2020初中数学课件上海初一数学绝对值难题解析
初一数学绝对值知识点、考点及例题梳理
初一数学绝对值知识点、考点及例题梳理绝对值是初一上册数学的重难点之一,很多同学绝对值的学习中都存在着一些问题,所有问题的根源大都是对绝对值的概念理解不透彻,没有建立起完整的知识体系,在此梳理下在绝对值学习中需要注意的一些要点。
在绝对值的学习中,首先需要去理解和掌握的就是绝对值的概念,什么是绝对值呢?在数轴上,一个数所对应的点与原点之间的距离。
在概念的理解中需要注意,绝对值这个概念是从数轴引出的,它表示的是距离,绝对值本质上是数轴上两点之间的距离,哪两点之间的距离呢?表示某个数的点和原点。
那么由绝对值的定义,我们可以得到有关绝对值的那些性质呢?因为绝对值表示的是距离,从日常经验可知,距离最小为0,不可能为负数,所以就得出了绝对值最重要的一条性质:绝对值具有非负性。
从绝对值的定义出发,结合绝对值的非负性,可以得到绝对值的代数意义,也看成是绝对值性质的推广:正数的绝对值等于它本身;0的绝对值是0;负数的绝对值等于它的相反数。
以上三条需要牢记。
这是求绝对值和简化绝对值的方法基础。
除过绝对值的定义和性质之外,在绝对值的学习中还需要注意以下细节和要点:任何数都有绝对值,只有一个,而且是非负的。
但是有两个数的绝对值等于正数,而且是相反的。
很多同学容易漏掉其中的一个,比较容易出错。
在有关绝对值的运算,在解含有绝对值的方程中,经常需要运用到分类讨论思路。
绝对值的概念来源于数轴,代表数轴上两点之间的距离。
绝对值与数轴有着密切的关系,在绝对值相关题目的分析和求解中,一定要注意数形结合思想的应用。
特别是在绝对值的几何意义的理解和应用上,需要结合数轴来分析和解决。
绝对值等于它本身的数是正数和0,绝对值等于它的相反数的数是负数和0.1.解决问题的关键是理解绝对值的定义和性质,把握其非负性。
2、求一个数的绝对值,先判定这个数是正数、负数还是0,再根据绝对值的性质确定最终的结果。
3、利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小。
沪科版七年级上册课件:1.2 第3课时 绝对值(共15张PPT)
•
10、阅读一切好书如同和过去最杰出的人谈话。00:16:4300:16:4300:168/27/2021 12:16:43 AM
•
11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.8.2700:16:4300:16Aug-2127-Aug-21
合作探究
甲、乙两辆出租车在一条东西走向的街道上行驶,记向
东行驶的里程数为正.两辆出租车都从O地出发,甲车向东行
驶10km到达A处,记作 +10 km,乙车向西行驶10km到达B处, 记做 -10 km.
以O为原点,取适当的单位长度画数轴,并在数轴上标出
A、B的位置,则A、B两点与原点距离分别是多少?它们的实
(2)一个数的绝对值等于它的相反数,这个数一定是负数;( )
(3)如果两个数的绝对值相等,那么这两个数一定相等; ( )
(4)如果两个数不相等,那么这两个数的绝对值一定不等;( )
(5)有理数的绝对值一定是非负数;
()
课堂小结
定 义 绝 对 值 应 用
代数意义
|a|=a,(a>0) |a|=-a,(a<0)
解: |3|=3;|3.14|=3.14; 1 = 1;|-2.8|=2.8.
55
2.点A为数轴上表示-2的动点,当点A沿数轴移动4个单
位长度到点B时,点B所表示的实数为( C ).
A.2 B. -6
C.2或-6 D.不同于以上答案
解析:利用数轴,可以直观地看到问题的答案.
.
向左移动4个单位,B点为-6.
|-0.1|=1;
|+1|=1; |4.5|=4.5;
当a是负数时,|a|=-a
七年级数学竞赛《绝对值》教学课件
c b0 a x 图1-1
例 3 、已知x<-3,化简: |3+|2-|1+x|||.
• 解: 因为 abc≠0,所以 a≠0,b≠0,c≠0.
• (1)当 a,b,c 均大于零时,原式=3;
• (2)当 a,b,c 均小于零时,原式=-3;
• (3)当 a,b,c 中有两个大于零,一个小于零时,
• 原式=1;
• (4)当 a,b,c 中有两个小于零,一个大于零时,
• 原式=-1a. b c • 所以 | a | | b | | c | 的所有可能值是±3, ±1 • 说明本例的解法是采取把 a,b,c 中大于零与小于零的
• 例如,化简|3x+1|,只要考虑 3x+1 的正负,即
可去掉绝对值符号.这里我们是分 x 1 与x 1
•
两种情况加以讨论的,此时 x
类似地,对于|2x-1|而言,x
1 2
13是一个分3 界点3, 是一个分界点,为
同时去掉两个绝对值符号,我们把两个分界点
• 所 化示13简和)了即12 。标x 在13,数13轴x上12,, x 把,12 数这轴样分我为们三就部可份以(分如类图1讨-论2
• 2x-5x+3x=0 一种情况.因此必须有
• |4-5x|=4-5x 且|1-3x|=3x-1.
• 故 x 应满足的条件是 4 5x 0
1
• 解之得:3
沪科版七年级上册.3绝对值课件
巩固练习
1、-8 的绝对值是 ( A )
A.8
B.
1 8
2、3.14-π 的绝对值是 (
C.-8
D)
A.0
B.-(π-3.14)
C.3.14-π
D.-
1 8
D.π-3.14
求一个数的绝对值的方法:
要求一个数的绝对值,第一判断这个数是正数、负数还是零, 然后根据“一个正数的绝对值是它本身;一个负数的绝对值是它 的相反数;0的绝对值是0”求出该数的绝对值.
对应练习
2、 求下列各数的绝对值:
6,-8,-3.9,52
,-
2 11
,100,0
解: |6|=6
|-8|=8
|-3.9|=3.9
|
5 2
|=
5 2
|-
121|=
2 11
|100|=100
|0|=0
思考:一个数的绝对值与这个数有什么关系?
绝对值的性质:
一个正数的绝对值是它本身 一个负数的绝对值是它的相反数 0的绝对值是0.
值是 7 ,记作|7|;
(2) 表示2.8的点与原点的距离是 2.8 个单位长度,即2.8的绝
对值是 2.8 ,记作 |2.8|;
0 0
(3) 表示0的点与原点的距离是 个单位长度,即0的绝对
值是
,记作 |0|;
(4) 表示-6的点与原点的距离是 6 个单位长度,即-6的绝
对值是__6___,记作 |-6|;
巩固练习
9、如果一个数的绝对值是5,那么这个数是( C ).
A.5
B.-5
C.5或-5
D.0
10、若|x|=|-5|,则x= ±5 ; 若|-x|=|-5|,则x= ±5 ; 若|x|=5,且x<0,则x= -5 ;
七年级数学上册PPT课件--《绝对值》
课堂小结
一、比较两个有理数大小的方法:
几何方法:数轴上左边的点表示的数比右边的 点表示的数小.
-4 -3 -2 -1 0 1 2
代数方法: (1)正数大于0,0大于负数,正数大于负数; (2)两个正数,绝对值大的大;
两个负数,绝大值在的反而小.
①若│x│=0,则x=
│x│=3,则x=
;
②若x=—x,则x=
;
③若│x│<3,则x的取值范围
;
④若│x│>3,则x的取值范围
;
文字表述
符号表示
①一个正数的绝对值是它本身 (1)若a > 0,则| a | = a;
②一个负数的绝对值是它的相反数(2)若a < 0,则| a | = -a;
③0的绝对值是0
(3)若a = 0,则| a | = 0;
3、任何一个有理数a的绝对值总是非负数,符号表示|a|≥0
示标导入
我们已知两个正数(或0)之间怎样比较大小,例如: 0<1,1<2,2<3,… 任意两个有理数 (例如-4和-3,-2和0, -1和1)怎样比较大小呢?
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
三:导学施教
在数轴上你有何发现? 从左往右的数越来越大.
你觉得两个有理数可以比较大小吗?
..............
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 ℃
数学中规定:数轴上表示有理数,它们从左 到右的顺序,就是从小到大 的顺序,即右边的 数 大于 左边的数.
义务教育教科书 数学 七年级 上册
1.2 有理数 1.2.4 绝对值(2)
沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解
1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。
七年级上册数学绝对值PPT课件(共18张PPT)
(2)一个数的绝对值等于它的相反数,这个数一定是负数;( )
(3)如果两个数的绝对值相等,那么这两个数一定相等;
( )
(4)如果两个数不相等,那么这两个数的绝对值一定不等;( ) (5)有理数的绝对值一定是非负数; ( )
课堂练习
2、化简
(1)|-0.1|=____;
3 (3)| |=______; 100
一个负数的绝对值是正数.
0的绝对值是0.
|a|≥0.
结论2:一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数.
0的绝对值是0
思 考
若字母a表示一个有理数,你知道a的绝对值等于什么吗?
a ; (1)当a是正数时,|a|=____ -a (2)当a是负数时,|a|=__;
0 . (3)当a=0时,|a|=___
(2)绝对值最小的数是______. 0
非负数 (3)绝对值等于本身的数是_________ 1,2 (4)绝对值小于3的正整数是_________
-3,-2,2,3 (5)绝对值不大于3且大于1的整数是 ____________
课堂练习
(6)|a|=-a,则a____0 ≤
a (7)若a<0,则 -|-(- a)|= _____
1.2.4数轴
学习目标
1.理解绝对值的概念及性质.(难点、重点)
2.会求一个有理数的绝对值.
情景引入
两只小狗分别 距原点多远?
大象距原点 多远?
-3
-2
-1
0
1
2
3
4
新知探究
甲、乙两辆出租车在一条东西走向的街道上行驶,记向 东行驶的里程数为正.两辆出租车都从O地出发,甲车向东行 驶10km到达A处,记作 +10 km,乙车向西行驶10km到达B处, 记做 -10 km. 以O为原点,取适当的单位长度画数轴,并在数轴上标出
七年级上册数学PPT课件--《绝对值》
4.绝对值为-3的数是 .
5.“任何数的绝对值都是正数”的说法对吗?
6.最小的绝对值为 .
7.绝对值最小的数是 .
8.绝对值小于4.5的整数是 .
练一练:
1.(1)在数轴上画出表示下列各数的点:
(2)填空:
∣0∣=
∣9∣=
∣-0.4∣=
∣ ∣=
∣-2∣=
(3)比较-3、-0.4、-2的绝对值的大小,并用“<”号把它们连接起来.
-3
∣ ∣=
-3
-0.4
0
9
-2
一.回答下列问题:
1.说出 表示的意义.
∣
∣
2.到原点距离为3的数是 .
9.绝对值不大于3的整数是 .
二.比较下列各对数的大小:
(1)2 与 0
(2)-2 与 0
(3)2 与 -2
(4)-2 与-4
(5)-2 与
∣
∣
-4
(7)-2 与
∣
-∣
-4
(1
0
1
2
3
2
所以-3的绝对值是 ;
表示2的点与原点的距离是 ,
表示0的点与原点的距离是 ,
所以2的绝对值是 ;
绝 对 值
小明的家在学校西边3Km处,小丽的家在学校东边2Km处。
-3
-2
-1
0
1
2
3
2
你能建立数轴恰当表示他们的位置吗?
假如他们步行的速度相同,谁先到学校?为什么?
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值。
例如:
表示-3的点与原点的距离是 ,
4
绝对值的表示方法
七年级数学上学期 绝对值重难点突破(含解析)
初中数学人教版七年级上学期第一章有理数绝对值重难点突破一、解答题1.(8分)(2020七上·硚口期中)已知是有理数.(1)当时,先判断的正、负符号,再求的值;(2)当时,直接写出的值.2.(8分)(2021七上·相城月考)已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|3.(10分)(2021七上·苏州月考)如图所示,有理数a,b,c在数轴上的对应点分别是A、B、C,原点为点O.①化简:|a﹣c|+2|c﹣b|﹣|b﹣a|.②若B为线段AC的中点,OA=6,OA=4OB,求c的值.4.(12分)(2020七上·金华期中)数轴是一个非常重要的数学工具,实数和数轴上的点能建立一一对应的关系,它建立了数与形的联系,是初中“数形结合”的基础。
我们知道一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,如:,:表示数的点到原点的距离。
同样的,:表示数的点到表示数3的点的距离。
请结合数轴解决下列问题:①当时,表示什么意思?________;②若,则________;③若,则的值是________;④求使的值最小的所有符合条件的整数.二、综合题5.(10分)(2021七上·薛城期中)数轴上两点之间的距离等于这两个点所对应的数的差的绝对值,例如:点A、B在数轴上对应的数分别是a、b,则点A、B两点间的距离表示为.利用上述结论,回答以下问题(1)若点A在数轴上表示-3,点B在数轴上表示1,那么AB=;(2)若数轴上两点C、D表示的数为x、-1①C、D两点之间的距离可用含x的式子表示为;②若该两点之间的距离是3,那么x值为;(3)若数轴上表示a的点位于-5和2之间,化简.6.(11分)(2021七上·建昌期中)“数形结合”是重要的数学思想.如:表示与差的绝对值,实际上也可以理解为与在数轴上所对应的两个点之间的距离.进一步地,数轴上两个点A,B所对应的数分别用,表示,那么A,B两点之间的距离表示为.利用此结论,回答以下问题:(1)数轴上表示和两点之间的距离是.(2)可理解为与两数在数轴上所对应的两点之间的距离;可理解为与两数在数轴上所对应的两点之间的距离.(3)若,则.(4)若表示一个有理数,的最小值为.(5)直接写出所有符合条件的整数x,使得,的值为7.(10分)(2021七上·温岭期中)点A、B在数轴上分别表示数a,b,A、B两点之间的距离表示为|AB|.数轴上A、B两点之间的距离|AB|=|a-b|回答下列问题:(1)数轴上表示-1和-4的两点之间的距离是;(2)数轴上表示x和-1的两点A之和B之间的距离是,如果|AB|=2,那么x的值是;(3)若x表示一个有理数,且﹣1<x<3,则|x﹣3|+|x+1|=;(4)若x表示一个有理数,且|x﹣1|+|x+2|>3,则有理数x的取值范围是.8.(15分)(2020七上·武汉期中)(问题背景)在数轴上,点表示数在原点的左边,点表示的数在原点的右边,如图1,所示,则有:①;②线段的长度等于.(问题解决)点、点、点在数轴上的位置如图2所示,三点对应的数分别为,、.①线段的长度为▲;②若点为线段的中点,则点表示的数是▲;③化简:.(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应的数为,点对应的数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要1秒,完全经过线段需要2秒,求的值;②已知,当式子取最小值时,相应的的取值范围是▲,式子的最小值是▲.(用含、的式子表示)9.(16分)(2020七上·孝南期中)已知是最小的正整数,且,满足,请回答:(1)请直接写出,,的值:=,=,=;(2)在(1)的条件下,若点为一动点,其对应的数为,点在0到1之间运动,即时,化简:;(3)在(1)(2)的条件下,,,分别对应的点、、开始在数轴上运动,若点以每秒1个单位长度的速度向左运动,同时,点和点分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为.请问:的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.答案解析部分一、解答题1.【答案】(1)解:,;(2)解:当同正时,;当两正一负时,;当一正两负时,;当同负时,;综上:或±1.【考点】绝对值及有理数的绝对值,代数式求值【解析】【分析】(1)利用有理数的乘法法则可知a,b同号,再利用有理数的加法法则,结合已知可得到a,b同为负数,然后化简绝对值,可求出结果。
初一数学绝对值难题解析完整版
初一数学绝对值难题解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】初一数学绝对值难题解析绝对值是初一数学的一个重要知识点,它的概念本身不难,但却经常拿来出一些难题,考验的是学生对基本概念的理解程度和基本性质的灵活运用能力。
绝对值有两个意义:(1)代数意义:非负数(包括零)的绝对值是它本身,负数的绝对值是它的相反数。
即|a|=a(当a≥0),|a|=-a(当a<0)(2)几何意义:一个数的绝对值等于数轴上表示它的点到原点的距离。
灵活应用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0)(4)|a|-|b|≤|a+b|≤|a|+|b|;(5)|a|-|b|≤|a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在什么条件下成立?|a-b|=|a|-|b|,在什么条件下成立?常用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)运用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
例题解析:第一类:考察对绝对值代数意义的理解和分类讨论思想的运用1、在数轴上表示a、b两个数的点如图所示,并且已知表示c的点在原点左侧,请化简下列式子:(1)|a-b|-|c-b|解:∵a<0,b>0∴a-b<0c<0,b>0∴c-b<0故,原式=(b-a)-(b-c)=c-a(2)|a-c|-|a+c|解:∵a<0,c<0∴a-c要分类讨论,a+c<0当a-c≥0时,a≥c,原式=(a-c)+(a+c)=2a当a-c<0时,a<c,原式=(c-a)+(a+c)=2c2、设x<-1,化简2-|2-|x-2||。
解:∵x<-1∴x-2<0原式=2-|2-(2-x)|=2-|x|=2+x3、设3<a<4,化简|a-3|+|a-6|。
数学沪科版七年级(上册)第3课时绝对值
拓展延伸
a
a
4. (1)若a>0,则
a
= 1,若 a
=__1___,
则a是__正__数___.
(2)若|x| = 3,则x =__±__3__;若|﹣x| = 4,
则 x =__±__4__.
1.通过这节课的学习,你有哪些收获? 2.你还存在哪些疑问,与同伴交流。
Ⅲ.绝对值最小的数是1. ( × )
Ⅳ.任何有理数的绝对值都是正数. ( × )
0的绝对值是0,但0不是正数
互为相反数的两个数的绝对值有什么关系? 分析:一对相反数虽然分别在原点两边,但 它们到原点的距离是相等的.
结论:互为相反数的两个数的绝对值相等.
例4 求下列各数的绝对值: 23,﹢1,﹣0.1,4.5.
绝对值: ﹣4, 3,﹣2,0,3.2,﹣0.5,7. 2
2.填空
|﹣3|=__3__,|1.5|=_1_.5__,|0|=__0__,
|﹣5|=__5__,|﹣0.02|=_0_.0_2_,| 3|=__3__,
| 1|=__1__,|﹣100|=_1_0_0_.
44
66
3.计算ห้องสมุดไป่ตู้
(1)|﹣8|+|9|=17
第3课时 绝对值
沪科版·七年级数学上册
小红和小明从同一处O出发,分别向东、 西方向行走10米,他们行走的方向相同吗?他 们行走的路程相同吗?
10
O
10
- 10
0
10 东
上述这个问题反映了什么数学知识?
思考
在数轴上,表示4与-4的点到原点的距离各
是多少?表示 1 与 1 的点到原点的距离各是
2
七年级数学绝对值PPT优秀课件
0
解: |6|=6
|-8|=8
|-3.9|=3.9
5= 5 22
2=2 11 11
|100|=100
|0|=0
练习
2. 判断下列说法是否正确
(1)符号相反的数互为相反数
(×)
(2)符号相反且绝对值相等的数互为相反数( √ )
(3)一个数的绝对值越大,表示它的点在数轴上
越靠右
( ×)
(4)一个数的绝对值越大,表示它的点在数轴上
(1)当a是正数时,|a|=____a________ (2)当a是负数时,|a|=__-__a________ (3)当a是0时,|a|=_____0_______
你可以给 a 取些具体数值检验你填写的结果 是否正确.
练习
1. 写出下列各数的绝对值:
6,
-8,
-3.9 ,
5 2
, 2 , 100,
离原点越远
(√ )
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
这里的数a可以是 正数、负数和0
-10
0
10
例如,A, B两点分别表示10和-10,它们与原点的 距离都是10个单位的长度,所以10和-10的绝对值 都是10,即|10|=10,|-10|=10,显然|0|=0.
概念
由绝对值的定义可知:一个正数的绝对值 是___它__本__身____;一个负数的绝对值是它的 _____相__反__数_________;0的绝对值是___0____.
人教课标七上
绝对值
思考
两辆汽车从同一处O出发,分别向东、西方向行 驶10km,到达A、B两处.
B
10
上海沪科版初中数学七年级上册1.2 第3课时 绝对值ppt课件
中考 试题
例2
点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长度到
点B时,点B所表示的实数为( C ).
A.2
B. -6 C.2或-6
D.不同于以上答案
分析 利用数轴,可以直观地看到问题的答案.
解 如果点A是向左移动,则点B表示-6,如果点A是向右移动, 则点B表示2,故选C.
中考 试题
例3
动脑筋
学校位于数轴的原点处,小光、小明、小亮家 分别位于点A,B,C处,单位长度表示1km,小光、 小明、小亮的家分别距学校多远?
小光家到学校4km远.
小亮家到学校2km远.
小明家到学校2km远.
结论
在数轴上,表示一个数的点与原点的 距离叫作这个数的绝对值.
结论
一个正数的绝对值等于它本身.
一个负数的绝对值等于它的相反数. 0 的绝对值等于 0.
1.在数轴上表示出四家公共场所的位置. 2.列式计算青少年宫与商场之间的距离.
分析
画数轴要注意数轴的三要素,选择适当的点(学校)为坐标原点,求数轴
上两点的距离时要利用数形结合思想.
解 (1)
-200 -100 0 100 200 300 400 500
商场
学校
青少年宫 医院
(2) 青少年宫与商场之间的距离为300-(-200)=500米.
9
3
0
5
-3 5
-9
2.73
-2.73
0
2.求下列各数的绝对值:3,3.14,
1 5
,-2.8.
解:
| 3 |=3;
| 3.14 |=3.14;
-ቤተ መጻሕፍቲ ባይዱ 5
=
1 5
;
七年级数学专题绝对值问题的几种解法ppt课件
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
三、零点分段法
说明:本题是求两个绝对值和的问题.解题的关键是如何同时 去掉两个绝对值符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
一、直接推理法
说明: 本题是直接利用有理数加法法则和有理数乘法法则确定字母符号
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
二、巧用数轴法
说明:本题是通过数轴,运用数形结合的方法确定字母的大小顺序, 从而达到去掉绝对值的目的.
小结:学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
练习:
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
知识回顾
• 1.去绝对值的符号法则: • 2.绝对值基本性质 • ①非负性:
• 3.绝对值的几何意义 • 从数轴上看, |a|表示数 a的点到原点的距
离(长度,非负); |a-b|表示数a 、数 b的两点 间的距离.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
最新人教版初中七年级上册数学《绝对值》精品课件
- 10
0
10
A, B两点分别表示数10和-10,它们与原
点的距离都是10个单位长度,所以10和-10的绝
对值都是10,即 |10|=10,|-10|=10.
显然|0|=0.
由绝对值的定义可知: a.一个正数的绝对值是它本身; b.一个负数的绝对值是它的相反数; c.0的绝对值是0. 即 (1)若a > 0,则| a | = a; (2)若a < 0,则| a | = -a; (3)若a = 0,则| a | = 0;
Ⅲ.绝对值最小的数是1. ( × )
Ⅳ.任何有理数的绝对值都是正数. ( × )
0的绝对值是0,但0不是正数
互为相反数的两个数的绝对值有什么关系? 分析:一对相反数虽然分别在原点两边,但 它们到原点的距离是相等的.
结论:互为相反数的两个数的绝对值相等.
练习:写出下列各数的绝对值:
6,-8,-0.9,
1.2.4 绝对值
第1课时 绝对值
R·七年级上册
新课导入
小红和小明从同一处O出发,分别向东、 西方向行走10米,他们行走的方向相同吗?他 们行走的路程相同吗?
10
O
10
- 10
0
10 东
上述这个问题反映了什么数学知识?
• 学习目标: 1. 知道绝对值的概念及表示法,体会绝对值的几 何意义. 2. 会求一个已知数的绝对值.
5 2
,
2 11
,
100,
0.
解: |6|=6; |-8|=8; |-0.9|=0.9;
5 =5 ; 2 = 2 ; |100|=100; |0|=0. 2 2 11 11
基础巩固
随堂演练
1.若 |a| = |b|,则 a 与 b 的关系是( C )
数学 七年级上 绝对值教学课件PPT
想一想
1) 绝对值是7的数有几个?各是什么?有 没有绝对值是-2的数? 答:绝对值是7的数有两个,各是7与-7。 没有绝对值是-2的数。 2) 绝对值是0的数有几个?各是什么? 答:绝对值是0的数有一个,就是0。 3)绝对值小于3的整数一共有多少个? 答:绝对值小于3的整数一共有5个, 它们分别是-2,-1,0,1,2。
例2 求下列各数的绝对值:
-21, +4/9, 0, -7.8 .
解:|-21|=21;
|+4/9|=4/9; |0|=0; |-7.8|=7.8 .
练习题
1.字母 a 表示一个数,-a 表示什么?-a一 定是负数吗? 解:字母 a 表示一个数, -a 表示 a 的相 反数,-a不一定是负数. 2.如果| a | = 4,那么 a 等于__________. 4或-4 3.一个数的绝对值是它本身,那么这个数一 正数或零 定是__________. 9 个,分别是 4.绝对值小于5的整数有___ _______________ 4,3,2,1,0,-1,-2,-3,-4
大家学习辛苦了还是要坚持大家学习辛苦了还是要坚持继续保继续保持安静持安静写出下列各数的绝对值
1.2.4
绝对值
复习
1、什么是数轴?
数轴是规定了原点、正方向、单位长度的直线
-2 -1 0 1 2
2、数轴的三要素 原点、正方向、单位长度
做一做
3、画出数轴、并用数轴上的点表示 下列各数:
-1.5 , 0 , -6 ,2 , +6 ,-3 ,3
小结:
(1. 几何定义) :在数轴上,一个数所 绝对值 对应的点与原点的距离叫做该数的绝对值. (2.代数定义) 正数的绝对值是它本身; 负数的绝对值是它的相反数;
七年级数学上册“绝对值”PPT课件
-
7 9
0
7
9
1000
7 9
0
7 9
-1000
1000
1000
-2.05
2.05
2.05
-
7
议一议 一个数的绝对值与这个数有什么关系? 例如:|3|=3,|+7|=7 …………
一个正数的绝对值是它本身
例如:|-3|=3,|-2.3|=2.3 …………
一个负数的绝对值是它的相反数
原点到原点的距离是0
0;
│-3│ 1;
3. 判断(对的打“√”,错的打“×”)
:
(1)一个有理数的绝对值一定是正数。 (
)
(2)-1.4<0,则│-1.4│<0。
()
(3) │-32︱的相反数是32
()
(4) 如果两个数的绝对值相等,那么这两个数
相等
()
(5) 互为相反数的两个数的绝对值相等 ( )
4. 已知有三个数a、b、c在数轴上的 位置如下图所示
②一个数的绝对值是它的相反数,这个数是什么数? (负数和零)
③一个数的绝对值一定是正数吗? (不一定)
④一个数的绝对值不可能是负数,对吗? (对)
-
10
练习1 化简 (1)|-0.1|=____; (2) |-101|=____; (3)| 3 |=______; (4) |-8|=_____;
100
0的绝对值是0。即 |0|=0
绝对值的 代数意义
-
8
因为正数可用a>0表示,负数可用 a<0表示,所以上述三条可表述成:
(1)如果a>0,那么|a|=a
(2)如果a<0,那么|a|=-a
(3)如果a=0,那么|a|=0
考点综合专题:绝对值的化简-2020秋沪科版版七年级上册数学作业课件(共9张PPT)
【变式题】已知 a,b,c 是三个有理数,它们在数 轴上的位置如图所示,化简:|a-b|+|c-a|-|b+c| +(c-a).
解:根据数轴得 c<b<0<a,且|a|<|b|<|c|, 所以 a-b>0,c-a<0,b+c<0. 则原式=a-b+a-c+b+c+c-a=a+c.
8.已知有理数 a、b、c 的对应点 A、B、C 在数轴 上的位置如图所示.
类型一 运用已知条件化简绝对值
1.若 a≤0,则|a|+a+2 的值为( B )
A.2a+2
B.2
C.2-2a
D.2a-2
2.若|x-1|+x-1=0,则 x 的取值范围是( B )
A.x<1
B.x≤1
C.x≥1
D.x>0
3.若-1<x≤4,化简:|x+1|+|4-x|. 解:因为-1<x≤4, 所以 x+1>0,4-x≥0. 所以原式=x+1+4-x=5.
பைடு நூலகம்
4.已知 a<0,ab<0,化简:|a-b-1|-|2+b-a|. 解:因为 a<0,ab<0,所以 b>0. 所以 a-b-1<0,2+b-a>0. 所以原式=-(a-b-1)-(2+b-a)=-a+b+1- 2-b+a=-1.
类型二 结合数轴化简绝对值 5.(2019-2020·阜阳阜南县期末)有理数 a、b 在 数轴上的位置如图,则|a+b|-|a-b|等于( A )
A.2a B.2b C.2b-2a D.2b+2a 6.(2019-2020·合肥肥西县期末)若 a、b、c 在数 轴上的位置如图,则|a|-|b-c|+|c|=__b_-__a___.
7.已知有理数 a、b、c 在数轴上的位置如图所示, 化简:|a-b|+|b-c|-|c-a|.
解:由数轴上点的位置得 c<0<b<a,|a|>|c|, 所以 a-b>0,b-c>0,c-a<0. 则原式=a-b+b-c+c-a=0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020初中数学课件上海初一数学绝对值难
题解析
上海初1数学绝对值困难解析灵活利用绝对值的基本性质:(1)|a|≥0;(2)|ab|=|a|·|b|;(3)|a/b|=|a|/|b|(b≠0) (4)|a|-|b|≤ |a+b|≤|a|+|b|;(5)|a|-|b|≤ |a-b|≤|a|+|b|;思考:|a+b|=|a|+|b|,在甚么条件下成立? |a-b|=|a|-|b|,在甚么条件下成立?经常使用解题方法:(1)化简绝对值:分类讨论思想(即取绝对值的数为非负数和负数两种情况)(2)应用绝对值的几何意义:数形结合思想,如绝对值最值问题等。
(3)零点分段法:求零点、分段、区段内化简、综合。
第1类:考察对绝对值代数意义的理解和分类讨论思想的应用 1、在数轴上表示a、b两个数的点如图所示,并且已知表示c 的点在原点左边,请化简以下式子:(1)|a-b|-|c-b| (2)|a-c|-|a+c| 2、设x<-1,化简2-|2-|x-2|| 。
3、设3<a<4,化简|a-3|+|a-6| 。
4、已知|a-b|=a+b,则以下说法:(1)a1定不是负数;(2)b多是负数;哪一个是正确的?第2类:考察对绝对值基本性质的应用
5、已知2011|x-1|+2012|y+1|=0,求x +y+2012的值?
6、设a、b同时满足: (1)|a-2b|+|b-1|=b-1; (2) |a-4|=0;那末ab等于多少?
7、设a、b、c为非零有理数,且|a|+a=0,|ab|=ab,|c|-c=0, 请化简:|b|-|a+b|-|c-b|+|a-c| 。
8、满足|a-b|+ab=1的非负整数(a,b)共有几对? 9、已知a、b、c、d是有理数,|a-b|≤9,|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值?第3
类:多个绝对值化简,应用零点分段法,分类讨论以上这类分类讨论化简方法就叫做零点分段法,其步骤是:求零点、分段、区段内化简、综合。
10.根据以上材料解决以下问题:(1)化简:2|x-2|
-|x+4| (2)求|x-1|-4|x+1|的最大值。
11、若2x+|4-5x|+|1-3x|+4的值恒为
常数,则此常数的值为多少?答案 1(1) 解:∵a<0,b>0 ∴a-b<0 c<0,b>0 ∴c-b<0 故,原式=(b-a)-(b-c) =c-a (2) 解:∵a<0,c<0 ∴a-c要分类讨论,a+c<0 当a-c≥0时,a≥c,原式=(a-c)+(a+c)
=2a 当a-c<0时,a<c,原式=(c-a)+(a+c)=2c 2.解:∵x<-1 ∴x-2<0 原式=2-|2-(2-x)|=2-|x|=2+x 3. 解:∵3<a<4 ∴a-3>0,a-6<0 原式=(a-3)-(a-6) =3 4. 答:当a-b≥0时,a≥b,|a-b|=a-b,由已知|a-b|=a+b,得a-b=a+b,解得b=0,这时候a≥0;当a-b<0时,a<b,|a-b|=b-a,由已知|a-b|=a+b,得b-a=a+b,解得a=0,这时候b>0;综上所述,(1)是正确的。
5. 解:∵|x-1|≥0,|y+1|≥0∴2011|x-1|+2012|y
+1|≥0 又∵已知2011|x-1|+2012|y+1|=0,∴|x-1|=0, |y +1|=0 ∴x=1,y=-1,原式=1-1+2012=2012 6.解:∵|a -2b|≥0,|b-1|≥0∴|a-2b|+|b-1|=b-1≥0 ∴(1)式=
|a-2b|+b-1=b-1 ,得|a-2b|=0,即a=2b ∵ |a-4|=0 ∴
a-4=0,a=4 ∵ a=2b∴ b=2 ,ab=4×2=8 7. 解:∵|a|
+a=0,a≠0 ∴a<0 ∵|ab|=ab≥0 ,b≠0,a<0∴b<0,a+b
<0 ∵|c|-c=0,c≠0 ∴c>0 ,c-b>0,a-c<0 ∴原式=b
+(a+b)-(c-b)+c-a=b 8. 解:∵a,b都是非负整数∴|a-b|也是非负整数,ab也是非负整数∴要满足|a-b|+ab=1,必须|a-b|=1,ab=0 或|a-b|=0,ab=1 分类讨论:当|a-
b|=1,ab=0时,a=0,b=1 或 a=1,b=0 有两对(a,b)的取值;当|a-b|=0,ab=1时,a=1,b=1有1对(a,b)的取值;综上所述,(a,b)共有3对取值满足题意。
9. 分析:此题咋1看无从下手,但是如果把a-b和c-d 分别看做1个整体,并且应用绝对值基本性质:|x-y|≤|x|+|y|
便可快速解出。
解:设x=a-b,y=c-d,则|a-b-c+d|=|x-y|≤|x|+|y| ∵|x|≤9,|y|≤16 ∴|x|+|y|≤25 ,|x-y|≤|x|+|y|≤25 ∵已知|x-y|=25∴|x|=9,|y|=16 ∴|b-a|-|d-c|=|-x|-|-y|=|x|-|y|=9-16=-7 10(1)解:(1)令x-2=0,x+4
=0,分别求得零点值:x=2,x=⑷,分区段讨论:当x≤⑷时,原式=-2(x-2)+(x+4)=-x+8 当⑷<x≤2时,原式=-2(x-2)-(x+4)=-3x 当x>2时,原式=2(x-2)-(x
+4)=x-8 (2)2)使用“零点分段法”将代数式简化,然后在各个取值范围内求出最大值,再加以比较,从当选出最大值。
令x-1=0,x+1=0,分别求得零点值:x=1,x=⑴,
分区段讨论:当x≤⑴时,原式=-(x-1)+4(x+1)=3x+5 ,当x=⑴时,取到最大值等于2;当⑴<x≤1时,原式=-(x-1)-4(x+1)=-5x-3,此时无最大值;当x>1时,原式=(x
-1)-4(x+1)=-3x+3,此时无最大值。
综上讨论,当x=⑴时,原式可以取到最大值等于2。
11. 解:我们知道,互为相反数的两个数,它们的绝对值
相等,利用这条性质,可以把绝对值内带x的项的符号由负号都变成正号,以便于区段内判断正负关系。
即原式=2x+|5x-4|+|3x-1|+4 令5x-4=0,3x-1=0,分别求得零点值:x=4/5 , x=1/3,分区段讨论:当x≤1/3时,原式=2x-(5x-4)-(3x-1)+4=-6x+9,此时不是恒值;当1/3<x≤4/5时,原式=2x-(5x-4)+(3x-1)+4=7,此时恒为常数7;当x>4/5时,原式=2x+(5x-4)+(3x-1)+4=10x-1,此时也不是恒值。
综上所述,若原式恒为常数,则此常数等于7 。