小升初数学分数应用题归类及解析
小升初数学专题讲解分数除法应用题(无问题详解)
简单的分数应用题(一)一、基础知识:二、例题解析: (一)基本方法例1、指出下面每组中单位“1”和对应分率。
①一只鸡的重量是鸭的32。
把( )平均分为3份,把( )看作单位“1”,( )相当于这样的2份,32对应的数量是( )。
②甲的53相当于乙。
把( )平均分为5份,把( )看作单位“1”,( )相当于这样的3份,53对应的数量是( )。
③现价是原价的403。
把( )平均分为40份,把( )看作单位“1”,( )相当于这样的3份,403对应的数量是( )。
现价比原价少的部分对应的分率是( )。
④小红的书比小明少87。
把( )平均分为8份,把( )看作单位“1”,( )相当于这样的7份,7对应的数量是( )。
小明的书对应的分率是( )。
例3、小王买了一个本子和一支钢笔。
本子的价格是51元,钢笔的价格比本子的价格多5,钢笔的价格是多少元?例4、一条裤子比一件上衣便宜25元。
一条裤子是一件上衣价格的32,一件上衣多少元?例5、商店运来一批水果,运来苹果20筐,梨的筐数是苹果的43,梨的筐数同时又是桔子的53。
运来桔子多少筐?例6、学校买来54本新书,其中科技书占61,文艺书占31,文艺书比科技书多多少本?例7、小强看一本故事书,每天看16页,看了5天后,还剩全书的53没有看,这本故事书有多少页?例8、客车由甲城开往乙城要10小时,货车由乙城开往甲城要15小时, 两车同时从两城相向开出,多少小时两车相遇?如果相遇时客车走了600千米,甲乙两城之间的公路长多少千米?练一练:一项工作,由甲单独做需要10天;由乙单独做需要12天.如果两人合做,几天才能完成?课后练习: 一、基本题1、指出下面每组中单位“1”和对应分率。
①白兔是黑兔的65。
把( )平均分为6份,把( )看作单位“1”,( )相当于这样的5份,65对应的数量是( )。
②一种毛衣现价是原价的74。
把( )平均分为7份,把( )看作单位“1”,( )相当于这样的4份, 74对应的数量是( )。
分数应用题带答案
分数应用题带答案1. 问题:小明有3个苹果,他把其中的一半分给了小红,然后又把剩下的一半分给了小刚。
最后小明还剩下多少个苹果?答案:小明最初有3个苹果,他分给小红一半,即3÷2=1.5个苹果。
然后他把剩下的一半分给小刚,即(3-1.5)÷2=0.75个苹果。
所以最后小明还剩下3-1.5-0.75=0.75个苹果。
2. 问题:一个班级有40名学生,其中3/5是男生,2/5是女生。
男生和女生各有多少人?答案:男生人数为40×3/5=24人,女生人数为40×2/5=16人。
3. 问题:一个长方形的长是10米,宽是长的3/4。
这个长方形的面积是多少?答案:长方形的宽为10×3/4=7.5米。
面积为长乘以宽,即10×7.5=75平方米。
4. 问题:一个水果店有苹果和橙子两种水果,其中苹果占总水果的2/3,橙子占总水果的1/3。
如果水果店总共有90个水果,那么苹果和橙子各有多少个?答案:苹果的数量为90×2/3=60个,橙子的数量为90×1/3=30个。
5. 问题:一个工厂生产了100个零件,其中90%是合格的,5%是次品,剩下的是废品。
请问合格的零件、次品和废品各有多少个?答案:合格的零件数量为100×90%=90个,次品的数量为100×5%=5个,废品的数量为100-90-5=5个。
6. 问题:小华有30元钱,他用其中的2/3买了一本故事书,剩下的钱用来买零食。
小华买零食花了多少钱?答案:小华买故事书花了30×2/3=20元,剩下的钱为30-20=10元,所以小华买零食花了10元。
7. 问题:一个班级有50名学生,其中2/5是女生,男生比女生多5人。
这个班级有多少名男生?答案:女生人数为50×2/5=20人,男生比女生多5人,所以男生人数为20+5=25人。
8. 问题:一个圆形花坛的周长是31.4米,这个花坛的半径是多少米?答案:圆的周长公式为C=2πr,其中C是周长,r是半径。
分数的应用题解析知识点
分数的应用题解析知识点一、引言分数是数学中的重要概念,具有广泛的应用。
在日常生活和工作中,我们经常遇到涉及分数的应用题。
本文将围绕分数的应用题,从数学的角度进行深度解析,帮助读者更好地理解和应用分数。
二、分数的基本概念分数是由分子和分母两部分组成的数,用分子除以分母表示。
其中,分子表示份数,分母表示总分。
例如,1/2表示一份中的一半。
三、分数的四则运算1. 分数的加法和减法当分数的分母相同时,只需将分子相加或相减,并保持分母不变。
例如,1/3 + 2/3 = 3/3 = 1。
当分数的分母不同时,可以通过求最小公倍数,将分数化为相同分母,然后再进行加法或减法运算。
2. 分数的乘法和除法分数的乘法运算可以直接将分子相乘,分母相乘。
例如,1/2 × 3/4= 3/8。
而分数的除法运算,可以将除法转化为乘法,即将被除数乘以倒数作为除数。
例如,1/2 ÷ 3/4 可转化为 1/2 × 4/3 = 4/6 = 2/3。
四、分数在实际问题中的应用1. 分数在长度和距离的应用在现实生活中,我们经常使用分数来表示长度和距离。
例如,一辆车以每小时3/4的速度行驶100千米,我们可以通过分数的乘法计算出车行驶的时间为 100 ÷ (3/4) = 100 × (4/3) = 400/3 = 133.33小时。
2. 分数在面积和体积的应用分数在求解面积和体积问题时也发挥着重要的作用。
例如,一个长方形的长度是3/5米,宽度是2/3米,我们可以通过分数的乘法计算出它的面积为 (3/5) × (2/3) = 6/15 = 2/5 平方米。
3. 分数在比例和百分比的应用分数在比例和百分比的计算中起到了重要的桥梁作用。
例如,一加工厂中的男女比例为3:7,我们可以通过分数的乘法计算出男性人数为3/10 ×总人数,女性人数为 7/10 ×总人数。
而百分比可以看作是分数的一种表示方式,例如,将分数转化为百分比可以通过乘以100并加上百分号表示。
分数应用题知识点总结归纳
分数应用题知识点总结归纳分数应用题知识点总结归纳「篇一」整数、分数、百分数应用题结构类型(一)求甲是乙的几倍(或几分之几或百分之几)的应用题。
解法:甲数除以乙数例:校园里有杨树40棵,柳树有50棵,杨树的棵树占柳树的百分之几?(或几分之几?)(二)求甲数的几倍(或几分之几或百分之几)是多少的应用题。
解答分数应用题,首先要确定单位“1”,在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几倍(几分之几或百分之几)是多少用乘法,单位“1”×分率=对应数量例:六年级有学生180人,五年级的学生人数是六年级人数的6(5)。
五年级有学生多少人?180×6(5)=150(三)已知甲数的几倍(或几分之几或百分之几)是多少,求甲数(即求标准量或单位“1”)的应用题。
解法:对应数量÷对应分率=单位“1”例:育红小学六年级男生有120人,占参加兴趣活动小组人数的5(3). 六年级参加兴趣活动小组人数共有学生多少人?120÷5(3)=200(人)解分数应用题注意事项:(1)找单位“1”的方法:从含有分率的句子中找,“的”前或“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。
“甲比乙多几分之几”表示甲比乙多的数占乙的几分之几;“甲比乙少几分之几”表示甲比乙少数占乙的几分之几。
(2)找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
数量关系:单位“1”×对应分率=对应数量;对应量÷对应分率=单位“1”的量。
(3)单位“1”不同的两个分率不能相加减,解应用题时应把题中的不变量做为单位“1”,统一分率的单位“1”,然后再相加减。
小升初数学总复习(七)---应用题之分数、百分数类(解析版)全国通用版
小升初数学总复习冲刺满分系列7应用题之分数、百分数类一.分数四则复合应用题1.《九章算术》中记载了一个问题:有人背米过关卡,过外关时,用全部米的13纳税,过中关时用所余米的15纳税,过内关时用再余米的17纳税,最后还剩5斗米。
这个人过中关后还剩多少斗米?思路引领:“过内关时用再余米的17纳税”是指过内关时纳税部分的米的量是过完中关后剩下的米量的17,则最后剩下的5斗米就是中关后剩下的米量的(1−17),根据分数除法的意义,用5斗米除以(1−17)就是这个人过中关后还剩米的量。
答案详解:5÷(1−17) =5÷67=356(斗)答:这个人过中关后还剩356斗米。
2.一袋大米重50千克,吃15后,再增加15,这袋大米现在重多少千克?A .40B .48C .50D .52思路引领:根据题意,把原来的整袋大米的质量看作单位“1”,吃了后的质量为:50×(1−15);然后把吃后的质量看作单位“1”,则增加后的质量=吃后的质量×(1+15)。
把数代入关系式计算即可。
答案详解:50×(1−15)×(1+15)=50×45×65=48(千克)答:这袋大米现在重48千克。
3.筑路队修一段路,第一天修了全长的15又100米,第二天修了余下的27,还剩500米,这段公路全长多少米?思路引领:根据题意,先把第一天剩余的长度看作单位“1”,则500米=剩下长度×(1−27),求出第一天剩余长度;然后把总长度看作单位“1”,则(第一天剩余长度+100米)=全长×(1−15)。
把数代入计算即可。
答案详解:[500÷(1−27)+100]÷(1−15) =[500÷57+100]÷45 =800×54=1000(米)答:这段公路全长1000米。
4.食堂有2吨大米,每天吃14吨,可吃多少天?如果每天吃它的14,可吃多少天?思路引领:食堂有2吨大米,每天吃 14吨,根据除法的意义,用总量除以每天吃的吨数,即得可吃多少天.将总量当作单位“1”,如果每天吃 14,根据除法的意义,用单位“1”除以每天吃的占全部的分率,即得可吃多少天. 答案详解:2÷14=8(天) 1÷14=4(天)答:每天吃14吨,可吃 8天;如果每天吃14,可吃 4天.5.红糖的34与白糖的13相等,已知白糖有36千克,红糖有多少千克?思路引领:先把白糖重量看作单位“1”,依据分数乘法意义求出白糖的13,再把红糖重量看作单位“1”,依据分数除法意义即可解答. 答案详解:36×13÷34, =12÷34, =16(千克); 答:红糖有16千克.6.一桶农药,第一次倒出27然后倒回桶内120克,第二次倒出桶中剩下农药的38,第三次倒出320克,桶中还剩下80克,原来桶中有农药多少克?思路引领:此题从后向前推算,先求出第二次没倒之前的数量,再求第一次没倒之前的数量,即这桶农药的总重量.答案详解:[(320+80)÷(1−38)﹣120]÷(1−27), =[640﹣120]÷57, =728(克).答:原来桶中有农药 728千克.7.某电力工程队检修一条线路。
小升初数学分数和百分数应用题解题技巧
小升初数学分数和百分数应用题解题技巧分数和百分数的基本应用题有三种,下面分别谈一谈每种应用题的特征和解题的规律。
(一)求一个数是另一个数的百分之几这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。
求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。
●解题的一般规律:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。
解答这类应用题时,关键是理解问题的含意。
●例题如下:养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?●思路分析:问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。
所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。
(二)求一个数的几分之几或百分之几●求一个数的几分之几或百分之几是多少,都用乘法计算。
●解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。
(三)已知一个数的几分之几或百分之几是多少,求这个数●这类应用题可以用方程来解,也可以用算术法来解。
用算术方法解时,要用除法计算。
●解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。
一些稍难的应用题,可以画图帮助分析数量关系。
(四)工程问题工程问题是研究工作效率、工作时间和工作总量的问题。
●这类题目的特点是:工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。
●例题如下:一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?●思路分析:把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。
小升初数学必考分数应用题(附答案)
小升初数学必考分数应用题(附答案)1.把甲乙丙三根木棒插入水池中,三根木棒的长度和为360厘米,甲有3/4在水外,乙有4/7在水外,丙有2/5在水外。
水有多深?【答案】设水深x厘米,则甲长4x,乙长7x/3,丙长5x/34x+7x/3+5x/3=360x=45水有45cm深。
2.小刚有若干本书,小华借走一半加一本,剩下的书小明借走一半加两本,再剩下的书小峰借走一半加三本,最后小刚还剩下两本书,那么小刚原有还剩下两本书,那么小刚原有多少本书?【答案】考点:逆推问题。
分析:本题需要从问题出发,一步步向前推,小刚剩的2本书加上3本就是小明借走后的一半,那么就可以求出小明借走后的数量,同理可以求出小华借走后的数量,进而可求小明原有的数量。
解答:解:小峰未借前有书:(2+3)÷(1-1/2)=10(本)小明未借之前有:(10+2)÷(1-1/2)=24(本)小刚原有书:(24+1)÷(1-1/2)=50(本)答:小明原有书50本。
3.甲数比乙数多1/3,乙数比甲数少几分之几?【答案】乙数是单位“1”,甲数是:1+1/3=4/3乙数比甲数少:1/3÷4/3=1/44.有梨和苹果若干个,梨的个数是全体的5/3少17个,苹果的个数是全体的7/4少31个,那么梨和苹果的个数共多少?【答案】解:设总数有35X个那么梨有35X*3/5-17=21X-17个苹果有35X*4/7-31=20X-31个20X-31+21X-17=35X41X-48=35X6X=48X=8所以梨有21×6-17=109个,苹果有20×6-31=89个。
5.有一个分数,它的分母比分子多4,如果把分子、分母都加上9,得到的分数约分后是9分之7,这个分数是多少?【答案】设分子为X,分母为X+4,则(X+9)/(X+13)=7/9得X=5答:该分子为5/9。
6.把一根绳子分别折成5股和6股,5股比6股长20厘米,这根绳子长多少米?【答案】这根绳子长20÷(1/5-1/6)=600cm7.小萍今年的年龄是妈妈的1/3,两年前母女的年龄相差24岁。
小升初数学分数应用题归类及解析
在小升初数学应用题中,可以分为方程的应用题、比的应用题、百分数的应用题、圆的应用题、分数的应用题和其他应用题。
下面是奥数网小编为大家整理的分数应用题的归类和详细解析,大家在分数应用题感觉还有所不够的话,可以参考下!小升初分数应用题归类详解(一)求一个数是另一个数的几分之几(百分之几)的应用题在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几(百分之几)”应用题为基础的。
这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
这里,“一个数”是比较量,“另一个数”是标准量。
因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。
其解法是:分率(百分率)=比较量÷标准量解这类问题,找准标准量和比较量是关键。
分析方法一般是在弄清已知条件和问题的相依关系的基础上,从问题入手,搞清谁与谁比,以谁做标准,分清比较量与标准量;如果两个量中有一个是未知数,那么,首先应通过已知条件先求出这两个数,才能进行解答。
要使比较量、标准量找得准确,还必须了解这类应用题的关键句式。
按其形式来分,可以有以下三种:1.基本句式:“甲是乙的几分之几(百分之几)”甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。
即甲与乙比,甲是比较量,乙是标准量。
句式为:“……是……的……”。
类似的提法有:“……占……的……”、“……相当于……的……”、“……完成了……的……”等。
其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2.引伸句式:“甲比乙多(或少)几分之几(百分之几)”。
这种用“比……多(或少)……”的句式连接的两个量中的比较量发生了变化。
小升初专题之分数应用题(含答案)
重、难点
重点: 1、弄清单位“1”的量,会分析题中的数量关系 2、掌握常用的解决稍复杂分数应用题的技巧 难点:灵活运用技巧解决分数应用题
课首沟通
了解学生的学习情况
课首小测
1. 先找出对应分率,再列式,不用计算。
2019/3/17
ห้องสมุดไป่ตู้
2. 看图列式
3. 把下面的应用题补充完整后再列出算式。
一本书,已看了25页,还有20页没有看,_____________
【学有所获】(1)做此类题我们先找___________________;再判断_______________;最后要__________________;
(2)当一题中出现分数和数量不对应时,我们使____________________.
导学二 : 通过转化单位“1”找出解题方法
知识点讲解 1
在一道分数应用题中,如果出现了几个分率,而且这些分率的标准量不同,量的性质相异,在解题时,必须以题中的某
有玻璃球26个和20个,求甲乙二人原来各有多少个玻璃球?
给甲,这时甲乙二人分别
2019/3/17
3. 某校六年级有学生152人,选出男生的
赛的有多少人?
和5名女生参加竞赛,剩下的男生和女生人数相等,参加竞
4. 张师傅三天生产一批零件,第一天生产了总数的 ,第二天生产了150个,第三天生产的个数是前两天
例 1. 甲乙两人共存人民币若干元,其中甲占 ,若乙给甲60元后,则乙余下的钱占总数的 ,甲乙两人
各存人民币多少元?
我爱展示
1. 某人看一本书,第一天看的比总页数的
看,这本书共有多少页?
多4页,第二天看的比剩下的 少10页,结果还剩62页没
2. 甲乙二人各有玻璃球若班干个,拿出甲的
小学数学分数应用题类型题大全及例题解析
小学数学分数应用题类型题大全及例题解析研究必备:小学分数应用题大全及例题解析一、基础理论分数应用题是小学数学教学中的重点和难点。
它大体可以分成两种类型:一种是基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同;另一种是根据分数乘除法的意义而产生的具有独特解法的分数应用题。
分数应用题主要讨论的是以下三者之间的关系:分率、标准量和比较量。
二、分数应用题的分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
以上是小学分数应用题的基础理论和分类,学生们可以结合例题进行练和掌握。
已知一个数的几分之几是多少,需要求这个数。
解决这类问题需要使用除法。
基本的数量关系是:分率对应的比较量除以分率等于标准量。
1)已知一个数的几分之几是多少,需要求这个数:分率对应的比较量除以几(分率)等于标准量。
2)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(几)等于多多少。
3)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(1+几)等于标准量。
4)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以几等于少多少。
5)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以(1-几)等于标准量。
在解决分数应用题时,正确审题非常重要。
需要能准确分清比较量和标准量,并判断标准量是已知还是未知。
小升初数学专题讲解 分数除法应用题
简单的分数应用题(一)一、基础知识:二、例题解析:(一)基本方法例1、指出下面每组中单位“1”和对应分率。
①一只鸡的重量是鸭的32。
把( )平均分为3份,把( )看作单位“1”,( )相当于这样的2份,32对应的数量是( )。
②甲的53相当于乙。
把( )平均分为5份,把( )看作单位“1”,( )相当于这样的3份,53对应的数量是( )。
③现价是原价的403 。
把( )平均分为40份,把( )看作单位“1”,( )相当于这样的3份,403对应的数量是( )。
现价比原价少的部分对应的分率是( )。
④小红的书比小明少87。
把( )平均分为8份,把( )看作单位“1”,( )相当于这样的7份,7对应的数量是( )。
小明的书对应的分率是( )。
例3、小王买了一个本子和一支钢笔。
本子的价格是51元,钢笔的价格比本子的价格多5,钢笔的价格是多少元?例4、一条裤子比一件上衣便宜25元。
一条裤子是一件上衣价格的32,一件上衣多少元? 例5、商店运来一批水果,运来苹果20筐,梨的筐数是苹果的43,梨的筐数同时又是桔子的53。
运来桔子多少筐? 例6、学校买来54本新书,其中科技书占61,文艺书占31,文艺书比科技书多多少本? 例7、小强看一本故事书,每天看16页,看了5天后,还剩全书的53没有看,这本故事书有多少页?例8、客车由甲城开往乙城要10小时,货车由乙城开往甲城要15小时, 两车同时从两城相向开出,多少小时两车相遇?如果相遇时客车走了600千米,甲乙两城之间的公路长多少千米?练一练:一项工作,由甲单独做需要10天;由乙单独做需要12天.如果两人合做,几天才能完成?课后练习:一、基本题1、指出下面每组中单位“1”和对应分率。
①白兔是黑兔的65。
把( )平均分为6份,把( )看作单位“1”,( )相当于这样的5份,65对应的数量是( )。
②一种毛衣现价是原价的74。
把( )平均分为7份,把( )看作单位“1”,( )相当于这样的4份, 74对应的数量是( )。
教案-数学最新-小升初专题复习4-分数与百分数的应用 中
知识点一:分数应用题1、分数应用题的基本类型(1)求一个数的几分之几是多少,用乘法计算。
如12的32是多少?列式为83212=⨯ (2)求一个数是另一个数的几分之几,用除法。
如8是12的几分之几?列式为32128=÷ (3)已知一个数的几分之几是多少,求这个数,用除法。
如一个数的32是8,求这个数。
列式为12328=÷2、百分数问题掌握“百分数”、“标准量”“比较量”三者之间的数量关系: 百分数=比较量÷标准量 标准量=比较量÷百分数 一般有三种基本类型:(1) 求一个数是另一个数的百分之几; (2) 已知一个数,求它的百分之几是多少; (3) 已知一个数的百分之几是多少,求这个数。
知识点二:生活中百分数应用题一般的百分数应用题的解法和分数应用题的解法相同,包括求出勤率、发芽率、利息、折扣、浓度问题,因此我们必须掌握以下公式或概念: 常用的基本公式出勤率=(出勤人数÷总人数)×100%溶液的浓度=(溶质的质量÷溶液质量)×100% (溶液=溶剂+溶质 ) 利润率=(售价-进货价)÷进货价×100% 亏损率=(进货价-售价)÷进货价×100%典例定价=成本价×(1+期望利润率) 营业额×税率=纳税额 本金×时间×利率=利息 利息和=本金+利息分数、百分数应用题例题1、一本书,小红第一天看了40页,第二天比第一天多看41,第二天看了多少页?例题2、红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?例题3、仓库里有一批货物,第一次运出92,第二次运出61,还剩下66吨。
仓库里原来有货物多少吨?例题4、四位同学去种树,第一位同学种的树是其他同学总数的一半,第二位同学种的树是其他同学种树总数的31,第三位同学种的数是其他同学种树总数的41,而第四位同学刚好种了13课。
小学数学分数应用题类型题大全及例题解析
小学数学分数应用题类型题大全及例题解析小学数学分数应用题类型题大全及例题解析在小学数学的学习中,分数应用题是一个重要的知识点。
这类题目不仅考察了学生的数学基础,还对学生的逻辑思考和文字理解能力提出了要求。
本文将通过一些典型的分数应用题,解析其类型和解题方法,帮助同学们更好地掌握这一难点。
一、分数应用题的类型1、分数加减法应用题例如:小明吃了3个蛋糕,小强吃了2个蛋糕,请问小明比小强多吃了多少个蛋糕?2、分数乘法应用题例如:一个苹果的价格是0.5元,请问3个苹果的价格是多少?3、分数除法应用题例如:有20个蛋糕,每个蛋糕的价格是0.5元,请问这些蛋糕的总价格是多少?二、分数应用题的解题方法1、分数加减法应用题解题方法:将不同的分数化为相同的分母,然后进行加减。
如果分母不同,也可以通过乘以或除以一些数,使得分母相同。
例题解析:小明吃了3个蛋糕,小强吃了2个蛋糕,请问小明比小强多吃了多少个蛋糕?解:小明比小强多吃了1/2个蛋糕。
2、分数乘法应用题解题方法:将分数与整数相乘时,分子与整数相乘,分母保持不变。
例题解析:一个苹果的价格是0.5元,请问3个苹果的价格是多少?解:3个苹果的价格是1.5元。
3、分数除法应用题解题方法:将分数除法转化为乘法,例如2/3除以4/5就等于2/3乘以5/4。
例题解析:有20个蛋糕,每个蛋糕的价格是0.5元,请问这些蛋糕的总价格是多少?解:这些蛋糕的总价格是10元。
三、举一反三通过以上的例题解析,我们可以发现,掌握分数应用题的解题方法关键在于理解题意并正确转化分数与整数之间的运算。
为了更好地掌握这一知识点,我们可以设计一些类似的题目进行练习。
1、一个橘子2元,请问3个橘子的价格是多少?解:3个橘子的价格是6元。
2、一种衣服原价为40元,现降价为30元,请问这种衣服的折扣是多少?解:这种衣服的折扣为2/5。
3、一个西瓜重8千克,请问4个西瓜的重量是多少?解:4个西瓜的重量是32千克。
小升初小学数学分数问题应用题专题练习《分数的最大公约数和最小公倍数》答案详解
分数问题—专题练习《分数的最大公约数和最小公倍数》一.选择题1.(2018•长沙)一个班不足50人,现大扫除,其中12扫地,14摆桌椅,15擦玻璃,这个班没有参加大扫除的人数有()人.A.1 B.2 C.3 D.1或2【分析】12、14、15都是最简形式,所以这个班的人数是2、4和5的最小公倍数的倍数,2、4和5的最小公倍数是20,而且这个班不足50人,所以这个班只能是20人或40,据此把总人数看做单位“1”,即可得出没参加大扫除的是1111245---,再根据分数乘法的意义即可解答.【解答】解:根据题干分析可得:2、4和5的最小公倍数是20,而且这个班不足50人,所以这个班只能是20人或40,总人数看做单位“1”,即可得出没参加大扫除的是1111124520---=,当总人数是20时:没参加大扫除的有:120120⨯=(人),当总人数是40时:没参加大扫除的有:140220⨯=(人),答:没参加大扫除的有1或2人.故选:D.2.(2013•黔西县)六(1)班的学生数在30~60人之间,其中的23喜爱跳绳,58的同学喜爱跳皮筋,六(1)班有()人.A.35 B.42 C.60 D.48【分析】因为六(1)班的学生数在30~60人之间,且其中的23喜爱跳绳,58的同学喜爱跳皮筋,说明这个班的人数必须是3和8的公倍数,3和8是互质数,最小公倍数是3824⨯=,24的倍数也是3和8的公倍数,24248⨯=,24372⨯=就不符合要求了.【解答】解:3和8的最小公倍数是:3824⨯=,在30~60人之间且是3和8的倍数的只能是24248⨯=,所以这个班的人数是48人.故选:D.3.如果六(2)班有19的人参加书法兴趣小组,16的人参加武术兴趣小组(每人只参加一个小组),那么下列说法中不正确的是()A.参加书法组的不可能是5人B.六(2)班的总人数可能是45人C.六(2)班的总人数可能是54人D.参加书法、武术组的总人数可能是10人【分析】由于有19的人参加书法兴趣小组,16的人参加武术兴趣小组,所以总人数能同时被6和9整除.即总人数应是6和9的公倍数.据此对各选项的内容进行分析即能得出正确选项.【解答】解:由题意可知,总人数能同时被6和9整除,即总人数应是6和9的公倍数;选项A,如果参加书法小组的人数是5人,则总人数有15459÷=人,45不能被6整除,所以参加书法组的不可能是5人的说法正确;选项B,由于45不能被6整除,所以总人数可能是45人说法错误;选项C,由于54能被6和9整除,所以总人数可能是54人说法正确;选项D,6和9的公倍数是18,如果总人数是18人,则参加书法小组的有2人,武术小组的有3人,共5人;如果总人数有36人,则参加书法小组的有4人,武术小组的6人,4610+=人,所以参加书法、武术组的总人数可能是10人说法正确.故选:B.二.填空题4.(2019•长沙)有些分数分别除以528、1556、1120所得的三个商都是整数,那么所有这样的分数中最小的一个是1264.【分析】根据题意:这些分数中最小的分数的分母应该是28、56、20的最大公约数,分子是5、15、21的最小公倍数.【解答】解:20225=⨯⨯,562227=⨯⨯⨯,28227=⨯⨯,所以20、56、28的最大的公约数是224⨯=;1535=⨯,2137=⨯,所以5、15、21的最小公倍数是357105⨯⨯=; 所以这样的分数中最小的是1054即1264;故答案为:1264.5.(2018春•山东月考)青蛙与小兔进行跳跃比赛,每秒都跳一次,青蛙每次跳229分米,小兔每次跳3211分米.从起点开始,每隔127分米在地面上画一个白色标记,哪只动物先踩上白色标记就赢了本次比赛,当一个赢了本次比赛时,另一个跳了 25 分米.【分析】青蛙踩到白色标记时已跳的行程应该是229与127的“最小公倍数” 37806063=,即跳了37802227639÷=次踩到白色标记,小兔踩到气球时已跳的行程应该是3211和127的“最小公倍数”57757577=,即跳了577532337711÷=次踩到白色标记.经过比较可知,青蛙先踩到白色标记,这时小兔已跳的行程是32272511⨯=分米.【解答】解:青蛙:229与127的“最小公倍数”60,即跳了2602279÷=次踩到白色标记,小兔:3211和127的“最小公倍数”75,即跳了37523311÷=次白色标记.因为6075<,所以青蛙先踩到白色标记,这时小兔已跳的行程是32272511⨯=(分米)答:青蛙先踩上白色标记赢了本次比赛,当一个赢了本次比赛时,另一个跳了25分米. 故答案为:25.6.(2018秋•宿豫区校级期中)小明的书架上放着一些书,书的本书在100到150本之间,其中49是故事书,14是科技书,书架上放着 108或144 本书. 【分析】由于书本的本数是整数,所以总本数就是49和14两个分率的分母的公倍数,由此找出9和4在100~150之间的公倍数即可求解.【解答】解:总本数应是9和4的公倍数; 9436⨯=363108⨯=(页) 364144⨯=(页)所以总页数可能是108页,也可能是144页. 故答案为:108或144.7.(2015•内江模拟)小兰的全家都很支持她收集各国的纪念币,目前她收集的纪念币有119是英国发行的,18是美国发行的,34是中国发行的,此外还有多于20枚且少于25枚是其他国家发行的.那么小兰现在共有 304 枚纪念币.【分析】根据题意,她收集的纪念币有119是英国发行的,说明总数能被19整除,18是美国发行的,34是中国发行的,说明总数能被8整除;则总数是19和8的公倍数,因为19和8互质,所以最小公倍数是198152⨯=,另外余下占比率是1131111984152---=,具体数量多于20枚且少于25枚,若总数是152则余下的其他国家发行数量是11枚,不符合题意,若总数是1522304⨯=枚,则余下的数是1130422152⨯=枚,在20和25之间,符合题意;据此得解. 【解答】解:19、8和4的最小公倍数是198152⨯=另外余下占比率是1131111984152---=11152222152⨯⨯=(枚)202225<<,符合题意;1522304⨯=(枚)答:小兰现在共有304枚纪念币. 故答案为:304.8.(2014秋•黄山月考)一个分数的分子比分母小16,约分后是59,原分数是 2036.【分析】根据题意一个分数的分子比分母小16,可设分子是x ,那么分母为16x +,即可得到一个等式,求出未知数后再代入即可得到答案.【解答】解:设这个是分数的分子是x ,那么分母为16x +, 5169x x =+95(16)x x =⨯+ 9580x x =+ 480x = 20x =那么分母为201636+=, 答:这个分数为2036. 故答案为:2036.9.(2012秋•雁江区期末)有甲、乙两个小组去青年林参加义务植树活动,甲组植树棵数的78恰好是乙组植树棵数的16,那么,甲、乙两组至少共植树 50 棵. 【分析】要求甲、乙两组至少共植树多少棵,就要使每组的棵数最少,因此甲组植树棵数最少是8棵,那么乙组植树棵数为7184286⨯÷=(棵),进一步解决问题.【解答】解:因为甲组植树棵数最少是8棵,则乙组植树棵数为: 71886⨯÷, 76=⨯,42=(棵);甲、乙两组至少共植树: 84250+=(棵),答:甲、乙两组至少共植树50棵. 故答案为:50.10.(2012•四川模拟)甲乙两数是非零的自然数,如果甲数的512恰好是乙数的16,那么甲乙两数之积的最小值是 10 .【分析】甲乙两数是非零的自然数,甲数和乙数的关系式是:甲数51126⨯÷=乙数,即:甲数52⨯=乙数,当甲数是2时,乙数是5,两数最小,乘积为:2510⨯=. 【解答】解:由题意可知:甲数51126⨯÷=乙数,即:甲数52⨯=乙数,当甲数为2时, 5252⨯=,2510⨯=,故答案为:10.11.(2011•西城区校级自主招生)在甲、乙、丙三种溶液,分别为334千克,213千克,317千克,现在将它们分别放入小瓶中,使得每个小瓶的溶液重量相等,至少可以装 115 瓶.【分析】31531534484==,2514013384==,31012017784==,然后求出315、140和120的最大公约数,进而得出每个小瓶最多装多少千克,然后进行解答即可; 【解答】解:31531534484==, 2514013384==, 31012017784==, 3153357=⨯⨯⨯, 1402257=⨯⨯⨯, 12022235=⨯⨯⨯⨯,最大公约数是5,所以1小瓶的溶液重量584, 至少可以装:3235(311)43784++÷31514012058484++=÷5755=÷ 115=(瓶);故答案为:115. 12.(2011•长春模拟)用514、78和1120分别去除某分数,所得的商是整数,这个分数最小是 1052 .【分析】用514、78和1120分别去除某分数,也就是用某分数除以这三个分数,所得的商是整数,这个分数最小,也就是要求5、7、21的最小公倍数做分子,求14、8、20的最大公因数做分母. 【解答】解:2137=⨯,5、7、21的最小公倍数375105⨯⨯=, 1427=⨯, 8222=⨯⨯, 20225=⨯⨯,14、8、20的最大公因数是2, 故答案为:1052.三.应用题13.小红收集了一些画片,不到30张,她2张2张地数多1张,3张3张地数也多1张,4张4张地数还是多1张.小红收集了多少张画片?【分析】求小红收集了多少张画片,就相当于求2、3、4的公倍数加上1;据此解答即可. 【解答】解:4是2的倍数, 所以,4312⨯=(张) 12113+=(张),符合要求,122125⨯+=(张),符合要求;答:小红收集了12张或25张画片. 四.解答题14.(2018•厦门模拟)用528、1556、1120分别去除某一个分数,所得的商都是整数.这个分数最小是几?【分析】依题意,设所求最小分数为M N ,则528M a N ÷=,1556M b N ÷=,1120M c N ÷=,即285M a N ⨯=,5615M b N ⨯=,2021M c N ⨯=,其中a ,b ,c 为整数.因为M N 是最小值,且a ,b ,c 是整数,所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公约数,因此,符合条件的最小分数:10512644M N== 【解答】解:设最小分数为M N ,则528M a N ÷=,1556M b N ÷=,1120M cN ÷=即285M a N ⨯=,5615M b N ⨯=,2021M c N ⨯= 因为MN 是最小值,且a ,b ,c 是整数.所以M 是5,15,21的最小公倍数,N 是28,56,20的最大公约数. 5,15,21的最小公倍数是105,28、56、20的最大公约数是4. 最小分数:10512644M N== 答:这个分数最小是1264.15.(2014•台湾模拟)把100个人分成四组,第一组人数是第二组人数的113倍,第一组人数是第三组的114倍,那么第四组有多少人?【分析】题中两个分数的单位“1”不同,但它们都与“一队人数”有关系,所以我们把“第一队的人数”看作单位“1”,分别求出二队、三队及三个队占“第一队人数”的几分之几,进而推断出第四队有多少人.【解答】解:第二队人数占第一队人数的131134÷=;第三队人数占第一队人数的141145÷=;三个队的总人数占第一队人数的345114520++=;由于四个队的人数和为100人,第一队的人数就只能是20,否则总人数就超过了100人;所以第四队的人数:51100204920-⨯=(人); 答:那么第四组有49人.16.(2012•长清区校级模拟)某工地上有两根铁丝,一根长2.5米,另一根长133米,现在要把它们截成同样长的小段,不许有剩余,每段最长有几米?【分析】先把一根长2.5米化成假分数是52,另一根长133米化成假分数是103,再分别求出分母的最小公倍数是236⨯=,分子的最大公因数是5,即可知道每段最长米数是56米,据此解答. 【解答】解:2.5米52=米, 133米103=米,分母2、3的最小公倍数是236⨯=, 分子5、10的最大公因数是5, 即可知道每段最长米数是56米,答:每段最长56米.17.新华小学五年级一班的人数不超过60人,在社团活动中,有13的同学参加美术社团,有27的同学参加英语社团,还有314的人参加信息技术社团,请问五年级一班共有多少名同 【分析】根据题意,可得五年级一班的学生人数是3、7、14的公倍数,然后求出3、7、14的最小公倍数,再根据新华小学五年级一班的人数不超过60人,求出五年级一班共有多少名同学即可. 【解答】解:根据题意,可得五年级一班的学生人数是3、7、14的公倍数, 因为3、7、14的最小公倍数是: 37242⨯⨯=,所以五年级一班的学生人数是42人、84人、126人⋯, 又因为五年级一班的人数不超过60人, 所以五年级一班共有42名同 答:五年级一班共有42名同18.爱华中学六(1)班学生总人数不超过60人,班级的每位同学都报名参加了一个兴趣活动班.已知班级同学有17的学生参加了美术兴趣班、13的学生参加了棋类兴趣班、12的学生参加了体育兴趣班,那么六(1)班共有学生多少人?报名参加美术兴趣班的学生有几人?【分析】班级人数为整数,因此考虑参加各个兴趣班的学生占比的分母的最小公倍数,7、3、2的最小公倍数是73242⨯⨯=,如果是42的2倍就是84了,而题目提示“总人数不超过60人”,因此42人即是班级人数,其他据此解答即可. 【解答】解: 1114173242++=,缺少的142报了其他兴趣班.因为班级人数只能是整数,这个班级的人数不超过60人, 所以这个班级的人数就是7、3、2的最小公倍数42人.所以报名参加美术兴趣班的学生有: 14267⨯=(人).答:六(1)班共有学生42人,报名参加美术兴趣班的学生有6人. 19.一个分数分别除以23,59,715,所得的商都是整数.这个分数最小是几? 【分析】根据题意:这个最小的分数的分母应该是3、9、15的最大公约数,分子是2、5、7的最小公倍数. 【解答】解:313=⨯, 91933=⨯=⨯, 1511535=⨯=⨯,所以3、9、15的最大公约数是3;2、5、7三个数两两互质,所以它们的最小公倍数是: 25770⨯⨯=那么这个分数最小是703.20.狐狸和黄鼠狼进行跳跃比赛,狐狸每次跳12米,黄鼠狼每次跳13米,它们每秒钟只跳一次.比赛途中,从起点开始每隔1415米设有一个陷阱.当它们之中有一个掉进陷阱时,另一个跳了 7 米. 【分析】狐狸的速度是:115230=,黄鼠狼的速度是110330=,陷阱的距离是14281530=;再分别找出15,28以及10和28的最小公倍数,进而求解. 【解答】解:狐狸的速度是:115230=米, 黄鼠狼的速度是110330=米, 陷阱的距离是14281530=米; 分子15,28的最小公倍数是420; 10和28的最小公倍数是140;当黄鼠狼跳14030时,掉入陷井,此时各跳了14次,狐狸这时跳了7米. 11472⨯=(米);答:当黄鼠狼掉入陷阱时,狐狸跳了7米. 故答案为:7.21.袋鼠和兔子进行跳跃比赛,袋鼠每次跳跃142米,兔子每次跳跃324米,他们每秒都只跳一次.比赛途中,从起点开始,每隔3128米设有一个气球,当他们之中的一个先踩到气球,则比赛就算结束,先踩到者为胜.这时,另一个跳跃了多少米? 【分析】兔子踩到气球时已跳的行程应该是324与12 38的“最小公倍数” 994,即跳了9911944÷=次踩到气球,袋鼠踩到气球时已跳的行程应该是142和3128的“最小公倍数” 992,即跳了9991122÷=次踩到气球. 经过比较可知,兔子先踩到气球,这时袋鼠已跳的行程是14940.52⨯=米. 【解答】解:兔子:324与12 38的“最小公倍数” 994,即跳了9911944÷=次踩到气球, 袋鼠:142和3128的“最小公倍数” 992,即跳了9991122÷=次踩到气球. 因为999942<,所以兔子先踩到气球,这时袋鼠已跳的行程是14940.52⨯=米.22.六(1)班有50名学生,一次数学竞赛中,获奖的男生是参赛男生的15,获奖的女生是参赛女生的15,问六(1)班获奖的男女生共几人?【分析】参赛男生、女生人数必须是5的倍数,男生5人参赛,女生就有45人参赛,男生10人参赛,女生就有40人参赛,男生15人参赛,女生就有35人参赛,男生有20人参赛,女生就有30人参赛,男生25人参赛,女生也有25人参赛,男生30人参赛,女生就有20人参赛,男生有35人参赛,女生就有15人参赛,男生有40人参赛,女生就有10人参赛,男生有45人参赛,女生就有5人参赛.不管哪种情况,所求出的男女生获奖总人数都是150105⨯=人. 【解答】解:150105⨯=(人);答:六(1)班获奖的男女生共10人.23.语文老师统计学生读世界名著的情况.全班学生中有12读了一本,15读了两本,18读了三本,110读了四本,这个班学生不超过50人,全班学生中一本名著也没有读的有多少人?【分析】由题意得,在本班不超过50人的情况下,要满足12,15,18,110的学生是整数,则这个数就是2,5,8,10的公倍数,且小于50,这个数是25840⨯⨯=,因此学生有40人.140202⨯=(人)(读了一本),14085⨯=(人)(读了两本),14058⨯=(人)(读了三本),140410⨯=(人)(读了四本),所以共有:2085437+++=人读了名著,一本名著也没读的有:40373-=人.【解答】解:2,5,8,10的最小公倍数是40,即学生数.140202⨯=(人),14085⨯=(人),14058⨯=(人),140410⨯=(人);40(20854)-+++4037=-3=(人).答:一本名著也没读的有3人.24.从前有一个财主,他有三个儿子.他晚年写好了遗嘱:“我死后,11匹千里马留给三个儿子:老大负担重,分得12;老二家里比较穷,分得14;老三还小,就分16.”他死后,三个儿子为分马的事犯难了.你能帮他们分马吗?【分析】由于按11匹马进行计算的话,结果不是整数,而马的匹数只能是整数,又2,4,6的最小公倍数是12,1111124612++=,所以我们可按12匹马进行计算. 【解答】解:2,4,6的最小公倍数是12,我们可以按12匹马进行计算: 老大分得了11262⨯=(匹); 老二分得了11234⨯=(匹); 老三分得了11226⨯=(匹);63211++=(匹);所以这样正好将马分完.答:可以分给老大6匹,老二3匹,老三2匹.。
小升初分数应用题归纳总结
小升初分数应用题归纳总结小升初是每个孩子都会面临的一个重要考试,其中涉及到的分数应用题也是考试内容的一部分。
分数应用题主要考察学生对分数的理解和运用能力,是一个综合性较强的题型。
在这篇文章中,我将对小升初分数应用题进行归纳总结,并分享一些解题技巧。
一、分数的基本概念在小升初的分数应用题中,首先需要理解和掌握一些基本的分数概念。
分数由分子和分母组成,分子表示分数的分子部分,分母表示分数的分母部分。
分数可以表示一个数的一部分或几部分,比如两个苹果中的一个可以表示为1/2。
二、分数的四则运算在分数应用题中,经常会涉及到分数的四则运算,包括加法、减法、乘法和除法。
对于加法和减法,首先需要将两个分数的分母统一,然后进行分子的加减运算;对于乘法,直接将两个分数的分子相乘,分母相乘;对于除法,需要将除数取倒数,然后再进行乘法运算。
三、分数的比较大小在解决分数大小比较的应用题时,可以通过找到两个分数的公共分母,然后比较它们的分子的大小。
如果找不到公共分母,可以将两个分数转化为小数进行比较。
四、分数与整数的转化在解决分数应用题时,有时需要将分数转化为整数,或将整数转化为分数。
对于将分数转化为整数,可以通过将分子除以分母来得到;对于将整数转化为分数,分子为整数,分母为1。
五、分数的化简与约分在计算分数应用题时,经常需要对分数进行化简与约分。
化简是将分数的分子和分母同时除以一个相同的数,使得分子和分母都变小;约分是将分数的分子和分母同时除以它们的最大公约数,将分数化为最简形式。
六、应用问题解题思路解决分数应用题的关键在于确定问题的解题思路。
一般来说,可以按照以下步骤进行解题:读懂题目,理清思路,逐步解题,最后检查答案。
在解题过程中,可以通过画图、列式、假设等方式来辅助思考和解决问题。
综上所述,小升初分数应用题是一个较为综合性的题型,需要学生对分数的基本概念和四则运算有一定的掌握,并能够将这些知识应用到实际问题中。
通过理解分数的基本概念、掌握分数的四则运算、比较分数的大小、转化分数与整数、化简与约分以及合理的解题思路,相信大家能够在小升初的分数应用题中取得好的成绩。
第3讲 分数应用题 (一)(讲义)2025年六年级小升初数学专题提高复习:
第3讲 分数应用题 (一)专题概述分数应用题是小学数学的重要内容。
分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律。
在解这类问题时,分析数量之间的关系,准确找出“量”与“率”之间的对应关系是解题的关键。
解分数应用题一般有以下几个步骤:首先将题目读清楚,分析什么是已知、未知以及所求,选择合适的方法(线段示意图)来解题;其次根据题意列出一些数量关系,这里的数量关系可以根据公式、法则、概念、性质等得到;最后整理得到我们所要求的量。
在解决这类问题时,我们要学会多角度、多方位思考问题的方法。
在解题过程中,要善于掌握假设、转化等多种解题方法,在寻找解题方法的同时,不断地开拓解题思路。
典型例题1小明家这个月的用电量比上个月上升了 120,请问你能联想到哪些数量关系?分析 读清题意,分析上个月与这个月用电量之间的数量关系。
解 ①小明家上个月用电量与单位“1”的关系。
②小明家本月上升的用电量与上月用电量的 120的关系。
③小明家本月用电量与上月用电量的 (1+120)的关系。
思维训练11. 一杯橙汁比一瓶可乐少 15,请问你能联想到什么数量关系?2.已修的公路比未修的公路多 38,,请问你能联想到什么数量关系?典型例题2小红有一根绳子,第一次剪去全长的 15,第二次剪去余下的- 34,,两次共剪去全长的几分之几?分析 题目让我们求两次剪去的占全长的几分之几,我们已知第一次的量,只要求得第二次的量就可以求得两次总共的量占全长的几分之几。
第二次的量可以根据第一次剪去的量来求得。
在这里我们可以把绳子看成单位“1”。
解 第二次剪去全长的: (1−15)×34=35第一次和第二次共剪去全长的: 15+35=45答:两次共剪去全长的 45。
思维训练21.小明看一本故事书,第一天看了全书的 15,第二天看了余下的- 23,,还剩40页没有看,这本故事书总共有多少页?2. 小兰看《红楼梦》,上午看了 50页,比下午看的页数的 78多1页,小兰这天共看了多少页小说?典型例题3学校体育馆有篮球、排球和足球,篮球的个数占三种球总个数的 12,,排球的个数是足球个数的 12,篮球的个数比足球的个数多15个。
分数应用题大全及问题详解
分数应用题大全及问题详解1.光明畜牧场养了900头肉牛和一些奶牛,奶牛比肉牛多25%,那么奶牛有多少头?解:奶牛的数量是肉牛数量的125%,即900×1.25=1125头。
2.一辆汽车每行8千米要耗油4/5千克,平均每千克汽油可行多少千米?行1千米路程要耗油多少千克?解:每行1千米需要耗油4/5÷8=1/10千克,平均每千克汽油可行10千米。
行1千米需要耗油1/10千克。
3.一辆摩托车1/2小时行30千米,那么他每小时行多少千米?他行1千米需要多少小时?解:这辆摩托车每小时行60千米,行1千米需要1/60小时。
4.电视机降价200元,比原来便宜了2/11,现在这种电视机的价格是多少钱?解:原来这种电视机的价格是2200元,现在的价格是2000元。
5.一块长方形地,长60米,宽是长的2/5,这块地的面积是多少平方米?解:这块地的宽是60×2/5=24米,面积是60×24=1440平方米。
6.水果店在两天内卖完一批水果,第一天卖出水果总重量的3/5,比第二天多卖了30千克,这批水果共有多少千克?解:第一天卖出的水果重量是总重量的3/5,第二天卖出的水果重量是总重量的2/5,相差1/5,即30÷1/5=150千克。
这批水果总重量是150÷3×5=250千克。
7.甲、乙两厂去年分别完成计划任务的112%和110%,共生产食品4000吨,比原来两厂计划之和超产400吨,甲厂原来的生产任务是多少吨?解:设甲厂原来的生产任务是x吨,则乙厂原来的生产任务是3600-x吨。
根据题意,得到1.12x+1.1(3600-x)=4000+400,解方程可得x=2000,甲厂原来的生产任务是2000吨。
8.植树节,初三年级170名学生去参加义务植树活动,如果男生平均一天能挖树坑3个,女生平均一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?解:设男生有x人,女生有170-x人。
小升初数学总复习试题(分数应用题)(含解析)
分数应用题一、应用题1.光明村修一条水渠,第一天修了全长的16,第二天修了全长38,这条水渠还剩下几分之几没修完?2.迎建党90周年文艺汇演,某校五六年级一共有90名同学参加,五年级参加的人数是六年级参加人数的45,五年级有多少人参加文艺汇演?3.看图题.4.妈妈买一件上衣和一条裤子,一共用去260元,裤子的价格是上衣的23,上衣和裤子各多少元?5.花园里,茶花的棵数比桂花多14,已知桂花有40棵,茶花有多少棵?6.一个果园运走一批水果,第一天运走了800千克,第二天运走了1700千克,两天正好运走了这批水果的56,这批水果一共有多少千克?7.某班级女生有24人,男生比女生多14,男生比女生多几人?8.某学校五年级有184人,其中女生有93人,男生占全年级人数的几分之几?女生人数是男生人数的几分之几?9.一台拖拉机耕一块地,第一天耕了这块地的13,第二天耕了余下的12,则两天一共耕了这块地的几分之几?10.刘老师的年龄是28岁,小丽的年龄是刘老师的14,小雪的年龄是刘老师的17,两人各几岁?11.曹园小学综合实践活动基地种了三种果树,梨树占总数的13,与苹果树的和是180棵,苹果树与其它两种树的比是1:5,三种果树共有多少棵?12.一辆汽车从甲地开往乙地,第一小时行了全程的20%,后两个小时行了全程的13,一共行了168千米.从甲地到乙地相距多少千米?13.发电厂有一堆煤,用去了35,正好还剩7500吨.这堆煤原来有多少吨?14.一个建筑队挖地基,长40.5米,宽24米,深2米,挖出的土平均每4立方米重7吨,如果用载重4.5吨的一辆汽车把这些土的23运走,需运多少次?15.爸爸的年龄是爷爷的815,是小明的103.如果爷爷75岁,小明几岁?16.学校有一块劳动实验田.总面积的25种了蔬菜,38种了玉米,剩下的全部种花生.种花生的面积占总面积的几分之几?17.妈妈和小兰每天练习长跑.谁跑的路长18.某工厂一季度用原料30万吨,比计划节约111,计划使用原料多少万吨?节约原料多少万吨?19.小红看一本120页的书,第一天看了全书的15,第二天看了全书的38,还剩多少页没有看?20.甲、乙两人分别从A、B两地同时相向而行,4小时后在途中相遇,这时甲行了全程的25,两人继续前进,当乙到达A地时,甲还需行全程的几分之几才可以到达B地?21.六(3)班共有学生45人,其中女生占全班人数的59,女生有多少人?男生有多少人?22.山羊伯伯教小动物们识字.小狗和小猴各认识多少个字?23.六(1)班有48名运动员参加学校运动会,其中38是女运动员,女运动员中有23获奖,六(1)班获奖的女运动员有多少名?24.东方小学新建教学大楼,实际造价45万元,比原计划节约了110.原计划造价多少万元?25.小兰看一本故事书,第一天看了16,第二天看了42页,这时已看的与未看的页数之比是2:3.这本书共有多少页?26.一块长方形草坪,长30米,宽是长的56。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初分数应用题归类详解(一)求一个数是另一个数的几分之几(百分之几)的应用题在分数、百分数三类基本应用题和较复杂的应用题中是以“求一个数是另一个数的几分之几(百分之几)”应用题为基础的。
这是因为这类应用题,在实际工作和生活中应用广泛,另一方面通过这类应用题的学习,搞清百分数的基本数量关系,也就有利于其他两类百分数应用题的理解。
“求一个数是另一个数的几分之几(百分之几)”应用题的结构特征是:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。
这里,“一个数”是比较量,“另一个数”是标准量。
因此,这一类问题的实质是已知比较量和标准量,求分率或百分率,也就是求它们的倍数关系。
其解法是:分率(百分率)=比较量÷标准量解这类问题,找准标准量和比较量是关键。
分析方法一般是在弄清已知条件和问题的相依关系的基础上,从问题入手,搞清谁与谁比,以谁做标准,分清比较量与标准量;如果两个量中有一个是未知数,那么,首先应通过已知条件先求出这两个数,才能进行解答。
要使比较量、标准量找得准确,还必须了解这类应用题的关键句式。
按其形式来分,可以有以下三种:1.基本句式:“甲是乙的几分之几(百分之几)”甲是比较量,乙是标准量,几分之几(百分之几)”是分率(百分率)。
即甲与乙比,甲是比较量,乙是标准量。
句式为:“……是……的……”。
类似的提法有:“……占……的……”、“……相当于……的……”、“……完成了……的……”等。
其规律一般是:用“是”、“占”、“相当于”、“完成了”等词连接的两个量,前面那个量是比较量,后面那个量是标准量。
2.引伸句式:“甲比乙多(或少)几分之几(百分之几)”。
这种用“比……多(或少)……”的句式连接的两个量中的比较量发生了变化。
必须弄清这种句式的实际意义,即:“甲-乙比乙多(或少几分之几)或(百分之几)”。
与“……比……(标准量)多……”类似,而涉及实际意义的有:“……比……增加、提高、超额、超过、上升……”等。
与“……比……少…… ”相类似而涉及实际意义的有:“……比……减少、降低、下降、缩小、慢、节省、节约……”等。
其规律一般是:“……比……多(或少)……”的句式中,比字后面那个量是标准量,而比较量则是两个相关联的量之差。
3.省略句式:在分数、百分数应用题中,大部分叙述句中省略了某些成份,这一类应用题更多体现在问句中。
在分析问题时,必须把省略简化了的成份补述出来,以便正确地确定比较量和标准量。
一般来说,“……占……的……”句中的“占”一类的关键词不写出来。
如“完成了几分之几(百分之几)”“增产几分之几(百分之几)”“降低……”等。
以“价格降低了百分之几?”为例,原意是:“降低的部分占原价的百分之几”又如“实际超产百分之几”原意则是:“实际产量比原计划超过百分之几。
”标准量分别是原价格和原计划,而比较量则是降低和超过的部分。
除此之外在审题时还应注意类似“增加到”“增加了”“减少到”“减少了”等概念的区别。
在解法方面,与基本应用题相应的较复杂应用题大致有:1.已知甲乙两数,求甲数比乙数多几分之几(百分之几)。
这种类型题的解法是:甲数÷乙数2.已知甲乙两数,求乙数比甲数少几分之几(百分之几)。
这种类型题的解法是:(甲数-乙数)÷甲数×100%如果按应用题涉及的实际意义来分类,常见的有:A、求实际完成任务量的百分数。
解法是:实际生产数÷计划数×100%B、求超额完成量的百分数。
解法是:(实际生产数-计划数)÷计划数×100%C、求降低价格的百分数。
解法是:(原价格-后来价格)÷原价格100%D、求增长率。
解法是:(后来生产量-原产量)÷原产量100%根据这一类应用题涉及的实际意义、范围及其解法可概括为四个部分。
1.基本型。
已知两个具体数,求它们之间的或它们各自与总量之间倍数关系的应用题(包括求发芽率、浓度、误差、复种指数等),即:(1)已知甲数与乙数,求甲数是乙数的几分之几(百分之几),乙数是甲数的几分之几(百分之几)。
(2)已知甲数和乙数,求甲数占甲乙总数的几分之几(百分之几),乙数占甲乙总数的几分之几(百分之几)。
例1.三年级一班有42名同学。
参加游泳比赛的有18名。
参加游泳比赛的占全班人数的几分之几?分析:“求参加游泳比赛的人数占全班人数的几分之几”,是参加比赛的人数与全班人数比,应以全班人数做标准量。
解:18÷42=18/42=3/7 答:参加游泳比赛的占全班人数的3/7例2.机修车间有男工25人,女工20人,女工占车间总人数的百分之几?分析:“求女工占车间总人数的几分之几”应以车间总人数为标准量。
解:总人数:25+20=45(人) 20÷45≈44.4% 答:女工占车间总人数的44.4%。
例3.玩具厂第一季度计划制造电动玩具600件,实际多做了48件。
完成计划的百分之几?分析:“求完成计划百分之几”,要以计划数做标准量,实际数做比较量。
解法1:(600+48)÷600=648÷600=108%解法2:把计划数看做整体“1”,则实际比计划多做48÷600=8%,共完成计划数的8%+1=108%。
即:48÷600+1=8%+1=108% 答:完成计划的108%。
例4.试验组用500粒小麦种子做发芽试验,有490粒种子发了芽。
求发芽率。
分析,“率”就是比率,就是百分比。
求发芽率就是求发芽数占种子总数的百分之几。
以种子总数做标准量。
解:发芽数÷种子总数×100% 即:490÷500×100%=98% 答:发芽率是98%。
同理:求出粉率。
就是求出粉数占粮食总数的百分之几,以粮食总数为标准量。
求出油率。
就是求出油数占原料总数的百分之几,以原料总数为标准量。
求出勤率。
就是求出勤人数占总人数的百分之几,以总人数为标准量。
求成活率。
就是求活了的数占总数的百分之几,以总数为标准量。
求合格率。
就是求合格的数占产品总数的百分之几,以产品总数为标准量。
例5.把12.5千克食盐放入1000千克水中,溶成盐水。
求盐水的浓度。
分析:把食盐放入水中后形成的食盐水,叫做溶液,食盐叫溶质。
溶质与溶液的百分比,叫做浓度。
求浓度就是求溶质占溶液的百分之几,以溶液为标准量。
根据题意溶液是食盐与水重量的和。
解:12.5÷(12.5+1000)×100%≈1.23% 答:盐水的浓度约是1.23%。
例6.从甲城到乙城实际距离是75.18千米,测得结果是75.04千米。
求误差对于测量值的百分比。
分析:误差:是实际长度和测量结果的差。
“求误差对于测量值的百分比”,就是求误差与测量值的百分比。
以测量值为标准量。
解:(75.18-75.04)÷75.04≈0.19% 答:误差对于测量值的百分数约是0.19%。
2.引伸型。
求一个数比另一个数多(或少)几分之几(百分之几)的应用题。
这部分应用题是基本类型的引伸。
一般有:(1)已知甲(大数)、乙(小数)两数,求甲数比乙数多几分之几(百分之几);(2)已知甲(大数)、乙(小数)两数,求乙数比甲数少几分之几(百分之几);这类题的解法规律是先求出两个数的差,以差作为比较量。
但不能误认为甲数比乙数多几分之几(百分之几),乙数就比甲数少几分之几(百分之几)。
比多时应以乙数(小数)作为标准量;比少时应以甲数(大数)作为标准量。
例1.山岭村早稻去年平均公亩产400千克,今年平均公亩产600千克,今年公亩产比去年公亩产多百分之几?去年公亩产比今年公亩产少百分之几?分析:第一问,“今年公亩产比去年公亩产多百分之几”,是指今年公亩产比去年公亩产多生产的数是去年公亩产的百分之几。
所以,要以去年公亩产量做标准量(整体“1”)。
第二问,“去年公亩产比今年少百分之几”,是指去年公亩产比今年公亩产少的数是今年公亩产的百分之几。
所以,要以今年公亩产做标准量(整体“1”)。
解法1.第一问:(600-400)÷400=200÷400=50%第二问:(600-400)÷600=200÷600=33.3%解法2.第一问,也可以先求出今年公亩产是去年公亩产的百分之几,然后再求多百分之几(600÷400)-1=150%-1=50%第二问,也可以先求出去年公亩产是今年公亩产的百分之几,然后再求少百分之几。
1-400÷600≈0.333=33.3%例2.某机械厂制造一种轴承,每套轴承成本由2.3元降低到0.73元。
降低了百分之几?分析:“求降低了百分之几”,就是说现在比过去降低了百分之几。
也就是降低了的钱数是原来的百分之几。
(注意:是“降低到”“不是降低了”)。
以原来成本为标准量。
解:(2.3-0.73)÷2.3=68.3% 答:约降低了68.3%。
例3.某拖拉机厂,1985年原计划生产拖拉机1200台,上半年生产了675台,下半年比上半年增产2/5,超过计划百分之几?分析:“求超过原计划百分之几”。
就是求超产的部分是原计划的百分之几,以原计划做标准量。
解:先求出全年实际产量:675+675×(1+2/5)=1620(台)再求比原计划多百分之几:(1620-1200)÷1200=420/1200=35% 答:超过原计划35%。
3.较复杂的求一个数是另一个数的几分之几或百分之几的应用题。
这类应用题是简单(基本)应用题的组合或引伸,关键在于找准标准量,并揭示它的变化和其它隐蔽的条件,化繁为简。
例1.某班有学生50人,会游泳的有36人,占全班人数的百分之几?如果这个班有女同学25人,其中3/5会游泳,那么,男同学有百分之几会游泳? 解:(1)36÷50=72%(2)“男同学中有百分之几会游泳”就是求男同学中会游泳的占男同学的百分之几。
应以男同学总数作为标准量。
其中会游泳人数作为比较量。
但这两个数都要通过已知条件算出来。
即:男生人数:50-25=25(人),男同学中会游泳的人数:36-25×3/5=21(人),男生有百分之几会游泳:21÷25=84%例2.某校去年有女生200人,男生比女生多80人。
今年女生人数比去年增加20%,因此比男生多30人,今年男生比去年减少百分之几?解:去年女生200人,今年增加了20%,那么今年女生人数是去年的(1+20%)。
要求今年男生人数比去年减少了百分之几,应以去年男生人数(200+80)为标准量;以今年(女生人数-30)比去年减少的男生数为比较量。
即:200×(1+20%)=240(人)今年女生数。
[(200+80)-(240-30)] ÷(200+80)=(280-210)÷280=70÷280=25% 答:今年男生比去年减少了25%。