牛顿动力学方程
动力学三大基本公式
![动力学三大基本公式](https://img.taocdn.com/s3/m/26f35ae89fc3d5bbfd0a79563c1ec5da51e2d674.png)
动力学三大基本公式
1动力学三大基本公式
动力学是力学的一个分支,旨在探讨受力系统中物体运动的原理,是现代物理学中很重要的一环。
动力学有三大基本公式,即经典动力学三大定律,即牛顿运动定律、牛顿第二定律和拉普拉斯定律。
2牛顿运动定律
牛顿运动定律,又称牛顿第一定律,是运动学中最基本的定律。
是由英国物理学家、数学家牛顿提出的,也是动力学中三大基本定律中最为重要的定律。
牛顿运动定律包括物体静止定律和物体运动定律,即:物体处于静止状态时,其受力和外力的总和为零;物体处于运动状态时,其受力和外力的总和为物体的质量乘以加速度。
3牛顿第二定律
牛顿第二定律即牛顿定理,也叫受力定律,牛顿第二定律的内容是:物体受外力的作用时,物体产生的力与外力成正比,而力的方向与外力方向相反;物体受外力的作用时,产生的力称为反作用力。
特殊地,当物体在接触面上产生摩擦力时,反作用力与外力并不成正比,而是根据摩擦力大小而有所不同。
4拉普拉斯定律
拉普拉斯定律是法国物理学家、数学家拉普拉斯提出的,又被称为拉普拉斯补偿定律,是力学中的基本定律。
拉普拉斯定律的内容
是:受外力作用的物体,其偶合外力的效果是可以引起物体的动量平衡的趋向的,即物体的动量守恒的原理。
以上就是动力学中三大基本公式的内容,这三大公式对经典运动学的研究有重要的意义,包括受力系统的运动、物体动量的守恒、外力对物体产生力的效果等等都是基于这三条定理来研究的。
理论力学 牛顿动力学方程
![理论力学 牛顿动力学方程](https://img.taocdn.com/s3/m/11a44021af45b307e87197c9.png)
3,一般曲线坐标系中的速度,速率,加速度公式 一般曲线坐标系中的速度,速率, y q2 q3 e3 o e1 q1 e2
x
z
x = x(q1, q2 , q3 ), y = y(q1, q2 , q3 ), z = z(q1, q2 , q3 ) r r r r r r = r (q 1 , q 2 , q 3 ) = x i + y j + z k r r x r y r z r i+ j+ k ( i = 1,, ) 2 3 = q i q i q i q i 2 2 2 r x y z r 拉密系数 : H i = = q + q + q q i i i i r r r Q 与 q i 坐标线在 P 点的切线单位向量 ei 同向 q i r r r r 1 r r ∴ = H i ei 或 ei = H i q i q i
& a r = && r φ 2 r && a = 2 r φ + r && φ
φ
(3) ( ax , ay ) → ( ar , aφ)
作 业
已知球坐标系与直角坐标系关系: 已知球坐标系与直角坐标系关系 x = r sinθ cos θ y = r sinθ sin θ z = r cos θ 推导球坐标系( , 推导球坐标系(r,θ,φ)中的 ) (1)速度分量( v r ,vθ,vφ ); )速度分量( (2)加速度分量( a r ,aθ,aφ ) . )加速度分量(
理论力学
何国兴
东华大学应用物理系
第一章 牛顿动力学方程
§1.1 经典力学基础——《原理》 经典力学基础——《原理》 牛顿三大定律 §1.2 牛顿第二定律在常用坐标系中的表达式 牛顿第二定律矢量表达式 F = dP/dt = d(mv)/dt 为常数, 若m 为常数, F = mdv /dt = ma 1,直角坐标系 Fx = mdvx /dt = max Fy = mdvy /dt = may Fz = mdvz /dt = maz
动力学三大观点
![动力学三大观点](https://img.taocdn.com/s3/m/b5a037dd941ea76e58fa047b.png)
二、力学的知识体系
这里涉及的力有:重力(引力)、弹力、摩擦力、 浮力等;涉及的运动形式有:静止(F=0)、匀 速直线运动(F=0)、匀变速直线运动(F=恒量)、 匀变速曲线运动(F=恒量)、匀速圆周运动(|F|= 恒量)、简谐运动(F=-kx等.
三、三大观点选用的原则
力学中首先考虑使用两个守恒定律.从两个守恒定 律的表达式看出多项都是状态量(如速度、位置),所 以守恒定律能解决状态问题,不能解决过程(如位移 x,时间t)问题,不能解决力(F)的问题. (1)若是多个物体组成的系统,优先考虑使用两个守 恒定律. (2)若物体(或系统)涉及到速度和时间,应考虑使用 动量 定理. (3)若物体(或系统)涉及到位移和时间,且受到恒 力作用,应考虑使用牛顿运动定律.
物体 A 经过圆弧时克服阻力做的功 1 Wf=1×10×(5+1) J- ×1×102 J=10 J 2
答案 (1)100 N (2)1.25 m (3)10 J
例 题 讲 解
例4
如图 4 所示,abc 是光滑的轨道,其中 ab 是水平的,
bc 是位于竖直平面内与 ab 相切的半圆, 半径 R =0.40 m . 质 量 m = 0.30 kg 的小球 A 静止在水平轨道上,另一质量 M =0.50 kg 的小球 B 以 v 0=4 m/s 的初速度与小球 A 发生正 碰.已知碰后小球 A 经过半圆的最高点 c 后落到轨道上距 b 点为 L =1.2 m 处, 重力加速度 g=10 m/s2.求碰撞结束后:
0.2×1×10 μmCg aB= = m/s2=0.5 m/s2 (mA+mB) 1+ 3 由速度公式得木板刚开始运动时的速度 vB1=vB2+aBt=(2+0.5×1)m/s=2.5 m/s vB1+vB2 2+2.5 木板 B 运动的距离 sB= t= ×1 m=2.25 m 2 2 长木板 B 的长度 L=sB-sC=1.25 m (3)物体 A 与长木板 B 碰撞过程中动量守恒 mAvA2=(mA+mB)vB1 (1+3)×2.5 vA2= m/s=10 m/s 1 物体 A 从静止释放到与长木板 B 碰撞前,由动能定理 1 mAg(h+R)-Wf= mAvA22-0 2
动力学基本定律(牛顿定律)
![动力学基本定律(牛顿定律)](https://img.taocdn.com/s3/m/341361c148649b6648d7c1c708a1284ac85005f9.png)
1.第⼀定律——惯性定律
任何质点如不受⼒的作⽤,则将保持静⽌或匀速直线运动状态。
这个定律表明了任何质点都有保持静⽌或匀速直线运动状态的属性。
这种属性称为该质点的惯性。
所以第⼀定律叫做惯性定律。
⽽质点作匀速直线运动称为惯性运动。
由惯性定律可知.如果质点的运动状态(静⽌或匀速直线状态)发⽣改变,即有了加速度,则质点上必受到⼒的作⽤。
因此,⼒是物体运动状态改变的原因。
2.第⼆定律——⼒与加速度的关系定律
质点受⼀⼒F作⽤时所获得的加速度a的⼤⼩与⼒F的⼤⼩成正⽐,⽽与质点的质量成反⽐;加速度的⽅向与作⽤⼒⽅向相同,即
ma=F (4-3-1)
如果质点同时受⼏个⼒的作⽤,则上式中的F应理解为这些⼒的合⼒,⽽a应理解为这些⼒共同作⽤下的质点的加速度,这样式(4—3—1)可写为
ma=ΣFi (4-3-2)
式(4—3—1)或式4—3—2)称为质点动⼒学基本⽅程。
3.第三定律——作⽤与反作⽤定律
两质点相互作⽤的⼒总是⼤⼩相等,⽅向相反,沿同⼀直线,并分别作⽤在两质点上。
这些定律是古典⼒学的基础,它们不仅只适⽤于惯性坐标系,且只适⽤于研究速度远少于光速的宏观物体。
由于⼀般⼯程问题中,⼤多问题都属于上述的适⽤范围,因此以基本定律为基础的古典⼒学在近代⼯程技术中仍占有很重要的地位。
动力学的基本原理与运动方程推导
![动力学的基本原理与运动方程推导](https://img.taocdn.com/s3/m/9566c97bbf1e650e52ea551810a6f524ccbfcbf1.png)
动力学的基本原理与运动方程推导动力学是物理学中研究物体运动的学科,它的基本原理和运动方程推导是了解和掌握动力学的关键。
本文将介绍动力学的基本原理,并推导出运动方程,以帮助读者更好地理解这一领域的知识。
一、动力学的基本原理动力学的基本原理包括牛顿三定律和能量守恒定律。
1. 牛顿第一定律:物体在没有外力作用下,将保持静止或匀速直线运动。
这意味着物体的速度只有在受到外力作用时才会改变。
2. 牛顿第二定律:物体的加速度与作用在其上的力成正比,与物体的质量成反比。
数学表达式为F=ma,其中F是物体所受的力,m是物体的质量,a是物体的加速度。
3. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
这意味着物体之间的相互作用力总是成对出现的。
4. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。
能量可以在不同形式之间相互转化,但总能量保持恒定。
二、运动方程的推导在了解了动力学的基本原理之后,我们可以推导出物体的运动方程。
假设一个物体在一维空间中运动,且只受到一个力的作用。
根据牛顿第二定律,我们知道物体的加速度与作用在其上的力成正比,与物体的质量成反比。
可以将牛顿第二定律表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
根据运动学的定义,加速度可以表示为速度的变化率。
假设物体的初始速度为v0,加速度为a,时间为t,物体的速度可以表示为:v = v0 + at同样地,速度的变化率就是位移的变化率。
假设物体的初始位移为x0,位移为x,时间为t,物体的位移可以表示为:x = x0 + v0t + 1/2at^2这就是物体的运动方程,它描述了物体在给定时间内的位移。
通过上述推导,我们可以看到物体的运动方程与物体的质量、加速度、速度和位移之间的关系。
在实际应用中,我们可以通过测量物体的运动参数,来计算物体的质量或者力的大小。
三、动力学的应用动力学的原理和运动方程在很多领域都有广泛的应用。
理论力学
![理论力学](https://img.taocdn.com/s3/m/9381d9dece2f0066f533228f.png)
相对坐标
r r01 r02 r1 r2
01 02 1 2
与坐标系无关
B、 两粒子体系拉格朗日函数 体系动能 体系势能
L T V 1 2 m 1 ( r0 C
T
1 2
m 1r
(e )
2 01
1 2
m 2 r02
(i)
x
(2)平面极坐标
m ( r 2 ) F r r m ( r 2 r ) F
(3)球坐标
m ( r 2 r 2 sin 2 ) F r , r 2 m ( r 2 r r sin cos ) F , m ( r sin 2 r sin 2 r cos ) F .
H
s
p q L
1
H T V
(2) 正则方程
H q , p . 1, 2 , , s . H p , q
H t
L t
C、哈密顿作用量及哈密顿原理
(1) 哈密顿作用量: (2) 哈密顿原理: D. 正则变换 (1) F1(q,Q,t)称为第一类正则变换母函数
(2) 主动力为保守力时:
V q 0 , 1 ,2 , , s.
(3) 虚功原理 理想约束力学体系处于平衡状 态,则主动力在任意虚位移中所做 的虚功之和等于零。
n
F i ri 0
i 1
E、 对称性和守恒定律 在运动过程中保持不变的广义坐标和广义速度的 函数叫做运动积分.
(4)柱坐标
m (R R 2 ) FR , m ( R 2 R ) F , m F . z z
机器人动力学牛顿欧拉方程课件
![机器人动力学牛顿欧拉方程课件](https://img.taocdn.com/s3/m/ca82a76e0622192e453610661ed9ad51f01d548f.png)
PART 04
机器人动力学实例
两连杆机器人的动力学分析
01
02
03
连杆的惯性
需要考虑连杆的惯性,包 括质量、质心位置和惯性 张量。
关节约束
需要考虑关节的约束,包 括关节类型、关节角度范 围和关节刚度。
3
牛顿-欧拉方程推导
通过将牛顿第二定律和欧拉第一定律结合,可以 得到牛顿-欧拉方程,它描述了刚体在运动过程 中的动力学行为。
PART 03
牛顿-欧拉方程的应用
两刚体系统的动力学分析
两刚体系统的定义
两刚体系统是指由两个刚体组成的系统,每个刚体具有自己的质 量、位置和速度。
牛顿-欧拉方程的建立
根据牛顿第二定律和欧拉方程,可以建立两刚体系统的动力学方程。
03
多刚体系统的动力学特性包括角动量守恒、动量守恒、能量守
恒等,同时还存在各个刚体之间的相互作用力。
机器人运动学与动力学的关系
运动学与动力学的区别
运动学主要研究机器人的位置、姿态和速度等几何特征,而动力学则研究机器人的力、力矩和加速度等物理特征。
运动学与动力学的联系
机器人的运动学和动力学是相互联系的,运动学可以提供机器人的运动状态信息,而动力学则可以提供机器人的运动 控制信息。
描述刚体在空间中的位置需要使用矢量,矢量中包含了物体的位置、方向和大 小等信息。
运动描述
描述刚体的运动需要使用速度和加速度等运动学量。
牛顿-欧拉方程的建立过程
1 2
牛顿第二定律 对于一个物体,其受到的力等于其质量与加速度 的乘积,即F=ma。
欧拉第一定律 对于一个刚体,其受到的力矩等于其角动量与角 加速度的乘积,即τ=Iα。
动力学方程
![动力学方程](https://img.taocdn.com/s3/m/12ea0a8d5ebfc77da26925c52cc58bd63186931e.png)
动力学方程简介动力学方程是描述物体或系统运动的数学表达式。
它基于牛顿第二定律,即力等于质量乘以加速度。
动力学方程在物理学、工程学、生物学等领域起着重要作用,可以用来研究运动的特性以及对系统的控制。
动力学方程的基本概念动力学方程由一组微分方程组成,描述了物体或系统随着时间的变化而发生的运动。
一般来说,动力学方程的形式为:m*a = ΣF其中,m表示物体的质量,a表示物体的加速度,ΣF表示作用在物体上的力的合力。
动力学方程的推导根据牛顿第二定律,物体的加速度与作用在物体上的力成正比。
根据这个基本原理,我们可以推导出物体的动力学方程。
首先,我们考虑一个简单的情况:只有一个力作用在物体上。
假设这个力的大小为F,方向与物体的加速度相同。
根据牛顿第二定律,我们可以得到: m*a = F这就是物体的动力学方程。
这个方程可以描述物体的运动情况。
当有多个力作用在物体上时,我们需要将所有力的大小和方向都考虑进去。
我们可以将所有力的合力表示为ΣF。
这样,物体的动力学方程可以表示为:m*a = ΣF这个方程可以描述物体在多个力作用下的运动情况。
动力学方程包括了物体的质量、加速度以及力的合力。
动力学方程的应用举例自由落体自由落体是动力学方程的一个重要应用。
假设一个物体在重力作用下自由下落。
根据牛顿第二定律,我们可以得到:m*a = m*g其中,m是物体的质量,g是重力加速度。
这个方程描述了物体在自由落体过程中的运动情况。
弹簧振子弹簧振子也是动力学方程的一个典型应用。
考虑一个质点通过弹簧与固定点相连,质点的运动受到弹簧的弹力作用。
假设质点的质量为m,弹簧的劲度系数为k,质点的位移为x,我们可以得到动力学方程:m*a = -k*x这个方程描述了弹簧振子在弹力作用下的运动情况。
当质点受到弹力作用时,它的加速度与位移成反比关系。
结论动力学方程是描述物体或系统运动的数学表达式,它基于牛顿第二定律。
动力学方程可以用来研究运动的特性以及对系统的控制。
修正牛顿动力学
![修正牛顿动力学](https://img.taocdn.com/s3/m/256a6f40df80d4d8d15abe23482fb4daa58d1d2c.png)
修正牛顿动力学
修正牛顿动力学是一个非线性理论,它对牛顿力学的修正主要体现在对经典力学定律的扩展和改进上。
在修正的牛顿动力学中,物体的运动规律不再仅仅是线性关系,而是包含非线性因素。
具体来说,在修正的牛顿动力学中,物体的运动规律可以用如下的非线性方程来描述:
F = GMm/r² + B/r³
其中,F 是物体之间的作用力,M 和 m 是两个物体的质量,r 是它们之间的距离,G 是万有引力常数,B 是一个与物体本身性质有关的常数。
这个非线性方程在形式上与牛顿万有引力定律相似,但是多了一个与距离 r³成反比的项。
这个项可以解释一些牛顿力学无法解释的现象,比如恒星运动的加速和减速等。
修正牛顿动力学还考虑了物体之间的相互作用力不仅仅是一种“一维线性、单轴单向”的相互作用,而是可以发生在多个维度和方向上的复杂相互作用。
这种修正使得修正牛顿动力学能够更好地描述物体的复杂运动规律。
修正牛顿动力学是对牛顿力学的扩展和改进,能够更好地描述物体的复杂运动规律。
物理学中的动力学理论
![物理学中的动力学理论](https://img.taocdn.com/s3/m/6d43ba4c5bcfa1c7aa00b52acfc789eb172d9e10.png)
物理学中的动力学理论动力学是物理学中一个重要的分支,其研究的是物体运动的规律和动力学定律。
在牛顿力学中,动力学被赋予了重要的地位,牛顿的三大定律正是动力学的基础。
而在现代物理学中,动力学依然占据着重要的地位,成为了现代科学和技术发展的重要基础。
一、牛顿动力学牛顿动力学是经典的动力学理论,是现代物理学的基础之一。
牛顿三大定律是牛顿动力学的重要内容,这三大定律描述了物体运动的基本规律。
牛顿第一定律:一个物体将保持原有的匀速直线运动状态,直到有外力作用使其改变状态。
牛顿第二定律:物体所受合力等于物体的质量乘以加速度。
牛顿第三定律:对于任何相互作用的物体,作用力总是相等而反向的。
即对于物体A对物体B施加了一个力,那么物体B对物体A也会施加一个大小相同,但方向相反的力。
基于这三大定律,牛顿动力学可以描述物体在不同的运动状态下所受到的力的作用,进而推导出物体的运动规律。
二、量子力学中的动力学理论量子力学是20世纪最重要的科学之一,是现代物理学的基础。
在量子力学中,动力学的研究对象是微观粒子的运动规律和动力学定律。
量子力学中的动力学理论受到波动力学的影响。
在波动力学中,粒子的行为可以被描述为波动函数,波动函数可以用薛定谔方程来描述。
在薛定谔方程中,波动函数的演化规律可以被描述为哈密顿量作用下的时间演化。
动力学定律在量子力学中同样适用,其中包括牛顿第二定律。
但是,由于量子力学中的粒子具有波粒二象性,因此动力学中的某些概念和原则需要重新考虑。
三、相对论中的动力学理论相对论是现代物理学的另一重要分支,主要研究物体在高速运动状态下的特性和运动规律。
在相对论中,动力学理论不再适用牛顿的三大定律,而是采用了爱因斯坦的相对论动力学。
相对论动力学基于爱因斯坦的质能关系式 E=mc²,当物体的速度接近光速时,其质量将增加,从而导致牛顿定律不再适用。
相对论动力学中的定律包括:守恒定律,质点运动规律和速度叠加原理等。
在相对论中,动力学定律的推导依赖于洛伦兹变换和洛伦兹因子等概念。
动力学知识点总结
![动力学知识点总结](https://img.taocdn.com/s3/m/ce9f4535178884868762caaedd3383c4bb4cb482.png)
动力学知识点总结动力学是研究力的起源和力的作用下物体的运动规律的科学。
它是力学的一个重要分支,包括牛顿定律、运动方程、动能、势能、角动量、动量守恒定律、能量守恒定律等内容。
动力学在物理学、工程学、天文学、生物学等领域都有广泛的应用。
1. 牛顿定律牛顿定律是动力学的基础,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律,也称为惯性定律,指出如果物体受到外力作用,则物体将产生加速度,即物体的速度将发生变化。
牛顿第二定律,也称为运动定律,指出物体的加速度与作用力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受的合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律,也称为作用与反作用定律,指出两个物体之间的相互作用力大小相等、方向相反。
2. 运动方程运动方程描述了物体在外力作用下的运动规律。
对于一维运动,运动方程可以写成x=x0+v0t+1/2at^2,v=v0+at,其中x为物体的位移,x0为初始位移,v为物体的速度,v0为初始速度,a为物体的加速度,t为时间。
3. 动能和势能动能是物体由于运动而具有的能量,通常用K表示,其计算公式为K=1/2mv^2,其中m 为物体的质量,v为物体的速度。
势能是物体由于位置而具有的能量,通常用U表示,其计算公式为U=mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。
4. 角动量角动量是描述物体旋转运动的物理量,通常用L表示,其计算公式为L=Iω,其中I为物体的转动惯量,ω为物体的角速度。
5. 动量守恒定律动量守恒定律指出,在一个封闭系统中,系统的总动量保持不变。
即Σp=Σp',其中Σp为系统的初始总动量,Σp'为系统的最终总动量。
6. 能量守恒定律能量守恒定律指出,在一个封闭系统中,系统的总能量保持不变。
即ΣE=ΣE',其中ΣE为系统的初始总能量,ΣE'为系统的最终总能量。
综上所述,动力学是研究物体在力的作用下的运动规律的科学,包括牛顿定律、运动方程、动能、势能、角动量、动量守恒定律、能量守恒定律等内容。
牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题
![牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题](https://img.taocdn.com/s3/m/bdf54464f242336c1eb95ef1.png)
学案12 牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题一、概念规律题组1.下列对牛顿第二定律的表达式F =ma 及其变形公式的理解,正确的是( ) A.由F =ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成反比B.由m =Fa 可知,物体的质量与其所受的合力成正比,与其运动的速度成反比C.由a =Fm 可知,物体的加速度与其所受的合力成正比,与其质量成反比D.由m =Fa可知,物体的质量可以通过测量经的加速度和它所受的合力而求出2.下列说法正确的是( )A .物体所受合力为零时,物体的加速度可以不为零B .物体所受合力越大,速度越大C .速度方向、加速度方向、合力方向总是相同的D .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同图13.如图1所示,质量为20 kg 的物体,沿水平面向右运动,它与水平面间的动摩擦因数为0.1,同时还受到大小为10 N 的水平向右的力的作用,则该物体(g 取10 m /s 2)( ) A .受到的摩擦力大小为20 N ,方向向左 B .受到的摩擦力大小为20 N ,方向向右 C .运动的加速度大小为1.5 m /s 2,方向向左 D .运动的加速度大小为0.5 m /s 2,方向向右 4.关于国秒单位制,下列说法正确的是( ) A .kg ,m /s ,N 是导出单位 B .kg ,m ,h 是基本单位C .在国际单位制中,质量的单位可以是kg ,也可以是gD .只有在国际单位制中,牛顿第二定律的表达式才是F =ma二、思想方法题组图25.(2011·淮南模拟)如图2所示,两个质量相同的物体1和2紧靠在一起,放在光滑水平面上,如果它们分别受到水平推力F 1和F 2的作用,而且F 1>F 2,则1施于2的作用力大小为( ) A .F 1 B .F 2 C .12(F 1+F 2) D .12(F 1-F 2)图36.如图3所示,在光滑水平面上,质量分别为m 1和m 2的木块A 和B 之下,以加速度a 做匀速直线运动,某时刻空然撤去拉力F ,此瞬时A 和B 的加速度a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2aD .a 1=a ,a 2=-m 1m 2a一、对牛顿第二定律的理解矢量性公式F=ma是矢量式,任一时刻,F与a总同向瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的合外力因果性F是产生加速度a的原因,加速度a是F作用的结果同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个物体或同一个系统;(3)F=ma中,各量统一使用国际单位独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma(2)物体的实际加速度等于每个力产生的加速度的矢量和(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y【例1】(2010·上海·11)将一个物体以某一速度从地面竖直向上抛出,设物体在运动过程中所受空气阻力大小不变,则物体()A.刚抛出时的速度最大B.在最高点的加速度为零C.上升时间大于下落时间D.上升时的加速度等于下落时的加速度[规范思维]【例2】(2009·宁夏理综·20)如图4所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()图4A.物块先向左运动,再向右运动B.物块向左运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零[规范思维][针对训练1] (2009·上海综合·7)图5如图5所示为蹦极运动的示意图.弹性绳的一端固定在O点,另一端和运动员相连.运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起.整个过程中忽略空气阻力.分析这一过程,下列表述正确的是()①经过B点时,运动员的速率最大②经过C点时,运动员的速率最大③从C点到D点,运动员的加速度增大④从C点到D点,运动员的加速度不变A.①③B.②③C.①④D.②④二、动力学两类基本问题1.分析流程图2.应用牛顿第二定律的解题步骤(1)明确研究对象.根据问题的需要和解题的方便,选出被研究的物体.(2)分析物体的受力情况和运动情况.画好受力分析图,明确物体的运动性质和运动过程.(3)选取正方向或建立坐标系.通常以加速度的方向为正方向或以加速度方向为某一坐标轴的正方向.(4)求合外力F合.(5)根据牛顿第二定律F合=ma列方程求解,必要时还要对结果进行讨论.特别提醒(1)物体的运动情况是由所受的力及物体运动的初始状态共同决定的.(2)无论是哪种情况,加速度都是联系力和运动的“桥梁”.(3)如果只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般用正交分解法求其合力.如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力即一般情况不分解加速度;特殊情况下当求某一个力时,可沿该力的方向分解加速度.【例3】如图6图6所示,一质量为m的物块放在水平地面上.现在对物块施加一个大小为F的水平恒力,使物块从静止开始向右移动距离x后立即撤去F,物块与水平地面间的动摩擦因数为μ,求:(1)撤去F时,物块的速度大小;(2)撤去F后,物块还能滑行多远.【例4】(2010·安徽理综·22)图7质量为2 kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图7所示.g取10 m/s2,求:(1)物体与水平面间的动摩擦因数μ;(2)水平推力F的大小;(3)0~10 s内物体运动位移的大小.[规范思维][针对训练2] (2009·江苏·13)航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F=28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力f的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力.求飞行器能达到的最大高度h.(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3.【基础演练】1.(2011·海南华侨中学月考)在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下来的痕迹.在某次交通事故中,汽车的刹车线的长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为0.7,g取10 m/s2,则汽车开始刹车时的速度为()A.7 m/s B.10 m/s C.14 m/s D.20 m/s2.(2011·吉林长春调研)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()A.始终变大B.始终变小C.先变大后变小D.先变小后变大3.如图8甲所示,在粗糙水平面上,物体A在水平向右的外力F的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是()图8A.在0~1 s内,外力F不断增大B.在1~3 s内,外力F的大小恒定C.在3~4 s内,外力F不断增大D.在3~4 s内,外力F的大小恒定图94.(2009·广东理基·4)建筑工人用图9所示的定滑轮装置运送建筑材料,质量为70.0 kg的工人站在地面上,通过定滑轮将20.0 kg的建筑材料以0.500 m/s2的加速度拉升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g取10 m/s2)()A.510 N B.490 NC.890 N D.910 N图105.如图10所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tanθ.则图中能客观地反映小木块的速度随时间变化关系的是()图116.(2011·福建福州质检)商场搬运工要把一箱苹果沿倾角为θ的光滑斜面推上水平台,如图11所示.他由斜面底端以初速度v0开始将箱推出(箱与手分离),这箱苹果刚好能滑上平台.箱子的正中间是一个质量为m的苹果,在上滑过程中其他苹果对它的作用力大小是()A.mg B.mg sinθC.mg cosθ D.0题号 1 2 3 4 5 6答案7.在某一旅游景区,建有一山坡滑草运动项目.该山坡可看成倾角θ=30°的斜面,一名游客连同滑草装置总质量m=80 kg,他从静止开始匀加速下滑,在时间t=5 s内沿斜面滑下的位移x=50 m.(不计空气阻力,取g=10 m/s2).问:(1)游客连同滑草装置在下滑过程中受到的摩擦力F f为多大?(2)滑草装置与草皮之间的动摩擦因数μ为多大?(3)设游客滑下50 m后进入水平草坪,试求游客在水平面上滑动的最大距离.【能力提升】图128.如图12所示,有一长度x=1 m、质量M=10 kg的平板小车静止在光滑的水平面上,在小车一端放置一质量m=4 kg的小物块,物块与小车间的动摩擦因数μ=0.25,要使物块在2 s内运动到小车的另一端,求作用在物块上的水平力F是多少?(g取10 m/s2)图139.质量为10 kg的物体在F=200 N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°,如图13所示.力F作用2 s后撤去,物体在斜面上继续上滑了1.25 s后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移x.(已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2)10.(2010.天星调研)图14如图14所示,长为L的薄木板放在长为L的正方形水平桌面上,木板的两端与桌面的两端对齐,一小木块放在木板的中点,木块、木板质量均为m,木块与木板之间、木板与桌面之间的动摩擦因数都为μ.现突然施加水平外力F在薄木板上将薄木板抽出,最后小木块恰好停在桌面边上,没从桌面上掉下.假设薄木板在被抽出的过程中始终保持水平,且在竖直方向上的压力全部作用在水平桌面上.求水平外力F的大小.学案12牛顿第二定律及应用(一)牛顿第二定律的理解及动力学两类基本问题【课前双基回扣】1.CD[牛顿第二定律的表达式F=ma表明了各物理量之间的数量关系,即已知两个量,可求第三个量,但物体的质量是由物体本身决定的,与受力无关;作用在物体上的合力,是由和它相互作用的物体作用产生的,与物体的质量和加速度无关.故排除A、B,选C、D.]2.D [由牛顿第二定律F =ma 知,F 合为零,加速度为零,由惯性定律知速度不一定为零;对某一物体,F 合越大,a 越大,由a =ΔvΔt知,a 大只能说明速度变化率大,速度不一定大,故A 、B 项错误;F 合、a 、Δv 三者方向一定相同,而速度方向与这三者方向不一定相同,故C 项错误,D 项正确.] 3.AD4.BD [所谓导出单位,是利用物理公式和基本单位推导出来的,力学中的基本单位只有三个,即kg 、m 、s ,其他单位都是由这三个基本单位衍生(推导)出来的,如“牛顿”(N)是导出单位,即1 N =1 kg·m/s 2(F =ma ),所以题中A 项错误,B 项正确.在国际单位制中,质量的单位只能是kg ,C 错误.在牛顿第二定律的表达式中,F =ma (k =1)只有在所有物理量都采用国际单位制时才能成立,D 项正确.]5.C [将物体1、2看做一个整体,其所受合力为:F 合=F 1-F 2,设质量均为m ,由第二定律得F 1-F 2=2ma ,所以a =F 1-F 22m以物体2为研究对象,受力情况如右图所示..由牛顿第二定律得F 12-F 2=ma ,所以F 12=F 2+ma =F 1+F 22.] 6.D [两物体在光滑的水平面上一起以加速度a 向右匀速运动时,弹簧的弹力F 弹=m 1a ,在力F 撤去的瞬间,弹簧的弹力来不及改变,大小仍为m 1a ,因此对A 来讲,加速度此时仍为a ;对B 物体,取向右为正方向,-m 1a =m 2a 2,a 2=-m 1m 2a ,所以只有D 项正确.]思维提升1.牛顿第二定律是一个实验定律,其公式也就不能像数学公式那样随意变换成不同的表达式.2.a =Δv Δt 是a 的定义式,a =Fm 是a 的决定式,a 虽可由a =Δv Δt进行计算,但a 决定于合外力F 与质量m .3.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法. 4.对于弹簧弹力和细绳弹力要区别开.5.在牛顿运动定律的应用中,整体法与隔离法的结合使用是常用的一种方法,其常用的一种思路是:利用整体法求出物体的加速度,再利用隔离法求出物体间的相互作用力. 【核心考点突破】例1 A [最高点速度为零,物体受重力,合力不可能为零,加速度不为零,故B 项错.上升时做匀减速运动,h =12a 1t 21,下落时做匀加速运动,h =12a 2t 22,又因为a 1=mg +f m ,a 2=mg -f m,所以t 1<t 2,故C 、D 错误.根据能量守恒,开始时只有动能,因此开始时动能最大,速度最大,故A 项正确.][规范思维] 物体的加速度与合外力存在瞬时对应关系;加速度由合外力决定,合外力变化,加速度就变化. 例2 BC [由题意可知,当撤去外力,物块与木板都有向右的速度,但物块速度小于木板的速度,因此,木板给物块的动摩擦力向右,使物块向右加速,反过来,物块给木板的动摩擦力向左,使木板向右减速运动,直到它们速度相等,没有了动摩擦力,二者以共同速度做匀速运动,综上所述,选项B 、C 正确.][规范思维] 正确建立两物体的运动情景,明确物体的受力情况,进而确定加速度的大小方向,再进行运动状态分析.例3 (1) 2(F -μmg )x m (2)(Fμmg-1)x解析 (1)设撤去F 时物块的速度大小为v ,根据牛顿第二定律,物块的加速度 a =F -μmg m又由运动学公式v 2=2ax ,解得v = 2(F -μmg )xm(2)撤去F 后物块只受摩擦力,做匀减速运动至停止,根据牛顿第二定律,物块的加速度a ′=-μmg m =-μg 由运动学公式v ′2-v 2=2a ′x ′,且v ′=0解得x ′=(Fμmg-1)x[规范思维] 本题是已知物体的受力情况,求解运动情况,受力分析是求解的关键.如果物体的加速度或受力情况发生变化,则要分段处理,受力情况改变时的瞬时速度即是前后过程的联系量.多过程问题画出草图有助于解题.例4 (1)0.2 (2)6 N (3)46 m解析 (1)设物体做匀减速直线运动的时间为Δt 2、初速度为v 20、末速度为v 2t 、加速度为a 2,则a 2=v 2t -v 20Δt 2=-2 m/s 2①设物体所受的摩擦力为F f ,根据牛顿第二定律,有 F f =ma 2② F f =-μmg ③联立②③得μ=-a 2g=0.2④(2)设物体做匀加速直线运动的时间为Δt 1、初速度为v 10、末速度为v 1t 、加速度为a 1,则a 1=v 1t -v 10Δt 1=1 m/s 2⑤根据牛顿第二定律,有F +F f =ma 1⑥ 联立③⑥得F =μmg +ma 1=6 N(3)解法一 由匀变速直线运动位移公式,得x =x 1+x 2=v 10Δt 1+12a 1Δt 21+v 20Δt 2+12a 2Δt 22=46 m 解法二 根据v -t 图象围成的面积,得x =(v 10+v 1t 2×Δt 1+12×v 20×Δt 2)=46 m[规范思维] 本题是牛顿第二定律和运动图象的综合应用.本题是已知运动情况(由v -t 图象告知运动信息)求受力情况.在求解两类动力学问题时,加速度是联系力和运动的桥梁,受力分析和运动过程分析是两大关键,一般需列两类方程(牛顿第二定律,运动学公式)联立求解. [针对训练]1.B 2.(1)4 N (2)42 m (3)322s(或2.1 s)【课时效果检测】1.C 2.B 3.BC 4.B 5.D [m 刚放上时,mg sin θ+μmg cos θ=ma 1.当m 与带同速后,因带足够长,且μ<tan θ,故m 要继续匀加速.此时,mg sin θ-μmg cos θ=ma 2,a 2<a 1,故D 正确.]6.C [以箱子和里面所有苹果作为整体来研究,受力分析得,Mg sin θ=Ma ,则a =g sin θ,方向沿斜面向下;再以质量为m 的苹果为研究对象,受力分析得,合外力F =ma =mg sin θ,与苹果重力沿斜面的分力相同,由此可知,其他苹果给它的力的合力应与重力垂直于斜面的分力相等,即mg cos θ,故C 正确.]7.(1)80 N (2)315(3)100 3 m8.16 N解析 由下图中的受力分析,根据牛顿第二定律有F -F f =ma 物① F f ′=Ma 车②其中F f =F f ′=μmg ③由分析图结合运动学公式有x 1=12a 车t 2④x 2=12a 物t 2⑤x 2-x 1=x ⑥由②③解得a 车=1 m/s 2⑦ 由④⑤⑥⑦解得a 物=1.5 m/s 2所以F =F f +ma 物=m (μg +a 物)=4×(0.25×10+1.5) N =16 N. 9.0.25 16.25 m解析 设力F 作用时物体沿斜面上升的加速度大小为a 1撤去力F 后其加速度大小变为a 2,则: a 1t 1=a 2t 2①有力F 作用时,物体受力为:重力mg 、推力F 、支持力F N1、摩擦力F f1,如图所示.在沿斜面方向上,由牛顿第二定律可得: F cos θ-mg sin θ-F f1=ma 1②F f1=μF N1′=μ(mg cos θ+F sin θ)③撤去力F 后,物体受重力mg 、支持力F N2、摩擦力F f2,在沿斜面方向上,由牛顿第二定律得: mg sin θ+F f2=ma 2④F f2=μF N2′=μmg cos θ⑤联立①②③④⑤式,代入数据得:a 2=8 m/s 2 a 1=5 m/s 2 μ=0.25物体运动的总位移x =12a 1t 21+12a 2t 22=⎝⎛⎭⎫12×5×22+12×8×1.252 m =16.25 m 10.6μmg解析 设小木块离开薄木板之前的过程,所用时间为t ,小木块的加速度大小为a 1,移动的距离为x 1,薄木板被抽出后,小木块在桌面上做匀减速直线运动,所用时间为t ′,设其加速度大小为a 2,移动的距离为x 2,有 μmg =ma 1① μmg =ma 2②即有a 1=a 2=μg ③根据运动学规律有x 1=x 2,t =t ′④所以x 1=12μgt 2⑤x 2=12μgt 2⑥根据题意有x 1+x 2=12L ⑦解得t 2=L2μg⑧设小木块没有离开薄木板的过程中,薄木板的加速度为a ,移动的距离为x ,有 x =12at 2⑨ 根据题意有x =x 1+12L ⑩联立⑤⑧⑨⑩得a =3μg ⑪对薄木板,根据牛顿第二定律得F -3μmg =ma , 解得F =6μmg . 易错点评1.应用牛顿第二定律时,要注重对定律“四性”的理解.特别是“瞬时性”是常考要点之一;此外“独立性”也是解题中经常用到的.2.解决动力学两类基本问题的关键是找到加速度这一桥梁,除此之外,还应注意受力分析和运动过程分析,最好能画出受力分析图和运动过程草图.。
牛顿动力学方程
![牛顿动力学方程](https://img.taocdn.com/s3/m/f3ed3af8aef8941ea76e05e9.png)
简单性原理( simplicity principle ) 凡科学上正确的东西都是简单的,因此,力求用简单
的方法和形式解决科学问题,表述科学绪论。
因果性原理( causality principle ) 即决定论
绝对性原理(absolutism) 指物质观、时空观、运动观对整个自然 都是普遍适用的,是自然哲学的根本所在。
r(t) 对时间t
ma
可求出质点
所受的力 F .
Ⅱ.已知质点所受的力
F
和运动的初始条件(状态),求质点的运动学方程
r r (t) 、速度 、加速度 a 和轨迹。这是逆问题。
微r 分 r基方(t本程) 解方中法法的:,参根求数据出t可牛方得顿程轨第的迹二解方定析程律解。建可立得方速程度,、应运用动高学等方数程学的r积 分r(t法) ,或消解去
内容:
经典力学立论的理论基础 牛顿力学的基本定律和定理 牛顿动力学方程及其应用 解题指导
重点:牛顿动力学方程及其应用 难点:角动量(angular momentum )概念和角动量定理
(angular momentum theorem )
牛顿在伽利略(Galileo )、开普勒( Kepler )工作的基础上建立了 完整的经典力学理论,这是现代意义下的物理学的开端。经典力学 理论的基础是质点运动三条定律,其核心是牛顿动力学方程。
h
解:质点运动中受的力有:重力( gravity ) mg↓、 空气阻力R=mkv↑,取图1.20所示的直角坐标,
R mk
m mg
质点的运动微分方程为
mx mg mkx
(1)
请思考:方程中重力mg和阻力 mkx 为何都是“-”的?
O 图1.20
牛顿欧拉法求机器人动力学方程
![牛顿欧拉法求机器人动力学方程](https://img.taocdn.com/s3/m/5f9eadc2fbb069dc5022aaea998fcc22bdd14378.png)
牛顿欧拉法求机器人动力学方程机器人动力学方程是描述机器人运动的重要数学工具,它可以帮助我们理解和控制机器人的运动。
牛顿-欧拉法是一种常用的方法,用于推导机器人的动力学方程。
在机器人动力学研究中,我们关注的是机器人的运动以及它受到的力和力矩。
动力学方程描述了机器人运动的加速度与力之间的关系。
牛顿-欧拉法的基本思想是将机器人的连杆和关节看作是一个多体系统,利用牛顿定律和欧拉公式来推导机器人的动力学方程。
具体推导的步骤如下:首先,我们需要为机器人建立坐标系,并定义关节角度和末端执行器的位置、速度和加速度。
通过定义这些量,我们可以准确描述机器人的状态。
接下来,我们根据牛顿定律,对每个连杆和关节分别应用动力学方程。
动力学方程可以写为力矩等于惯性力加上外力的代数和,即:力矩 = 惯性力 + 外力在计算惯性力时,我们需要考虑机器人的质量、惯量以及它们与坐标系之间的几何关系。
这一步可以通过应用欧拉公式来计算。
计算外力主要是考虑机器人与环境之间的交互,包括重力、摩擦力、接触力等。
对于接触力,我们需要考虑机器人与其他物体之间的约束。
最后,我们将所有的动力学方程组合在一起,得到机器人的动力学方程。
这些方程可以帮助我们理解机器人在不同状态下受到的力和力矩以及其加速度。
机器人动力学方程的求解对于机器人的轨迹规划、运动控制以及力矩控制等具有重要的指导意义。
通过求解动力学方程,我们可以预测机器人在不同控制输入下的运动行为,从而优化机器人的性能。
总之,牛顿-欧拉法是一种求解机器人动力学方程的有效方法,它为我们研究和控制机器人的运动提供了重要的数学工具。
在实际应用中,我们可以根据具体的机器人模型和任务需求,灵活应用动力学方程求解的方法,从而实现机器人的精确控制和运动规划。
动力学的基本定律
![动力学的基本定律](https://img.taocdn.com/s3/m/b105e44c78563c1ec5da50e2524de518974bd355.png)
动力学的基本定律动力学是研究物体运动和运动变化规律的科学,是物理学的一个重要分支。
在动力学中,有三条基本定律被广泛接受和应用,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
一、牛顿第一定律:惯性定律牛顿第一定律又称为惯性定律,它表明若物体处于静止状态,则会继续保持静止;若物体处于匀速直线运动状态,则会继续保持匀速直线运动,除非有外力作用于它。
简单来说,物体的运动状态不会自发改变,除非有力使它改变。
二、牛顿第二定律:运动定律牛顿第二定律是描述物体运动状态变化的原因,它表明物体所受合力与物体的加速度成正比,且方向与合力相同。
其数学表达式为F=ma,其中F表示物体所受合力,m表示物体的质量,a表示物体的加速度。
这个定律说明了物体的加速度与作用在物体上的合力成正比,且与物体的质量成反比。
三、牛顿第三定律:相互作用定律牛顿第三定律又称为相互作用定律,它规定当物体A对物体B施加力时,物体B一定会对物体A施加同大小、反方向的力。
这意味着所有的力都是成对出现的,且两个相互作用力的大小相等、方向相反,并作用在不同的物体上。
换句话说,如果有一个物体对另一个物体施加了力,那么这两个物体之间一定存在相互作用力。
通过牛顿的三个基本定律,我们可以对物体的运动进行分析和预测。
牛顿的运动定律不仅适用于地球上的物体,也适用于宇宙中的天体运动。
这些定律为我们解释了许多经典力学现象,如自由落体运动、弹簧振子的运动等。
除了牛顿力学外,还有其他形式的动力学定律,在研究微观领域的物理现象时起到了重要作用。
例如,量子力学描述了微观粒子的运动行为,而相对论则描述了高速运动物体的性质。
总结起来,动力学的基本定律是牛顿的三个定律,它们分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
这些定律不仅在物理学领域发挥着重要作用,也被广泛应用于其他科学和工程领域,为我们理解和探索世界提供了坚实的基础。
第二章 牛顿动力学
![第二章 牛顿动力学](https://img.taocdn.com/s3/m/09b71bf333d4b14e85246864.png)
N
例:在光滑水平面上固定一竖直圆筒,半径为R,一物体紧靠
内壁在水平面上运动。设摩擦系数为,在t=0时,物体的 速度为v0
求:任意时刻物体的速率和运动的路程
解:以小球为研究对象。考虑到小球作曲线运动,因此,选 择自然坐标是比较方便的。 (1).任意时刻物体的速率 列动力学方程:
2 mv dv 法向: N R 切向: N m dt dv dt v dv t dt 联立求解方程: 2 v v 2 0 R R v v0 R 于是: v R v t 0
B.牛顿三定律是互相独立、互不包含的定律
第一定律独立指出牛顿力学体系成立的前提以及影响物体 运动状态的因素;第二定律给出各影响因素之间的定量关系并 指出惯性是由质量量度的;第三定律提供分析影响物体运动状 态外部因素——力的理论基础。 二 牛顿定律的应用
1.几种常见的力
见下页 图表
几种常见的力 万有引力 弹力 摩擦力 静电力 磁力 f N mm QQ 定义 F G r r0 F kx max F k r r0 F qv B s
B.当f<0,即环有上滑趋势,此时,存在一个最大角速度max,
代入上述结果有:
g (cos s sin ) max l sin (sin s cos ) 1 不存在max, 显然,当 sin s cos 0,即 tg s 时,
B.临界状况常常是摩擦力导致的,讨论时常用到条件——所需
摩擦力必须小于物体能够提供的摩擦力,这一般为自然条件 C.物理题目的结果常常需要物理模型的讨论,这点很重要。 例:一条轻绳跨过摩擦可被忽略的轻滑轮,绳的一端挂有质量 为m1的物体,绳的另一端穿过一质量为m2的环。 求:当环相对于绳以恒定的加速度a0沿绳向下滑动时,物体和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.28)
a表示速度大小随时间的变化率,
an 表示速度方向随时间的变化率。
主动力 约束力 自然坐标中: 解线性约束问题 对非自由质点, 约束运动:m F ( r , r , t ) R r
dv 法向平面 m dt F f ( f R ) 主法线 2 v 密切平面 Fn R n m R (b τ n) 0 Fb Rb n 2 2 R R n Rb
· 运动观.内容包括 ①力学的最高原理——牛顿三定律和 力学相对性原理的确立;②万有引力定律的发现。 · 简单性原理.凡科学上正确的东西都是简单的,因此, 力求用简单的方法和形式解决科学问题,表述科学结论。
· 因果性原理.即决定论。
· 绝对性原理.指物质观、时空观、运动观对整个自然 都是普遍适用的,是自然哲学的根本所在。
r
e
N
er
y
d ( e e ) sin e cos e r e r dt
x
(1.18)
e
图1.6
位矢
速度
r re r
re r e r sin e r r
· 真理性原理.既承认客观真理的存在,同时又承认人们 在一定认识阶段的认识只能接近真实,即承认相对真理的存 在。真理性原理是绝对真理与相对真理结合的观点。 四条哲学推理规则是自然科学认识论、方法论的准则, 是学习、研究自然科学强大的思想武器。 1.2 牛顿第二定律的数学表达 m
O
设质量为m的物体(质点)沿曲线C运 动,所受到的力为,当物体的质量不变时, 牛顿第二定律的表示为
动点
S系
S 系
动系 牵连运动 演示 r r0 r 平动时: v v 0 v ( 牵连 速度 相对 速度 ) a a a (牵连 加速度 相对 加速度) 0 位矢 位移 速度
,即 d e 指向轨道的凹向,可见
d e dt
与法线 e n 同向,
所以加速度为
d 2 a e en dt
a d dt
,
(1.27)
2 an
,
ab 0
则牛顿第二定律为
d m dt F 2 Fn m 0 Fb
r
C
m
d dt
图1.3
F
F F (r , r , t )
(1.1)
力 F
一般是位矢 r
速度
r 和时间t的函数:
(1.2)
(1.3)
则式(1.1)可写为
F (的分量式分别为:
理论力学
主讲:黎明 单位:西安理工大学理学院 应用物理系
第一章 牛顿动力学方程
内容: ·经典力学立论的理论基础 ·牛顿力学的基本定律和定理 ·牛顿动力学方程及其应用 ·解题指导 重点: 牛顿动力学方程及其应用 难点: 角动量概念和角动量定理 牛顿在伽利略、开普勒工作的基础上建立了完整的经 典力学理论,这是现代意义下的物理学的开端。经典力学理 论的基础是质点运动三条定律,其核心是牛顿动力学方程。
位矢和速度为
r
(1.22)
z Y
O
R
x 牛顿第二定律为 (1.23) (1.24)
图1.7
r R e R Zk
e r e Z k R R
m ( R R 2 ) FR m ( R 2 R ) F (1.25) z m Fz
(4)球坐标系
空间一点P的位置坐标及其单位矢量分别为 r、θ、φ和 e r 、 e 、 e
e r sin cos i sin sin j cos k e cos cos i cos sin j sin k e e r e sin i cos j
如图1.9所示: 由弧度的定义知
(1.26)
de
e
y ds
de
e
d
de e d d de d d ds dt dt ds dt
e
d
e
P
ds d
P O
x
图1.9
因
de e
轨道约束:仅有一个变量 s(t). 定义:切线方向 i 质点运动方向;
法线方向 j 轨道法线并指向
j
i
副法线方向 b i j n, a b 0 .
曲线的凹侧;
b
质点在任意时刻(P点)的速度和加速度分别为
e
d d a e dt dt dt de ? dt
由定义 a
求出加速度 a
的表示式后,可得
m ( r r 2 sin 2 ) Fr r 2 m ( r 2 r r sin cos ) F m ( r sin 2 r sin 2 r cos ) F
都可作出这样的三条正交的直线,以、n、b为坐标轴构成空间自然坐标系。
用 e 、 e n、 e b
表示其单位矢量,显然,随着质点的运动,
e 、 e n、 e b 方向随时间t而变化。
自然坐标系―内禀(禀性,本性)方程
法向平面 主法线 密切平面 次法线
n
b
直切平面 切线
(1) 直角坐标系
x x P(x,y,z) o x 图1.4 y
r x i yj z k
x i yj z k r
(1.4)
(1.5)
方程(1.3)可表示为 m Fx ( x, y , z; x, y , z; t ) x y m Fy ( x, y , z; x, y , z; t ) z m Fz ( x, y , z; x, y , z; t )
为
r re r
(1.9)
r re r re r re r r e
(1.10)
加速度为
a
d dt
( r 2 )e r ( r 2 r )e r
(1.11)
因此,牛顿第二定律可表示为
m ( r 2 ) Fr r m ( r 2r ) F
(1.12)
(3)柱坐标
可看成是由OXY平面上的平面极坐标R、φ和直角坐标Z组合而成。 单位矢量
e R、 e 和 k 的变化率为
z
e e R e e R k 0
次法线
b
直切平面 切线
R:约束反力. 在法向平面内 . 质点在密切面内运动( n 平面), 与法向平面 ( n b 平面 ) 垂直.
*(5)曲线坐标系
定义: p点的切线单位 e3 , , 矢量 e 1 e 2 e 3 p e1 为p点的基矢,指 e2 向沿坐标的增加 方向,如柱面,球 坐标系. 若 e 1 , e 2 e 3 ,两两正交,称为正交曲线坐标系. v v v n n v b b , v v v 自然坐标系实 际上是描述空 a a a n n a b b , a a a 间曲线, 属正 交曲线坐标系.
(6) 参照系与坐标系关系: i. 描述物体的运动必须有一参照系;
ii . 参照系(体)必须是刚体(1个参照点不能描述物 体在三度空间的位置);
iii. 坐标系是参照系的数学抽象. 可固定在参照 系上(一般情况), 也可不固定在参照系上.
二、平动参照系: (§1.3)
静系: S
动系: S’ (可 以认为是刚 体的平动)
(1.19) (1.20)
加速度
a
e r sin e ) d ( rer r dt
r r 2 sin 2 ) er ( r 2 r r 2 sin cos ) e ( r ( r sin 2 r sin 2 r cos ) e
(5)自然坐标与内禀方程
设质点沿着某一空间曲线MN运 动,在轨道MN上的任意点P作密切 平面,在密切平面内过P点作切线
和法线n,再作直线b,使三者的方向关
系为 n b ,即互相⊥,b称为次法线。n 和 b 构成的平面 称为法平面, 与 b 组成的平面称为直切平面。轨道上每一点
der d de d e er
d dt d dt e e r
r
及其单位矢量
和极角θ及其单位
e
矢量
(1.7) x
de r er d de e d
(1.8)
质点的位矢
r
和速度
r
1.1
经典力学立论的理论基础
包括:三个观点(物质观、时空观、运动观)和四条推理规则(简单 性原理、因果性原理、统一性原理、真理性原理) • 物质观。所有的物质都由原子的微粒组成,原子间存在互相吸引 力和排斥力,可以凝聚分离,构成万物及运动。
• 时空观(绝对时空观)。时间是一维的、均匀的、无限的,与空 间和物质都无关——牛顿的绝对时间。可用一条长的直线表示时间:
左
右
过去
现在