高中数学-函数测试题
高中数学-函数习题27
课时作业(二十七)1.如图,圆弧形拱桥的跨度|AB |=12米,拱高|CD |=4米,则拱桥的直径为( )A .15米B .13米C .9米D .6.5米2.已知点A (-1,1)和圆C :(x -5)2+(y -7)2=4,一束光线从点A 经x 轴反射到圆C 上的最短路程是( )A .62-2B .8C .4 6D .103.为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路和另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,则DE 的最短距离为( )A .6 kmB .(42-1)kmC .(42+1)kmD .4 km4.已知曲线C :y =-x 2-2x 与直线l :x +y -m =0有两个交点,则m 的取值范围是( ) A .(-2-1,2) B .(-2,2-1) C .[0,2-1) D .(0,2-1)5.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( ) A .1.4米 B .3.0米 C .3.6米 D .4.5米 6.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( ) A .1个 B .2个 C .3个 D .4个7.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区的时间为________h.8.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB |=3,则OA →·OB →=________.9.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?10.若实数x ,y 满足方程x 2+y 2-4x +1=0, (1)求yx 的最大值和最小值;(2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.11.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP 是6 m ,在建造时,每隔3 m 需用一个支柱支撑,则支柱A 2P 2的长为( )A .(126-24)mB .(126+24)mC .(24-126)mD .不确定12.【多选题】如图所示,已知直线l 的方程是y =43x -4,并且与x 轴、y 轴分别交于A ,B两点,一个半径为1.5的圆C ,圆心C 从点(0,1.5)开始以每秒0.5 个单位长度的速度沿着y 轴向下运动,当圆C 与直线l 相切时,该圆运动的时间可以为( )A .6秒B .8秒C .10秒D .16秒13.已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0交于P ,Q 两点,且OP →·OQ →=0(O 为坐标原点),求该圆的圆心坐标及半径.14.如图所示,A ,B 是直线l 上的两点,且AB =2.两个半径相等的动圆分别与l 相切于A ,B 两点,C 是两个圆的公共点,则圆弧AC ,CB 与线段AB 所围成图形的面积S 的取值范围为( )A.⎝⎛⎦⎤0,π2B .(0,π] C.⎝⎛⎦⎤0,2-π2D .(0,2-π]15.如图,圆O 1和圆O 2的半径都等于1,O 1O 2=4.过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使得|PM |=2|PN |.试建立平面直角坐标系,并求动点P 的轨迹方程.1.【多选题】从点A (-3,3)发出的光线l 射到x 轴上被x 轴反射后,照射到圆C :x 2+y 2-4x -4y +7=0上,则下列结论正确的是( )A .若反射光线与圆C 相切,则切线方程为3x -4y -3=0B .若反射光线穿过圆C 的圆心,则反射光线方程为x -y =0C .若反射光线照射到圆上后被吸收,则光线经过的最短路程是52-1D .若反射光线反射后被圆C 遮挡,则在x 轴上被挡住的范围是⎣⎡⎦⎤-34,1 2.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .8B .4 2C .4D .8 23.已知点P (x ,y )满足x 2+y 2-4y =0,则t =y +2x的取值范围是________.4.自圆外一点P 作圆O :x 2+y 2=1的两条切线PM ,PN (M ,N 为切点),若∠MPN =90°,则动点P 的轨迹方程是________.5.点P (x ,y )是直线l :kx +y +3=0上一动点,P A ,PB 是圆C :x 2+y 2-4y =0的两条切线,A ,B 是切点,若四边形P ACB 面积的最小值为2,则k 的值为________.6.设有半径长为3 km 的圆形村落,甲、乙两人同时从村落中心出发,甲向东前进而乙向北前进,甲离开村后不久,改变前进方向,斜着沿切于村落边界的方向前进,后来恰好与乙相遇.设甲、乙两人的速度都一定,且其速度比为3∶1,问:甲、乙两人在何处相遇?7.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)。
高中数学必修一函数大题(含详细解答)
高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高中数学中的函数单调性测试题
高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。
它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。
为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。
一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。
2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。
3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。
4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。
高中数学必修一函数大题(含详细解答)
高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A ZB =(其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式.(2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
高一数学必修一函数各章节测试题4套
函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高中数学之函数练习题
高中数学之函数练习题一、单项选择题(在每小题列出的四个备选答案中,只有一个是符合题目要求的。
错选、多选或未选均无分。
) 1.已知sin 3cos 3cos sin αααα+-=5,则tan α的值为( )A.25B.-25C.-2D.22.11sin 22y x =+的最大值为( ) A.32B.1C.12D.无最大值3.sin300︒=( ) A.12B.12-C.2D.2-4.sin (x -y )cosy +cos (x -y )siny 可化简为( ) A.sinxB.cosxC.sinxcos2yD.cosxcos2y5.sin120°+tan135°+cos210°的值为( ) A.1B.0C.-1D.-126.已知α是第二象限角,且sinα=513,则tanα等于 ( ) A.-512B.512C.125D.-1257.已知sin2αsinα=85,则cosα等于 ( )A.45B.-45C.35D.-358.与-330°角终边相同的角是 ( ) A.30°B.400°C.-50°D.920°9.在△ABC 中,若sinA =35,∠C =120°,BC =23,则AB 等于 ( ) A.3B.4C.5D.610.若sin α<0,tan α>0,则角α是 ( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 11.在0°~360°范围内,与1050°终边相同的角是 ( ) A.330° B.60°C.210°D.300°12.已知sin α=35,且α∈π,π2⎛⎫ ⎪⎝⎭,则tan π4α⎛⎫+ ⎪⎝⎭等于 ( ) A.-7 B.7 C.-17 D.17 13.求值:2tan22.5°1-tan222.5°等于 ( )A.3B.-3C.1D.-114.命题甲“sinα=1”是命题乙“cosα=0”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分且必要条件D.既不充分也不必要条件15.若1+tanα1-tanα=2+3,α∈(0,π2),则α等于( )A.π6B.π4C.π3D.π516.若角α是第一象限角,则角π-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角17.函数y =3sin sin300︒的最小正周期是 ( )A.3πB.2πC.2π3D.π318.在△ABC 中,下列表示不一定成立的是 ( ) A.∠A +△B +△C =π B.sinAsinBsinC >0 C.a +b >c D.cosAcosBcosC >019.已知sin α·cos α>0,且cos α·tan α<0,则角α所在的象限是( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 20.22ππsin cos 1212-=( )A.B.12C.D.-12二、填空题21.sin (α+k·360°)= ,cos (α+k·360°)= ,tan (α+k·360°)= .22.比较大小:sin 47π sin 57π;cos 25π cos 27π.23.函数y =2sinx 的最小正周期为 .24.若角α的顶点在直角坐标系的原点,始边重合于x 轴的正方向,在终边上取点P cos3π⎛⎫⎪⎝⎭,可得α的正弦函数值为 .25.已知sin (45°+α)=513,则sin (225°+α)= . 26.若要使2sinx =1-3a 有意义,则a 的取值范围用区间表示为 .27.已知tan (2π-α)=-3,则tan α= ,cos2α= .三、解答题(解答题应写出文字说明及演算步骤)28.在△ABC 中,已知a>b>c,且a =10,b =8,△ABC 的面积为24,求边长c 的值.29.在△ABC 中,已知a =7,b =43,c =13,求最小角及三角形的面积. 30.已知sin (6π+α)=35,并且α是第二象限角,求cos α,tan α的值. 31.已知2sinx +1=3a -2,x ∈R ,求a 的取值范围. 32.已知角α是第二象限角,则α2是第几象限角? 33.求下列各三角函数值.(1)sin960°; (2)tan1035°; (3)cos 15π2⎛⎫- ⎪⎝⎭; (4)tan 11π4⎛⎫- ⎪⎝⎭.34.已知α,β均为钝角,cosα=-513,sin (β-α)=35,求sinβ的值.答案一、单项选择题 1.D 【提示】sin 3cos 3cos sin αααα+-=5⇒6sin α=12cos α⇒tan α=2.2.B 【提示】sin y x =的最大值为1,则11sin 22y x =+的最大值为max 111122y =⨯+=.故选B.3.D【提示】sin 300sin(36060)sin 60︒=︒-︒=-︒=故选D.4.A5.C6.A7.A8.A9.C 【提示】△BC sinA =ABsinC ,∴AB =5. 10.C11.A 【解析】1050°=360°×2+330°. 12.D【解析】α∈π,π2⎛⎫⎪⎝⎭,∴cos α=-45,tan α=-34,∴tan π4α⎛⎫+ ⎪⎝⎭=πtan tan 4π1tan tan 4αα+-=-34+11+34×1=17. 13.C 【解析】原式=2tan22.5°1-tan222.5°=tan45°=1.14.A15.A 【提示】 1+tanα=(2+3)(1-tanα)=2-2tanα+3-3tanα,∴(3+3)tanα=1+3,则tanα=33,又△α△02π⎛⎫⎪⎝⎭,,∴α=π6,故选A . 16.B【提示】取α=30°检验即可. 17.C 【提示】T =2π3. 18.D19.C 【分析】sin αcos α>0,角α在第一、三象限,cos αtan α<0,角α在第三、四象限,故选C. 20.A【提示】22πππsin cos cos 12126⎛⎫-=-= ⎪⎝⎭,故选A.二、填空题21.sin α cos α tan α 22.> < 23.2π 24.1313 25.-51326.[-13,1]【提示】由-2≤2sinx ≤2,得-2≤1-3a ≤2,-3≤-3a≤1,-13≤a ≤1.27.3,-45【分析】由tan (2π-α)=3得tan α=3,则cos2α=22222222cos sin 1tan 134cos sin tan 1315αααααα---===-+++. 三、解答题28.解由题意得12absinC=24,得sinC=35.由a>b>c得角C是锐角,∴cosC=45, ∴边长c102+82-2×10×8×45=6.29.最小角为△C=30°,S△ABC=7330.cosα=-45,tanα=-3431.解:由2sinx+1=3a-2得sinx=3a-32,∵-1≤sinx≤1,∴-1≤3a-32≤1,解得13≤a≤53,∴a的取值范围是[13,53].32.解:∵α是第二象限角,∴90°+360°k<α<180°+360°k(k∈Z),∴45°+180°k<2α<90°+180°k(k∈Z).当k是偶数时,2α是第一象限角;当k是奇数时,2α是第三象限角.∴2α是第一或第三象限角.33.解:利用诱导公式化简求值,可按照“负化正,大化小,小化锐,锐求值”的步骤进行.(1)sin960°=sin240°=-sin60°=-32.(2)tan1035°=tan (1080°-45°)=-tan45°=-1.(3)cos 15π2⎛⎫- ⎪⎝⎭=cos 152π=cos 32π=0.(4)tan 11π4⎛⎫- ⎪⎝⎭=tan π3π4⎛⎫-+ ⎪⎝⎭=tan π4=1. 34.解:△sin2α+cos2α=1,∴sin2α=1-cos2α=1-2513⎛⎫- ⎪⎝⎭=144169,∴sinα=±1213.又△α为钝角,∴sinα=1213,∵sin2(β-α)+cos2(β-α)=1,∴cos2(β-α)=1-sin2(β-α)=1-235⎛⎫⎪⎝⎭=1625,∴cos (β-α)=±45.又△α,β均为钝角,则-90°<β-α<90°, ∴cos (β-α)=45, ∴sinβ=sin[(β-α)+α]=sin (β-α)cosα+cos (β-α)sinα =35×513⎛⎫- ⎪⎝⎭+45×1213=3365.。
高中数学_经典函数试题及答案
高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。
求函数 f(x) 的解析式。
解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。
根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。
所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。
2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。
解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。
代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。
对比系数可得 -c = 2c,解得 c = 0。
所以常数 c 的值为 0。
3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。
解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。
首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。
交换 x 和 y,得到 x = (y - 1) / (y + 1)。
解以上方程,可以得到 y = (x + 1) / (x - 1)。
所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。
【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。
解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。
周期T = 2π / 2 = π。
最大值和最小值可以通过观察正弦函数的图像得出。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.已知集合A到B的映射,那么集合A中元素2在B中所对应的元素是()A.2 B.5 C.6 D.8【答案解析】B2.函数的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0)【答案解析】C3.设函数是上的减函数,则有()A.B.C.D.【答案解析】D4.下列哪组中的两个函数是同一函数()A. 与B.与C. 与D.与【答案解析】B5.()A. B. C. D.【答案解析】C6.函数y=的定义域是()A.(-∞,2) B.(2,+∞) C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)C7.下列函数中为偶函数的是()A.y=|x+1|B.C.y=+xD. y=+【答案解析】D8.已知f(x)= ,则f[f(―1)]=( )A.0B.1C. πD. π+1【答案解析】C9.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=( )2 B.f(x)= ,g(x)=x+1C.f(x)=|x|,g(x)= D.f(x)=,g(x)= 【答案解析】B10.当时A. B. C. D.【答案解析】C11.函数f(x)=的定义域为()A. B . C. D.【答案解析】D12.已知则=()A. B. C. D.C13.下列各组函数表示同一函数的是()A. B.C. D.【答案解析】C14.设,则()A.1 B. C. D.【答案解析】B15.函数恒过定点()A.B.C.D.【答案解析】B16.函数,则的值是()A、1B、C、2D、【答案解析】A17.下列各组函数是同一函数的是()A.与y=1 B.与C.与 D.与y=x+2 【答案解析】C18.已知函数,则等于A.1 B.-1 C. D.2【答案解析】C19.下列函数中,是奇函数且在区间内单调递减的函数是()A. B. C. D.【答案解析】C不是奇函数。
是奇函数且单调递增。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
2021_2022学年新教材高中数学第三章函数测评含解析新人教B版必修第一册
第三章测评(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021山西运城高一期中)函数f (x )=√x -1+2x 2-4的定义域为( )A.[1,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.[1,2)∪(2,+∞),则{x -1≥0,x 2-4≠0,解得{x ≥1,x ≠2.故函数f (x )的定义域是[1,2)∪(2,+∞),故选D .2.(2021北京朝阳高一期末)已知函数y=f (x )可表示为如表所示,则下列结论正确的是( ) A.f (f (4))=3B.f (x )的值域是{1,2,3,4}C.f (x )的值域是[1,4]D.f (x )在区间[4,8]上单调递增f (4)=3,得f (f (4))=f (3)=2,故A 错误;函数的值域为{1,2,3,4},故B 正确,C 错误;由表可知,f (x )在定义域上不单调,故D 错误.故选B .3.(2021山东烟台高一期中)某高三学生去高铁站乘高铁.早上他乘坐出租车从家里出发,离开家不久,发现身份证忘带,于是回到家取上身份证,然后乘坐出租车以更快的速度赶往高铁站,令x (单位:分钟)表示离开家的时间,y (单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是( ),该高三学生离开家的过程中,y 是x 的一次函数,且斜率为正;小明返回家的过程中,y 仍然是x 的一次函数,斜率为负;小明最后由家到高铁站,y 仍然是x 的一次函数,斜率为正值,且斜率比第一段的斜率大,结合图像可知,与上述事件吻合最好的图像为C .故选C .4.(2021山东潍坊高一期中)已知函数f (x )=ax 2+bx+c 满足f (2)<0且f (3)>0,则f (x )在(2,3)上的零点( )A.至多有一个B.有1个或2个C.有且仅有一个D.一个也没有,函数f (x )=ax 2+bx+c 是连续函数,又f (2)<0,f (3)>0,由函数零点存在定理,可知f (x )在(2,3)上的零点个数有且只有一个,故选C .5.(2021浙江杭州中学高一期中)若函数f (x )满足关系式f (x )+2f (1-x )=-3x ,则f (2)的值为( ) A.-3B.32C.-52D.52f (x )+2f (1-x )=-3x,令x=2,则有f (2)+2f (-1)=-32;令x=-1,则有f (-1)+2f (2)=3.由上式可得f (2)=52,故选D .6.(2021河北邯郸高一期中)已知函数f (x )=ax 2+b x是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数.若f (2)=3,则a+b 的值为( ) A.1 B.2 C.3 D.0函数f (x )是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数,∴b-3+b-1=0,即2b=4,解得b=2,则f (x )=ax 2+2x.∵f (2)=3,∴f (2)=4a+22=3,解得2a+1=3,即a=1.因此a+b=1+2=3,故选C .7.已知函数f (x )={x 2+1(x ≤0),2x (x >0),若f (a )=10,则a 的值是( )A.-3或5B.3或-3C.-3D.3或-3或5a ≤0,则f (a )=a 2+1=10,∴a=-3(a=3舍去),若a>0,则f (a )=2a=10,∴a=5,综上可得,a=5或a=-3,故选A .8.(2021广西北海高一期末)已知定义在[-2,2]上的奇函数f (x )满足:对任意的x 1,x 2∈[-2,2]都有f (x 1)-f (x 2)x 1-x 2<0成立,则不等式f (x+1)+f (1-4x )>0的解集为( )A.-14,34B.23,34C.-14,1 D.-14,23解析由f (x 1)-f (x 2)x 1-x 2<0可知函数f (x )在[-2,2]上单调递减,f (x )是奇函数,所以f (x+1)>-f (1-4x )=f (4x-1).所以{-2≤x +1≤2,-2≤1-4x ≤2,x +1<4x -1,解得{-3≤x ≤1,-14≤x ≤34,x >23,所以23<x ≤34,即不等式的解集为23,34.故选B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列对应关系f ,能构成从集合M 到集合N 的函数的是 ( )A.M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1B.M=N={x|x ≥-1},f (x )=2x+1C.M=N={1,2,3},f (x )=2x+1D.M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数解析∵M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1,由定义知M 中的任一个元素,N 中都有唯一的元素和它相对应,∴构成从集合M 到集合N 的函数,故A 正确;由M=N={x|x ≥-1},f (x )=2x+1,能构成从集合M 到集合N 的函数,故B 正确;由M=N={1,2,3},f (x )=2x+1,∵f (2)=5,f (3)=7,5∉{1,2,3},7∉{1,2,3},因此不能构成从集合M 到集合N 的函数,故C 错误;由M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数,因此能构成从集合M 到集合N 的函数,故D 正确.故选ABD .10.(2021重庆八中高一期中)已知函数f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) A.y=f (-x ) B.y=f (x )+x 3 C.y=f (x )xD.y=√x 3f (x )F (x )=f (-x ),其定义域为R ,则有F (-x )=f [-(-x )]=f (x )=-f (-x )=-F (x ),函数y=f (-x )为奇函数,故A 正确;设F (x )=f (x )+x 3,其定义域为R ,则有F (-x )=f (-x )+(-x )3=-[f (x )+x 3]=-F (x ),函数y=f (x )+x 3为奇函数,故B 正确;设F (x )=f (x )x,其定义域为{x|x ≠0},则有F (-x )=f (-x )-x=f (x )x=F (x ),是偶函数,故C 错误;由于函数y=√x 3f (x ),其定义域为[0,+∞),其定义域不关于原点对称,不是奇函数,故D 错误. 故选AB.11.(2020山东日照高二期末)如图是二次函数y=ax 2+bx+c 图像的一部分,图像过点A (-3,0),且对称轴为x=-1,则以下选项中正确的为( )A.b 2>4acB.2a-b=1C.a-b+c=0D.5a<ba<0,与y 轴的交点在y 轴的正半轴上得c>0.因为二次函数的图像与x 轴有2个不同交点,所以Δ=b 2-4ac>0,故A 正确; 因为对称轴方程为x=-1,所以-b2a =-1,即2a-b=0,故B 不正确;又因为图像过点A (-3,0),且对称轴方程为x=-1,所以图像与x 轴的另一个交点是(1,0),把点(1,0)代入解析式得a+b+c=0,故C 不正确;把x=-3代入解析式得9a-3b+c=0,与a+b+c=0联立,两式相加并整理得10a-2b=-2c<0,即5a<b ,故D 正确.故选AD.12.(2021山东临沂高一期中)某校学习兴趣小组通过研究发现形如y=ax+bcx+d (ac ≠0,b ,d 不同时为0)的函数图像可以通过反比例函数的图像平移变换而得到,则对于函数y=x+2x -1的图像及性质的下列表述正确的是( )A.图像上点的纵坐标不可能为1B.图像关于点(1,1)成中心对称C.图像与x 轴无交点D.函数在区间(1,+∞)上单调递减y=x+2x -1=x -1+3x -1=1+3x -1,因此函数y=x+2x -1的图像可以看作是由y=3x的图像先向右平移一个单位,再向上平移一个单位而得到,因此函数图像上点的纵坐标不可能为1,函数图像关于点(1,1)成中心对称,函数图像与x 轴交点为(-2,0),函数y 在区间(1,+∞)上单调递减,故选ABD . 三、填空题:本题共4小题,每小题5分,共20分.13.若函数y=f (x )在定义域R 上的值域为[0,1],则函数y=f (x-1)+1的值域为 .,而只有上下平移才改变函数的值域,因此函数y=f (x-1)+1的值域为[1,2].14.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为 立方米.x 立方米,所缴水费为y 元,由题意得y={3x ,0≤x ≤10,30+5(x -10),x >10,即y={3x ,0≤x ≤10,5x -20,x >10.由于该职工这个月的实际用水量超过10立方米,所以5x-20=55,解得x=15. 15.已知函数f (x )=3+x 1+x,记f (1)+f (2)+f (4)+…+f (1 024)=m ,f12+f14+…+f11024=n ,则m+n= .解析由题意得f (x )+f1x=x+3x+1+1x +31x+1=x+3x+1+1+3x x+1=4(x+1)x+1=4,f (1)=3+11+1=2,∴m+n=f (1)+f12+f (2)+f 14+f (4)+…+f11024+f (1024)=2+4×512=2050.16.(2021江苏海门中学高一期中)设函数f (x )={-(x -a )2+a 2,x ≤0,-x 2+2x +1-a ,x >0,若f (0)是f (x )的最大值,则a 的取值范围为 .+∞)a>0,则满足题意的函数f (x )的图像如图所示:由数形结合可得Δ=4+4(1-a )≤0,解得a ≥2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021山东德州高一期中)已知函数f (x )=x+1x .(1)用定义法证明f (x )在[1,+∞)上为增函数;(2)若对∀x ∈[2,4],恒有f (x )≤2m-1,求实数m 的取值范围. (1)证明设1≤x 1<x 2,则f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=(x 2-x 1)+x 1-x2x 1x 2=(x 2-x 1)1-1x 1x 2=(x 2-x 1)(x 1x 2-1)x 1x 2,因为x 2>x 1≥1,所以x 2-x 1>0且x 1x 2>1. 所以(x 2-x 1)(x 1x 2-1)x 1x 2>0,即f (x 2)-f (x 1)>0,f (x 1)<f (x 2), 所以f (x )在[1,+∞)上是增函数.(1)知f (x )在[2,4]上单调递增,所以f (x )max =f (4)=174.所以2m-1≥174,即m ≥218. 所以m 的取值范围是218,+∞.18.(12分)(2020辽宁朝阳一中高一期中)设函数f (x )=ax 2+ax-1(a ∈R ). (1)当a=12时,求函数f (x )的零点; (2)讨论函数f (x )零点的个数.当a=12时,函数f (x )=12x 2+12x-1,令12x 2+12x-1=0,解得x=1或x=-2.函数f (x )的零点为1,-2.(2)当a=0时,f (x )=ax 2+ax-1=-1,函数没有零点; 当a ≠0时,Δ=a 2+4a.若Δ=a 2+4a=0,解得a=-4,此时函数f (x )有1个零点. 若Δ=a 2+4a>0,解得a<-4或a>0,此时函数有2个零点. 若Δ=a 2+4a<0,解得-4<a<0,此时函数没有零点. 综上所述,当a=-4时,函数f (x )有1个零点. 当a<-4或a>0时,函数有2个零点, 当-4<a ≤0时,函数没有零点.19.(12分)(2021云南玉溪一中高一期中)已知二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1.(1)求函数f (x )的解析式;(2)函数f (x )在区间[n ,1)上的值域是34,1,求n 的取值范围.因为二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1,所以a (x+1)2+b (x+1)+c-ax 2-bx-c=2x ,c=1, 即2ax+a+b=2x ,故a=1,b=-1,c=1. 所以函数f (x )的解析式为f (x )=x 2-x+1.(2)因为f (x )=x 2-x+1的开口向上,对称轴x=12,且f12=34,f (0)=f (1)=1,由f (x )在区间[n ,1)上的值域是34,1可得0<n ≤12.故n 的取值范围为0,12. 20.(12分)(2020江苏启东高一期中)已知函数f (x )=1x-1+12(x>0).(1)若m>n>0时,f (m )=f (n ),求1m +1n 的值;(2)若m>n>0时,函数f (x )的定义域与值域均为[n ,m ],求所有m ,n 的值.∵f (m )=f (n ),∴1m -1+12=1n-1+12.∴1m-1=1n-1,∴1m -1=1n -1或1m -1=1-1n . ∵m>n>0,∴1m +1n =2.(2)由题意f (x )={1x -12,0<x ≤1,32-1x,x >1,∴f (x )在(0,1]上单调递减,在[1,+∞)上单调递增. ①0<n<m ≤1,则f (n )=m ,f (m )=n ,∴{1n -12=m ,1m -12=n ,解得m=n=√17-14(舍去).②n<1<m ,则f (x )min =f (1)=12=n ,f (x )max =m=max{f (n ),f (m )}=max 32,f (m ),∴m=32. ③1≤n<m ,则f (n )=n ,f (m )=m ,无解. 综上,m=32,n=12.21.(12分)(2021山东聊城高一期中)为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为C (x )={m -4x5,0≤x ≤10,m x ,x >10(m 为常数).已知太阳能电池面积为5平方米时,每年消耗的电费为8万元.安装这种供电设备的工本费为0.6x (单位:万元).记F (x )为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和. (1)写出F (x )的解析式;(2)当x 为多少平方米时,F (x )取得最小值?最小值是多少万元?(精确到小数点后一位)(已知√3≈1.7,√10≈3.2)当0≤x ≤10时,C (x )=m -4x 5,由题意8=m -4×55,即m=60.∴C (x )={60-4x5,0≤x ≤10,60x,x >10,则F (x )={10×60-4x5+0.6x ,0≤x ≤10,10×60x +0.6x ,x >10,化简可得F (x )={120-7.4x ,0≤x ≤10,600x+0.6x ,x >10.(2)当0≤x ≤10时,F (x )=120-7.4x ,可得F (x )min =F (10)=46(万元), 当x>10时,F (x )=600x+610x ≥2√600x·610x =6√10≈19.2(万元),当且仅当600x=610x ,即x=10√10≈32平方米时,等号成立,故当x 为32平方米时,F (x )取得最小值,最小值是19.2万元.22.(12分)(2021重庆外国语学校高一期中)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x.函数f (x )在y 轴左侧的图像如图所示,并根据图像:(1)画出f (x )在y 轴右侧的图像并写出函数f (x )(x ∈R )的单调递增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )+(4-2a )x+2(x ∈[1,2]),求函数g (x )的最小值.函数f (x )是定义在R 上的偶函数,即函数f (x )的图像关于y 轴对称,则函数f (x )图像如图所示.故函数f (x )的单调递增区间为(-1,0),(1,+∞). (2)根据题意,令x>0,则-x<0,则f (-x )=x 2-2x ,又由函数f (x )是定义在R 上的偶函数,则f (x )=f (-x )=x 2-2x ,则f (x )={x 2+2x ,x ≤0,x 2-2x ,x >0.(3)根据题意,x ∈[1,2],则f (x )=x 2-2x ,则g (x )=x 2-2x+(4-2a )x+2=x 2+(2-2a )x+2, 其对称轴为x=a-1,当a-1<1时,即a<2时,g (x )在区间[1,2]上单调递增,g (x )min =g (1)=5-2a ; 当1≤a-1≤2时,即2≤a ≤3时,g (x )min =g (a-1)=1+2a-a 2;当a-1>2时,即a>3时,g (x )在区间[1,2]上单调递减,g (x )min =g (2)=10-4a , 故g (x )min ={5-2a ,a <2,1+2a -a 2,2≤a ≤3,10-4a ,a >3.。
(典型题)高中数学必修一第二单元《函数》测试题(包含答案解析)
一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞5.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞6.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 7.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)8.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .29.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .410.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦, B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.16.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.17.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-的定义域是________.18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.20.已知函数2262()2x ax x f x a x x⎧-+⎪=⎨>⎪⎩,≤,,是R 上的减函数,则a 的取值范围为______.三、解答题21.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.22.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 23.定义在()0,∞+的函数()f x ,满足()()()f mn f m f n =+,且当1x >时,()0f x >.(1)求证:()()m f f m f n n ⎛⎫=- ⎪⎝⎭(2)讨论函数()f x 的单调性,并说明理由; (3)若()21f =,解不等式()()333f x f x +->. 24.已知函数()x af x x+=(a 为常数),其中()0f x <的解集为()4,0-. (1)求实数a 的值;(2)设()()g x x f x =+,当()0x x >为何值时,()g x 取得最小值,并求出其最小值. 25.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由. 26.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩;④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题5.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.6.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.7.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.8.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求.【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.9.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.10.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.11.D解析:D 【解析】因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k >⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.14.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f(x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.15.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.17.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的 解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解. 【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<, 即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增, ()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增,0a b <+,a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.20.2【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求【详解】解;是上的减函数解可得故答案为:【点睛】本题主要考查了分段函数的单调性的应用二次函数及反比例函数性质的应用是求解问题的关键解析:[2,209] 【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求. 【详解】 解;226,2(),2x ax x f x a x x⎧-+⎪=⎨>⎪⎩是R 上的减函数,∴204462a a a a ⎧⎪⎪>⎨⎪⎪-+⎩, 解可得,2029a. 故答案为:202,9⎡⎤⎢⎥⎣⎦【点睛】本题主要考查了分段函数的单调性的应用,二次函数及反比例函数性质的应用是求解问题的关键,属于中档题.三、解答题21.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 22.(1)()2243f x x x =-+;(2)8m ≥或0m ≤.【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 23.(1)见解析;(2)见解析;(3)3023x x ⎧⎫<<⎨⎬⎩⎭【分析】(1)由()m f m f n n ⎛⎫=⋅⎪⎝⎭,结合题意即可得结果; (2)利用函数单调性的定义证明即可;(3)将原不等式等价转化为()()324f x f x +>,结合定义域和单调性即可得结果. 【详解】解:(1)由题可得()()m m f m f n f f n n n ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭, 即()()m f f m f n n ⎛⎫=- ⎪⎝⎭;(2)任取1x ,()20,x ∈+∞,且12x x <,则211x x >, 由(1)得:()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,即()()21f x f x >, ()f x ∴在()0,∞+上是增函数;(3)()21f =,()()()2224f f f ∴=+=,()()()3428f f f =+=,()()333f x f x +->, ()()()338f x f x f +>+,()()324f x f x +>,又()f x 在()0,∞+上为增函数,30,240,324,x x x x +>⎧⎪∴>⎨⎪+>⎩, 解得:0323x <<, 故不等式()()333f x f x +->的解集为3023x x ⎧⎫<<⎨⎬⎩⎭. 【点睛】关键点点睛:本题解题的关键是利用()m f m f n n ⎛⎫=⋅ ⎪⎝⎭,再结合题意,即可判断函数单调性和解不等式.24.(1)4a =;(2)当2x =时,()g x 取得最小值为5. 【分析】(1)利用不等式的解集,推出对应方程的根,然后求解a . (2)化简函数的解析式,利用基本不等式转化求解函数的最值即可. 【详解】(1)因为()00x af x x+<⇔<的解集为()4,0-, 故()0x af x x+==一个根为-4, 404a-+=- 得4a =(2)()()441x g x x f x x x x x+=+=+=++因为0x >,所以4115x x ++≥=, 当且仅当4x x=,即2x =时取等号; 所以当2x =时,()g x 取得最小值为5. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.25.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以40m n =-⎧⎨=⎩,故存在40m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 26.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】 (1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=-- ()()2112011x x x x -=<--所以()()12f x f x <,则()f x 在[)2,+∞上递减.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.三个数a=0.67,b=70.6,c=log0.76的大小关系为()A.b<c<a B.b<a<c C.c<a<b D.c<b<a【答案解析】C【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<a=0.67<1,b=70.6>1,c=log0.76<0,∴c<a<b,故选:C.2.已知函数的图象与直线y=x恰有三个公共点,则实数m的取值范围是()A.(﹣∞,﹣1] B.[﹣1,2) C.[﹣1,2] D.[2,+∞)【答案解析】B【考点】函数的零点;函数的图象;函数与方程的综合运用.【专题】函数的性质及应用.【分析】由题意可得只要满足直线y=x和射线y=2(x>m)有一个交点,而且直线y=x与函数f(x)=x2+4x+2的两个交点即可,画图便知,直线y=x与函数f(x)=x2+4x+2的图象的两个交点为(﹣2,﹣2)(﹣1,﹣1),由此可得实数m的取值范围.【解答】解:由题意可得射线y=x与函数f(x)=2(x>m)有且只有一个交点.而直线y=x与函数f(x)=x2+4x+2,至多两个交点,题目需要三个交点,则只要满足直线y=x与函数f(x)=x2+4x+2的图象有两个交点即可,画图便知,y=x与函数f(x)=x2+4x+2的图象交点为A(﹣2,﹣2)、B(﹣1,﹣1),故有m≥﹣1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[﹣1,2),故选B.【点评】本题主要考查函数与方程的综合应用,体现了转化、数形结合的数学思想,属于基础题.3.若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为()A.2 B.4 C. D.【答案解析】C【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】根据同底的指数函数和对数函数有相同的单调性,建立方程关系即可得到结论.【解答】解:∵函数y=ax与y=loga(x+1)在[0,1]上有相同的单调性,∴函数函数f(x)=ax+loga(x+1)在[0,1]上是单调函数,则最大值与最小值之和为f(0)+f(1)=a,即1+loga1+loga2+a=a,即loga2=﹣1,解得a=,故选:C【点评】本题主要考查函数最值是应用,利用同底的指数函数和对数函数有相同的单调性是解决本题的关键.本题没有对a进行讨论.4.函数f(x)=ln(x-)的图象是()A. B.C. D.【答案解析】B【考点】对数函数图象与性质的综合应用.【专题】计算题;数形结合.【分析】求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.【解答】解:因为x->0,解得x>1或﹣1<x<0,所以函数f(x)=ln(x-)的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时, g(x)=x-是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x-)是增函数.故选B.【点评】本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.5.函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(﹣a)的值为()A.3 B.0 C.﹣1 D.﹣2【答案解析】B【考点】函数奇偶性的性质.【分析】把α和﹣α分别代入函数式,可得出答案.【解答】解:∵由f(a)=2∴f(a)=a3+sina+1=2,a3+sina=1,则f(﹣a)=(﹣a)3+sin(﹣a)+1=﹣(a3+sina)+1=﹣1+1=0.故选B【点评】本题主要考查函数奇偶性的运用.属基础题.6.函数f(x)=x3+3x﹣1在以下哪个区间一定有零点()A.(﹣1,0) B.(0,1) C.(1,2) D.(2,3)【答案解析】B【考点】函数零点的判定定理.【专题】函数的性质及应用.【分析】根据函数零点的判定定理将选项中区间的端点值代入验证即可得到答案.【解答】解:∵f(x)=x3+3x﹣1∴f(﹣1)f(0)=(﹣1﹣3﹣1)(﹣1)>0,排除A.f(1)f(2)=(1+3﹣1)(8+6﹣1)>0,排除C.f(0)f(1)=(﹣1)(1+3﹣1)<0,∴函数f(x)在区间(0,1)一定有零点.故选:B.【点评】本题主要考查函数零点的判定定理.属基础题.7.函数y=ax+1(a>0且a≠1)的图象必经过点()A.(0,1) B.(1,0) C.(2,1) D.(0,2)【答案解析】D【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】已知函数f(x)=ax+1,根据指数函数的性质,求出其过的定点.【解答】解:∵函数f(x)=ax+1,其中a>0,a≠1,令x=0,可得y=1+1=2,点的坐标为(0,2),故选:D【点评】本题主要考查指数函数的性质及其特殊点,是一道基础题.8.已知函数f(x)=,若函数g(x)=f(x)﹣kx有零点,则实数k的取值范围是()A.(﹣∞,+∞) B. [,+∞) C.(﹣∞,] D.(﹣∞,1)【答案解析】考点:函数零点的判定定理.专题:计算题;数形结合;函数的性质及应用.分析:画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),运用导数,求出切线的斜率,再由图象观察即可得到k的取值范围.解答:解:函数f(x)=,画出f(x)的图象,函数g(x)=f(x)﹣kx有零点,即为y=f(x)的图象和直线y=kx有交点,作出直线y=kx,由图象观察k≤0,直线和曲线有交点,设直线y=kx与曲线y=log2x相切的切点为p(m,n),由于(log2x)′=,即切线的斜率为=k,又n=km,n=log2m,解得m=e,k=,则k>0时,直线与曲线有交点,则0<k,综上,可得实数k的取值范围是:(﹣∞,].故选C.点评:本题考查分段函数及运用,考查分段函数的图象和运用,考查数形结合的思想方法,考查运用导数求切线的斜率,属于中档题.9.函数f(x)=ln(x2+1)的图象大致是()【答案解析】考点:函数的图象.专题:函数的性质及应用.分析:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答:解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评:对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.10.设函数f(x),g(x)满足下列条件:(1)对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2);(2)f(﹣1)=﹣1,f(0)=0,f(1)=1.下列四个命题:①g(0)=1;②g(2)=1;③f2(x)+g2(x)=1;④当n>2,n∈N*时,[f(x)]n+[g(x)]n的最大值为1.其中所有正确命题的序号是()A.①③ B.②④ C.②③④ D.①③④【答案解析】考点:命题的真假判断与应用.专题:函数的性质及应用.分析:既然对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2),那么分别令x1,x2取1,0,﹣1求出g(0),g(1),g(﹣1),g(2),然后令x1=x2=x可得③,再根据不等式即可得④解答:解;对于①结论是正确的.∵对任意实数x1,x2都有f(x1)•f(x2)+g(x1)•g(x2)=g(x1﹣x2)且f(﹣1)=﹣1,f(0)=0,f(1)=1,令x1=x2=1,得[f(1)]2+[g(1)]2=g(0),∴1+[g(1)]2=g(0),∴g(0)﹣1=[g(1)]2 令x1=1,x2=0,得f(1)f(0)+g(1)g(0)=g(1),∴g(1)g(0)=g(1),g(1)[g(0)﹣1]=0解方程组得对于②结论是不正确的,令x1=0,x2=﹣1,得f(0)f(﹣1)+g(0)g(﹣1)=g(1),∴g(﹣1)=0令x1=1,x2=﹣1,得f(1)f(﹣1)+g(1)g(﹣1)=g(2),∴﹣1=g(2),∴g(2)≠1对于③结论是正确的,令x1=x2=1,得f2(x)+g2(x)=g(0)=1,对于④结论是正确的,由③可知f2(x)≤1,∴﹣1≤f(x)≤1,﹣1≤g(x)≤1∴|fn(x)|≤f2(x),|gn(x)|≤g2(x)对n>2,n∈N*时恒成立,[f(x)]n+[g(x)]n≤f2(x)+g2(x)=1综上,①③④是正确的.故选:D。
高中数学-基本初等函数练习题
高中数学-基本初等函数练习题第I卷(选择题)一、选择题1.如果指数函数y=(a﹣2)x在x∈R上是减函数,则a的取值范围是( )A.a>2 B.0<a<1 C.2<a<3 D.a>32.已知函数f(x)=,若f(2a+1)>f(3),则实数a的取值范围是( ) A.(﹣∞,﹣2)∪(1,+∞) B.(﹣∞,﹣1)∪(﹣,+∞)C.(1,+∞)D.(﹣∞,1)3.设f(x)=,则f[f(﹣3)]=( )A.1 B.2 C.4 D.84.如果指数函数y=(a﹣1)x是增函数,则a的取值范围是( )A.a>2 B.a<2 C. a>1 D.1<a<25.若,则f[f(﹣2)]=( )A.2 B.3 C.4 D.56.二次函数y=4x2﹣mx+5的对称轴为x=﹣2,则当x=1时,y的值为( )A.﹣7 B.1 C.17 D.257.用分数指数幂的形式表示a3•(a>0)的结果是( )A.B.C.a4D.8.函数f(x)=x2﹣2mx+5在区间[﹣2,+∞)上是增函数,则m的取值范围是( ) A.(﹣∞,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣1] D.[﹣1,+∞)9.已知幂函数y=f(x)的图象经过点(2,),则f(4)的值为( )A.16 B.2 C.D.10.若函数f(x)=x2+bx+c的对称轴方程为x=2,则( )A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)第II卷(非选择题)二、填空题(本题共8道小题,每小题0分,共0分)11.若函数f(x)=a x(a>0,a≠1)在[﹣2,1]上的最大值为4,最小值为m,则m的值是.12.已知函数,则f(1)的值是.13.设函数,则使f(a)<0的实数a的取值范围是.14.如果函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,则= .15.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(814)= .16.已知幂函数的图象经过点(2,32)则它的解析式f(x)= .17.设函数f(x)=x2+(2a﹣1)x+4,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则实数a的取值范围是.18.设常数a∈R,函数f(x)=|x﹣1|+|x2﹣a|,若f(2)=1,则f(1)= .三、解答题(本题共3道小题,第1题0分,第2题0分,第3题0分,共0分)19.已知二次函数f(x)=ax2+bx+c(a≠0)满足条件:f(0)=1,f(x+1)﹣f(x)=2x.(1)求f(x);(2)求f(x)在区间[﹣1,1]上的最大值和最小值.20.(14分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=2,f(x+1)﹣f(x)=2x﹣1(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[﹣1,2]时,求函数的最大值和最小值.(Ⅲ)若函数g(x)=f(x)﹣mx的两个零点分别在区间(﹣1,2)和(2,4)内,求m的取值范围.21.(14分)已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)=是奇函数.(Ⅰ)确定y=g(x),y=f(x)的解析式;(Ⅱ)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;(Ⅲ)若对任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求实数k的取值范围.试卷答案1.C【考点】指数函数的单调性与特殊点.【专题】计算题.【分析】利用底数大于0小于1时指数函数为减函数,直接求a的取值范围.【解答】解:∵指数函数y=(a﹣2)x在x∈R上是减函数∴0<a﹣2<1⇒2<a<3故答案为:(2,3).故选C.【点评】本题考查指数函数的单调性.指数函数的单调性与底数的取值有关,当底数大于1时指数函数为增函数,当底数大于0小于1时指数函数为减函数.2.A【考点】分段函数的应用.【专题】作图题;数形结合;函数的性质及应用.【分析】作函数f(x)=的图象,从而结合图象可化不等式为|2a+1|>3,从而解得.【解答】解:作函数f(x)=的图象如下,,分段函数f(x)的图象开口向上,且关于y轴对称;f(2a+1)>f(3)可化为|2a+1|>3,解得,a>1或a<﹣2;故选A.【点评】本题考查了分段函数的图象与性质的应用及数形结合的思想应用.3.B【考点】函数的值.【专题】计算题;函数思想;函数的性质及应用.【分析】利用函数的解析式,求解函数值即可.【解答】解:f(x)=,f[f(﹣3)]=f[4]=log24=2.故选:B.【点评】本题考查函数值的求法,考查计算能力.4.A【考点】指数函数的图像与性质.【专题】函数的性质及应用.【分析】由指数函数的单调性可得a﹣1>1,解不等式可得.【解答】解:∵指数函数y=(a﹣1)x是增函数,∴a﹣1>1,解得a>2故选:A【点评】本题考查指数函数的单调性,属基础题.5.C【考点】分段函数的解析式求法及其图象的作法.【专题】计算题.【分析】在解答时,可以分层逐一求解.先求f(﹣2),再根据f(﹣2)的范围求解f[f(﹣2)]的值.从而获得答案.【解答】解:∵﹣2<0,∴f(﹣2)=﹣(﹣2)=2;又∵2>0,∴f[f(﹣2)]=f(2)=22=4故选C.【点评】本题考查的是分段函数求值问题.在解答中充分体现了分类讨论思想、函数求值知识以及问题转化思想的应用.属于常规题型,值得同学们总结反思.6.D【考点】二次函数的性质.【专题】计算题.【分析】根据已知中二次函数y=4x2﹣mx+5的对称轴为x=﹣2,我们可以构造关于m的方程,解方程后,即可求出函数的解析式,代入x=1后,即可得到答案.【解答】解:∵二次函数y=4x2﹣mx+5的对称轴为x=﹣2,∴=﹣2∴m=﹣16则二次函数y=4x2+16x+5当x=1时,y=25故选D【点评】本题考查的知识点是二次函数的性质,其中根据已知及二次函数的性质求出m的值,进而得到函数的解析式是解答本题的关键.7.B【考点】有理数指数幂的化简求值.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数的运算法则即可得出.【解答】解:∵a>0,∴示a3•===.故选:B.【点评】本题考查了指数的运算法则,考查了推理能力与计算能力,属于基础题.8.A【考点】二次函数的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】先求出对称轴,再根据二次函数的图象性质和单调性得m≤﹣2即可.【解答】解:由y=f(x)的对称轴是x=m,可知f(x)在[m,+∞)上递增,由题设只需m≤﹣2,所以m的取值范围(﹣∞,﹣2].故选:A.【点评】本题主要考查了二次函数的对称轴,根据单调性判对称轴满足的条件,同时考查了运算求解的能力,属于基础题.9.C【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数值即可.【解答】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(2,),∴=2α,解得α=.y=x.f(4)==.故选:C.【点评】本题考查幂函数的解析式的求法,基本知识的考查.10.A【考点】二次函数的性质.【专题】计算题.【分析】先判定二次函数的开口方向,然后根据开口向上,离对称轴越远,函数值就越大即可得到f(1)、f(2)、f(4)三者大小.【解答】解:函数f(x)=x2+bx+c开口向上,在对称轴处取最小值且离对称轴越远,函数值就越大∵函数f(x)=x2+bx+c的对称轴方程为x=2,4利用对称轴远∴f(2)<f(1)<f(4)故选A.【点评】本题主要考查了二次函数的性质,一般的开口向上,离对称轴越远,函数值就越大,开口向下,离对称轴越远,函数值就越小,属于基础题.11.或【考点】指数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】按a>1,0<a<1两种情况进行讨论:借助f(x)的单调性及最大值先求出a值,再求出其最小值即可.【解答】解:①当a>1时,f(x)在[﹣2,1]上单调递增,则f(x)的最大值为f(1)=a=4,最小值m=f(﹣2)=a﹣2=4﹣2=;②当0<a<1时,f(x)在[﹣2,1]上单调递减,则f(x)的最大值为f(﹣2)=a﹣2=4,解得a=,此时最小值m=f(1)=a=,故答案为:或.【点评】本题考查指数函数的单调性及其应用,考查分类讨论思想,对指数函数f(x)=a x (a>0,a≠1),当a>1时f(x)递增;当0<a<1时f(x)递减.12.【考点】函数的值;分段函数的应用.【专题】计算题;函数思想;函数的性质及应用.【分析】直接利用分段函数化简求解即可.【解答】解:函数,则f(1)=f(2)=f(3)==.故答案为:.【点评】本题考查分段函数的应用,函数值的求法,考查计算能力.13.(0,1)【考点】分段函数的应用.【专题】计算题;分类讨论;函数的性质及应用.【分析】按分段函数的分类讨论f(a)的表达式,从而分别解不等式即可.【解答】解:若a≤0,则f(a)=≥1,故f(a)<0无解;若a>0,则f(a)=log2a<0,解得,0<a<1;综上所述,实数a的取值范围是(0,1).故答案为:(0,1).【点评】本题考查了分段函数的简单解法及分类讨论的思想应用.14.2014【考点】函数的值;抽象函数及其应用.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由已知得,由此能求出结果.【解答】解:∵函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=1,∴===1×2014=2014.故答案为:2014.【点评】本题考查函数值的求法,是基础题,解题的关键是得到.15.【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】利用赋值法,分别求出f(1)…f(9)得出f(x)的周期是6,故求出答案.【解答】解:∵4f(x)f(y)=f(x+y)+f(x﹣y),令x=1,y=0,则4f(1)f(0)=f(1)+f(1),∴f(0)=,再令x=y=1,得f(2)=﹣,再令x=2,y=1,得f(3)=﹣,再令x=2,y=2,得f(4)=﹣,再令x=3,y=2,得f(5)=,再令x=3,y=3,得f(6)=,再令x=4,y=3,得f(7)=,再令x=4,y=4,得f(8)=,再令x=5,y=4,得f(9)=﹣,由此可以发现f(x)的周期是6,∵2014÷6=135余4,.∴f(814)=f(135×6+4)=f(4)=.故答案为:﹣.【点评】本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题16.x5【考点】幂函数的概念、解析式、定义域、值域.【专题】函数的性质及应用.【分析】设出幂函数,通过幂函数经过的点,即可求解幂函数的解析式.【解答】解:设幂函数为y=x a,因为幂函数图象过点(2,32),所以32=2a,解得a=5,所以幂函数的解析式为y=x5.故答案为:x5【点评】本题考查幂函数的函数解析式的求法,幂函数的基本知识的应用.17.(﹣∞,)【考点】二次函数的性质.【专题】转化思想;数学模型法;函数的性质及应用.【分析】若x1<x2,x1+x2=0时,有f(x1)>f(x2),函数图象的对称轴在y轴右侧,即>0,解得答案.【解答】解:∵函数f(x)=x2+(2a﹣1)x+4的图象是开口朝上,且以直线x=为对称轴的抛物线,若x1<x2,x1+x2=0时,有f(x1)>f(x2),则>0,解得:a∈(﹣∞,);故答案为:(﹣∞,)【点评】本题考查的知识点是二次函数的性质,熟练掌握二次函数的图象和性质,是解答的关键.18.3【考点】函数的值.【专题】函数的性质及应用.【分析】利用f(x)=|x﹣1|+|x2﹣a|,f(2)=1,求出a,然后求解f(1)即可.【解答】解:常数a∈R,函数f(x)=|x﹣1|+|x2﹣a|,若f(2)=1,∴1=|2﹣1|+|22﹣a|,∴a=4,函数f(x)=|x﹣1|+|x2﹣4|,∴f(1)=|1﹣1|+|12﹣4|=3,故答案为:3.【点评】本题考查函数值的求法,基本知识的考查.19.【考点】二次函数的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】(1)设f(x)=ax2+bx+c,则f(x+1)﹣f(x)=a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=2ax+a+b,根据对应项的系数相等可分别求a,b,c.(2)对函数进行配方,结合二次函数在[﹣1,1]上的单调性可分别求解函数的最值.【解答】解:(1)由f(x)=ax2+bx+c,则f(x+1)﹣f(x)=a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=2ax+a+b∴由题意得恒成立,∴,得,∴f(x)=x2﹣x+1;(2)f(x)=x2﹣x+1=(x﹣)2+在[﹣1,]单调递减,在[,1]单调递增∴f(x)min=f()=,f(x)max=f(﹣1)=3.【点评】本题主要考查了利用待定系数法求解二次函数的解析式,及二次函数在闭区间上的最值的求解,要注意函数在所给区间上的单调性,一定不能直接把区间的端点值代入当作函数的最值.20.【考点】函数的最值及其几何意义;函数零点的判定定理.【专题】计算题;函数思想;转化思想;解题方法;函数的性质及应用.【分析】(Ⅰ)利用f(0)=2,f(x+1)﹣f(x)=2x﹣1,直接求出a、b、c,然后求出函数的解析式.(Ⅱ)利用二次函数的对称轴与区间的关系,直接求解函数的最值.(Ⅲ)利用g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,列出不等式组,即可求出M的范围.【解答】(本小题满分14分)解:(Ⅰ)由f(0)=2,得c=2,又f(x+1)﹣f(x)=2x﹣1得2ax+a+b=2x﹣1,故解得:a=1,b=﹣2,所以f(x)=x2﹣2x+2.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(a,b,c各,解析式1分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)f(x)=x2﹣2x+2=(x﹣1)2+1,对称轴为x=1∈[﹣1,2],故f min(x)=f(1)=1,又f(﹣1)=5,f(2)=2,所以f max(x)=f(﹣1)=5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)g(x)=x2﹣(2+m)x+2,若g(x)的两个零点分别在区间(﹣1,2)和(2,4)内,则满足﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得:.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查二次函数的解析式的求法,二次函数的性质与最值的求法,零点判定定理的应用,考查计算能力.21.【考点】函数的零点;函数解析式的求解及常用方法;函数恒成立问题.【专题】综合题;函数思想;综合法;函数的性质及应用.【分析】(Ⅰ)设g(x)=a x(a>0且a≠1),由a3=8解得a=2.故g(x)=2x.再根据函数是奇函数,求出m、n的值,得到f(x)的解析式;(Ⅱ)根据零点存在定理得到h(﹣1)h(1)<0,解得即可;(Ⅲ)根据函数为奇函数和减函数,转化为即对一切t∈(1,4),有3t﹣3<k恒成立,再利用函数的单调性求出函数的最值即可.【解答】解:(Ⅰ)设g(x)=a x(a>0且a≠1),∵g(3)=8,∴a3=8,解得a=2.∴g(x)=2x.∴f(x)=,∵函数f(x)是定义域为R的奇函数,∴f(0)=0,∴=0,∴n=1,∴f(x)=又f(﹣1)=f(1),∴=﹣,解得m=2∴f(x)=,(Ⅱ)由(Ⅰ)知f(x)==﹣+,又h(x)=f(x)+a在(﹣1,1)上有零点,从而h(﹣1)h(1)<0,即(﹣++a)(++a)<0,∴(a+)(a﹣)<0,∴﹣<a<,∴a的取值范围为(﹣,);(Ⅲ)由(Ⅰ)知f(x)==﹣+,易知f(x)在R上为减函数,又f(x)是奇函数,∴f(2t﹣3)+f(t﹣k)>0,∴f(2t﹣3)>﹣f(t﹣k)=f(k﹣t),∵f(x)在R上为减函数,由上式得2t﹣3<k﹣t,即对一切t∈(1,4),有3t﹣3<k恒成立,令m(t)=3t﹣3,t∈(1,4),易知m(t)在(1,4)上递增,m(t)<3×4﹣3=9,∴k≥9,即实数k的取值范围是[9,+∞).【点评】本题综合考查了指数函数的定义及其性质、函数的奇偶性、单调性、恒成立问题的等价转化、属于中档题.。
高中数学函数练习题(完整版)
高中数学函数练习题(完整版).doc1、在A、B、C、D四个函数中,只有函数y=1/(x+1)的值域是(0,+∞),因此答案为A。
2、由题意可得:f(-2)=f(2)=3,即2a+12a+a=3,解得a=-1/2.在闭区间[-2,2]上,f(x)的最小值是f(0)=-a=1/2,因此答案为A。
3、对于函数y=x-2x^2+3,在[0,m]上有最大值3,最小值2,因此其开口向下,且顶点在[0,m]上。
由于开口向下,顶点为最大值,因此m=1,即答案为A。
4、设函数f(x)=log_a(x),则f(a)=1,f(2a)=log_a(2a)=1+log_a2,由题意可得:f(2a)=3f(a),即1+log_a2=3,解得a=1/4,因此答案为B。
5、在区间[0,1]上,f(x)的最大值为a+log_a2,最小值为a+log_a1=a,因此有:a+log_a2+a=2a,解得a=2,因此答案为D。
6、由题意可得:y-2xy/(x-1)^3的最小值为-1/3,1/(x-1)的最大值为正无穷,因此答案为正无穷和-1/3.7、由于XXX(ax+2x+1)的值域为R,因此ax+2x+1>0,解得a>-1/2.又因为XXX(ax+2x+1)=lg(a)+lg(x+2x+1/a)>0,解得a>0.因此a的取值范围为(0,1/2)。
8、将x=y=1代入f(x+y)=f(x)+f(y)+2xy,得f(2)=f(1)+f(1)+2=4.又因为f(1)=2,因此f(0)=f(1)+f(-1)+2(1)(-1)=0.9、将x=0代入f(x+1)=(1/3)(1/(x^2-1)),得f(1)=(1/3)(1/2)=1/6.因此f(x)=f(x+1-1)=f(x+1)-2(x+1-1)=f(x+1)-2x-2,代入f(x+1)=(1/3)(1/(x^2-1)),得f(x)=(1/3)(1/[(x-1)(x+1)])-2x-2,因此函数f(x)的值域为R。
高中数学--《函数概念与基本初等函数》测试题(含答案)
高中数学--《函数概念与基本初等函数》测试题(含答案)1.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C.pq D.﹣1【答案解析】D【分析】设该市这两年生产总值的年平均增长率为x,可得(1+p)(1+q)=(1+x)2,解出即可.解:设该市这两年生产总值的年平均增长率为x,则(1+p)(1+q)=(1+x)2,解得x=﹣1,故选:D.2.设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2﹣t)成立,则函数值f(﹣1),f(1),f(2),f(5)中,最小的一个不可能是()A.f(﹣1) B.f(1) C.f(2) D.f(5)【答案解析】B【分析】由题设知,函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2.a>0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(2).a<0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(﹣1)和f(5).解:∵对任意实数t都有f(2+t)=f(2﹣t)成立,∴函数f(x)=ax2+bx+c(a≠0)的对称轴是x=2,当a>0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(2).当a<0时,函数值f(﹣1),f(1),f(2),f(5)中,最小的一个是f(﹣1)和f(5).故选:B.3.函数f(x)=的定义域是()A.{x|x>﹣1} B.{x|x>1} C.{x|x≥﹣1} D.{x|x≥1}【答案解析】B【分析】根据根式函数,分式函数,对数函数的定义域求函数f(x)的定义域即可.解:方法1:要使函数有意义,则有,即,所以x>1.所以函数的定义域为{x|x>1}.方法2:特殊值法当x=0时,无意义,所以排除A,C.当x=1时,,则不能当分母,所以排除D.故选:B.4.已知函数f(x)在定义域(0.+∞)上是单调函数,若对于任意x∈(0,+∞),都有f(f(x)﹣)=2,则f()的值是()A.5 B.6 C.7 D.8【答案解析】B解:∵函数f(x)在定义域(0,+∞)上是单调函数,且f(f(x)﹣)=2,∴f(x)﹣为一个常数,令这个常数为n,则有f(x)﹣=n,①f(n)=2,②由①得 f(x)=n+,③②代入③,得=2,解得n=1,因此f(x)=1+,所以f()=6.故选:B.5.已知函数f(x)=,给出下列三个结论:①当a=﹣2时,函数f(x)的单调递减区间为(﹣∞,1);②若函数f(x)无最小值,则a的取值范围为(0,+∞);③若a<1且a≠0,则∃b∈R,使得函数y=f(x)﹣b恰有3个零点x1,x2,x3,且x1x2x3=﹣1.其中,所有正确结论的个数是()A.0 B.1 C.2 D.3【答案解析】C解:对于①:当a=﹣2时,由0<e﹣2<1,f(0)=1<f(e﹣2)=|lne﹣2|=2,所以函数f(x)在区间(﹣∞,1)上不单调递减,故①错误;对于②:若函数可转换为,画出函数的图象,如图所示:所以函数f(x)无最小值,则a的取值范围为(0,+∞).故②正确.对于③令y=f(x)﹣b=0,结合函数我的图象,不妨设x1<0<x2<1<x3,则ax1+1=﹣lnx2=lnx3=b,所以,,所以,令=﹣1,即b=﹣a+1,当a<0时,b=﹣a+1>1,故y=f(x)﹣b=0有三个零点,且x1•x2•x3=﹣1,符合题意,当0<a<1时,0<b=﹣a+1<1,故y=f(x)﹣b=0有三个零点,且x1•x2•x3=﹣1,符合题意,故③正确.故正确答案为:②③,故选:C.6.“lna>lnb”是“3a>3b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案解析】A解:“3a>3b”⇔“a>b”,“lna>lnb”⇔“a>b>0”,∵“a>b>0”是“a>b”的充分而不必要条件,故“lna>lnb”是“3a>3b”的充分而不必要条件,故选:A.7.已知f(x)是R上的奇函数,当x>0时,f(x)=,则f(x)>0的解集是()A.(﹣1,0) B.(0,1)C.(﹣∞,﹣1)∪(0,1) D.(﹣1,0)∪(0,1)【答案解析】C解:因为f(x)是R上的奇函数,当x>0时,f(x)=log x,当x<0时,﹣x>0,则f(﹣x)=﹣f(x)=log(﹣x),所以f(x)=﹣log(﹣x),又f(0)=0,则由f(x)>0可得,或,解可得0<x<1或x<﹣1.故选:C.8.已知a=3﹣2,b=log0.42,c=log23,则()A.a>b>c B.a>c>b C.b>c>a D.c>a>b【答案解析】D解:0<3﹣2<1,log0.42<log0.41=0,log23>log22=1,∴c>a>b.故选:D.9.(多选题)已知函数f(x)=,则()A.f(x)为奇函数 B.f(x)为减函数C.f(x)有且只有一个零点 D.f(x)的值域为(﹣1,1)【答案解析】ACD解:根据题意,依次分析选项:对于A,f(x)=,其定义域为R,有f(﹣x)==﹣=﹣f(x),f(x)为奇函数,A正确;对于B,f(x)===1﹣,设t=2x+1,有t>0且t=2x+1在R上为增函数,而y=1﹣在(0,+∞)为增函数,故f(x)在R上为增函数,B错误;对于C,由B的结论,f(x)在R上为增函数,且f(0)=0,故f(x)有且只有一个零点,C正确;对于D,y=,变形可得2x=,则有>0,解可得﹣1<y<1,即f(x)的值域为(﹣1,1),D正确;故选:ACD.10.已知函数f(x)=,则不等式f(x+1)<1的解集为()A.(1,7) B.(0,7) C.(1,8) D.(﹣∞,7)【答案解析】B解:①当x+1≤1,即x≤0时,∴e2﹣(x+1)<1,即e1﹣x<1,∴1﹣x<0,∴x>1,又∵x≤0,∴无解.②当x+1>1,即x>0时,∴lg(x+1+2)<1,∴lg(x+3)<1,∴0<x+3<10,∴﹣3<x<7,又∵x>0,∴0<x<7,故选:B.。
高中数学有关函数练习题
高中数学【1】《函数》测试题一、选择题(共50分):1.已知函数y f x =+()1的图象过点(3,2),则函数f x ()的图象关于x 轴的对称图形一定过点 A. (2,-2)B. (2,2) C. (-4,2) D. (4,-2) 2.如果奇函数()f x 在区间[](),0a b b a >>上是增函数,且最小值为m ,那么()f x 在区间[],b a --上是A.增函数且最小值为mB.增函数且最大值为m -C.减函数且最小值为mD.减函数且最大值为m -3. 与函数()lg 210.1x y -=的图象相同的函数解析式是A .121()2y x x =-> B .121y x =- C .11()212y x x =>- D .121y x =- 4.对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是A .-∞(,-2]B .[-2,2]C .[-2,)+∞D .[0,)+∞5.已知函数)12(+=x f y 是定义在R 上的奇函数,函数)(x g y =的图象与函数)(x f y =的图象关于直线x y =对称,则)()(x g x g -+的值为A .2B .0C .1D .不能确定6.把函数)(x f y =的图像沿x 轴向右平移2个单位,所得的图像为C ,C 关于x 轴对称的图像为x y 2=的图像,则)(x f y =的函数表达式为A. 22+=x y B. 22+-=x yC. 22--=x y D. )2(log 2+-=x y7.当01a b <<<时,下列不等式中正确的是A.b ba a )1()1(1->- B.(1)(1)a ba b +>+ C.2)1()1(bba a ->- D.(1)(1)a ba b ->-8.当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,则a 的取值范围是 A.1[,)2-+∞ B.[)+∞,0 C.[)+∞,1 D.2[,)3+∞9.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3 C.1[,1)7D.11[,)7310.某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。
高中数学函数试题及答案
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中数学测试题及答案
高中数学测试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)答案:B2. 一个等差数列的首项为3,公差为2,求第10项的值。
A. 23B. 25C. 27D. 29答案:A3. 已知函数f(x) = ax^2 + bx + c,其中a, b, c为常数,且f(1) = 2,f(-1) = 0,f(2) = 8,求a的值。
A. 1B. 2C. 3D. 4答案:B4. 一个圆的直径为10cm,求其面积。
A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B5. 一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。
A. 5cmB. 6cmC. 7cmD. 8cm答案:A6. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。
A. {1, 2, 3}B. {2, 3}C. {2, 3, 4}D. {1, 2, 3, 4}答案:B7. 抛物线y = x^2 - 4x + 3的顶点坐标是?A. (2, 1)B. (2, -1)C. (-2, 1)D. (-2, -1)答案:A8. 函数y = 2x + 1的反函数是?A. y = (x - 1) / 2B. y = (x + 1) / 2C. y = 2x - 1D. y = -2x + 1答案:A9. 已知一个等比数列的前三项分别为2, 6, 18,求第四项。
A. 54B. 48C. 36D. 24答案:A10. 一个正方体的体积是27cm^3,求其边长。
A. 3cmB. 6cmC. 9cmD. 12cm答案:A二、填空题(每题4分,共20分)11. 计算:(3x^2 - 2x + 1) - (2x^2 + 3x - 4) = _______。
答案:x^2 - 5x + 512. 一个数列的前四项为1, 3, 6, 10,求第五项。
高中数学_经典函数试题及答案
经典函数测试题及答案(满分: 150 分考试时间:120分钟)一、选择题:本大题共12 小题。
每题 5 分,共 60 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.函数y f (2x 1) 是偶函数,则函数 y f(2x) 的对称轴是()A.x 0 B .x 1 C.x 11 D .x2 22.已知0 a 1, b1,则函数 y a x b 的图象不经过()A.第一象限 B .第二象限 C .第三象限 D .第四象限3.函数y ln x2x 6 的零点必然位于区间()A. (1,2)B. (2,3) C . (3,4) D. (4,5)4.给出四个命题:(1)当n0时,y x n的图象是一条直线;(2)幂函数图象都经过( 0,1)、( 1,1)两点;(3)幂函数图象不行能出此刻第四象限;(4)幂函数y x n在第一象限为减函数,则n 0。
此中正确的命题个数是()A. 1B. 2C. 3D. 45.函数y a x在[0,1]上的最大值与最小值的和为3,则a的值为()A.1B. 2C. 4D.1 246.设f ( x)是奇函数,当x0 时, f ( x)log 2 x, 则当x0 时, f ( x)( ) A.log 2 x B .log2(x) C .log2x D.log 2 (x)7.若方程 2(m 1 )x2+4 mx3m20 的两根同号,则m 的取值范围为().2 m1B .2m 1或2m1A322 m 2m 1C.m1或m D .1或338 .已知 f (x) 是周期为2的奇函数,当0 x 1 时, f ( x) lg x. 设a635()f ( ), b f ( ), c f ( ), 则522A.a b c B .b a c C .c b a D .c a b9.已知 0x y a1,则有()A.log a(xy)0 B .0log a ( xy)1 C . 1< log a( xy)0D .log a( xy)2 10.已知0a1, log a m log a n0, 则()A.1 n m B .1 m n C .m n 1 D .n m 111.设f ( x)lg2x, 则 f x f2的定义域为()2x2xA. (4,0)(0,4)B.( 4, 1)(1,4)C.( 2, 1)(1,2)D.( 4, 2)(2,4)12.已知f ( x)(3a1) x4a, x1log a x, x1是 R 上的减函数,那么a的取值范围是()A. (0,1) B. (0,1)C.1,1D.1,13737二、填空题:本大题共 4 小题,每题 4 分,共 16 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-函数测试题
1..下列各组函数中表示相同函数的是 ( )
A. y = y = B.ln x y e =与ln x y e =
C. (1)(3)1
x x y x -+=
- 与y=x+3 D.0
x y =与01y x =
2.函数2012
2012
11)(x x x f +-=的值域是( )
A.[-1,1]
B.(-1,1]
C.[-1,1)
D.(-1,1)
3.已知f :x →sin x 是集合A(A ⊆[0,2π])到集合B=}2
1
,0{的一个映射,则集合A 中的元素个数最多有 ( )
A.4个 B.5个 C.6个 D.7个 4.函数
)0()(2<++=a c bx ax x f 的定义域为D ,若所有点),))((,(D t s t f s ∈构成一个
正方形区域,则a 的值为 ( )
A.2- B.4- C.8- D.不确定
5.存在函数)(x f 满足:对于任意x ∈R 都有 ( )
A.f(sin2x)=sinx
B. f(sin2x)=x 2+x
C.f(x 2+1)=|x+1|
D. f(x 2+2x)=|x+1|
6.若函数2
1
()log ()2
a f x x ax =-+有最小值,则实数a 的取值范围是( ) A.(0,1) B.(0,1)∪(0,2) C.(1,2) D.[2 ,+∞)
7.已知减函数)(x f 的定义域是实数集R ,n m ,都是实数.如果不等式
()()f m f n ->()()f m f n ---成立,那么下列不等式成立的是( )
A.0m n -< B.0m n -> C. 0m n +< D.0m n +>
8.已知2
1
(),()()2
x
f x x
g x m ==-,若对任意1x ∈[0,2],存在2x ∈[1,2],使得
12()()f x g x ≥,则实数m 的取值范围是( )
A.[
41 ,+∞) B.(-∞, 41 ] C.[ 12 ,+∞) D.(-∞,- 7
2
) 9.设偶函数)(x f 满足3
()8(0)f x x x =-≥,则{|(2)0}x f x ->= ( )
A.{x|x<-2或x>4} B.x|x<0或x>4} C.(C){x|x<0或x>6} D.x|x<-2或x>2} 10.设奇函数)(x f 在(0,+∞)上为增函数,且(2)0f =,则不等式
0)
()(<--x
x f x f
的解集为 ( )
A.(-2,0)∪(2,+∞) B.(-∞,-2)∪(0,2) C.(-∞,-2)∪(2,+∞) D.(-2,0)∪(0,2)
11.已知定义在R 上的函数)(x f 满足(5)()2f x f x +=-+,且当(0,5)x ∈时,
()lg f x x =,则(2001)f 的值为______.
12.若)(x f =
a
x x ++3
2在(1,)-+∞上满足对任意12x x <,都有12()()f x g x >,则a 的取值范围是_______.
13.已知函数 ⎩⎨⎧≥+-<=)
0(4)3()0()(x a x a x a x f x 满足对任意12x x ≠,都有
0)
()(2
121<--x x x f x f 成立,则a 的取值范围是_____.
14.已知函数)(x f =2
23,1,
lg(1),1, x x x x x ⎧+-≥⎪
⎨+<⎪⎩
,则((3))f f -= ,)(x f 的最小值是 .
15.若m n -表示],[n m 的区间长度,函数)0()(>+-=a x x a x f 的值域的区间长度
为)12(2-,则实数a 的值为 .
16.函数3
2
()f x ax bx cx d =+++的部分数值如下: x -3 -2 -1 0 1 2 3 4 5 6 y -80
-24
4
16
60
144
280
则函数lg ()y f x =的定义域为
17.已知函数()3,()34(01),(2)18x
ax
f x
g x x x f a λ==⋅-≤≤+=f(x)=3x , (1)求a 的值;
(2)若函数()g x 在区间[0,1]上是单调减函数,求实数λ的取值范围.
18.已知定义域为[0,1]的函数)(x f 同时满足以下三个条件: ①对任意的x ∈[0,1],总有()0f x ≥;②(1)1f =;
③若120,0x x ≥≥且121x x +≤,则有1212()()()f x x f x f x +≥+ 成立,则称f(x)为“友谊函数”.
(1) 若已知)(x f 为“友谊函数”,求(0)f 的值;
(2) 函数()21g x x =-在区间[0,1]上是否为“友谊函数”?并给出理由;
(3) 已知)(x f 为“友谊函数”,且1201x x ≤<≤,求证:12()()f x f x ≤.
19.已知)(x f 是定义在[-1,1]上的奇函数,且(1)1f =,若对任意的b a ,∈[-1,1],当
0a b +≠时,总有
0)
()(>++b
a b f a f .
(1)判断函数)(x f 在[-1,1]上的单调性,并证明你的结论; (2)解不等式:(1)f x +<)1
1
(-x f ;
函数 参考答案
DBBBD CAABD
11.__0____. 12._2
3
1<
≤a _____. 13._]4
1,0(____. 14. 0 , 332- . 15. 4 .
16. (-1,1)∪(2,+∞).
17.(1)2log 3=a ; (2)(-∞,2] 18. (1)0; (2)是; (3) 略
19.(1) 增函数; (2)22<≤-x。