01>=ε,存在0>t δ,x ∀,当t t x δ<-<||0时,有1)(=<-εA x f ,从而1||)(+<A x f ,取{}1||),(max +=A t f M ,则),(t t t t x δδ--∈∀,都有M x f <)(,即)(x f 在区间),(t t t t δδ--上有界.对所有],[b a t ∈,在1=ε下所取的t δ为半径的开区间{}],[|),(b a t t t t t ∈+-δδ构成闭区间],[b a 上的一个开覆盖,由有限覆盖定理知,存在],[,,,21b a t t t n ∈ ,使得),(],[1i i t i t i ni t t b a δδ+-⊂= ,而)(x f 在每个区间),(i i t i t i t t δδ+-),,2,1(n i =上有界,又由于区间个数有限,故)(x f在],[b a 上有界.9.设)(x f 在],[b a 无界,求证:存在],[b a c ∈,对任意0>δ,函数)(x f 在],[),(b a c c δδ+-上无界.证明 反设结论不真,即],[b a c ∈∀,0>∃c δ,函数)(x f 在],[),(b a c c c c δδ+-上有界,则对所有的c ,{}],[|),(b a c c c c c ∈+-δδ构成区间],[b a 的一个开覆盖,由有限覆盖定理知其有有限子覆盖,即],[,,,21b a c c c n ∈∃ ,使),(],[1i i c i c i ni c c b a δδ+-⊂= ,由于函数在每一个],[),(b a c c i i c i c i δδ+-有界,而n 是有限数,故)(x f 在],[b a 有界,矛盾.因此结论成立.10.设)(x f 是),(b a 上的凸函数,且有上界,求证:)(lim ),(lim x f x f bx ax -+→→存在. 证明 由于)(x f 在),(b a 上有上界,故0>∃M ,对M x f b a x ≤∈∀)(),,(.先证明)(lim x f bx -→存在. 在区间),(b a 中任取一点0x ,并令 00)()()(x x x f x f x g --=,则由)(x f 是),(b a 上的凸函数知)(x g 在),(0b x 上递增,在),(0b x 中任取一点1x ,考察区间),(1b x ,),(1b x x ∈∀,由于1000)()()()(x x x f M x x x f x f x g --≤--=,即)(x g 在),(1b x 上有上界,从而)(x g 在),(1b x 上单调递增且有上界,由定理3.12知)(lim x g b x -→存在,不妨令A x g bx =-→)(lim ,则 )()()()()()(lim )(lim 000000x f x b A x f x x x f x f x x x f b x b x +-=⎥⎦⎤⎢⎣⎡+--⋅-=--→→, 即)(lim x f bx -→存在. 再证明)(lim x f ax +→存在. 由于)(x f 是),(b a 上的凸函数,从而)(x g 在),(0x a 上递增,在),(0x a 中任取一点2x ,考察区间),(2x a ,),(2x a x ∈∀,由于ax Mx f x x x f x f x x x f x f x g --≥--=--=000000)()()()()()(, 即)(x g 在),(2x a 上有下界,从而)(x g 在),(2x a 上单调递增且有下界,由定理3.12的推论知)(lim x g ax +→存在,设B x g ax =+→)(lim ,则 )()()()()()(lim )(lim 000000x f B x a x f x x x f x f x x x f a x a x +-=⎥⎦⎤⎢⎣⎡+--⋅-=++→→, 即)(lim x f ax +→也存在. 11.设)(x f 在],[b a 上只有第一类间断点,定义)0()0()(--+=x f x f x ω.求证:任意εωε≥>)(,0x 的点x 只有有限多个.证明 反证法,使用区间套定理. 根据结论,反设存在00>ε,在],[b a 上使0)(εω≥x 的点有无限多个.记],[],[11b a b a =,二等分区间],[11b a ,则在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+111111,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为],[22b a ,再二等分区间],[22b a ,在⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+222222,2,2,b b a b a a 中至少有一个区间含有无限多个x 使0)(εω≥x ,记此区间为 ],,[33b a ,如此继续下去,得闭区间套],[n n b a ,且每个区间],[n n b a 中含有无限多个x 使0)(εω≥x .由区间套定理可知存在唯一 ,2,1],,[=∈n b a r n n由于)(x f 在],[b a 上只有第一类间断点,而],[b a r ∈,故)0(+r f 和)0(-r f 存在,设B r f A r f =-=+)0(,)0(,则对上述00>ε,存在),(,011δδ+∈∀>r r x 时,有2)(0ε<-A x f ,即2)(2εε+<<-A x f A ,从而由极限不等式知,当),(1δ+∈r r x 时,0)(εω<x ;同理存在),(,022r r x δδ-∈∀>时,0)(εω<x .取{}21,min δδδ=,则在),(δδ+-r r 上满足0)(εω≥x 的点至多只能有r 一个点.而根据区间套性质知,N n N >∀∃,时,都有),(],[δδ+-⊂r r b a n n ,从而在],[n n b a 中最多只能有一个点,使得0)(εω≥x ,这与区间套的构造矛盾.故原结论成立.12.设)(x f 在],0[+∞上连续且有界,对),(+∞-∞∈∀a ,a x f =)(在),0[+∞上只有有限个根或无根,求证:)(lim x f x +∞→存在.证明 由)(x f 在],0[+∞上有界知)(x f 在],0[+∞上既有上界又有下界,不妨设上界为v ,下界为u ,若v u =,则v u x f x ==+∞→)(lim ,结论必然成立,故以下假定v u <. 令],[],[11v u v u =,二等分区间],[11v u ,分点为211v u +,由于2)(11v u x f +=在),0[+∞上只有有限个根或无根,而且)(x f 连续,因而11,0X x X >∀>∃时,有2)(11v u x f +>或2)(11v u x f +<.若2)(11v u x f +>,令⎥⎦⎤⎢⎣⎡+=11122,2],[v v u v u ,若2)(11v u x f +<,则令⎥⎦⎤⎢⎣⎡+=2,],[11122v u u v u ,因此1X x >∀时,],[)(22v u x f ∈,即22)(v x f u ≤≤.二等分区间],[22v u ,分点为222v u +,由于2)(22v u x f +=在),0[+∞上只有有限个根或无根且)(x f 连续,故212,X x X X >∀>∃时,有2)(22v u x f +>或2)(22v u x f +<.若2)(22v u x f +>,令⎥⎦⎤⎢⎣⎡+=22233,2],[v v u v u ,反之令⎥⎦⎤⎢⎣⎡+=2,],[22233v u u v u ,因此2X x >∀时,],[)(33v u x f ∈,即33)(v x f u ≤≤. 依此类推,得一区间套]},{[n n v u ,而且由区间套的构造知,n n n X x X X >∀>∃-,1时,n n v x f u ≤≤)(.由区间套定理知存在唯一的 ,2,1],,[=∈n v u r n n ,下证r x f x =+∞→)(lim .事实上,对0>∀ε,由闭区间套]},{[n n v u 的构造知,存在N ,N n >∀时,有),(],[εε+-⊂r r v u n n ,特别地取1+=N n ,则),(],[11εε+-⊂++r r v u N N ,按区间套的构造知11,++>∀∃N N X x X 时,),(],[)(11εε+-⊂∈++r r v u x f N N ,即εε+<<-r x f r )(,从而ε<-r x f )(,即r x f x =+∞→)(lim ,也就是说)(lim x f x +∞→存在.§3 实数的完备性1.设)(x f 在),(b a 连续,求证:)(x f 在),(b a 一致连续的充要条件是)(lim x f ax +→与)(lim x f b x -→都存在.证明 )⇒必要性由)(x f 在),(b a 一致连续知,0,0>∃>∀δε,),(,b a x x ∈'''∀且δ<''-'||x x 时,都有ε<''-')()(x f x f .特别地,当),(,δ+∈'''a a x x 时,δ<''-'x x ,故ε<''-')()(x f x f ,由Cauchy 收敛原理知)(lim x f a x +→存在.同理可知)(lim x f b x -→也存在.)⇐充分性证法1 0>∀ε,由)(lim x f a x +→存在知1δ∃,),(,1δ+∈'''∀a a x x 时,ε<''-')()(x f x f ,又由于)(lim x f b x -→也存在,故2δ∃,),(,2b b x x δ-∈'''∀时,ε<''-')()(x f x f .取⎭⎬⎫⎩⎨⎧-=4,2,2min 21a b δδδ,则由以上两条知)(x f 在),[],,(b b a a δδ-+上一致连续,而又因为)(x f 在],[δδ-+b a 上连续,因而一致连续,因此)(x f 在],(δ+a a 、],[δδ-+b a 、),[b b δ-上均一致连续,因此)(x f 在),(b a 一致连续.证法2 由已知)(lim x f ax +→与)(lim x f bx -→ 都存在,设B x f A x f bx ax ==-+→→)(lim ,)(lim ,令⎪⎩⎪⎨⎧=∈==.);,()(;)(b x B b a x x f a x Ax F则)(x F 在],[b a 连续,因而一致连续,从而)(x F 在),(b a 一致连续,而)(x F 在),(b a 上就是)(x f ,因而)(x f 在),(b a 上一致连续.2.求证数列nx n 1211+++= ,当∞→n 时的极限不存在.证明 利用Cauchy 收敛原理的否定形式证明. 取0,0210>∀>=N ε,任取N n >,则N n >2,从而 nn n x x n n 2121112+++++=-021212121212111ε==+++>+++++>n n n n n n , 由Cauchy 收敛原理的否定知数列nx n 1211+++= 当∞→n 时的极限不存在.3.利用Cauchy 收敛原理讨论下列数列的收敛性. (1))||,1||(2210M a q q a q a q a a x k n n n ≤<++++= ;(2)n n n x 2sin 22sin 21sin 12++++= ; (3)nx n n 1)1(312111+-+-+-= . 解(1)0>∀ε,由1||<q 知0lim 1=+∞→n n q,从而N ∃,N n >∀时,有εMq qn ||1||1-<+,对上述N m n N >∀,,时(不妨n m >),有m n n m n n m n x x x x x x x x +++≤+++=-++++ 2121++=++++≤++++++221121||||||||n n n n m n n q a q a x x x ()εε=-⋅-<-=++≤+++Mq q M q q M q q M n n n ||1||1||1||||||121.由Cauchy 收敛原理知数列}{n x 收敛.(2)这是(1)中21,sin ,10===q k a a k 的特殊情形,由于21||,1<≤q a k ,故数列}{n x 收敛.(3)证法1 利用Cauchy 收敛原理.0>∀ε,由01lim=∞→n n 知,N ∃,N n >∀时ε<n1,对上述N m n N >∀,,时(不妨n m >),有 mn n x x m n n m n 1)1(21)1(11)1(132+++-+++-++-=- mn n n m 1)1(21111---+++-+=. 由于01)1(21111>-+++-+--mn n n m ,故 mn n x x n m m n 1)1(21111---+++-+=- .若n m -为偶数,则mn n x x n m m n 1)1(21111---+++-+=- m m m n n n 11121312111-⎪⎭⎫ ⎝⎛-----⎪⎭⎫ ⎝⎛+-+-+= ε<+≤11n . 若n m -为奇数,则mn n x x n m m n 1)1(21111---+++-+=- ⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛+-+-+=m m n n n 111312111 ε<+≤11n . 因而由Cauchy 收敛原理知数列}{n x 收敛.证法2 先考虑数列}{n x 的偶子列}{2n x ,由于22131211221)1(3121132)1(2+--+-=+-+-+-=++n n x n n ⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=221121211214131211n n n nn x n n 2211214131211=⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-> ,故偶子列}{2n x 是单调递增的数列,又由于1211213121121)1(31211122<⎪⎭⎫ ⎝⎛----⎪⎭⎫ ⎝⎛--=-+-+-=+n n n x n n , 因而偶子列}{2n x 是单调上升且有上界的数列,由单调有界原理知}{2n x 必有极限存在,设a x n n =∞→2lim . 又由于121212++=+n x x n n 且0121lim =+∞→n n ,从而 a n x x n n n n n =++=∞→∞→+∞→121lim lim lim 212. 于是我们证得数列}{n x 的奇、偶子列均收敛而且极限相同,故数列}{n x 收敛.4.证明:极限)(lim 0x f x x →存在的充要条件是:对任意给定0>ε,存在0>δ,当δ<-'<00x x ,δ<-''<00x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性设A x f x x =→)(lim 0,则δδε<-<∀>∃>∀00,,0,0x x x ,就有2)(ε<-A x f ,因此由δ<-'<00x x ,δ<-''<00x x 知ε<-''+-'<-''--'=''-'A x f A x f A x f A x f x f x f )()())(())(()()(,因而必要性成立.)⇐充分性设}{n x 是任意满足0lim x x n n =∞→且0x x n ≠的数列,由已知0,0>∃>∀δε,只要δ<-'<00x x ,δ<-''<00x x 时,有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,且0x x n ≠,故N n N >∀∃,时,有δ<-<||00x x n ;N m >∀时,有δ<-<||00x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 而不等于0x 的实数列}{n x 都有极限)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知)(lim 00x y x y n n n ≠=∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而任意趋向于0x 而不等于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在.而且它们的极限都相等.由Heine 归结原则知)(lim 0x f x x →存在.5.证明)(x f 在0x 点连续的充要条件是:任给0>ε,存在0>ε,当δ<-'0x x ,δ<-''0x x 时,恒有ε<''-')()(x f x f .证明 )⇒必要性由)(x f 在0x 点连续知)()(lim 00x f x f x x =→,故δδε<-∀>∃>∀0,,0,0x x x ,就有2)()(0ε<-x f x f ,因此由δ<-'0x x ,δ<-''0x x 知))()(())()(()()(00x f x f x f x f x f x f -''--'=''-'ε<-''+-'≤)()()()(00x f x f x f x f .因而必要性成立. )⇐充分性设}{n x 是任意满足0lim x x n n =∞→的数列,由已知0,0>∃>∀δε,只要δ<-'0x x ,δ<-''0x x 时,就有ε<''-')()(x f x f .对上述0>δ,由于0lim x x n n =∞→,故N n N >∀∃,时,有δ<-||0x x n ,N m >∀时,有δ<-||0x x m ,于是ε<-)()(m n x f x f ,即)}({n x f 是基本列,由实数列的Cauchy 收敛准则知)(lim n n x f ∞→存在.由}{n x 的取法知任意趋向于0x 的实数列}{n x ,)(lim n n x f ∞→存在.下证它们的极限都相等.反设)(lim ),(lim 0000x x x x x x x x n nn n n n ≠'='≠=∞→∞→,但)(lim )(lim n n n n x f x f '≠∞→∞→,则定义一个新的数列},,,,{}{2211 x x x x y n ''=, 由}{n y 的构造知0lim x y n n =∞→,但)(lim n n y f ∞→有两个子序列极限不相等,故极限)(lim n n y f ∞→不存在,矛盾.从而,任意趋向于0x 的实数列}{n x 构成的数列)(n x f 都有极限存在,而且极限都相等,由Heine 归结原则知)(lim 0x f x x →存在.特别地,取}{n x 为恒为0x 的常数列,则可得)()(lim 0x f x f n n =∞→,即)()(lim 00x f x f x x =→,从而)(x f 在0x 点连续.6.证明下列极限不存在: (1)32cos11πn n n x n +-=; (2)nn n nx )1(21-+=;(3))sin(2n n x n +=π;(4)n x n cos =; (5)n x n tan =.解(1)取}{n x 的两个子序列,当k n 3=时,131336cos 13133+-=+-=k k k k k x k π,从而可以得到1lim 3=∞→k k x .而当13+=k n 时,233213)13(2cos 23313+⋅-=++=+k k k k k x k π,从而21lim 13-=+∞→k k x .}{n x 的两个子序列极限不等,故}{n x 的极限不存在. (2)对}{n x 的奇子列,由于121212211+++⎪⎭⎫⎝⎛+=k k k x ,而且12lim 12=+∞→k k ,故1lim 12=+∞→k k x ;对}{n x 的偶子列,由于k k k x 22221+=,而222212222→⋅≤+≤k k k ,故2lim 2=∞→k k x .原数列的奇子列与偶子列极限不同,故}{n x 的极限不存在.(3)由于()21lim2=-+∞→n n nn ,故取41=ε,则存在00,N n N >∀时 41212=<--+εn n n , 从而 4121412<--+<-n n n , 即 43412+<+<+n n n n ,从而 ()πππππ43412+<+<+n n n n .当n 为偶数时,由于ααπsin )sin(=+n ,从而由上式知()1sin 222≤+=≤n n x n π;当n 为奇数时,由于ααπsin )sin(-=+n ,从而()22sin 12-≤+=≤-n n x n π. 因此取220=ε,对N ∀,任取},max{0N N n >,则},max{10N N n >+,而且n x 和1+n x 一个在⎥⎦⎤⎢⎣⎡1,22内,另一个在⎥⎦⎤⎢⎣⎡--22,1内,从而0122ε=>-+n n x x ,由Cauchy 收敛原理的否定形式知数列}{n x 极限不存在.(4)取1sin 20=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得142+>+N k ππ,在⎪⎭⎫⎝⎛++432,42ππππk k 区间上,由于区间长度12>π,从而存在N n >,使得 ⎪⎭⎫ ⎝⎛++∈+432,421ππππk k n ,对于n 和2+n ,有1sin )1sin(222sin 22sin2cos )2cos(+=-+++=-+n nn n n n n 01sin 21sin 222ε==⋅≥, 由Cauchy 收敛原理的否定形式知数列}{cos }{n x n =极限不存在.(5)取0330>=ε,对N ∀,由阿基米德公理知,存在+∈N k ,使得N k >π,由于⎪⎭⎫⎝⎛++2,6ππππk k 的区间长度13>π,从而在⎪⎭⎫ ⎝⎛++2,6ππππk k 中有一个或两个大于N 的正整数点.若在⎪⎭⎫⎝⎛++2,6ππππk k 中只有一个正整数点n ,则 ⎪⎭⎫⎝⎛+-+=⎪⎭⎫ ⎝⎛+++∈+ππππππππ)1(,2)1(22,21k k k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n ; 若在⎪⎭⎫⎝⎛++2,6ππππk k 中有两个大于N 的正整数点,则取较大的正整数为n ,同样,⎪⎭⎫⎝⎛+-+∈+πππ)1(,2)1(1k k n ,从而0336tantan )1tan(tan tan )1tan(επ==>>+-=-+n n n n n . 由Cauchy 收敛原理的否定形式知数列}{tan }{n x n =极限不存在.7.设)(x f 在),(+∞a 上可导,|)(|x f '单调下降,且)(lim x f x +∞→存在,求证:0)(lim ='+∞→x f x x .证明 由于)(lim x f x +∞→存在,由Cauchy 收敛原理,0,0>∃>∀X ε,当X x>2时,也有X x >,从而22)(ε<⎪⎭⎫ ⎝⎛-x f x f .又因为)(x f 在),(+∞a 可导,故)(x f 在⎪⎭⎫⎝⎛x x ,2上满足Lagrange 中值定理条件,因而⎪⎭⎫⎝⎛∈∃x x ,2ξ,使得2)(2)(x f x f x f ξ'=⎪⎭⎫⎝⎛-,从而)(2)(2ξf x x f x f '=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-,又根据)(x f '单调下降得εεξξ=⋅<⎪⎭⎫⎝⎛-='='≤'='222)(2)()()()(x f x f f x f x x f x x f x ,因此0)(lim ='+∞→x f x x .8.设)(x f 在),(+∞-∞可导,且1)(<≤'k x f ,任给0x ,令),2,1,0()(1 ==+n x f x n n ,求证:(1) n n x +∞→lim 存在;(2) 上述极限为)(x f x =的根,且是唯一的.证明(1)0>∀ε,取k x x k N ln )1(ln1--=ε,N m n >∀,,不妨m n <,下证ε<-||n m x x .由已知)(x f 在),(+∞-∞可导,故由Lagrange 中值定理得1111))(()()(---+-≤-'=-=-n n n n n n n n x x k x x f x f x f x x ξ,同理 ,211----≤-n n n n x x k x x ,依此类推得011x x k x x nn n -≤-+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--010111)(x x kk x x kk nn n--=-++<+ .由于k x x k N n ln )1(ln1--=>ε,而1<k ,从而01)1(lnln x x k k n --<ε,故ε<--=-011x x kk x x nn m ,因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)由于)(x f 在),(+∞-∞可导,因而连续,在)(1n n x f x =+两边同时对∞→n 取极限,则)lim (lim n n n n x f x +∞→+∞→=,即n n x +∞→lim 是)(x f x =的根,下证唯一性.反设有)(,b a b a ≠,且)(a f a =,)(b f b =,则b a b a k b a f b f a f b a -<-≤-⋅'=-=-)()()(ξ,矛盾,故根是唯一的.9.设)(x f 在],[b a 满足条件:(1)10],,[,,)()(<<∈∀-≤-k b a y x y x k y f x f ; (2))(x f 的值域包含在],[b a 内.则对任意],[0b a x ∈,令),2,1,0()(1 ==+n x f x n n ,有(1)n n x +∞→lim 存在;(2)方程)(x f x =的解在],[b a 上是唯一的,这个解就是上述极限值. 证明(1)0>∀ε,取k x x k N ln ||)1(ln01--=ε,N m n >∀,,不妨m n <,下证ε<-n m x x .由已知)(1n n x f x =+,而],[0b a x ∈且)(x f 的值域包含在],[b a 内,因而对n ∀,都有],[b a x n ∈,从而01111)()(x x k x x k x f x f x x n n n n n n n -≤-≤-=---+,因此n n m m n n m m m n m x x x x x x x x x x x -++-≤-+-+-=-+-+--11111011101011)(x x k k k x x k x x k n n m n m -+++=-++-≤+--ε<--=-++<+010111)(x x kk x x kk nn n.因此由Cauchy 收敛原理知n n x +∞→lim 存在.(2)设方程)(x f x =在],[b a 上有两个不同的解d c ,,则d c d c k d f c f d c -<-<-=-)()(,矛盾,故根是唯一的.§4 再论闭区间上连续函数的性质1.设)(x f 在],[b a 上连续,并且最大值点0x 是唯一的,又设],[b a x n ∈,使)()(lim 0x f x f n n =+∞→,求证0lim x x n n =+∞→.证明 不妨设),(0b a x ∈,当a x =0或b x =0时同理可证.对任意},min{000x b a x --<<ε,由于)(x f 在],[b a 上连续,故)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上连续,由闭区间连续函数的最值定理,)(x f 在],[0ε-x a 、],[00εε+-x x 、],[0b x ε+上均有最大值,显然)(x f 在],[00εε+-x x 上的最大值为)(0x f ,设)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,由最大值点的唯一性可知M x f >)(0.取02)(0>-Mx f ,由)()(lim 0x f x f n n =+∞→知N n N >∀∃,时,2)()()(00Mx f x f x f n -<-,即 M Mx f M x f x f x f n >+=-->2)(2)()()(000,而)(x f 在],[0ε-x a 和],[0b x ε+上的最大值为M ,故),(00εε+-∈x x x n ,即ε<-||0x x n ,从而0lim x x n n =+∞→.2.设)(x f 在],[b a 上连续,可微;又设 (1) )(max )(min x f p x f bx a bx a ≤≤≤≤<<;(2) 如果p x f =)(,则有0)(≠'x f , 求证:p x f =)(的根只有有限多个.证明 利用区间套定理.反设p x f =)(在],[b a 上有无穷多个根,设],[],[11b a b a =,二等分区间],[11b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为],[22b a ,再二等分区间],[22b a ,则在两个子区间中必有一个区间含有p x f =)(的无穷多个根,设此区间为 ],,[33b a .依此类推得一区间套]},{[n n b a ,由区间套的构造知p x f =)(在任意],[n n b a 有无穷多个根.由区间套定理知],[b a r ∈∃,使得对于任意],[,n n b a r N n ∈∈+.若p r f ≠)(,则令p x f x g -=)()(,)(x g 也在],[b a 连续,且0)()(≠-=p r f r g ,从而由保号性知),(,δδδ+-∈∀∃r r x 时,都有0)(≠x g ,即p x f ≠)(,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 无根,这与区间套的构造矛盾.若p r f =)(,则0)(≠'r f ,即0)()(l i m ≠--→rx r f x f rx ,从而x ∀'∃,δ,当δ'<-<||0r x 时,有0)()(≠--rx r f x f ,即p x f ≠)(,从而在),(δδ'+'-r r 上)(x f 只有一个根r ,而由区间套知N n N >∀∃,时),(],[δδ+-⊂r r b a n n ,即p x f =)(在],[n n b a 只有一个根,这与区间套的构造矛盾.因此p x f =)(在],[b a 上只有有限多个根.3.设)(x f 在],[b a 上连续,0)(,0)(><b f a f ,求证:存在),(b a ∈ξ,使0)(=ξf 且)(0)(b x x f ≤<>ξ.证明 令],[|{b a x x E ∈=且}0)(=x f ,由于0)(,0)(><b f a f ,且)(x f 在],[b a 上连续,由介值性定理知φ≠E ,从而E 为非空有界数集,由确界原理知E 有上确界,设E sup =ξ,下证0)(=ξf .事实上,由于E sup =ξ,由本章第一节习题3知可以在E 中选取数列}{n x ,使ξ=∞→n n x lim ,又由)(x f 连续知0)(lim )lim ()(===∞→∞→n n n n x f x f f ξ,又对于],(b x ξ∈∀,由于E x ∉,从而0)(≠x f ,又根据0)(>b f 知0)(>x f ,因而结论成立.4.设)(x f 是],[b a 上的连续函数,其最大值和最小值分别为M 和)(M m m <,求证:必存在区间],[βα,满足条件:(1) m f M f ==)(,)(βα或M f m f ==)(,)(βα; (2) M x f m <<)(,当),(βα∈x .证明 由于)(x f 是],[b a 上的连续函数,且有最大值M 和最小值m ,故由最值定理知],[b a c ∈∃,使得M c f =)(;],[b a d ∈∃,使得m d f =)(,由于M m <,故d c ≠,令},min{d c =α,},max{d c =β,则在区间],[βα上满足:(1)m f M f ==)(,)(βα或M f m f ==)(,)(βα;(2)对),(βα∈∀x ,由于m f M f ==)(,)(βα或M f m f ==)(,)(βα,而m M ,分别为],[b a 上的最大值和最小值,故M x f m <<)(.5.设)(x f 在]2,0[a 上连续,且)2()0(a f f =,求证:存在],0[a x ∈,使)()(a x f x f +=.证明 考虑辅助函数)()()(a x f x f x g +-=,],0[a x ∈.若)()0(a f f =,根据已知条件)2()0(a f f =可知,取0=x 或a x =时,均有)()(a x f x f +=,命题已证.若)()0(a f f ≠,则)()0()0(a f f g -=,)0()()2()()(f a f a f a f a g -=-=,从而)0(g 与)(a g 符号相反,由零点定理知],0[a x ∈∃,使0)(=x g ,即)()(a x f x f +=.6.设)(x f 在],[b a 上连续,且取值为整数,求证≡)(x f 常数.证明 反设)(x f 不恒为常数,则],[,21b a x x ∈∃,使得)()(21x f x f ≠,又由于)(x f 取值为整数,故)(),(21x f x f 均为整数,在)(),(21x f x f 之间任取一非整数c ,则由介值性定理知],[b a ∈∃ξ,使得c f =)(ξ,这与)(x f 取值为整数矛盾.7.设)(x f 在),(b a 一致连续,±∞≠b a ,,证明:)(x f 在],[b a 上有界.证明 由于)(x f 在],[b a 上一致连续,故取01>=ε,则0>∃δ,当δ<-21x x 时,有1)()(21<-x f x f . 取定11,b a ,其中δ+<<a a a 1,b b b <<-1δ,则],(1a a x ∈∀, 有δ<-1a x ,故1)()(1<-a f x f ,因而1)()(1+<a f x f ;同理),[1b b x ∈∀,有δ<-1b x , 故1)()(1<-b f x f ,因而1)()(1+<b f x f ,因此)(x f 在区间],(1a a 和区间),[1b b 均有界. 另一方面,由于)(x f 在],[11b a 上一致连续,根据闭区间上连续函数的性质可知存在01>M ,使得111)(],,[M x f b a x <∈∀.取0}1)(,1)(,max{111>++=b f a f M M ,则),(b a x ∈∀,均有M x f <)(,因而)(x f 在),(b a 上有界.8. 若函数)(x f 在),(b a 上满足利普希茨(Lipschitz )条件,即存在常数K ,使得x x K x f x f ''-'≤''-')()(,),(,b a x x ∈'''.证明:)(x f 在),(b a 上一致连续.证明 ,0>∀ε 取,21εδK=则对δ<''-'∈'''∀x x b a x x ),,(,,由Lipschitz 条件知εε<⋅<''-'≤''-'KK x x K x f x f 21)()(,因而依定义知)(x f 在),(b a 上一致连续.9.试用一致连续的定义证明:若函数)(x f 在],[c a 和],[b c 上都一致连续,则)(x f 在],[b a 上也一致连续.证明 对0>∀ε,由函数)(x f 在],[c a 一致连续知01>∃δ,对],[,21c a x x ∈∀而且121δ<-x x ,就有2)()(21ε<-x f x f ;又根据函数)(x f 在],[b c 上一致连续知02>∃δ,],[,21b c x x ∈∀且221δ<-x x 时,就有2)()(21ε<-x f x f .取},min{21δδδ=,则],[,21b a x x ∈∀且δ<-21x x 时,若21,x x 同属于],[c a ,有εε<<-2)()(21x f x f ;若21,x x 同属于],[b c ,也有εε<<-2)()(21x f x f ;若21,x x 一个属于],[c a ,另一个属于],[b c ,则由δ<-21x x 知δδ<-<-c x c x 21,,从而εεε=+<-+-≤-22)()()()()()(2121x f c f c f x f x f x f .因而],[,21b a x x ∈∀且δ<-21x x 时,ε<-)()(21x f x f . 因此由一致连续的定义可知)(x f 在],[b a 上一致连续.10.设函数)(x f 在),(+∞-∞上连续,且极限)(lim x f x -∞→与)(lim x f x +∞→存在. 证明:)(x f 在),(+∞-∞上一致连续.证明 对0>∀ε,由于)(lim x f x -∞→存在,根据Cauchy 收敛原理知,存在01>X ,任意121,X x x -<时,就有ε<-)()(21x f x f ;又由于)(lim x f x +∞→存在,故存在02>X ,任意221,X x x >,就有ε<-)()(21x f x f .由于)(x f 在),(+∞-∞上连续,故)(x f 在区间]1,1[21+--X X 上连续,因而在]1,1[21+--X X 上一致连续,由一致连续的定义知,对上述0>ε,存在01>δ,任意]1),1([,2121++-∈X X x x ,只要112δ<-x x ,就有ε<-)()(21x f x f .取0}1,min{1>=δδ,则),(,21+∞-∞∈∀x x ,只要δ<-21x x ,则21,x x 同属于区间),(1X --∞、]1),1([21++-X X 或),(2+∞X ,由上述讨论知,不管在哪种情况下,都有ε<-)()(21x f x f ,因而)(x f 在),(+∞-∞上一致连续.11.若)(x f 在区间X (有穷或无穷)中具有有界的导数,即M x f ≤')(,X x ∈,则)(x f 在X 中一致连续.证明 对0>∀ε,取Mεδ=,则对任意X x x ∈21,,只要δ<-||21x x ,根据Lagrange中值定理,存在ξ在21,x x 之间,且εδξ=<-≤-'=-M x x M x x f x f x f 212121|))((|)()(,从而)(x f 在X 中一致连续.12.求证:x x x f ln )(=在),0(+∞上一致连续.证明 由于x x x f ln )(=,故xx x xxx f 2ln 2ln 211)(+=+=',xx x x f 4ln )(-='',令0)(=''x f 得1=x ,故1=x 是)(x f '的稳定点,当0)(),1,0(>''∈x f x ,从而)(x f '单调递增;而当0)(),,1(<''+∞∈x f x ,故)(x f '单调递减,因此1=x 是)(x f '的极大值点,也是最大值点,而1)1(='f ,从而对),0(+∞∈∀x ,1)(≤'x f .再令0)(='x f 得2-=e x ,在区间),[2+∞-e 上,由于0)(≥'x f ,因而在),[2+∞-e 上1)(0≤'≤x f ,即1)(≤'x f ,由上题结论知)(x f 在),[2+∞-e 上一致连续.此外,由于0ln lim )(lim 00==++→→x x x f x x ,若令 ⎩⎨⎧=>=.00,0ln )(x x xx x g则)(x g 在]2,0[连续,因而一致连续,从而)(x g 在]2,0(上一致连续,即)(x f 在]2,0(一致连续.对0>∀ε,由)(x f 在),[2+∞-e 上一致连续知,01>∃δ,对任意),[,221+∞∈-e x x 且121δ<-x x ,都有ε<-)()(21x f x f ;又由)(x f 在]2,0(上一致连续知,02>∃δ,对任意]2,0(,21∈x x 且221δ<-x x ,也有ε<-)()(21x f x f .取0}1,,min{21>=δδδ,则当),0(,21+∞∈x x 且δ<-21x x 时,要么],2,0(,21∈x x 要么),[,221+∞∈-e x x ,从而ε<-)()(21x f x f .因此x x x f ln )(=在),0(+∞上一致连续.13.设)(x f 在),(+∞a 上可导,且+∞='+∞→)(lim x f x ,求证:)(x f 在),(+∞a 上不一致连续.证明 取10=ε,对0>∀δ,由于+∞='+∞→)(lim x f x ,故0>∃X ,当X x >时,有δ2)(>'x f ,任取X x >1,X x x >+=212δ,虽然有δδ<=-221x x ,但根据lagrange中值定理知,存在)2,(11δξ+∈x x ,使得02121122)()()(εδδξ==⋅>-⋅'=-x x f x f x f . 根据一致连续的否定定义知)(x f 在),(+∞a 上不一致连续.14.求证:x x x f ln )(=在),0(+∞上不一致连续.证明 由于+∞=+='+∞→+∞→)1(ln lim )(lim x x f x x ,由上题结论知结论成立.§5 可积性1. 判断下列函数在区间]1,0[上的可积性: (1))(x f 在]1,0[上有界,不连续点为),2,1(1==n nx ; (2)⎪⎩⎪⎨⎧=∈⎪⎭⎫⎝⎛=;0,0],1,0(,sin sgn )(x x x x f π (3)⎪⎩⎪⎨⎧=∈⎥⎦⎤⎢⎣⎡-=;0,0],1,0(,11)(x x x x x f(4)[]⎪⎩⎪⎨⎧=∈=.0,0],1,0(,1)(1x x x f x解(1)由于)(x f 在]1,0[上有界,故存在0>M ,对]1,0[∈∀x ,都有M x f ≤)(,故在区间]1,0[的任何子区间上,)(x f 的振幅M 2≤ω.对任给0>ε,由于04lim=∞→n M n ,故N n N >∀∃,时,都有24ε<n M ,特别地取10+=N n 时,也有240ε<n M . 由于)(x f 在⎥⎦⎤⎢⎣⎡1,10n 上只有有限个间断点,因而是可积的,即01>∃δ,使得对区间⎥⎦⎤⎢⎣⎡1,10n 的任何1)max(δλ<∆='i x 的分法,都有∑<∆'''2i i i x εω.取⎭⎬⎫⎩⎨⎧=011,min n δδ,对]1,0[的任意δλ<∆=)max(i x 的分法,下证εω<∆∑=n i i i x 1.由于)1,0(10∈n ,故对上述任意分法,都存在分点00,1i i x x -,使得00011i i x n x <≤-,因而∑∑∑∑∑+=-=+==-=∆++∆≤∆+∆+∆=∆ni i iii i i ni i iii i n i i i iiiixM x M xx xx o 11111110000022ωδωωωωεεεε=+<++≤222121200n M n M, 这里最后一项210εω<∆∑+=ni i i i x 是由于[]⎥⎦⎤⎢⎣⎡⊂+1,11,010n x i ,而)(x f 在⎥⎦⎤⎢⎣⎡1,10n 可积,故函数在区间[]1,10+i x 可积,因而210εω<∆∑+=n i i iix .因此0lim 1=∆∑=→ni iix ωλ,即)(x f 在]1,0[上可积.(2)由于)(x f 在]1,0[上有界,且不连续点为),2,1(1==n nx 和0=x ,根据(1)的证法知)(x f 在]1,0[上可积.(3)由于)(x f 在]1,0[上有1)(≤x f ,故)(x f 有界,而且)(x f 的不连续点为0=x 和),2,1(1==n nx ,由(2)的证法知,)(x f 在]1,0[可积. (4)由于)(x f 在]1,0[上有1)(0≤≤x f ,故)(x f 有界,而且)(x f 的不连续点只有。

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案

高数 下 典型习题及参考答案 第8、9、10、11、12章习题及答案
dx
4 f (x, y)dy
x2
0
0
0
C、
4
y
∫0 dy∫0
f
(x,
y )dx
D、
4
∫0 dy∫0
y
f
(x,
y)dx
2、设 Ω 是由 x = 0, x = 1, y = 0, y = 1, z = 0, z = 1所围成的区域,则 ∫∫∫ xyzdxdydz =

3、旋转抛物面 z = x 2 + y 2 在 0 ≤ z ≤ 2 那部分的曲面面积 S=( ) 2
−a
a2 −x2
0
−a
28、设 D 由 x 轴和 y = sin x, x ∈ [0,π ]所围成,则积分 ∫∫ dσ = D
29、设 Ω :
0

x

1,0

y
≤ 1,0

z

K
,且
∫∫∫
xdxdydz =
1 4
,则
K
=

二、解答题
( ) ( ) 1、计算三重积分 ∫∫∫ x2 + y 2 dv ,其中Ω是由曲面 2 x2 + y 2 = z 与平面 z = 4所围成的区域。

∫ ∫ ∫ ∫ ∫ ∫ ( ) 正确的(
)A、


a
1
dr
r 3dz
B、


a
dr
1
r
r2
+
z2
dz
0
0
0
0
0
0
∫ ∫ ∫ ∫ ∫ ∫ ( ) C、

微积分下 第九章 答案

微积分下 第九章 答案

x
区域。 解:

x cos x y d dx x cos x y dy
0 0
x sin 2 x x sin x dx 0

3 . 2
(5)

D
D
ye xy dxdy ,其中 D 由 x 2, y 2, xy 1 所围成。

D
x 3 sin x 2 y 2 dxdy 0.
D
y 2 1 x 2 dxdy ,其中 D 为单位圆 x 2 y 2 1.
1 1 x 2
2
解:

y 2 1 x 2 dxdy dx
1
1 x
y 2 1 x 2 dy
2 2 32 1 x 2 dx . 1 3 45 1
0
1
1 x
x 1
e x y dy

1
e
2 x 1
1 1 e 1 dx e e 2 x 1 dx e . 0 e 2
(4)
x
D 2 D
y 2 x d ,其中 D 为由直线 y 2, y x 及 y 2 x 所围成的闭区域。
3x 2 y d x
D 3 D 3
dx
2 x
0
3x 2 y dy 0 4 2 x 2 x 2 dx
2
20 . 3
(3)
3 x 2 y y 3 d ,其中 D
x, y 0 x 1, 0 y 1.
2 2 0

R cos
0
R 2 r 2 rdr
2

高等数学课后习题答案--第九章

高等数学课后习题答案--第九章

9. 设 x n >0,
10. 讨论下列级数的收敛性(包括条件收敛与绝对收敛)
182
⑴ ⑶ ⑸ ⑺ ⑼
x sin ; n n =1 ∞ n (−1) n −1 n −1 ; ∑ 3 n =1 n +1 ∞ (−1) ( x > 0 ); ∑ n =1 n + x
∑ (−1)

n +1
⑵ ⑷ ⑹ ⑻ ⑽
180
(4) (6)



n =1 ∞

n =1
ln n ln n 1 ln n 1 n 1 , = = 3 . 收敛; < 2 2 n n n n n n n2 1 1 1 , < , 收敛; n ln (n + 2) ln(n + 2) 2
n
(5)
收敛;
(7) (8) (13) (14)
∑ (
n =1
n −1
)
n
发散
由于 lim (10
a −1
1 n
n →∞
= ln a , 而 n n − 1 > n a − 1 ;
(11)
发散;

n =1



n =1
( n + 1 − n − 1 ), ( n + 1 − (2n − n + 1 − n − 1) = (n −
2 2 2 2 2
(9) 收敛;
收敛;
5.利用级数收敛的必要条件,证明: nn (1) lim = 0, (2) n →∞ ( n !) 2

n →∞
lim
( 2 n) ! = 0. 2 n ( n +1)

工科类本科《高等数学》第7-9章自测题参考答案

工科类本科《高等数学》第7-9章自测题参考答案

工科类本科《高等数学》第7,8,9章自测题参考答案一、填空题:1.极限00x y →→12- ;20tan()lim x y xy y →→= 2;0x y →→= -2 .解:利用等价无穷小量替换或根式有理化及重要极限求待定型的极限:00000111lim sin()2x x x y y y xy xy xy →→→→→→-+==-=-或 0000112lim 2x x y y xy xy →→→→-==-;222000tan()limlim lim 2x x x y y y xy xy x y y →→→→→→===;)()))00000111limlim lim 2121xyxyx x x x y y y y xyxyxye xye →→→→→→→→====-----或()000002limlim2112x x x x xy y y y y xy xyxy e →→→→→→→→====---.2.若22(,)22f x y x xy ax y =+++在点)1,1(-处取得极值,则a = -2 . 解:依题意,有(1,1)0,(1,1)0x y f f ''-=-=.而(,)42x f x y x xy a '=++, 于是,有(1,1)420x f a '-=-+=,解得 2.a =-3.函数2sin()z x xy =的全微分dz = 22222sin()cos()2cos()xy xy xy dx x y xy dy ⎡⎤++⎣⎦. 解:z zdz dx dy x y∂∂=+∂∂,而222222sin()cos()sin()cos(),z xy x xy y xy xy xy x ∂=+⋅=+∂222cos()22cos()z x xy xy x y xy y∂=⋅=∂.故22222sin()cos()2cos()dz xy xy xy dx x y xy dy ⎡⎤=++⎣⎦. 4. 设函数44224z x y x y =+-,则此函数在点(1,1)处的全微分(1,1)dz = ()4dx dy -+ .解:(1,1)(1,1)(1,1)x y dz z dx z dy ''=+,而()3211(1,1)484x x y z x xy=='=-=-,()3211(1,1)484y x y z y x y =='=-=-,故()(1,1)4dz dx dy =-+.5.设22()z f x y =+,且()f u 可导,则z x ∂=∂()222xf x y '+,22z x∂=∂()()2222224f x y x f x y '''+++.解:()()222222zf x y x xf x y x∂''=+⋅=+∂, ()()()()2222222222222224zf x y xf x y x f x y x f x y x∂''''''=+++⋅=+++∂. 6. 设方程1xy xz yz ++=确定隐函数(,)z f x y =, 则z x ∂=∂ y z x y +-+ , z y ∂=∂ x zx y+-+ . 解:令(,,)1F x y z xy xz yz =++-,则(,,)(,,),(,,)(,,)y x z z F x y z F x y z z y z z x zx F x y z x y y F x y z x y''∂+∂+=-=-=-=-''∂+∂+. 二、单项选择题:1.设有直线⎩⎨⎧=+--=+++031020133:z y x z y x L 和平面0224:=-+-∏z y x ,则L 与∏( D )A. 垂直B. 平行C.L 在 ∏ 上D. 斜交解:直线L 有方向向量()()33210133271672110i j ks i j k i j k i j k =++⨯--==-+---,平面∏有法向量()4,2,1n =-,因为0,(s n n ks k ⋅≠≠为非零常数), 所以s n 与既不垂直也不平行,故L 与∏斜交.2.已知k j i b k j i a+-=++=2,32,那么a 与b ( A )A. 垂直B. 平行C. 夹角为030D. 夹角为060 解:因为()1122310a b ⋅=⨯+⨯-+⨯=,所以a b ⊥. 3. 已知函数22f x+y,x -y =x -y (),则(,)(,)f x y f x y x y∂∂+=∂∂( C ). (A )22x y - (B) 22x y + (C) x y + (D) x y -解:因为()()22f x+y,x -y =x -y x+y x -y =(),所以(,)f x y xy =, 故(,)(,).f x y f x y y x x y∂∂+=+∂∂ 4. 设yz x =, 则dz =( A ).(注意分清对幂函数还是指数函数求导) (A)1ln y y yxdx x xdy -+ (B)11y y yx dx yx dy --+(C)1ln y y x xdx yxdy -+ (D)ln ln y y x xdx x xdy +5.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D ).A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m -解:曲线在4π=t 处有切向量()())44,,sin ,cos ,t t t t t s x y z a t a t am a a am ππ==⎛⎫'''==-=-=- ⎪ ⎪⎝⎭. 6. 函数(,,)f x y z xy z =+在点(1,1,1)-处沿方向(2,1,2)l =-的方向导数为( C ) A. 1; B.23; C. 13; D. 0. 解:所求的方向导数(1,1,1)(1,1,1)cos (1,1,1)cos (1,1,1)cos x y z l f f f f αβγ''''-=-+-+-. 而11(1,1,1)1,(1,1,1)1,(1,1,1) 1.x y z y x f y f x f =='''-==-==-= 又2213l =+=,从而212cos ,cos ,cos 333αβγ===-.故2121(1,1,1)1113333l f ⎛⎫'-=⨯+⨯+⨯-= ⎪⎝⎭.7.二元函数ln()z xy =的全微分为( A ).A.dx dy x y +; B. dx dy xy +; C. dx dy y x+; D. dxdyxy . 解:全微分z z dz dx dy x y ∂∂=+∂∂,而1111,z z y x x xy x y xy y ∂∂=⋅==⋅=∂∂.故dx dydz x y=+ 三、证明题:1.设()F u z xy x =+,y u x =,()F u 为可导函数. 求证:z zx y z xy x y∂∂+=+∂∂. 证 因为2()()()()z y y y F u xF u y F u F u x x x ∂⎛⎫''=++⋅-=+- ⎪∂⎝⎭;1()()z x xF u x F u y x ∂''=+⋅=+∂. 所以 ()()()()()z z y xy x y F u F u y x F u xy xF u xy z xy x y x ∂∂⎛⎫''+=+-++=++=+ ⎪∂∂⎝⎭. 2. 设22()y f x y z -=, ()f u 为可导函数. 求证:211z z zx x y y y ∂∂+=∂∂. 证 因为2222222222222222()()2()()()()x z y y xyf x y f x y xf x y x f x y f x y f x y '∂-''⎡⎤=-⋅-=-⋅-=-⎣⎦∂---, ()222222222222222()()2()2()()()f x y y f x y y z f x y y f x y y f x y f x y '--⋅-⋅-'∂-+-==∂--.故22222222222222221112()1()2()1()()()z z xyf x y f x y y f x y z x x y y x f x y y f x y yf x y y ''∂∂--+-+=-⋅+⋅==∂∂---. 四、计算题:1.设2(,)x z f x y y =,其中f 具有连续的二阶偏导数,求222,,,z z z z x y x x y∂∂∂∂∂∂∂∂∂. 解:22121211(,)(,)22,z x x f x y f x y xy f xyf x y y y y∂''''=⋅+⋅=+∂2222121222(,)(,),z x x x xf x y f x y x f x f y y y y y ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭212122211222f f z z f xyf yf xy x x x x y y xx ''⎛⎫∂∂∂∂∂∂⎛⎫'''==+=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 221112221221112222211112222442f xyf yf xy f xyf f xf x y f yf y y y y⎛⎫⎛⎫''''''''''''''''=++++=+++ ⎪ ⎪⎝⎭⎝⎭, 21212122111222f f z z f xyf f xf xy x y y x y y y y y y ''⎛⎫∂∂∂∂∂∂⎛⎫''''==+=-+++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2211112221222221122x x f f x f xf xy f x f y y y y ⎛⎫⎛⎫''''''''''=-+-+++-+ ⎪ ⎪⎝⎭⎝⎭231211122223122x xf xf f f x yf y y y''''''''=-+--+.注:因为f 具有连续的二阶偏导数,所以1221f f ''''=.2.设22220x y z z ++-=,求22,z zx y∂∂∂∂.解:令222(,,)2F x y z x y z z =++-,则(,,)2(,,)221x z F x y z z x xx F x y z z z '∂=-=-='∂--,(,,)2(,,)221y z F x y z z y y yF x y z z z '∂=-=-='∂--, 2222223(1)(1)(1)11(1)(1)(1)z y z y z y y z z y z y z y y y y z z z z ⎛⎫∂--⋅- ⎪-+⋅∂⎛⎫∂∂∂∂-+⎛⎫⎝⎭-===== ⎪ ⎪∂∂∂∂----⎝⎭⎝⎭. 注意:z 是关于,x y 的二元函数.3.设方程组22222x y uv xy u v ⎧++=⎪⎨--=⎪⎩确定隐函数组(,),(,)u u x y v v x y ==,求 u x ∂∂,v x ∂∂.解法一:分别对两方程两边分别对x 求偏导,得20220u v x v u x x u v y u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪--=⎪∂∂⎩ 即 222uv v u x x x u v u v yxx ∂∂⎧+=-⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩当222()022v uJ u v u v==--≠时,有222114(4)22()x u u xv yuxv yu y v x J J u v -∂+==--=∂- , 222114(4)22()v x v xu yvyv xu u y x J J u v -∂+==+=-∂- . 解法二:令2222(,,,)0(,,,)20F x y u v x y uvG x y u v xy u v ⎧=-+=⎪⎨=---=⎪⎩,则22(,)2()22(,)uv v u F G J u v u v u v ∂===---∂2(,)42(,)xv x u F G J xv yu y v x v ∂===---∂ , 2(,)42(,)ux v x F G J yv xu u yu x ∂===+-∂ 故2242()xv uv J u xv yu x J u v ∂+=-=∂- ,2242()ux uv J v xu yvx J u v ∂+=-=-∂-. 4.求函数3322(,)339f x y x y x y y =+-+-的极值.解:解方程组223603690f x x xf y y y∂⎧=-=⎪∂⎪⎨∂⎪=+-=∂⎪⎩,得四个驻点1234(0,3),(0,1),(2,3),(2,1)P P P P --. 又66,0,66xx xy yy f x f f y ''''''=-==+.记(),(),()(1,2,3,4)xx i xy i yy i A f P B f PC f P i ''''''====对21(0,3),6(12)00,P AC B --=-⨯-->且60A =-<,则1(0,3)P-是函数的极大值点,极大值(0,3)27f -=;对22(0,1),61200P AC B -=-⨯-<,则2(0,1)P 不是极值点; 对()23(2,3),61200P AC B --=⨯--<,则3(2,3)P -不是极值点;对24(2,1),61200P AC B -=⨯->,且60A =>,则4(2,1)P 是函数的极小值点,极小值(2,1)9f =-. 5.求曲面222327xy z +-=在点(3,1,1)P 处的切平面方程和法线方程.解:令 222(,,)327F x y z x y z =+--,则曲面在点(3,1,1)P 处的法向量为()(3,1,1)(3,1,1)(,,)(6,2,2)(18,2,2)29,1,1x y z n F F F x y z '''==-=-=-于是,所求的切平面方程为 9(3)(1)(1)0x y z -+---=,即 9180x y z +--=.法线方程为311911x y z ---==-. 6.求曲面z=在点(3,4,5)P 处的切平面方程和法线方程.解:曲面在点(3,4,5)P 处的法向量为()(3,4,5)(3,4,5)341(,,1)1),,13,4,5555x y n z z ⎛⎫''=-=-=-=- ⎪⎝⎭. 于是,所求的切平面方程为 3(3)4(4)5(5)0x y z -+---=,即 3450x y z +-=.法线方程为345345x y z ---==-. 7.求函数23(,,)f x y z xy yz =+在点0(1,1,2)P 处沿从0(1,1,2)P 到(3,1,3)P -方向的方向导数0P fl∂∂.解:记()02,2,1l P P ==-,(223l =+=,从而221cos ,cos ,cos 333αβγ==-=.又()23211(1,1,2)2(1,1,2)1,(1,1,2)210,(1,1,2)312.y x y z y z f yf xy z f yz ==='''===+===故所求的方向导数P f l∂∂(1,1,2)cos (1,1,2)cos (1,1,2)cos x y z f f f αβγ'''=++221110122333⎛⎫=⨯+⨯-+⨯=- ⎪⎝⎭.。

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

高等数学 下册 (殷锡铭 许树声 著) 华东理工出版社 课后答案 第9章 khdaw

1第9章(之6)(总第49次)教学内容:§9.4.3二阶线性常系数微分方程的解法(A )**1.求下列方程的通解(1);08=+′′y y 解:,,082=+λi 222,1±=λ。

x c x c y 22sin 22cos 21+=(2)'6"+y y 解:62+λλ所以通解为(1)'8''−y y 解:∵82−λ通解为:)1('=c y 得到:1c (2)'4"+y y 解:42+λλ通解为:。

)5sin 5cos (212x c x c e y x +=−代入初始条件有:,πππe c c e y =⇒=+=−221)0()2(,)5cos 55sin 5()5sin 5cos (22('212212x c x c e x c x c e y x x +−++−=−−π得:。

特解为:。

πe c −=1)5sin 5cos (2x x e y x+−=−π2(3);10)0(',6)0(,03'4"===++y y y y y 解:,,0342=++λλ0)3)(1(=++λλ所以通解为。

x x e c e c y 321−−+=代入初始条件有:,6)0(21=+=c c y ,1033)0('21321=−−=−−=−−c c e c e c y x x 特解为:。

x x e e y 3814−−−=**3.求解初值问题1)0(1d 20≥⎪⎩⎪⎨⎧==++′∫x y x y y y x 解:将原方程对求导得x ′′+′+=y y y 201()且有′=−=−y y ()()01201微分方程(1)的通解为:,y e C x C x =+−()12代入初始条件,得,1)0(,1)0(−=′=y y 1,021==C C 故所求问题的解为:。

x e y −=***4.设函数二阶连续可微,且满足方程,求函数。

华南理工大学高数下答案(第九章曲线积分与曲面积分)

华南理工大学高数下答案(第九章曲线积分与曲面积分)

对弧长的曲线积分1、计算C,其中曲线C是y =02x a ≤≤的一段弧()0a >。

解:C 的参数方程为22cos 022cos sin x a y a θπθθθ⎧=≤≤⎨=⎩原式222202cos 4cos 4a a d a ππθθ===⎰⎰2、计算4433L x y ds ⎛⎫+ ⎪⎝⎭⎰,其中L 星形线33cos ,sin x a t y a t ==在第一象限的弧02t π⎛⎫≤≤ ⎪⎝⎭。

解:原式()47766244333200sin cos cos sin 3cos sin 36t ta t t a t tdt a a ππ⎡⎤-=+==⎢⎥⎣⎦⎰ 3、计算xyzds Γ⎰,其中Γ为折线ABC ,这里,,A B C 依次为点()()()0,0,0,1,2,3,1,4,3。

解:AB 段参数方程2013x t y t t z t=⎧⎪=≤≤⎨⎪=⎩,BC 段参数方程122013x y t t z =⎧⎪=+≤≤⎨⎪=⎩原式()11301212ABBCxyzds xyzds dt t dt =+=++⎰⎰⎰⎰11420012618t t ⎤⎡⎤=++=⎣⎦⎥⎦ 4、计算()22xy ds Γ+⎰,其中Γ为螺旋线cos ,sin ,x t t y t t z t ===上相应于t 从0到1的弧。

解:方法一 原式11t t ==⎰⎰)(()2111222000111222222t dt t t t dt ⎫'⎡=+=+-+⎣⎰⎰1002t =--⎰⎰原式(100111ln 42422t ⎡⎤=-=-+⎢⎥⎣⎦⎰122=- 方法二、原式11tt ==⎰⎰)001112222t dt ===⎰⎰⎰2101112u +-=⎰(1101111222u ⎡=+--⎢⎣⎰⎰(10011ln 122u ⎡⎤=-+⎢⎥⎣⎦⎰(011ln 222=-+⎰原式(1ln 224=- 方法三、原式11t t ==⎰⎰因为422234t t '==(22'==(()ln 1t '⎛⎫+=+=所以(11ln 42t t '⎫+=⎪⎭原式((11111ln ln 14222t ⎤==-++⎥⎦5、计算22Lx y ds +⎰,其中22:0L x y ax a +=>解:22cos x y ax r a θ+=⇒=,曲线L 的参数方程为2cos 22sin cos x a y a θππθθθ⎧=-≤≤⎨=⎩原式222202cos 2cos 2a ad a πππθθθ-===⎰⎰6、计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线,0y x y ==在第一象限内所围成的扇形的边界。

高等数学 课后习题答案第九章

高等数学 课后习题答案第九章

AHA12GAGGAGAGGAFFFFAFAF习题九1. 求函数u =xy 2+z 3-xyz 在点(1,1,2)处沿方向角为πππ,,343αβγ===的方向导数。

解:(1,1,2)(1,1,2)(1,1,2)cos cos cos u u u uy l x z αβγ∂∂∂∂=++∂∂∂∂22(1,1,2)(1,1,2)(1,1,2)πππcoscos cos 5.(2)()(3)343xy xz y yz z xy =++=---2. 求函数u =xyz 在点(5,1,2)处沿从点A (5,1,2)到B (9,4,14)的方向导数。

解:{4,3,12},13.AB AB ==AB 的方向余弦为4312cos ,cos ,cos 131313αβγ=== (5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)(5,1,2)2105uyz x uxz y uxy z ∂==∂∂==∂∂==∂故4312982105.13131313u l∂=⨯+⨯+⨯=∂AHA12GAGGAGAGGAFFFFAFAF3. 求函数22221x y z a b ⎛⎫=-+ ⎪⎝⎭在点处沿曲线22221x y a b +=在这点的内法线方向的方向导数。

解:设x 轴正向到椭圆内法线方向l 的转角为φ,它是第三象限的角,因为2222220,x y b xy y a b a y ''+==-所以在点处切线斜率为2.b y a a '==-法线斜率为cos abϕ=.于是tan sin ϕϕ== ∵2222,,z z x y x ay b ∂∂=-=-∂∂∴2222zl a b⎛∂=--=∂⎝4.研究下列函数的极值:(1)z=x3+y3-3(x2+y2); (2)z=e2x(x+y2+2y);(3)z=(6x-x2)(4y-y2); (4)z=(x2+y2)22()e x y-+;(5)z=xy(a-x-y),a≠0.解:(1)解方程组22360360xyz x xz y y⎧=-=⎪⎨=-=⎪⎩得驻点为(0,0),(0,2),(2,0),(2,2).z xx=6x-6, z xy=0, z yy=6y-6在点(0,0)处,A=-6,B=0,C=-6,B2-AC=-36<0,且A<0,所以函数有极大值z(0,0)=0.在点(0,2)处,A=-6,B=0,C=6,B2-AC=36>0,所以(0,2)点不是极值点.在点(2,0)处,A=6,B=0,C=-6,B2-AC=36>0,所以(2,0)AHA12GAGGAGAGGAFFFFAFAF点不是极值点.在点(2,2)处,A=6,B=0,C=6,B2-AC=-36<0,且A>0,所以函数有极小值z(2,2)=-8.(2)解方程组222e(2241)02e(1)0xxxyz x y yz y⎧=+++=⎪⎨=+=⎪⎩得驻点为1,12⎛⎫-⎪⎝⎭.22224e(21)4e(1)2exxxxxyxyyz x y yz yz=+++=+=在点1,12⎛⎫-⎪⎝⎭处,A=2e,B=0,C=2e,B2-AC=-4e2<0,又A>0,所以函数有极小值e1,122z⎛⎫=--⎪⎝⎭.(3) 解方程组22(62)(4)0(6)(42)0xyz x y yz x x y⎧=--=⎪⎨=--=⎪⎩得驻点为(3,2),(0,0),(0,4),(6,0),(6,4).Z xx=-2(4y-y2),AHA12GAGGAGAGGAFFFFAFAFZ xy=4(3-x)(2-y)Z yy=-2(6x-x2)在点(3,2)处,A=-8,B=0,C=-18,B2-AC=-8×18<0,且A<0,所以函数有极大值z(3,2)=36.在点(0,0)处,A=0,B=24,C=0,B2-AC>0,所以(0,0)点不是极值点.在点(0,4)处,A=0,B=-24,C=0,B2-AC>0,所以(0,4)不是极值点.在点(6,0)处,A=0,B=-24,C=0,B2-AC>0,所以(6,0)不是极值点.在点(6,4)处,A=0,B=24,C=0,B2-AC>0,所以(6,4)不是极值点.(4)解方程组2222()22()222e(1)02e(1)0x yx yx x yy x y-+-+⎧--=⎪⎨--=⎪⎩AHA12GAGGAGAGGAFFFFAFAF得驻点P0(0,0),及P(x0,y0),其中x02+y02=1,在点P0处有z=0,而当(x,y)≠(0,0)时,恒有z>0,故函数z在点P0处取得极小值z=0.再讨论函数z=u e-u由de(1)duzuu-=-,令ddzu=得u=1,当u>1时,ddzu<;当u<1时,ddzu>,AHA12GAGGAGAGGAFFFFAFAFAHA12GAGGAGAGGAFFFFAFAF由此可知,在满足x 02+y 02=1的点(x 0,y 0)的邻域内,不论是x 2+y 2>1或x 2+y 2<1,均有2222()1()e e x y z x y -+-=+≤.故函数z 在点(x 0,y 0)取得极大值z =e-1(5)解方程组(2)0(2)0x y z y a x y z x a y x =--=⎧⎨=--=⎪⎩ 得驻点为12(0,0),,33a a P P ⎛⎫⎪⎝⎭ z xx =-2y , z xy =a -2x -2y , z yy =-2x .故z的黑塞矩阵为222222ya x y H a x y x ---⎡⎤=⎢⎥---⎣⎦ 于是 122033(),().0233aa a H P H P a a a ⎡⎤--⎢⎥⎡⎤==⎢⎥⎢⎥⎣⎦⎢⎥--⎢⎥⎣⎦ 易知H (P 1)不定,故P 1不是z 的极值点,H (P 2)当a <0时正定,故此时P 2是z 的极小值点,且3,2733a a a z ⎛⎫=⎪⎝⎭,AHA12GAGGAGAGGAFFFFAFAFH (P 2)当a >0时负定,故此时P 2是z 的极大值点,且3,2733a a a z ⎛⎫=⎪⎝⎭.5. 设2x 2+2y 2+z 2+8xz -z +8=0,确定函数z =z (x ,y ),研究其极值。

华东理工大学高等数学答案第章

华东理工大学高等数学答案第章

第2章 (之1)第2次作业教学内容: §2.1 导数概念**1. 设x x x f 2)(3+=,试用导数定义求)(x f '.解:lim ()()lim()()∆∆∆∆∆∆∆x x f x x f x x x x x x x xx→→+-=+++--003322 =+322x .**2. 试用导数定义计算下列函数的导数:(1)xx f 1)(=, 求)1(f '; (2)()38t t g -=,求()2g '; (3)()t t t -=23ϕ,求()1-'ϕ.解:(1)x f x f f x ∆-∆+='→∆)1()1(lim )1(0=+-→lim ∆∆∆x x x 0111=-+=-→lim ∆∆x x0111.(2) ()()()tt g t t g t g t ∆-∆+='→∆0lim()[][]()()tt t t t t t t t t t t t t t t t t t ∆∆+∆+∆+-=∆∆+-=∆--∆+-=→∆→∆→∆32233033033033lim lim 88lim()22033lim t t t t t ∆-∆--=→∆23t -=,即 ()23t t g -=', ()122-='∴g .(3) ()()()tt t t t t ∆-∆+='→∆ϕϕϕ0lim()()[][]ttt t t t t t ∆--∆+-∆+=→∆22033limttt t t t ∆∆-∆+∆=→∆2036lim()16136lim 0-=-∆+=→∆t t t t , ()16-='∴t t ϕ, ()71-=-'ϕ.**3. 求曲线22x y = 在点 ()2,1=P 处的切线方程.解:曲线在点P 处切线的斜率为 4122lim21=--→x x x , 所以切线方程为 ()214+-=x y .**4. 化学反应速率通常是以单位时间内反应物浓度的减少或生成物浓度的增加来表征。

高等数学(下)答案(9)

高等数学(下)答案(9)

第九章 重积分§ 1 二重积分的概念与性质 1、由二重积分的几何意义求二重积分的值dxdy y x I D⎰⎰+=22 其中D 为:422≤+y x( dxdy y x I D⎰⎰+=22=πππ3162.4..312.4.=-) 2、设D 为圆域,0,222>≤+a a y x 若积分dxdy y x a D⎰⎰--222=12π,求a 的值。

解:dxdy y x a D⎰⎰--222=3.34.21a π 81=a3、设D 由圆,2)1()2(22围成=-+-y x 求⎰⎰Ddxdy 3解:由于D 的面积为π2, 故⎰⎰Ddxdy 3=π64、设D :}10,53|),{(≤≤≤≤y x y x ,⎰⎰⎰⎰+=+=DDdxdy y x I dxdy y x I 221)][ln(,)ln(,比较1I , 与2I 的大小关系解:在D 上,)ln(y x +≤ 2)][ln(y x +,故1I ≤2I5、 设f(t)连续,则由平面 z=0,柱面 ,122=+y x 和曲面2)]([xy f z =所围的立体的体积,可用二重积分表示为⎰⎰≤+=1:222)]([y x D dxdy xy f V6、根据二重积分的性质估计下列积分的值⎰⎰Dydxdy x 22sin sin ππ≤≤≤≤y x D 0,0:(≤0⎰⎰Dydxdy x 22sin sin 2π≤) 7、设f(x,y)为有界闭区域D :222a y x ≤+上的连续函数,求 ⎰⎰→Da dxdy y x f a ),(1lim20π解:利用积分中值定理及连续性有)0,0(),(lim ),(1lim820f f dxdy y x f a a D a ==→→⎰⎰ηξπ§ 2 二重积分的计算法1、设⎰⎰+=Ddxdy y xI 1,其中D 是由抛物线12+=x y 与直线y=2x ,x=0所围成的区域,则I=( )A : 212ln 3ln 87+-- B : 212ln 3ln 89-+C : 212ln 3ln 89-- D : 412ln 3ln 89--2、设D 是由不等式1≤+y x 所确定的有界区域,则二重积分⎰⎰+Ddxdy y x )(为( )A :0B : 31C :32D : 13、设D 是由曲线xy=1与直线x=1,x=2及y=2所围成的区域,则二重积分 ⎰⎰Dxy dxdy ye 为( )A :e e e 212124--B :21242121e e e e -+-C :e e 21214+ D :2421e e -4、 设f(x,y)是连续函数,则二次积分dy y x f dx x x ⎰⎰++-2111),(为( )A dx y x f dy dx y x f dy y y ⎰⎰⎰⎰----+112111102),(),( B dx y x f dy y ⎰⎰--1110),(C dx y x f dy dx y x f dy y y ⎰⎰⎰⎰-----+112111102),(),( D dx y x f dy y ⎰⎰---11202),(5、设有界闭域D 1、D 2关于oy 轴对称,f 是域D=D 1+D 2上的连续函数,则二重积分⎰⎰Ddxdy y x f )(2为( )A ⎰⎰1),(22D dxdy y x f B ⎰⎰22),(4D dxdy y x fC ⎰⎰1),(42D dxdy y x f D⎰⎰22),(21D dxdy y x f 6、设D 1是由ox 轴、oy 轴及直线x+y=1所围成的有界闭域,f 是域D:|x|+|y|≤1上的连续函数,则二重积分⎰⎰Ddxdy y x f )(22为( )A ⎰⎰1),(222D dxdy y x f B ⎰⎰1),(422D dxdy y x fC ⎰⎰1),(822D dxdy y x f D⎰⎰1),(2122D dxdy y x f7、.设f(x,y)为连续函数,则⎰⎰a xdy y x f dx 0),(为( )A ⎰⎰a a ydx y x f dy 0),( B ⎰⎰a yadx y x f dy 0),(C ⎰⎰a y dx y x f dy 0),( D ⎰⎰a xdx y x f dy 0),(8、求 ⎰⎰=Ddxdy yx I 22 ,其中 :D 由x=2,y=x,xy=1所围成. (49)9、设I=⎰⎰31ln 0),(xdy y x f dx ,交换积分次序后I 为:I=⎰⎰31ln 0),(xdy y x f dx =⎰⎰3ln 03),(y edx y x f dy10、改变二次积分的次序: ⎰⎰⎰⎰-+4240200),(),(xxdy y x f dx dy y x f dx = ⎰⎰201221xxdx y dx x11、设 D={(x,y)|0≤x ≤1,0≤y ≤1} ,求⎰⎰+Dy x dxdy e 的值解:⎰⎰+Dyx dxdy e=⎰⎰⎰⎰-==+121101)1())((e dy e dx e dy edx y xl yx12设 I=⎰⎰--Ddxdy y x R 222,其中D 是由x 2+y 2=Rx 所围城的区域,求I (331R π)13、计算二重积分⎰⎰-+Ddxdy y x |4|22,其中D 是圆域922≤+y x解:⎰⎰-+Ddxdy y x |4|22==-+-⎰⎰⎰⎰rdr r d rdr r d ππθθ2032220202)4()4(241π 14、计算二重积分⎰⎰Dy x dxdy e},max{22,其中D={(x,y)| 0≤x ≤1,0≤y ≤1}解: ⎰⎰Dy xdxdy e }22,max{=1101022-=+⎰⎰⎰⎰e dx e d dy e dx yy xx y15、计算二重积分⎰⎰++Ddxdy yx yx 22,D :.1,122≥+≤+y x y x 解:⎰⎰++D dxdy yx y x 22=24)sin (cos 201sin cos 12πθθθπθθ-=+⎰⎰+rdr r r d§ 3 三重积分1、设Ω是由x=0,y=0,z=0及x+2y+z=1所围成的空间有界域,则⎰⎰⎰Ωxdxdydz 为( )A ⎰⎰⎰--12101y x y xdz d dx B ⎰⎰⎰---2102101y yx xdy dz dxC ⎰⎰⎰---2102101x yx xdz dy dx D ⎰⎰⎰10110xdz dy dx2、设Ω是由曲面x 2+y 2=2z,及z=2所围成的空间有界域,在柱面坐标系下将三重积分⎰⎰⎰Ωdxdydz z y x f ),,(表示为累次积分,I=( )A ⎰⎰⎰120202ρπθρθρρθz)dz ,sin ,cos f(d d B ⎰⎰⎰220202ρπρθρθρρθdz z),sin ,cos f(d dC ⎰⎰⎰2022202ρπρθρθρρθdz z),sin ,cos f(d d D ⎰⎰⎰20220dz z),sin ,cos f(d d ρθρθρρθπ3、设Ω是由1222≤++z y x 所确定的有界闭域,求三重积分⎰⎰⎰Ωdv e z ||解:⎰⎰⎰Ωdv e z ||=⎰⎰⎰--≤+111||222)(z y x z dz dxdy e =2⎰=-122)1(ππdz z e z 4、设Ω是由曲面z=xy, y=x, x=1 及z=0所围成的空间区域,求⎰⎰⎰Ωdxdydz z xy 32(1/364)5、设Ω是球域:1222≤++z y x ,求⎰⎰⎰Ω++++++dxdydz z y x z y x z 1)1ln(222222 (0) 6、计算⎰⎰⎰+Qdxdydz y x )(22 其中Ω为:平面z=2与曲面2222z y x =+所围成的区域 (π564) 7、计算⎰⎰⎰Qzdxdydz x 2其中Ω是由平面z=0,z=y,y=1以及y=x 2所围成的闭区域(2/27))8、设函数f(u)有连续导数,且f(0)=0,求dxdydz z y x f t tz y x t )(1lim 222222240⎰⎰⎰≤++→++π解:dxdydz z y x f tt z y x t ⎰⎰⎰≤++→++222222240(1lim π=)0(')(4limsin )(1lim 42022040f t drr f r dr r r f d d ttt tt ==⎰⎰⎰⎰→→ϕϕθπππ§4 重积分的应用1、(1)、由面积22y x +=2x, 22y x +=4x,y=x,y=0所围成的图形面积为( )A )2(41+πB )2(21+πC )2(43+π D 2+π(2) 、位于两圆θρsin 2=与θρsin 4=之间,质量分布均匀的薄板重心坐标是( )A (0,35)B (0,36)C (0,37) D (0,38)(3)、由抛物面x y z 422=+和平面x=2所围成的质量分布均匀的物体的重心坐标是 ( )A (0,0,34)B (0,0,35) C (0,0,45) D (0,0,47)(4)、 质量分布均匀(密度为μ)的立方体所占有空间区域:}10,10,10|),,{(≤≤≤≤≤≤=Ωz y x z y x ,该立方体到oz 轴的转动惯量I Z =( )A 31μB 32μC μD 34μ2、求均匀上半球体(半径为R)的质心解:显然质心在z 轴上,故x=y=0,z=⎰⎰⎰Ω=831Rzdv V 故质心为(0,0,R 38)4、 曲面2213y x z --=将球面25222=++z y x 分割成三部分,由上至下依次记 这三部分曲面的面积为 s 1, s 2, s 3, 求s 1:s 2:s 3解:π102559222=--=⎰⎰≤+dxdy y x y x 1S π2025516222=--=⎰⎰≤+dxdy y x y x 3Sπ70=2S5、求曲面xy Rz =包含在圆柱222R y x =+内部的那部分面积 解:3)122(2222222R dxdy R y x R R y x π-=++=⎰⎰≤+S6、求圆柱体Rx y x 222≤+包含在抛物面Rz y x 222=+和xoy 平面之间那部分立体的体积解:43)(2132222R dxdy y x R Rx y x π=+=⎰⎰≤+V 第九章 自测题一、选择题: (40分) 1、⎰⎰-x dy y x f dx 1010),(=( )A ⎰⎰-1010),(dx y x f dy x B ⎰⎰-xdx y x f dy 1010),( C ⎰⎰11),(dx y x f dy D ⎰⎰-ydx y x f dy 101),(.2、设D 为222a y x ≤+,当=a ( )时,π=--⎰⎰Ddxdy y x a 222. A 1 B 323 C 343 D 321 3、设⎰⎰+=Ddxdy y x I )(22,其中D 由222a y x =+所围成,则I =( B ).A 4220a rdr a d a πθπ=⎰⎰ B 422021a rdr r d aπθπ=⋅⎰⎰; C 3022032a dr r d a πθπ=⎰⎰ D 402202a adr a d a πθπ=⋅⎰⎰.4、设Ω是由三个坐标面与平面z y x -+2=1所围成的空间区域,则⎰⎰⎰Ωxdxdydz =( ).A481 B 481- C 241 D 241- .5 、设Ω是锥面,0(222222>+=a by a x c z )0,0>>c b 与平面c z y x ===,0,0所围成的空间区域在第一卦限的部分,则⎰⎰⎰Ωdxdydz z xy=( ).A c b a 22361B b b a 22361C a c b 22361D ab c 361.6、计算⎰⎰⎰Ω=zdv I ,1,222=+=Ωz y x z 为围成的立体,则正确的为( )和()A ⎰⎰⎰=101020zdz rdr d I πθB ⎰⎰⎰=11020rzdz rdr d I πθ C ⎰⎰⎰=11020rrdr dz d I πθ D ⎰⎰⎰=zzrdr d dz I 0201πθ.7、曲面22y x z +=包含在圆柱x y x 222=+内部的那部分面积=s ( )A π3B π2C π5D π22.8、由直线2,2,2===+y x y x 所围成的质量分布均匀(设面密度为μ)的平面薄板,关于x 轴的转动惯量x I =( ).A μ3B μ5C μ4D μ6二、计算下列二重积分:(20分)1、⎰⎰-Dd y x σ)(22,其中D 是闭区域:.0,sin 0π≤≤≤≤x x y (9402-π) 2、⎰⎰Dd xy σarctan ,其中D 是由直线0=y 及圆周1,42222=+=+y x y x ,x y =所围成的在第一象 限内的闭区域 . (2643π) 3、⎰⎰+-+Dd y x y σ)963(2,其中D 是闭区 域:222R y x ≤+ (2494R R ππ+)4、⎰⎰-+Dd y x σ222,其中D :322≤+y x . (.25π) 三、作出积分区域图形并交换下列二次积分的次序: (15分)1、⎰⎰⎰⎰-+yydx y x f dy dx y x f dy 30312010),(),( (⎰⎰-xxdy y x f dx 3220),()2、⎰⎰-+2111),(x xdy y x f dx (⎰⎰⎰⎰-+22202110),(),(y y y dx y x f dy dx y x f dy )3、⎰⎰θθθθ0)sin ,cos (rdr r r f d a (⎰⎰θθθθ0)sin ,cos (rdr r r f d a )四、计算下列三重积分:(15分)1、Ω+⎰⎰⎰Ω,)cos(dxdydz z x y :抛物柱面x y =2,,π=+==z x o z o y 及平面所围成的区域 (21162-π) 2、,)(22⎰⎰⎰Ω+dv z y 其中Ω是由xoy 平面上曲线x y 22=绕x 轴旋转而成的曲面与平面5=x 所围 (π3250) 五、(5分)求平面1=++czb y a x 被三坐标面所割出的有限部分的面积 .(22222221a c c b b a ++) 六、(5分)设)(x f 在]1,0[上连续,试证:310101])([61)()()(⎰⎰⎰⎰=dx x f dxdydz z f y f x f x y x 0)0(,)()()()(,)()(1==='=⎰⎰F dx x f t F x f x F dt t f x F x且则=⎰⎰⎰101)()()(x yx dxdydz z f y f x f =-⎰⎰dy x F y F y f dx x f x11)]()()[()(dx x F F x F x F F x f )}()1()()]()1((21){[(2122⎰+--=)1(21)1(61)1(21333F F F -+=)1(613F。

高等数学第九章练习题答案

高等数学第九章练习题答案

第九章 练习题一、填空 第一节1、 22222)1ln(),(y x y x y x f --+-+=的定义域是2122≤+<y x .2、 2222911),(y x y x y x f --+-+=的定义域是9122≤+<y x .3、 2222001sin)(lim yx y x y x ++→→= 0 . 4、=+-→→xyxy y x 93lim0 16- .5、、函数y x z -=的定义域是 (){}y x y x y x ≥≥≥2,0,0/,6、函数()12ln 2+-=x y z 的定义域是 0122>+-x y7、()()=+-→11lim0,0,xy xy y x 2-. 19. ()()=-+→xyxy y x 24lim0,0,41. 8、求极限()()()yxy y x tan lim0,2,→= 29、 2210ln()lim y x y x e x y →→++= ln 2 . 第二节1、设z =zx ∂∂2、设z arctan(xy )=,则zx∂=∂ ,z y ∂=∂ .22,1()1()y x xy xy ++ 3、 设223z x xy y =++,则(1,2)zx ∂∂= 8 ,(1,2)z y ∂∂= 7 .4、设y x e z 2-=,而t x sin =,3t y =,则=dtdz()22sin 6cos 3t t e t t -- 5、设y x z =,而te x =,12-=t e y ,则=dt dz ()2231-+-t t t e e e6、 设(1)y z xy =+,则zx∂∂= 21(1)y y xy -+ 7、设(1)xy z x =+,则zy∂∂=(1)ln(1)xy x x x ++ 8、设y x z y3⋅=,求=∂∂∂y x z 2 ⎪⎪⎭⎫ ⎝⎛-y y y 13ln 3 。

9、函数222234x y z x ++=,则z x ∂=∂ 23z x x z∂-=∂,z y ∂=∂ 。

高数下第九章例题及答案

高数下第九章例题及答案

复习三 重积分1.了解二重的几何意义, 会交换二次积分的次序.例1.设D 为闭圆域x 2+y 2≤R 2, 则Dσ⎰⎰= .解: 此积分表示以半径为R 的半球体的体积, 即33142233R R ππ⋅=.例2.改变二次积分⎰⎰210),(x dy y x f dx 的积分次序得( ).(A )⎰⎰100),(2dx y x f dy x ; (B )⎰⎰110),(y dx y x f dy ;(C )⎰⎰ydx y x f dy 010),(; (D )⎰⎰112),(x dx y x f dy .解: 积分区域为D ={(x , y )|0≤x ≤1, 0≤y ≤x 2}, 积分区域又可表示为 }1 ,10|) ,{(≤≤≤≤=x y y y x D , 所以⎰⎰⎰⎰=1101),(),(2yx dxy x f dy dy y x f dx .2.会利用直角坐标和极坐标计算二重积分, 会利用直角坐标、柱面坐标和球面坐标计算三重积分.例1.计算σd e x Dy ⎰⎰-22, 其中D 由x =0, y =1, y =x 围成.解: 因为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰--=1102222xy Dy dye dx x d e x σ, 计算无法进行.因为D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 所以⎰⎰⎰⎰⎰⎰----===1022103021222226131dy e y dy e y dx x dy ed exy y yy Dy σ)21(61|616161|6161101021021022222ee e dy e e y de y y y y y -=--=+-=-=----⎰⎰. 例2.计算⎰⎰=Ddxdy yyI sin , 其中D 由曲线x y =、直线y =x 围成.解: 积分区域可表示为D ={(x , y )|0≤y ≤1, y 2≤x ≤y }, 于是 ⎰⎰⎰⎰⎰-===1010sin )1(sin sin 2ydyy dx y y dy dxdy y yI y y D=1-sin1.例3.将⎰⎰-12),(x x dyy x f dx 化成极坐标形式的二次积分 .解: 积分区域为}0 ,10|) ,{(2x x y x y x D -≤≤≤≤=, 在极坐标下}cos 0 ,20|),{(θπθθ≤≤≤≤=r r D , 所以⎰⎰⎰⎰=-θπθθθc o s20100)s i n ,c o s (),(2r d r r r f d dy y x f dx x x .例4.计算二重积分⎰⎰--Dy xdxdye 22,其中D 为x 2+y 2=1所围成的闭区域.解:⎰⎰⎰⎰⎰⎰-----===1210120222222dr e rdr erdr ed dxdy er r r Dy x ππθπee r πππ-=-=-10|2. 例5.计算三重积分⎰⎰⎰Ω+++3)1(z y x dxdydz , 其中Ω为平面x =0, y =0, z =0,x +y +z =1所围成的四面体. 解: 积分区域可表示为Ω={(x , y , z )| 0≤z ≤1-x -y , 0≤y ≤1-x , 0≤x ≤1}, 于是⎰⎰⎰Ω+++3)1(z y x d x d y d z⎰⎰⎰---+++=yx xdz z y x dy dx 103101)1(1⎰⎰--++=xdy y x dx 10210]81)1(21[dx x x ⎰+-+=1]8183)1(21[)852(l n 21-=.例6.计算三重积分dv y x ⎰⎰⎰Ω+)(22其中Ω为x 2+y 2=2z 及z =2所围成的闭区域.解: 在柱面坐标下积分区域可表示为 Ω: 0≤θ≤2π, 0≤r ≤2, 2212≤≤z r ,于是316)212(2)(22322122020222ππθπ=-=⋅=+⎰⎰⎰⎰⎰⎰⎰Ωdr r r rdz r dr d dv y x r.例7.计算三重积分dv z y x )(222++⎰⎰⎰Ω, 其中Ω是由球面x 2+y 2+z 2=1所围成的闭区域.解: 在球面坐标下积分区域Ω可表示为 0≤θ≤2π, 0≤ϕ≤π, 0≤r ≤1,于是 dv z y x )(222++⎰⎰⎰Ωθϕϕd d r dr s i n 4⋅=⎰⎰⎰Ω⎰⎰⎰=1420s i n dr r d d ππϕϕθπ54=.3.会计算立体的体积, 会计算曲面的面积, 会计算质心或形心.例1.求由抛物柱面z =2-x 2及椭圆抛物面z =x 2+2y 2所围成的立体的体积. 解: ππθπ=-=-=+--=⎰⎰⎰⎰104210220222]21[2)22()]2()2[(r r rdr r d dxdy y x x V D. 例2.求锥面22y x z +=被柱面z 2=2x 所割下的部分的曲面面积. 解: 曲面22y x z +=与z 2=2x 的交线在xOy 面上的投影为⎩⎨⎧==+0222z xy x .所求曲面在xOy 在上的投影区域为D ={(x , y )|x 2+y 2≤2x }. π22122=='+'+=⎰⎰⎰⎰DDy x dxdy dxdy z z A .例3.求由曲线ay =x 2, x +y =2a (a >0)所围成闭区域的形心. 解: 闭区域可表示为}21 ,2|),{(2x a y x aa x a y x D -≤≤≤≤-=.因为 3222121227)12(2a dx x a x a x dy xdxxdxdy aaxa xa aa D-=--==⎰⎰⎰⎰⎰---,324222212536)144(212a dx x a x ax a ydy dx ydxdy a a xa x a aa D =-+-==⎰⎰⎰⎰⎰---,22221229)12(2a dx x a x a dy dx dxdy aax a x aaaD=--==⎰⎰⎰⎰⎰---.所以a a a d x d yx d x d y x DD2129122723-=-==⎰⎰⎰⎰, aa adxdy ydxdyy DD282953623===⎰⎰⎰⎰.练习三1. 设区域D 为x 2+y 2≤a 2, 且π=--⎰⎰dxdy y x a D222, a =________.2. 设D 由y 2=x 及y =x -2所围成, 则⎰⎰=Dxyd I σ=( ).(A)⎰⎰+=422y y xydy dx I ; (B)⎰⎰-+=2122y y xydx dy I ;(C)⎰⎰⎰⎰--+=4121x x xxxydydx xydy dx I ; (D)⎰⎰-+=2122y y xydy dx I .3. 交换下列二次积分的顺序, 并画出积分区域草图. (1)⎰⎰--22),(0x a xa adyy x f dx ; (2)⎰⎰xe dy y xf dx ln 01),(; (3)⎰⎰---x x dy y x f dx 214262),(.4. 设D : |x |≤1, 0≤y ≤1, 则⎰⎰+Dyd y x σ)(3=________.5. 曲面x 2+y 2+z 2=R 2(z >0)和2R z =所围成的立体的体积可表为二重积分________.6. 计算二次积分⎰⎰+=131021x dy yxy dx I .7. 利用极坐标计算积分⎰⎰⎰⎰-+++=10212022222x x dy y x dx dy y x dx I .8. 计算二重积分⎰⎰+Ddxdy y x )(, 其中D : x 2+y 2≤2x .9. 计算二重积分⎰⎰+Dd y x σ)cos(, D 是以点(0, 0),(0, π), (π, π) 为顶点的三角形区域.10. 计算二重积分dxdy xy D⎰⎰2, 其中D 为直线y =x 和抛物线y =x 2所围成的平面区域.11. 计算二重积分σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )|a 2≤x 2+y 2≤b 2}.12. 计算二重积分⎰⎰+'Ddxdy y x f )(22, 其中D 为圆域: x 2+y 2≤R 2 .13. 求⎰⎰⎰Ω++=dv z y x I )(22,其中Ω是由曲线⎩⎨⎧==022x zy 绕z 轴旋转一周的曲面与平面z =4所围立体.14.计算⎰⎰⎰Ω+dVzx)(,其中Ω是由曲面22yxz+=与221yxz--=围成.15.求旋转椭球面2221449x y z++=所围成的旋转体的体积.16.求半圆域x2+y2≤a2,x≥0的形心.17.求圆锥面2z=+x2+y2=2x内部的曲面面积.。

高等数学课后习题答案第九章1

高等数学课后习题答案第九章1

第九章习题解答(2) 习题9.31、 求上半球面222y x a z含在柱面ax y x 22内部的曲面面积解:被积函数为222y x a z 22222)(y x a x z x 22222)(yx a y z y --= 所以 dxdy yx a a dS 222--=积分区域为::D ax y x =+22,化成极坐标:设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 0,22a r ≤≤≤≤-⎰⎰-=-θππθcos 02222a ra ardr d S cos 0222222)(2a r a r a d d a ⎰---=22cos 022ππθθd r a a a)2(222)sin (222220-=⋅+-=--=⎰ππθθπa a a d a a a2、 求圆锥面22y x z +=被柱面x z 22=所截下的曲面面积解:被积函数为22y x z += 2222)(y x x z x += , 2222)(yx y z y += 所以 dxdy dS 2=积分区域为::D x y x 222=+,设θcos r x =,θsin r y = dr rd dxdy θ=θπθπc o s 20,22≤≤≤≤-r⎰⎰-=θππθcos 20222rdr d S ππθθππ222124cos 22222=⋅⋅==⎰-d3、 求抛物柱面221x z =含在由平面x y y x ===,0,1所围的柱体内的面积 解:被积函数为221x z = 22)(x z x = , 0)(2=y z所以 dxdy x dS 21+=积分区域为::D x y y x ===,0,1,0=z 围成的闭区域=+=⎰⎰x xdy x dx S 021⎰+xdx x x 0213122)1(3121)1(1211232022-=+⋅=++=⎰x x d x x 。

4、 求下列图形的形心 (1)、:D 1,0,2===x y x y ,围成的闭区域解:将密度看成1;⎰⎰⎰⎰=xDdy dx dxdy 201032221==⎰dx x 522210232010===⎰⎰⎰⎰⎰dx x dy xdx xdxdy xD2112010===⎰⎰⎰⎰⎰dx x ydy dx ydxdy xD于是得形心坐标为:53322522~==x 82332221~==y 形心为)82353( (2)、:D θρco s 1+=,围成的闭区域 解:将密度看成1;πθ23=⎰⎰Ddr rd (前面求出的结果) dr r d rdrd r xdxdy D D⎰⎰⎰⎰⎰⎰+'==θπθθθθcos 10220cos cos⎰+=πθθθ203)cos 1(cos 31d +⎰πθθ20cos 31d +⎰πθθ202cos d +⎰πθθ203cos d ⎰πθθ204cos 31d +=0++⎰πθθ20)2cos 1(21d +0⎰++πθθθ20242cos 2cos 2131d=π1215242122πππ=++65231215~==ππx 由图形关于x 轴的对称性得0~=y 形心为)065((3)、:D 0,12222≥=+x by a x ,围成的闭区域解:面积ab 2π=⎰⎰⎰⎰---=2222110a xb a x b a Dxdy dx xdxdy ⎰-=adx ax x b 0221232)1(32)2(22123222ba a x ab =--= ππ34232~2a ab ba x == 由图形关于x 轴的对称性得0~=y 形心为)034(πa5、 圆盘)0(222>≤+a ax y x 内各点处的密度=),(y x μ22y x +,求此圆盘的质心解:=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x 22⎰⎰-θππθcos 20222a dr r d3203332316cos 316a d a ⋅==⎰πθθ3932a ==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x 22⎰⎰-θππθθcos 20322cos a dr r d15641588cos 1641442254a a d a =⋅==⎰-ππθθ 56~a M M x y ==,由对称性得0~=y 所求质心为)056(a6、 设有一个等腰直角三角形薄片,各点处的密度等于该点到直角顶点距离的平方,求此圆薄片质心 解:设等腰直角三角形的顶点为),0(),0,(),0,0(a a 则22),(y x y x +=μ=M =⎰⎰D dxdy y x ),(μ=+⎰⎰Ddxdy y x )(22⎰⎰-+xa a dy y x dx 0220)( ⎰-+-=a dx x a x a x 032])(31)([⎰-+-=a dx x a x a ax 03322]31312[ 62132444a a a =-= =y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy xy x)(23⎰⎰-+xa a dy xy x dx 0230)(⎰-+-=adx x a x x a x 033])(31)([⎰-+-=a dx x x a x a ax 043223]34312[ 5555515115463121a a a a a =-+-= 由对称性得=x M =⎰⎰Ddxdy y x y ),(μ=+⎰⎰Ddxdy y y x)(32⎰⎰-+ya a dx y y x dy 032)(155a = 52~a M M x y ==,52~a M M x x == 所求质心为)5252(aa 7、 设有顶角为α2,半径为R 的扇形薄片,各点处的密度等于该点到扇形顶点距离的平方,求此薄片质心 解:设扇形顶点为)0,0(关于x 轴对称 则22),(y x y x +=μ=M =⎰⎰Ddxdy y x ),(μ=+⎰⎰Ddxdy y x)(22⎰⎰-Rdr r d 03ααθ24R α==y M =⎰⎰Ddxdy y x x ),(μ=+⎰⎰Ddxdy y x x )(22⎰⎰-Rdr r d 04cos θθαα5sin 2αR =5sin 4~αR M M x y == 由对称性得0~=y ,所求质心为)05sin 4(αR8、 设均匀薄片(面密度为常数)ρ,战局的区域如下,求指定的转动惯量(1)、⎭⎬⎫⎩⎨⎧≤+=1),(2222b y a x y x D 求y I ,l I ,其中是过原点切倾斜角为α的直线解:ab M ρπ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰123203cos dr r d b a θθπ ===⎰4cos 43202ba d abρθθρπ42Ma由题设可知薄片上任意点到直线l 的距离为αα2tan 1tan +-=y x dl I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰++Ddxdy xy y x )tan 2tan (tan12222αααρ⎰⎰+=Ddxdyx 222tan 1tan ααρ⎰⎰++Ddxdy y 22tan 1αρ⎰⎰+-Dxydxdy ααρ2tan 1tan 24tan 1tan 222Ma ⋅+=ααρdr r d ab ⎰⎰++1322023sin tan 1ϑθαρπdr r d b a θθθαρπ⎰⎰+-1320222sin cos tan 14tan 1tan 222Ma ⋅+=αα2tan 123παρ⋅++ab 4tan 1tan 222Ma ⋅+=αα4tan 1122Mb ⋅++ααα2222tan 1tan 4++⋅=a b M (2)、{}b y a x y x D ≤≤≤≤=0,0),(求y I ,l I ,其中是过原点与点),(b a 的对角线ab M ρ=y I ρμ==⎰⎰Ddxdy y x x ),(2ρ=⎰⎰Ddxdy x 2⎰⎰bady dx x 023323Ma ba ==ρx I ρμ==⎰⎰Ddxdy y x y ),(2ρ=⎰⎰Ddxdy y2⎰⎰bady y dx 0232Mb =由题设可知薄片上任意点到直线l 的距离为22ba ay bx d +-=l I ==⎰⎰Ddxdy y x d ),(2μ⎰⎰-++Ddxdy abxy y a x b b a )2(222222ρ=⎰⎰+Ddxdy x ba b 2222ρ⎰⎰++Ddxdy y ba a 2222ρ⎰⎰+-Dxydxdy ba ab222ρ22223b a b Ma +=22223b a a Mb ++22222b a b a M +-)(62222b a b Ma += 习题9.41、 化三重积分⎰⎰⎰Ωdv z y x F ),,(为三次积分(只须先,z 次对,y 后对x 一种次序)(1)、由三个坐标面与平面06236=-++z y x 围成解:23230yx z --≤≤,,220x y -≤≤10≤≤x ⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰---=yx x dz z y x f dy dx 32302201),,((2)、由旋转抛物面22y x z +=与平面1=z 围成解:122≤≤+z y x ,,1122x y x -≤≤--11≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰+-+---=111112222),,(y x x x dz z y x f dy dx(3)、由圆锥面22y x z +=与上半球面222y x z --=围成解:22222y x z y x --≤≤+,,2222x y x -≤≤--22≤≤-x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰--+-+---=22222222222),,(y x y x x x dz z y x f dy dx(4)、由双曲抛物面xy z =与平面0,1==+z y x 围成 解:xy z ≤≤0,,10x y -≤≤10≤≤x⎰⎰⎰Ωdv z y x f ),,(⎰⎰⎰-=xyxdz z y x f dy dx 01010),,(2、 设有一物体,点据空间闭区域{}10,10,10),,(≤≤≤≤≤≤=Ωz y x z y x 密度函数为z y x z y x ++=),,(μ,求该物体的质量解:=++=⎰⎰⎰Ωdv z y x M )(=⎰⎰⎰Ωxdv ++⎰⎰⎰Ωydv =⎰⎰⎰Ωzdv =⎰⎰⎰Ωzdv 32331011==⎰⎰⎰zdz dy dx 3、 计算三重积分 (1)、⎰Ωx y d v⎭⎬⎫⎩⎨⎧=++====Ω132,0,0,0),,(z y x z y x z y x ⎰⎰⎰Ωxydv ⎰⎰⎰---=)21(30)1(2010yx x xydz dy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx ⎰⎰---=)1(202210)2333(x dy xy y x xy dx⎰-----=103222])22(21)22(33)22(23[dx x x x x x x ⎰-----=103222])22(21)22(33)22(23[dx x x x x x x 101512215105]12303010[10432=-+-=-+-=⎰dx x x x x (2)、⎰⎰⎰Ωzdv y x 22 {}x z z x y x y x z y x ==-====Ω.0,,,1),,( ⎰⎰⎰Ωxyzdv ⎰⎰⎰-=xxx zdz y x dy dx 02210⎰⎰-=x x dy y x dx 24102124131107==⎰dx x (3)、⎰Ωx y z d v{}0,1,,),,(=====Ωz x x y xy z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰=xyxxyzdz dy dx 01264181107==⎰dx x (4)、⎰Ωdv z 2 {}0,1),,(22=--==Ωz y x z z y x⎰⎰⎰Ωxyzdv ⎰⎰⎰------=22221021111y x x x dz z dy dx ⎰⎰--=x dy y x dx 0232210)1(311525132)1(311023220ππθπ=⋅=-=⎰⎰rdr r d (5)、⎰Ωdv z 2 {}z x y z z y x 2),,(222≤++=Ω解;积分区域是1)1(222=-++z y x ,22221111y x z y x --+≤≤---2211x y x -≤≤--111≤≤-x这样计算很繁琐,改为下面的方法(是很高的技巧) 任意取一点,z 则截口面积为)2(2z z dxdy -=π⎰⎰⎰⎰⎰⎰=ΩDdxdy dz z dv z2022dz z z )2(243⎰-=π58)542(2054ππ=-=z z4、 利用柱坐标计算 (1)⎰⎰⎰Ωzdv 其中Ω是由上半球面222y x z --=与旋转抛物面22y x z +=围成的闭区域解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,222r z r -≤≤ 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰-=222120r rzdz rdr d πθ⎰⎰--=104220]2[21dr r r r d πθ 127)61411(]2[21105320ππθπ=--=--=⎰⎰dr r r r d (2)⎰⎰⎰Ω+dv y x z22 其中Ω是由旋转抛物面22y x z +=与平面1=z 围成的闭区域解:先确定该区域在xoy 面的投影区域⎩⎨⎧+==221yx z z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,12≤≤z r 10,20≤≤≤≤r πθ⎰⎰⎰Ωzdv ⎰⎰⎰=112202rzdz dr r d πθ⎰⎰-=104220]1[21dr r r d πθ 214)7131(][21106220ππθπ=-=-=⎰⎰dr r r d5、设密度为常量μ的均匀物体占据由223y x z --=与0,1,1=±=±=z y x 围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域 就是{}11,11),(≤≤-≤≤-=y x y x D (1)、=M ⎰Ωdv μ ⎰⎰⎰----=22301111y x dz dy dx μ⎰⎰--=-12211)3(2dy y x dx μμμμ328)3138(4)38(4102=-=-=⎰dx x(2)、由对称性得0~,0~==y x=z M =⎰⎰⎰Ωzdv μ⎰⎰⎰----22301111y x zdz dy dx μ⎰⎰--=-122211)3(dy y x dx μμμ45506)316536(2142=+-=⎰dx x x ==MM z z ~210253,所以物体的重心是)210253,0,0( (3)=z I ⎰⎰⎰Ω+dv y x )(22μ⎰⎰⎰----+=2230112211)(y x dz dy y x dx μ⎰⎰--+=122221)3)((4dy y x y x dx μ⎰⎰---+=14422221)233(4dy y x y x y x dx μM dx x x 1056245248)519754(4)3754(41042==-+=-+=⎰μμμ6、设密度为常量1的均匀物体占据由上半球面222y x z --=与圆锥面22y x z +=围成的闭区域,求(1)、物体的质量 (2)、物体的重心 (3)、物体对于z 轴的转动惯量解:先确定该区域在xoy 面的投影区域⎪⎩⎪⎨⎧+=--=22222y x z y x z 为⎩⎨⎧==+0122z y x 就是{}1),(22≤+=y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22r z r -≤≤ 10,20≤≤≤≤r πθ,于是(1)、=M ⎰⎰⎰Ωdv ⎰⎰⎰-=22120r rdz rdr d πθ⎰⎰--=1220]2[dr r r r d πθ=--=⎰⎰102220]2[dr r r r d πθ)12(34)12(3220-=-=⎰πθπd (2)、由对称性得0~,0~==y x =z M ⎰⎰⎰Ωzdv ⎰⎰⎰-=22120r rzdz rdr d πθ⎰⎰--=102220]2[21dr r r r d πθ=-=⎰⎰10320][dr r r d πθ24120πθπ==⎰d==MM z z ~)12(83+,所以物体的重心是))12(83,0,0(+(3)、=z I ⎰⎰⎰Ω+dv y x )(22 ⎰⎰⎰-=221320r rdz dr r d πθ⎰⎰--=12320]2[dr r r r d πθ=--=⎰⎰1042320]2[dr r r r d πθ)51(2-A π =A dt t t dr r r)(cos sin 242223123⎰⎰=-πdt t t )sin (sin 245203-=⎰π1528)15832(24=-= 所以=z I )328(152)511528(2-=-=ππ (B )的习题 1、⎰⎰⎰Ω+dv z x y )cos( ⎭⎬⎫⎩⎨⎧==+====Ω0.2,,0,2),,(z z x x y y x z y x ππ ⎰⎰⎰Ωxyzdv ⎰⎰⎰-+=xxdz z x y dy dx 202)cos(ππ=⎰⎰-xdy x y dx 020)sin 1(π⎰-=20)sin 1(21πdx x x 202]cos [sin 2116ππx x x --=21162-=π2、⎰⎰⎰Ωzdv {}z z y x z y xz y x 2,1),,(222222=++=++=Ω皆7:先确定该区域在xoy 面的投影区域⎩⎨⎧=++=++z z y x z y x 21222222为⎪⎩⎪⎨⎧==+04322z y x 就是⎭⎬⎫⎩⎨⎧≤+=43),(22y x y x D 设:θθsin ,cos ,r y r x z z ===,有rdxdydz dv =,22111r z r -≤≤-- 230,20≤≤≤≤r πθ,于是 ⎰⎰⎰Ωzdv ⎰⎰⎰---=221112320r r zdz rdr d πθ=⎰⎰--230220)112(21dr r r d πθ245]21)1(32[2302232ππ=---=r r习题9.51、 计算下列对弧长曲线积分(1)、ds y x nl⎰+)(22,其中l 为圆周222a y x =+解:设t a y t a x sin ,cos ==,adt ds =ds y xn l⎰+)(22⎰++==ππ2012122n n a dt a(2)、⎰l yds x sin 其中l 是连接点)0,0(,),3(ππ的直线段解:l 的方程为x y 31=π30≤≤x dx dx ds 310911=+=⎰lyds x sin dx xx ⎰=π303sin 310dt t t ⎰=π0sin 103π103= (3)、⎰l y ds 其中l 是连接点x y 42=上点)0,0(,)2,1(的一段弧解:l 的方程为x y 42= 10≤≤x dx xds 11+= ⎰lyds )122(34)1(34121231-=+=+=⎰x dx x (4)、⎰+l ds y x )( 其中l 是连接点)0,1(,)1,0(的直线段解:l 的方程为x y -=1 , 10≤≤x , dx ds 2=⎰+lds y x )(dx ⎰=122=(5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (5)、ds x l⎰,其中l 为x y =与2x y =所围区域的边界解:l 的方程为x y = , 10≤≤x dx ds 2=l 的方程为2x y = , 10≤≤x dx x ds 241+=ds x l ⎰dx x x dx x ⎰⎰++=1210412)12655(121)41(32812210232-+=+⋅+x (6)、ds y l⎰,其中l 为圆周122=+y x解:设t y t x sin ,cos ==,dtds =ds y l⎰⎰=πsin tdt ⎰-ππ2sin tdt πππ20cos cos x x +-=422=+= (7)、ds el y x ⎰+22,其中l 为圆周0,,422===+y x y y x 在第一象限的区域的边界解:在直线0=y 上 20≤≤x dx ds =ds ely x ⎰+122122-==⎰e dx e x在弧422=+y x 上设t y t x sin 2,cos 2==,dt ds 2=40π≤≤tds el y x ⎰+222222402ππ⋅==⎰e dt e在直线x y =上 20≤≤x dx ds 2=ds el y x ⎰+32212220222-===⎰e edx exxds ely x ⎰+22+-=)1(2e +⋅22πe )1(2-e )22(2+=πe 2-(8)、⎰l x y ds 其中l 是2,4,0,0====y x y x 围成的矩形的边界解:4321l l l l l +++=1l 的方程为0=y =⎰1l x y d s 001=⎰dx l ,4l 的方程为0=x=⎰4l xyds 004=⎰dy l2l 的方程为4=x=⎰2l x y d s 842==⎰y d y, 3l 的方程为2=y=⎰3l x y d s1624=⎰xdx24=⎰lxyds(9)、⎰l ds y 2其中l 是摆线)cos 1(),sin (t a y t t a x -=-=的一拱解:dt t a t a ds 2222sin )cos 1(+-=dt ta 2sin 22= ⎰l ds y 232022282sin 2)cos 1(a dt t a t a =-=⎰π=⎰π2052sin dt t ⎰π053sin 16udu a1525615832sin 32332053aa udu a =⋅==⎰π(10)、⎰+lds y x 22 其中l 是上半圆周x y x 222=+与x 轴围域的边界解:21l l l +=,1l :x y x 222=+化为1)1(22=+-y x 设t y t x sin ,cos 1==-,dt ds =⎰+122l ds y x =++=⎰π22sin )cos 1(dt t t =⎰π2cos dt t4cos 420=⎰πudu2l :0=y ,dx ds =⎰+222l ds y x 22==⎰xdx62422=+=+⎰lds y x2、 求半径为,R 中心角为α2的扇形圆弧的质心(密度均匀)1=μ解:选择与书上168页图9-34一样的坐标系,于是根据对x 轴的对称性得0~=y 设1=μ,t R y t R x sin ,.cos ==Rdt ds =R M α2=⎰=lyds M x 1~==⎰-ααtdt R M cos 12==⎰α2cos 2tdt R Mαααsin sin 22R M R ==所求质心为)0sin (ααR3、 计算下列关于坐标的曲线积分 (1)、⎰+ldx y x )(22,L 是抛物线2x y =上)0,0(O 到)4,2(A 一段弧解:⎰+l dx y x )(221556]53[)(20532042-=+=+=⎰x x dx x x(2)、⎰l y dx ,L 是 2,4,0,0====y x y x 矩形的边界按照逆时针方向 解:A O :0=y ,4:=x B A0=dx ,2:=y C A ,0:=x O C0=dx ,⎰lydx ⎰⎰⋅+=ABOAy dx 00⎰⎰⋅++COBCy dx 028204-==⎰dx(3)、⎰+l x d y y dx ,L 是 20,sin ,cos π≤≤==t t R y t R x 一段针方向的弧解:⎰+l xdy ydx dt x x dt t tR R t R t R )(]cos cos )sin (sin [242⎰++-=π02sin 22cos 202202===⎰ππtR dt t R(4)、⎰+-++lyx dyx y dx y x 22)()(,L 是圆周 222a y x =+沿逆时针方向解:t a y t a x sin ,cos ==,⎰+-++l y x dy x y dx y x 22)()(⎰-+-+=π2022]cos )sin (cos )sin )(sin [(cos a dt t t t t t t a ππ2120-=-=⎰dt(5)、⎰++l x dy dx y x )(,L 是折线 x y --=11从)0,0(到)0,2(一段解:⎩⎨⎧>-≤=121x x x xy ,弧dx dy x y A O ==,: ,dx dy x y B A -=-=,2:⎰++lxydy dx y x )(⎰⎰+=OAAB383732311)22()2(212102=+-++=+-++=⎰⎰dx x x dx x x (6)、⎰---l dy y a dx y a )()2(,L 是 )cos 1(),sin (t a y t t a x -=-=摆线的一拱,从)0,0(到)0,2(a π解:⎰---ldy y a dx y a )()2(dt t a t a a ⎰---=π20)cos 1()]cos 1(2[dt t a t a a ⎰---π20sin )]cos 1([dt t t t a ⎰+=π2022)cos sin (sin220222sin 2cos 1(a dt tt a ππ=+-=⎰4、计算⎰-++l dy x y dx y x )()(,其中L 分别是(1)、x y =2上点)1,1(到)2,4( (2)、点)1,1(到)2,4(的直线段解:(1)、在x y =2上点)1,1(到)2,4(,dx xdy 21=⎰-++ldy x y dx y x )()(dx x x xx x )](21[41-++=⎰3342153723)2121(41=++=++=⎰dx x x (2)、点)1,1(到)2,4(的直线段,3231+=x y ,dx dy 31=⎰-++ldy x y dx y x )()(dx x x x x )]3231(313231[41-++++=⎰ 11398215910)98910(41=⋅+⋅=+=⎰dx x 5、计算⎰+++l dy y x dx y x )2()2(,其中L 分别是(1)、2x y =上点)0,0(到)1,1(的一段弧 (2)、3x y =点)0,0(到)1,1(的一段弧 (3)、点)0,0(到点)0,1(再到点)1,1(的折线 解:(1)、2x y =上点)0,0(到)1,1(,xdx dy 2=⎰+++ldy y x dx y x )2()2(dx x x x xx ])2(22[122⎰+++=3111)432(132=++=++=⎰dx x x x(2)、3x y =点)0,0(到)1,1(的一段弧,dx x dy 23=⎰+++ldy y x dx y x )2()2(dx x xx ])642[153⎰++=3111=++=(3)、点)0,0(到点)0,1(再到点)1,1(的折线⎰+++ldy y x dx y x )2()2(+=⎰dx x 102⎰+1)21(dy y 3=6、一力场由沿x 轴正向的常力→F 构成,求将一个质量为m 的质点沿222R y x =+按逆时针方向移动过第一象限那段弧所做的功 解:→F →=i F dx F W l⎰=F R tdt R F -=-=⎰2sin π节9.6习题处理1、计算下列关于坐标的曲线积分,并验证格林公式的正确性(1)dy y x dx y x l )()(22--+⎰,L 是椭圆12222=+by a x 沿逆时针方向解:设t b dy t b y t a dx t a x cos ,sin ,sin ,cos ==-==dy y x dx y xl)()(22--+⎰⎰⎰⎰-+-=πππ2023202320sin cos cos sin tdt t atdt t bdt abab π2-=用格林公式y x y x P +=2),( 2),(y x y x Q +-=1),(-=y x Q x 1),(=y x P ydy y x dx y x l)()(22--+⎰ab dxdy Dπ22-=-=⎰⎰ (2)、dy y x dx y x l )()(222+-+⎰)0,0()1,0()0,1()0,0(:→→→L 直线段围成的闭路解:0),0,1()0,0(:1=→y L ; x y L -=→1),1,0()0,1:2;0),0,0()1,0(:3=→x Ldy y x dx y x l)()(222+-+⎰1])1([012012210-=--+-=⎰⎰⎰dy y dx x x xdx 用格林公式2)(),(y x y x P += 22),(y x y x Q --=x y x Q x 2),(-= )(2),(y x y x P y +=dy y x dx y x l)()(222+-+⎰=+-=⎰⎰Ddxdy y x )2(2⎰⎰-+-xdy y x dx 1010)2(21)2321(210-=-+-=⎰dx x x2、求星形线t a y t a x 33sin ,cos ==所围的面积解:dt t t a ydx xdy A l ⎰⎰=-=π20222sin cos 232183)4cos 1(1632202a dt t t a ππ=-=⎰3、用格林公式计算(1)、dy y x dx y x l)653()42(-+++-⎰)0,0()2,3()0,3()0,0(:→→→L 直线段围成的三角形边界解:653),(-+=y x y x Q 42),(+-=y x y x P3),(=y x Q x y y x P y -=),(dy y x dx y x l)653()42(-+++-⎰12212344=⨯⨯⨯==⎰⎰Ddxdy ⎰⎰-+-x dy y x dx 1010)2(2(2)、dy y y x dx xe xy l x)cos ()32(2-++⎰1:2222=+by a x L 逆时针方向解:x xe xy y x P 32),(+= y y x y x Q c o s ),(2-=x y x Q x 2),(= x y x P y 2),(=dy y x dx y x l)653()42(-+++-⎰00==⎰⎰Ddxdy(3)、⎰+++l y ydy e x dx xey )1()(22224:x x y l -=由)0,4()0,0(→的弧解:先补足成闭路1-+=l OA Ly xe y y x P 2),(+= 1),(22+=y e x y x Qy x xe y x Q 22),(= y y xe y x P 221),(+=⎰+++L y y dy e x dx xe y )1()(222ππ2)2(212-=-=-=⎰⎰Ddxdy 于是⎰+++ly ydy e x dx xey )1()(222-+++=⎰dy e x dx xe y y OA y )1()(22(2⎰+++Ly ydy e x dx xey )1()(222ππ2824+=+=⎰xdx(4)、⎰---l dy y y x dx y )sin ()cos 1(x y l s i n:=上由)0,()0,0(π→的弧解:先补足成闭路1-+=l OA Ly y x P cos 1),(-= )s i n (),(y y x y x Q --=y y y x Q x sin ),(+-= y y x P y s i n ),(=⎰-+---1)sin ()cos 1(l OA dy y y x dx y ⎰⎰⎰⎰-=-=xDydy dxydxdy sin 0π4)12((cos 41sin 21002πππ-=-=-=⎰⎰x xdx于是⎰---ldy y y x dx y )sin ()cos 1(----=⎰dy y y x dx y OA )sin ()cos 1((⎰-+---1)sin ()cos 1(l OA dy y y x dx y4400πππ=+=⎰dx(5)、⎰+--l dy y x dx y x )sin ()(2222:x x y l -=上由)1,1()0,0(→的弧解:先补足成闭路1-++=l AB OA Ly x y x P -=2),( )s i n ),(2y x y x Q --=-=),(y x Q x 1),(-=y x P y⎰-+++--1)sin ()(22lAB OA dy y x x dx y x 0=于是⎰+--l dy y x dx y x )sin ()(22+--=⎰dy y x dx y x OA)sin ()(22dy y x dx y x AB)sin ()(22--=⎰+=⎰102dx x ⎰--12)sin 1(dy y⎰---=10)2cos 1(21131dy y 672sin 41-= (6)、⎰+++l xxdy e x dx ye )()1( 1:2222=+by a x L 上由)0,()0,(a a →-的上半椭圆解:先补足成闭路1),(-++-=l a a Lx ye y x P +=1),( x e x y x Q +=),(x x e y x Q +=1),( x y e y x P =),(ab dxdy dy e x dx ye Dl a a x x π21)()1(1),(==+++⎰⎰⎰-++- 于是⎰+++lxx dy e x dx ye )()1(ab dy e x dx ye a a x x π21)()1(),(-+++=⎰+- ab dx a a π21-=⎰-ab a π212-= 4、 证明下列曲线积分在xoy 面内与路径无关,并计算积分值 (1)、⎰-++)3,2()1,1()()(dy y x dx y xy x y x P +=),( y x y x Q -=),( 都是初等函数,因此在xoy 面内有连续的偏导数1),(=y x Q x 1),(=y x P y 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++)3,2()1,1()()(dy y x dx y x ⎰+=21)1(dx x ⎰-+31)2(dy y=--+-+=)19(214)14(21125 (2)、⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy32),(4+-=y xy y x P 324),(xy x y x Q -= 都是初等函数,因此在xoy 面内有连续的偏导数342),(y x y x Q x -= 342),(y x y x P y -= 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++-)1,2()0,1(324)4()32(dy xy x dx y xy ⎰+=21)22(dx x ⎰-+13)164(dy y544)14(2=-+-+=25(3)、⎰-++),()0,0()c o s ()s i n (ππdy y xe dx x e y yx e y x P y sin ),(+= y xe y x Q y cos ),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( yy e y x P =),( 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内与路径无关⎰-++),()0,0()cos ()sin (ππdy y xe dx x e yy⎰+=π0)sin 1(dx x ⎰-+ππ0)cos (dy y e y=--++=0)1(2πππe 252+=ππe 5、验证下列dy y x Q dx y x P ),(),(+在整个xoy 面内是某一个函数),(y x u 的全微分,并且求这样的函数),(y x u(1)、dy y x dx y x )2()2(+++解答:y x y x P 2),(+= y x y x Q +=2),( 都是初等函数,因此在xoy 面内有连续的偏导数2),(=y x Q x 2),(=y x P y 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使dy y x dx y x y x du )2()2(),(+++=⎰+++=),()0,0()2()2(),(y x dy y x dx y x y x u ⎰=x xdx 0⎰++ydy y x 0)2(2221221y xy x ++=(2)、dy y xe dx e x y y )2()2(-++解答:y e x y x P +=2),( y xe y x Q y 2),(-= 都是初等函数,因此在xoy 面内有连续的偏导数y x e y x Q =),( y y e y x P =),( 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y xe dx e x y y )2()2(-++⎰-++=),()0,0()2()2(),(y x yydy y xe dx e x y x u ⎰+=x dx x 0)12(⎰-+yy dy y xe 0)2(=-+-+=x xe y x x y 22y xe y x +-22(3)、y d y x y d x x 3c o s 2c o s 33s i n 2s i n2-解答:y x y x P 3sin 2sin 2),(= y x y x Q 3c o s 2c o s 3),(-= 都是初等函数,因此在xoy面内有连续的偏导数y x y x Q x 3c o s 2s i n 6),(= y x y x P y 3c o s 2s i n 6),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰-=),()0,0(3cos 2cos 33sin 2sin 2),(y x ydy x ydx x y x uy x ydy x y 3sin 2cos 3cos 2cos 30-=-=⎰(4)、dy ye y x y x dx xy y x y)122()3(223322++++解答:32283),(xy y x y x P += yye y x y x y x Q ++=223122),( 都是初等函数,因此在xoy 面内有连续的偏导数22246),(xy y x y x Q x += =),(y x P y 22246xy y x + 得 =),(y x Q x ),(y x P y 所以曲线积分在xoy 面内存在),(y x u ,使=),(y x du dy y x Q dx y x P ),(),(+⎰++++=),()0,0(223322)122()83(),(y x y dy ye y x y x dx xy y x y x u31 ⎰++=yy dy ye y x y x y x u 0223)122(),(y y e ye y x y x -++=322346、设→→→-++=j xy i y x F )12()(2试证:在在xoy 面内,→F 作的功与路径无关 证明:⎰-++=l dy xy dx y x W )12()(22),(y x y x P += 12),(-=xy y x Q 都是初等函数,因此在xoy 面内有连续的偏导数 y y x Q x 2),(= y y x P y 2),(= 得 =),(y x Q x ),(y x P y所以曲线积分在xoy 面内积分与路径无关,所以在在xoy 面内, →F 作的功与路径无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章(之1) (总第44次)教学内容:§微分方程基本概念*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) ((A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xx ec e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.:解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xx ec e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212sin cos , ''=----y e x e x x x 3332321212sin cos ,代入方程得''+'+=y y y 0, 此外 ,,1)0(0)0(='=y y 故y e x x =-2333212sin 是初始值问题的解.,*5.验证y e e t Ce xt xx =+⎰20d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e eCe xt x xx x 22d =++ye x x 2, 即2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322x C y =''.(从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy. 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y'-1)0(x -从而可得所求微分方程为0='+y y x .,第9章(之2)(总第45次)教学内容:§9.2 .1可分离变量的方程; § .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=. \(2)222y x e yx y -=';解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e yy , C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. "分离变量,)1)(1(y x y --=',x x yyd )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C eC x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解: y '=21xy -,∴21d d xx y y -= (0≠y ),21d d xx y y-=⎰⎰,】∴C x y +=arcsin ln , ∴ x Ce y arcsin =,π6)21(e y -=,∴21arcsin 6Ce e =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: 22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2 ⎥⎦⎤⎢⎣⎡+⎰⎰-C dxe e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e xx x d 2222x x Ce xe --+=, 1)0(=y , 101=⇒+=∴c c , 2)1(x ex y -+=∴.(3)xex y y cos cot =+',1)2(=πy ;解: xex y y cos cot =+', ∴x x P cot )(=,xex Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d cot cos d cot )d e e (e sin ln cos sin ln ⎰+=-x C x x x ,)d sin e (csc cos ⎰+=x x C x x x C xcsc )e(cos -=,由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:xx y 121212-+=. (**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy e y c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x yx()d d =+2,即 d d yxxy x -=-2,分离变量得d d y y x x -=2,积分得y Ce x=+222, 在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x ey .|**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e km t =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为y k x 2211+-=().,***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程. 解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xy y 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yxy 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x e C ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解. 解:令ux y =2,代入方程整理得 xxu u d tan d =,积分得 Cx u =sin ,以 x y u 2= 代入上式,即得原方程的通解: Cx xy =2sin .'第9章 (之3) (总第46次)教学内容:§9.2 .3齐次型方程;伯努利方程.**1.求下列微分方程的通解: (1))ln ln 1(d d x y xyx y -+=;解: )ln ln 1(d d x y x y x y -+=, ∴dx dy =x y (1+xyln ),这是一个一阶齐次型方程. ~令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =.以 xy u =代入,得所求的通解为cxxe y =. (2)()arctan xy y yxx '-=.解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 x y u =,则 ux y =,即u x u y '+=',于是原方程可化为ux u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Ce y xyx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解.'解: 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 uu dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy, c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22yx +1=22y c , 1)2(=y , ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=xy x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u uu u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程\)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠ ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒xt ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dt dst s t s 32210)32(21++-=⇒=+++⇒, 令dtdutu dt ds t s u +=⇒=, ^23)1)(13(3221+++-=⇒++-=+∴u u u dt du tuu dt du tu , ⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t ct u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy xxy x y y ln 1'12-=-∴-- #令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xxx x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21,∴ []x C xy+=-2121, ∴xC x y +=."(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令x z -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y ey yy y y=+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=- ,…令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,****6.作适当的变换求方程 12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x y x x y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x eCex x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().&解:两边关于x 求导得212yy y '-=-,解得 y Ce x 21=+, 由yx ==00,求得C =-1,故原方程的解为:y e x21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(),212yy xy x '-=- 令y z 2=,解得z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.#***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器内的水才会完全流尽解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得200222+=t g r Ah πα,代入0=h , 980=g , 50=r , 4π=A ,62.0=α, 得10304=t (秒). {第9章 (之4)(总第47次)教学内容:§可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122()(D )y x =--()12542解:(C )【(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒p p d =xxd -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, (∴=xy d d x C 1, x x C y d d 1=, ⎰⎰=x x C y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122, '=++y x x C 1121(), y x C x C =+++121212ln()arctan .(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p y y p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111 212C x C y +=⇒. ~∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学内容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构 【**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(3 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解./***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解.所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e t e -'-"0421********=-⨯-+=t t t t e t te te t e ,()()2222"41t t t e t e t e ----'-=-+-⨯--=--241240222222e t e tte t e t t t t (), `故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.,**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x、''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学内容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题: ((1)方程08=+''y y 的通解为=y _______________. 解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x+=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x x C C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________.解:)(21515C x C ey x +=-.-(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx+=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,|04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c , 所以特解为:x e x y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ; 解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5cos 55sin 5()5sin 5cos (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x+-=-π.!(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ,所以通解为 x xe c e c y 321--+=.代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x xe ey 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d ()@解:将原方程对x 求导得 ''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,?微分方程的通解为: xxeC e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为:x e e x x x ch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdt x d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg t ge c e c x 102101-+=."又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x 所以 tg tg ee x 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2 其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ.. 第9章 (之7)(总第50次)教学内容:§9.4.3二阶线性常系数方程的解法; §高阶线性常系数微分方程!**1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin ^(C )Ax B x C x D x +++(cos sin )(D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ; 解:∵ 022=--λλ, ∴1,22,1-=λ, 0 不是特征根.设 01b x b y p +=,代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xey y y -=+'+''2.|解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221. **4.求微分方程''-'+=y y y xe x32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为《xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x ey ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根: 2,021-==λλ,所以方程0'2=+''y y 的通解为 xh e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:·x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-. 3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=,!代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为xh e x C C y 321)(+=<设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为:y C e C e x x =+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch . ]***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为 S gt v t =-+1220(sin cos )θμθ:***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos.***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;'解: 02234=+-λλλ, 0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y.解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c ec e c y xx 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =,t e x =,\dtdyx dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dty d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()t e f cy dt dya b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,{原方程化为:t te y dt dydty d =+-2222,上述方程的相应其次方程的通解为: ()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,、因为 22,dt x d dt dv a dt dx v ===, 所以 22dt xd m B dt dx k mg =--,即 m B g dtdx m k dt x d -=+22 ,其特征方程为:02=+λλmk , 解得特征根为 m k -==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kBmg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c mk c c 求得:222221,kgm Bm c k Bm g m c -=-=, 《所以x 与t 的关系可表示为: t k B mg e k g m Bm x t m k -+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3) '='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学内容:§ 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学内容:§ 差分方程1. 已知t t e y 3=是二阶差分方程tt t e ay y =+-+11的一个特解,求a .解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ;解:tt C y )27(-= (2) 431-=--t t y y ;解:23+=tt C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) tt t y y 2124=-+; 解:144-+=t t t t C y (5) tt t t y y 21⋅=-+. 解:tt t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意 ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C , 所以 特解为 2=t y .。

相关文档
最新文档