平面向量数量积运算的解题方法与策略
平面向量数量积问题的求解策略
![平面向量数量积问题的求解策略](https://img.taocdn.com/s3/m/ce1336d3ad51f01dc281f185.png)
x 轴建立平面直角坐标系如图3
则A( 1, , 万coslso“ 0) B( , 汤 inlsoo)
即 一,,, B 哥 )0 “ ( 睿 (0 )
易得外接圆的方程为
( x 一 ) 一 气 一一 一) 一= 1 令 + y 万 ‘
图 ’
3万、 _ ,
设 C(x。 , , 九)
策略 1 利用数量积的定义
0 2 +巾 9 。 , 耐取 大 万+ 2 二 时成 0 最 值
1 耐!化 到 角。 三 数, 后 用 角函 归 夹 的 角函 然 利 三 数
的最值求解, 这样紧扣定义, 转化概念, 思路直接了 当, 体现了由未知问题到已知问题的化归思想. 策略2 利用平面向量基本定理选择适当基底 ( 即转化成已知模长或已知相关角的向量) .
中 为 角且 , 3 了3 ) 。 锐 ,ta。 =兴
0“ 鉴0鉴150“ , 巾‘ + 巾£30 “ 巾, 20 0 +
例 已 1 知, 成1=1, !菇1=万, 菇的 角 丽与 夹
为 巧 , C 是△ B 的外接圆上优孤A 0“ 点 AO B上的一个
动 记 丽的 角 求 茄的 大 . 点,虎与 夹 为e,丽 最 值
1 1 就
sin( e + 乙OC ) 一sin乙 A ’ A OC
A了 二 Z+ O Z一 A A o B ZO
cos 乙 AOB 二 . 7
1 一 一 R 一
图丹 ‘
1口尸1
B o
图1
2万
- - 十 ,,全
一 叫 争
〔 阴 IAB I
OC 二 I
通 =万, 丑 2尺
用思维导图促进学生深度学习——以《平面向量数量积解题策略》复习为例
![用思维导图促进学生深度学习——以《平面向量数量积解题策略》复习为例](https://img.taocdn.com/s3/m/93ec8f054a73f242336c1eb91a37f111f1850dee.png)
用思维导图促进学生深度学习——以《平面向量数量积解题策略》复习为例江苏省通州高级中学(226300)尹晓宇[摘要]借助思维导图科学、完整地呈现数学思维的全过程,让学生在原有认知结构中融入新的知识,形成新旧知识相互联系.同时,帮助学生厘清解题思路,提高学生解决综合问题的能力.[关键词]思维导图;深度学习;平面向量;复习[中图分类号]G 633.6[文献标识码]A[文章编号]1674-6058(2021)05-0019-02思维导图是一种思维工具,它以图解的形式和网状的结构储存、组织、优化、输出信息,一般从中心主题开始进行思维发散,建立与其相关的一级主题,一级主题下又包含若干二级主题,以此类推,建立起树状结构.思维导图,在创建过程中还可以使用图片颜色、线条粗细等变化建立联系。
学生在复习阶段,通过画思维导图可以将知识点按照不同层次呈现出来,通过纵横的串联、对比、差异分析等方式形成系统、清晰的知识脉络,加深对知识的理解,从而提高学习的效率.学生在回忆、反思和练习提升阶段,利用思维导图进行学习,前后对比、摸索研究知识的特点,能触类旁通.一、思维导图对深度学习的价值深度学习具有以下几个主要特征.在学习态度上,学习者对所学知识持有怀疑、批判的态度,这是深入思考的前提;在学习方法上,学习者能够整合知识,将新知识纳入已有的知识体系中,形成完整的知识链条;在学习动力上,学习者有强烈的促进自身发展的需求,有积极向上的内驱力.数学学习中,解题思路的优化,就是深度学习的具体体现.思维导图能够为学生提供思考的方向.学生在画思维导图构建新的知识网络时,必然要在相关的已有知识进行信息检索,从已有的知识结构中获取相应的信息,分辨不同的观点、看法,建立新旧知识网络的关联,形成新的思维导图,进而促使自己的认知得到提高.在高中数学学习过程中,通过绘制、修改和应用思维导图可以有效促进学生数学深度学习.高中数学的教学任务十分繁重,教师必须要通过有限的课堂活动引导学生全面熟悉、掌握各个数学知识,且要客观分析高考数学的命题方向,引导学生完成相应的解题任务,从中总结有效的解题方法.平时教学,教师一直在赶教学进度,忽视了思维总结、教学反思,因此导致学生的数学思维结构呈现出碎片化、零散的状态,最直接的表现便是学生无法灵活迁移应用所学知识,解题思路固化.面对这一现实问题,借助思维导图可以完整展现数学知识结构,由此引导学生掌握各个知识点的内在联系,可以很好地优化学生的思路,使其实现深度学习.因此,教师要尝试利用思维导图来优化数学教学效果.二、借助思维导图促进学生数学深度学习的案例(片段节选)(一)教学内容高三复习微专题《平面向量的数量积解题策略》.(二)教学目标1.熟练掌握解决向量数量积问题的基本方法:定义法、投影法、基底法、坐标法.2.理解极化恒等式的定义与几何意义以及极化恒等式在平面向量数量积中的应用.3.通过绘制思维导图,比较出平面向量数量积问题不同解题思路的优劣.(三)教学重难点重点:理解和运用基底法、坐标法解决向量数量积问题.难点:运用极化恒等式解决向量数量积问题.(四)教学主要流程教学片段一:先引导学生对向量知识模块的基本概念进行梳理和回顾(如图1).数学·考试研究||a=()x2-x12+()y2-y12b在a方向上的投影为||b cosθ=a·b||a设a与b的夹角为θ,则cosθ=a·b||a·||ba∥b⇔b=λa⇔x1y2-x2y1=0a⊥b⇔b·a=0⇔x1x2+y1y2=0图1设计意图:通过学生回忆知识点,逐渐绘制出平面向量知识概念的思维导图.以思维导图的形式展现平面向量的知识网络,为学生提供运用思维导图记笔记的方法.原本的课堂小结设计方式是以传统的条目形式,对平面图形中的向量数量积问题基本解题策略进行归纳:1.特殊化,2.定义法,3.投影法,4.基底法,5.坐标法,6.极化恒等式.这样的总结方式中规中矩,虽然全面,但是不利于学生的记忆和选择.于是笔者尝试改用思维导图的方式进行呈现,让学生进行阐述,不拘泥于顺序,引出一条思维链即可进行深度的挖掘和方法总结,最后一条条的思维链就建立起来了.教学片段二平面图形中的向量数量积问题基本解题策略思维导图(如图2):a·b=14[]()a+b2-()a-b2a·b为||a与b在aa·b=||a||b cosθa·b=()x1,y1()x2,y2=x1x2+y1y2图2设计意图:以思维导图进行课堂小结,展现思考的过程.一级结构为题目,二级结构为题目中的条件指向的方法,三级结构为该方法的解题思路和主要步骤.这样的方式能让学生比较各种方法的特征和优劣,能够快速结合题目的类型选择合适的方法解题,促进学生的深度学习.教师同样可利用思维导图优化课堂总结,通过思维导图整理一节课的重点知识、各个知识点的内在关联、新旧知的内在联系等.三、借助思维导图促进数学深度学习的思考思维导图是一种思维方式的呈现,不是一种固定的模式.在教学过程中,思维导图的形式层级不是一下子就画出来的,是在教学过程中,边教学边绘制的,逐渐形成一个思维的网络.在这过程中,学生表现出极大的热情,充分调动学生学习的积极性和主动性,提高学生的课堂参与度,促使学生产生深入学习的欲望.目前,高中数学教学领域正在全面提倡培养学生自主学习能力,需要教师主动调整师生关系、互动形式,调动学生的主观能动性.在此过程中,为了减少学生的无效学习行为,教师可利用思维导图引导、监督学生实现自主学习.思维导图也有助于学生发现知识网络上的短板,及时查漏补缺.课前以思维导图的形式回顾基本知识概念,如果学生在哪一个点上思考不下去了,那么此处就是思维的“断点”,就需要及时补上.总之,在高中数学教学过程中利用思维导图来促进学生的深度学习是十分重要的,教师要客观分析思维导图的制作方法,自觉将其运用到自己的教学中去.[参考文献][1]刘北平.思维导图在高中数学教学的实践研究[D].武汉:华中师范大学,2018.[2]刘慧年.思维导图在高中数学教学中的应用研究[J].成才之路,2018(12):34.(责任编辑黄桂坚)数学·考试研究。
平面向量的数量积和叉积的计算步骤
![平面向量的数量积和叉积的计算步骤](https://img.taocdn.com/s3/m/d949c56c4a73f242336c1eb91a37f111f1850d28.png)
平面向量的数量积和叉积的计算步骤平面向量是数学中重要的概念,它在物理、几何等领域中具有广泛的应用。
其中,数量积和叉积是平面向量运算中的两个重要概念,用于描述向量之间的关系和性质。
本文将介绍平面向量数量积和叉积的计算步骤。
一、平面向量的数量积的计算步骤数量积又称为点积或内积,表示两个向量的乘积的数量。
计算平面向量的数量积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。
平面向量通常用列向量表示,例如向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。
2. 将两个向量的对应坐标相乘。
将a₁与b₁相乘得到的结果记为x₁,将a₂与b₂相乘得到的结果记为x₂。
3. 对结果进行求和。
将x₁和x₂相加得到总和s,即s = x₁ + x₂。
4. 得到最终结果。
最终结果即为平面向量的数量积,记作a·b = s。
二、平面向量的叉积的计算步骤叉积又称为向量积或外积,表示两个向量之间的乘积的向量。
计算平面向量的叉积可以按照以下步骤进行:1. 确定两个向量的坐标表示形式。
与数量积相同,平面向量可以用列向量表示,向量a可以表示为(a₁, a₂),向量b可以表示为(b₁, b₂)。
2. 计算叉积的第一分量。
将a₁与b₂相乘得到的结果记为y₁。
3. 计算叉积的第二分量。
将a₂与b₁相乘得到的结果记为y₂。
4. 得到最终结果。
最终结果即为平面向量的叉积,记作a×b = (y₁, y₂)。
三、数量积和叉积的性质和应用1. 数量积的性质:- a·b = b·a,即数量积满足交换律。
- a·(b+c) = a·b + a·c,即数量积满足分配律。
- k(a·b) = (ka)·b = a·(kb),即数量积满足数乘的结合律。
2. 叉积的性质:- a×b = -b×a,即叉积满足反交换律。
- a×(b+c) = a×b + a×c,即叉积满足分配律。
平面向量的数量积与向量积知识点总结
![平面向量的数量积与向量积知识点总结](https://img.taocdn.com/s3/m/13ecbe56ae1ffc4ffe4733687e21af45b207fe43.png)
平面向量的数量积与向量积知识点总结平面向量是数学中的重要概念之一,它们可以用来表示物体在平面上的位移、速度、加速度等。
平面向量有许多重要的运算,其中包括数量积和向量积。
本文将对平面向量的数量积与向量积进行知识点总结和讨论。
一、数量积数量积又称为点积,是两个向量的运算,它的结果是一个标量(即一个实数)。
数量积的定义如下:对于两个向量a和b,它们的数量积定义为:a·b = |a||b|cosθ其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b之间的夹角。
1. 特点:数量积是两个向量的乘积与它们的夹角的余弦值的乘积。
根据这个特点,我们可以得出一些重要结论:(1)若夹角θ为90°,则cosθ=0,数量积为0,即两个向量垂直。
(2)若夹角θ为180°,则cosθ=-1,数量积为-|a||b|,即两个向量反向。
(3)若夹角θ为0°,则cosθ=1,数量积为|a||b|,即两个向量同向。
2. 计算数量积的方法:(1)坐标法:设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则a·b = a₁b₁ + a₂b₂。
(2)几何法:设向量a的起点为O,终点为A,向量b的起点为O,终点为B,则a·b = AB·OBcosθ,其中AB和OB分别表示向量a和向量b的长度。
3. 应用:数量积在物理学中有广泛应用,例如计算力的做功、计算向量的投影等。
二、向量积向量积又称为叉积,是两个向量的运算,它的结果是一个向量。
向量积的定义如下:对于两个向量a和b,它们的向量积定义为:a×b = |a||b|sinθn其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b 之间的夹角,n表示垂直于a和b所在平面的单位向量。
1. 特点:向量积的结果是一个垂直于原向量所在平面的向量,并且其模的大小等于a和b所张的平行四边形的面积。
平面向量的数量积与向量积的运算
![平面向量的数量积与向量积的运算](https://img.taocdn.com/s3/m/fa4812a8f9c75fbfc77da26925c52cc58bd690ca.png)
平面向量的数量积与向量积的运算平面向量的数量积与向量积是向量的两种重要运算。
它们在物理、几何和工程学等领域中有着广泛的应用。
本文将详细介绍平面向量的数量积和向量积的定义、性质和计算方法。
一、平面向量的数量积平面向量的数量积也叫点积或内积,用符号“·”表示。
给定向量A和向量B,在平面直角坐标系中,它们的数量积定义为:A·B = |A| |B| cosθ其中,|A|和|B|分别表示向量A和向量B的模,θ表示向量A与向量B的夹角。
数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:(kA)·B = k(A·B),A·(kB) = k(A·B),其中k为实数3. 结合律:(A+B)·C = A·C + B·C利用数量积,我们可以计算向量的夹角、向量的模、判断两个向量是否垂直等。
此外,数量积还有一种重要的几何意义,即两个向量的数量积等于它们的模与它们夹角的余弦的乘积。
二、平面向量的向量积平面向量的向量积也叫叉积或外积,用符号“×”表示。
给定向量A 和向量B,在平面直角坐标系中,它们的向量积定义为:A×B = |A| |B| sinθ n其中,|A|和|B|分别表示向量A和向量B的模,θ表示向量A与向量B的夹角,n为垂直于平面的单位向量,其方向由右手定则确定。
向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:(kA)×B = k(A×B),A×(kB) = k(A×B),其中k为实数3. 结合律:(A+B)×C = A×C + B×C向量积具有一些重要的几何意义。
首先,向量积的模等于以向量A 和向量B为邻边的平行四边形的面积。
其次,向量A和向量B的向量积的方向垂直于二者所在的平面,并符合右手定则。
微重点04 平面向量数量积的最值与范围问题((习题版))
![微重点04 平面向量数量积的最值与范围问题((习题版))](https://img.taocdn.com/s3/m/09f78fa17d1cfad6195f312b3169a4517723e527.png)
微重点04平面向量数量积的最值与范围问题平面向量中的最值与范围问题,是高考的热点与难点问题,主要考查求向量的模、数量积、夹角及向量的系数等的最值、范围.解决这类问题的一般思路是建立求解目标的函数关系,通过函数的值域解决问题,同时,平面向量兼具“数”与“形”的双重身份,数形结合也是解决平面向量中的最值与范围问题的重要方法.知识导图考点分类讲解考点一:求参数的最值(范围)规律方法利用共线向量定理及推论(1)a ∥b ⇔a =λb (b ≠0).(2)OA →=λOB →+μOC →(λ,μ为实数),则A ,B ,C 三点共线⇔λ+μ=1.【例1】(2023·漳州模拟)已知△ABC ,点D 满足BC →=34BD →,点E 为线段CD 上异于C ,D 的动点,若AE →=λAB→+μAC →,则λ2+μ2的取值范围是________.【变式1】设非零向量a ,b 的夹角为θ,若|a |=2|b |=2,且不等式|2a +b |≥|a +λb |对任意的θ恒成立,则实数λ的取值范围为()A.[-1,3]B.[-1,5]C.[-7,3]D.[5,7]【变式2】(23-24高三上·黑龙江佳木斯·阶段练习)在ABC 中,点D 在线段AC 上,且满足12AD AC = ,点Q 为线段BD 上任意一点,若实数,x y 满足AQ x AB y AC =+,则24x y +的最小值为.【变式2】.(2023高三·全国·专题练习)已知向量,a b 满足||1,a b == ,且)0R (a b λλ+∈=,则函数()3(1)1f x x x xλ=+>-+的最小值为.【变式4】(2023·深圳模拟)过△ABC 的重心G 的直线l 分别交线段AB ,AC 于点E ,F ,若AE →=λAB →,AF →=μAC →,则λ+μ的最小值为()A.23+2 B.2+223C.43D.1考点二:求向量模、夹角的最值(范围)易错提醒找两向量的夹角时,要注意“共起点”以及向量夹角的取值范围是[0,π].若向量a ,b 的夹角为锐角,包括a ·b >0和a ,b 不共线;若向量a ,b 的夹角为钝角,包括a ·b <0和a ,b 不共线.【例1】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +r r 共线,则||b c +的最小值为.【例2】(1)已知e 为单位向量,向量a 满足(a -e )·(a -5e )=0,则|a +e |的最大值为()A.4B.5C.6D.7(2)平面向量a ,b 满足|a |=3|b |,且|a -b |=4,则a 与a -b 夹角的余弦值的最小值为________.【变式1】(2023·安庆模拟)已知非零向量a ,b 的夹角为θ,|a +b |=2,且|a ||b |≥43,则夹角θ的最小值为()A.π6B.π4C.π3D.π2【变式2】(2023·杭州模拟)已知a =(1,2),b =(1,1),且a 与a +λb 的夹角为锐角,则实数λ的取值范围为____________.【变式3】(2024·吉林长春·模拟预测)已知向量a ,b 为单位向量,且12a b ⋅=-r r ,向量c 与3a b +rr 共线,则||b c +的最小值为.考点三:求向量数量积的最值(范围)规律方法向量数量积最值(范围)问题的解题策略(1)形化:利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断.(2)数化:利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集或方程有解等问题,然后利用函数、不等式或方程的有关知识来解决.【例3】(1)(2023·开封模拟)等腰直角三角形ABC 的直角顶点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,点C 在第一象限,且AB =1,O 为坐标原点,则OC →·OA →的取值范围是()0,2-240,1+22,1,1(2)(2023·全国乙卷)已知⊙O 的半径为1,直线PA 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=2,则PA →·PD →的最大值为()A.1+22B.1+222C.1+2D.2+2【变式1】(2023·台州模拟)已知P 是边长为2的正六边形ABCDEF 内(含边界)一点,M 为边BC 的中点,则AP →·AM →的取值范围是()A.[-2,6]B.[-1,9]C.[-2,4]D.[-1,6]【变式2】(2023·邵阳模拟)已知四边形ABCD 是边长为1的正方形,P 为对角线AC 上一点,则PA →·(PB →+PD →)的最小值是()A.0B.-14C.-12D.-2【变式3】(2024高三·江苏·专题练习)已知点M 为直角ABC 外接圆O 上的任意一点,90,1,ABC AB BC ∠=︒=()OA OB BM -⋅的最大值为.强化训练单选题1.(2023·陕西咸阳·模拟预测)已知向量a ,b,且5a b == ,6a b += ,则()ta b t +∈R 的最小值为()A.245B.4C.165D.1252.(23-24高三上·江西吉安·期中)ABC 中,D 为AC 上一点且满足34CD CA = ,若P 为BD 上一点,且满足AP AB AC λμ=+,,λμ为正实数,则下列结论正确的是()A.λμ的最小值为116B.λμ的最大值为1C.114λμ+的最大值为16D.114λμ+的最小值为43.(2024·内蒙古呼和浩特·一模)在ABC 中,D 为线段AC 的一个三等分点,2AD DC =.连接BD ,在线段BD 上任取一点E ,连接AE ,若AE aAC bAB =+,则22a b +的最小值为()A.134B.52C.413D.254.(2023·安徽安庆·二模)已知非零向量a ,b的夹角为θ,2a b += ,且43a b ≥ ,则夹角θ的最小值为()A.π6B.π4C.π3D.π25.(2024·全国·模拟预测)已知非零且不垂直的平面向量,a b满足||||6a b += ,若a 在b 方向上的投影与b 在a 方向上的投影之和等于()2a b ⋅ ,则,a b夹角的余弦值的最小值为()A.227B.127C.13D.236.(23-24高三下·北京海淀·开学考试)已知AB 是圆O :221x y +=的直径,C 、D 是圆O 上两点,且60COD ∠=,则()OC OD AB +⋅的最小值为()A.0B.C.3-D.-7.在ABC 中,点D 为AC 边上的中点,点E 满足3EC BE =,点P 是直线BD ,AE 的交点,过点P 做一条直线交线段AC 于点M ,交线段BC 于点N (其中点M ,N 均不与端点重合)设CM mCA = ,CN nCB =,则m n +的最小值为()C.75D.1658.(23-24高三上·陕西安康·阶段练习)已知O 是ABC 所在平面内一点,若0,,,,,OA OB OC AM xAB AN y AC MO ON x y λ++==== 均为正数,则xy 的最小值为()A.12B.49C.1D.43二、多选题1.(2024·河南·模拟预测)已知O 是坐标原点,平面向量a OA = ,b OB = ,c OC = ,且a是单位向量,2a b ⋅= ,12a c ⋅= ,则下列结论正确的是()A.c a c=- B.若A ,B ,C 三点共线,则2133a b =+C.若向量b a - 与c a -垂直,则2b c a +- 的最小值为1D.向量b a - 与b 的夹角正切值的最大值为42.(2024·广东·模拟预测)如图所示,在边长为3的等边三角形ABC 中,23AD AC =,且点P 在以AD 的中点O 为圆心,OA 为半径的半圆上,若BP xBA yBC =+,则下列说法正确的有()A.1233BD BA BC=+ B.132BD BO ⋅=C.BP BC ⋅存在最大值D.x y +1+3.(2023·全国·模拟预测)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,60BAD ∠=︒,12AB AD AA ===,P 为1CC 的中点,点Q 满足[][]()10,1,0,1DQ DC DD λμλμ=+∈∈,则下列结论中正确的是()A.若13λμ+=,则四面体1A BPQ 的体积为定值B.若1A BQ △的外心为O ,则11A B AO ⋅为定值2C.若1AQ =,则点Q 的轨迹长度为4D.若1λ=且12μ=,则存在点1E A B ∈,使得AE EQ +三、填空题1.(2024·湖北·模拟预测)已知向量a ,b 满足2a =r ,1= b ,且a ,b的夹角为π3,则()a b λλ-∈R 的最小值是.2.(23-24高三上·山西太原·期末)已知非零向量a ,b 夹角为2π3,则|2|||a b b +的最小值为.3.(2024高三·全国·专题练习)在四边形ABCD 中,AB AC AD ===AB AD ⊥,则CB CD ⋅的最小值为.四、解答题1.如图,在△ABC 中,2AB =,AC =,cos BAC ∠=D 为BC 的中点,E 为AB 边上的动点(不含端点),AD 与CE 交于点O ,AE xAB =.(1)若14x =,求CO OE 的值;(2)求AO CE ⋅的最小值,并指出取到最小值时x 的值.2.(22-23高三·北京·阶段练习)已知非零平面向量a ,b 的夹角为23π,1a a b =+= .(1)证明:a b -= ;(2)设t ∈R ,求a tb +的最小值.3.(22-23高三上·河南安阳·阶段练习)已知()1sin cos ,2cos ,2sin ,sin 2.2a x x b x θθ⎛⎫=+= ⎪⎝⎭(1)若),4(3c =- 且()π,0,π4x θ=∈时,a 与c 的夹角为钝角,求cos θ的取值范围;(2)若π3θ=函数()f x a b =⋅ ,求()f x 的最小值.4.(2023·四川成都·模拟预测)如图,A ,B 是单位圆(圆心为O )上两动点,C 是劣弧 AB (含端点)上的动点.记OC OA OB λμ=+(λ,μ均为实数).(1)若O 到弦AB 的距离是12,求λμ+的取值范围;(2)若532OA OB -≤ ,向量2OA OB +和向量OA OB + 的夹角为θ,求2cos θ的最小值.5.(2022高三·全国·专题练习)如图,已知点G 是边长为1的正三角形ABC 的中心,线段DE 经过点G ,并绕点G 转动,分别交边,AB AC 于点,D E ,设,AD m AB AE n AC ==,其中01,01m n <≤<≤.(1)求11m n的值;(2)求ADEV面积的最小值,并指出相应的,m n的值.。
高中数学讲义 向量的数量积——寻找合适的基底
![高中数学讲义 向量的数量积——寻找合适的基底](https://img.taocdn.com/s3/m/90e49ca8195f312b3069a572.png)
微专题36 向量的数量积——寻找合适的基底在高考中经常会遇到几何图形中计算某两个向量,a b r r数量积的问题,如果无法寻找到计算数量积的要素(,a b r r 模长,夹角)那么可考虑用合适的两个向量(称为基底)将,a b r r两个向量表示出来,进而进行运算。
这也是在几何图形中处理向量数量积的一个重要方法 一、基础知识:(一)所涉及的平面向量定理及数量积运算法则:1、平面向量基本定理:若向量12e e u r u r,为两个不共线的向量,那么对于平面上任意的一个向量a r ,均存在唯一一对实数12,λλ,使得1122a e e λλ=+r u r u r 。
其中12e e u r u r ,成为平面向量的一组基底。
(简而言之,不共线的两个向量可以表示所有向量)2、向量数量积运算cos a b a b θ⋅=⋅r r r r,其中θ为向量,a b r r 的夹角3、向量夹角的确定:向量,a b r r 的夹角θ指的是将,a b r r的起点重合所成的角,[]0,θπ∈其中0θ=:同向 θπ=:反向 2πθ=:a b ⊥r r4、数量积运算法则:(1)交换律:a b b a ⋅=⋅r r r r(2)系数结合律:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈r r r r r r(3)分配律:()a b c a c b c +⋅=⋅+⋅r r r r r r r因为向量数量积存在交换律与分配律,才使得有些向量数量积运算的展开式与实数因式相乘的展开式规律相同:例如:()2222a ba ab b ±=±⋅+r rr r r r ()()0a b a b +⋅-=r r r r5、若11221122+,+a e e b e e λλμμ==r u r u r r u r u r,则()()()2211221122111222122112++=a b e e e e e e e e λλμμλμλμλμλμ⋅=⋅+++⋅r r u r u r u r u r u r u r u r u r由此可见,只要知道基底的模与数量积,以及将,a b r r 用基底表示出来,则可计算a b ⋅r r(二)选择合适基底解题的步骤与技巧:1、如何选择“合适”的基底:题目中是否有两个向量模长已知,数量积可求呢?如果有,那就是它们了。
平面向量的数量积与夹角
![平面向量的数量积与夹角](https://img.taocdn.com/s3/m/5a3e134c78563c1ec5da50e2524de518964bd39d.png)
平面向量的数量积与夹角在二维平面上,向量具有大小和方向两个特征,我们可以通过数量积和夹角来描述和计算向量之间的关系。
本文将详细介绍平面向量的数量积和夹角的概念、性质以及计算方法。
一、平面向量的数量积平面向量的数量积也被称为点积或内积,用符号“·”表示。
对于平面上的两个向量a和b,它们的数量积定义为:a·b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和b的模(即长度),θ表示a和b之间的夹角。
数量积有以下几个重要性质:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积与夹角的关系:若a·b = 0,则a与b垂直通过数量积,我们可以判断向量之间的垂直关系。
当且仅当两个向量的数量积为0时,它们相互垂直。
二、平面向量的夹角平面向量的夹角是指两个向量之间的夹角,它描述了向量的方向关系。
夹角的计算可以通过数量积的性质得到。
设有两个非零向量a和b,它们之间的夹角θ满足以下公式:cosθ = (a·b) / (|a| |b|)其中,a·b表示a和b的数量积,|a|和|b|分别表示a和b的模。
夹角θ的范围在0到π之间,可以通过反余弦函数求得具体的夹角值。
三、平面向量数量积和夹角的应用1. 判断向量的平行和垂直关系:根据数量积的性质,当两个向量的数量积为0时,它们相互垂直;当两个向量的夹角为0或π时,它们平行。
2. 计算向量的模:根据数量积的定义,我们可以得到向量的模公式:|a| = √(a·a)通过计算向量的数量积,可以求得向量的模。
3. 计算向量的投影:向量的投影是指一个向量在另一个向量上的投影长度。
通过数量积的概念,我们可以计算出向量a在向量b上的投影长度为:proj_b a = (a·b) / |b|其中,a·b表示a和b的数量积,|b|表示b的模。
平面向量的数量积和叉积的计算注意事项
![平面向量的数量积和叉积的计算注意事项](https://img.taocdn.com/s3/m/f7a28b985122aaea998fcc22bcd126fff7055d07.png)
平面向量的数量积和叉积的计算注意事项平面向量是高中数学中重要的概念之一,其数量积和叉积是计算两个向量之间关系的有效工具。
在进行数量积和叉积的计算时,需要注意以下几个关键点。
一、数量积的计算注意事项数量积又称为点积或内积,表示两个向量间的乘积。
在计算数量积时,有以下几个注意事项:1. 数量积的计算公式:对于两个向量A和B,其数量积的计算公式为A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角。
2. 注意模长的计算:在计算数量积时,需要先计算出向量的模长。
向量A的模长计算公式为|A| = √(A₁² + A₂²),其中A₁和A₂分别表示向量A在x轴和y轴上的分量。
3. 注意夹角的取值范围:夹角θ的取值范围为0°≤θ≤180°。
当θ为锐角时,cosθ大于0;当θ为钝角时,cosθ小于0;当θ为直角时,cosθ等于0。
4. 注意正负号:数量积的结果既可以是正数,也可以是负数。
正数表示两个向量同向,负数表示两个向量反向。
二、叉积的计算注意事项叉积又称为向量积或外积,表示两个向量间的叉乘结果。
在计算叉积时,有以下几个注意事项:1. 叉积的计算公式:对于两个向量A和B,其叉积的计算公式为A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和B的模长,θ表示两个向量的夹角,n表示垂直于平面的单位向量。
2. 注意模长的计算:与数量积不同,叉积计算中不需要计算向量的模长。
3. 注意夹角的取值范围:夹角θ的取值范围为0°≤θ≤180°。
当θ为锐角时,sinθ大于0;当θ为钝角时,sinθ小于0;当θ为直角时,sinθ等于0。
4. 注意右手法则:叉积的结果具有方向性。
根据右手法则,将右手的食指指向向量A,中指指向向量B,那么拇指的方向就是叉积结果的方向。
总结:在计算平面向量的数量积和叉积时,我们需要注意以下几个要点:1. 数量积的计算公式为A·B = |A||B|cosθ,注意模长的计算和夹角的取值范围。
平面向量的数量积
![平面向量的数量积](https://img.taocdn.com/s3/m/3f544f4402d8ce2f0066f5335a8102d277a26172.png)
平面向量的数量积平面向量的数量积,也叫点积或内积,是向量运算中的一种重要操作。
它与向量的夹角以及向量的长度有着密切的关系。
在本文中,我们将详细介绍平面向量的数量积的概念、计算方法以及一些应用。
一、概念平面向量的数量积是指将两个向量的对应分量相乘,并将所得乘积相加而得到的数值。
设有两个平面向量A和A,它们的数量积记作A·A,计算公式为:A·A = AAAA + AAAA其中,AA和AA分别是向量A在A轴和A轴上的分量,AA和AA分别是向量A在A轴和A轴上的分量。
二、计算方法要计算平面向量的数量积,需要先求出两个向量在A轴和A轴上的分量,然后按照数量积的计算公式进行计算。
假设有两个向量A = (A, A)和A = (A, A),它们的数量积为A·A,计算步骤如下:1. 计算A和A在A轴上的分量AA和AA,分别为A和A;2. 计算A和A在A轴上的分量AA和AA,分别为A和A;3. 将AA和AA、AA和AA进行相乘得到AA和AA;4. 将AA和AA相加,得到平面向量的数量积A·A。
三、性质平面向量的数量积具有以下性质:1. 交换律:A·A = A·A2. 数乘结合律:(AA)·A = A(A·A) = A·(AA)3. 分配律:(A + A)·A = A·A + A·A其中,A为任意实数,A、A和A为任意向量。
四、夹角与数量积的关系两个非零向量A和A的数量积A·A与它们夹角A的余弦函数之间存在着如下关系:A·A = ‖A‖‖A‖cosA其中,‖A‖和‖A‖分别为向量A和A的长度。
五、应用平面向量的数量积在几何和物理学中有着广泛的应用。
以下是一些常见的应用:1. 判断两个向量是否垂直:如果两个向量的数量积为零,即A·A = 0,那么它们是垂直的。
2. 计算向量的模:根据数量积的性质,向量的模可以通过向量与自身的数量积来计算。
求平面向量数量积的5种方法
![求平面向量数量积的5种方法](https://img.taocdn.com/s3/m/09c363545e0e7cd184254b35eefdc8d377ee1444.png)
求平面向量数量积的5种方法平面向量的数量积(也称为内积、点积或标量积)是两个向量的乘积,结果是一个标量(即一个数),代表了两个向量之间的相似度。
平面向量数量积可以通过多种方法进行计算。
本文将介绍五种常用方法,包括点乘法、分量法、向量夹角法、模长法和运算法。
一、点乘法点乘法是最常用的计算平面向量数量积的方法。
给定两个向量A=(a1,a2)和B=(b1,b2),则它们的数量积记作A·B,计算公式如下:A·B=a1*b1+a2*b2二、分量法分量法是另一种常用的计算平面向量数量积的方法。
当向量A=(a1,a2)和B=(b1,b2)的夹角为θ时,它们的数量积可以用以下公式表示:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
三、向量夹角法向量夹角法是通过向量夹角公式直接计算平面向量数量积的方法。
若向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
四、模长法模长法是一种通过计算向量的模长与夹角的余弦值来求解平面向量数量积的方法。
若向量A的模长为,A,向量B的模长为,B,向量A与向量B之间的夹角为θ,则它们的数量积可以计算如下:A·B = ,A, * ,B,* cos(θ)其中,A,和,B,分别表示向量A和B的模长,cos(θ)表示向量A和B的夹角的余弦值。
五、运算法运算法是一种通过平面向量的加、减、乘、除等运算求解数量积的方法。
根据数量积的性质,有以下运算法则:-若A·B=0,则向量A与向量B相互垂直。
-若A·B>0,则向量A与向量B夹角小于90度,即为锐角。
-若A·B<0,则向量A与向量B夹角大于90度,即为钝角。
向量数量积的五种求法
![向量数量积的五种求法](https://img.taocdn.com/s3/m/52d2a941dd88d0d232d46a0a.png)
向量的数量积的五种求解策略方法一:定义法利用向量数量积的概念,即:a ·b=∣a ∣·∣b ∣cos θ。
根据向量的数量积的公式可知,在求解两个向量的数量积时,需要先确认两个向量的模以及它们的夹角,在判断向量的夹角时,要特别注意它们是否为“共起点“,如果不是”共起点“的需要先转化为”共起点“的向量再进行求解。
定义法也是求向量数量积的最常见的方法。
例题1:在▲ABC 中,M 是BC 的中点,AM=1,点P 在AM 上,且满足AP=2PM ,则PA ·(PB+PC)=解:∵ M 是BC 的中点,AM=1,且AP=2PM 可得:PB+PC=2PM 又AP=23∴ PA ·(PB+PC)=PA ·AP=-49例题2:在▲ABC 中,角A ,B ,C 所对的边分别是a ,b ,c 且满足ccosB+bcosC=4acosA ,S ▲ABC =√15,则AB ·AC= 解:由射影定理可得:a=ccosB+bcosC=4acosA , ∴ cosA=14,可得:sinA=√154PMABC·又 S ▲ABC =12∣AB ∣··∣AC ∣·sinA可得:∣AB ∣··∣AC ∣=8∴ AB ·AC=∣AB ∣··∣AC ∣·cosA=2 方法二:数量积的几何意义a ·b 的几何意义为: a 的模∣a ∣和b 在a 方向上的投影∣b ∣cos θ的乘积。
当两个向量的夹角θ未知时,有时可以根据题目条件,利用其几何意义迅速解决向量的数量积问题。
例题1:如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,AP=3,试求AP ·AC 的数量积。
解: ∵ AC=2AO ∵ AP ⊥BD∴ 可知AO 在AP 方向上的投影为∣AP ∣ ∴ AC 在AP 方向上的投影为2∣AP ∣ ∴ AP ·AC=∣AP ∣·2∣AP ∣=18例题2:点P 是▲ABC 的外心,且∣AC ∣=4,∣AB ∣=2,求AP ·(AC-AB)的数量积。
平面向量的数量积与向量积详细解析与归纳
![平面向量的数量积与向量积详细解析与归纳](https://img.taocdn.com/s3/m/23cc922c59fafab069dc5022aaea998fcd224045.png)
平面向量的数量积与向量积详细解析与归纳平面向量是数学中重要的概念之一,而其中的数量积(也叫点积或内积)与向量积(也叫叉积或外积)是平面向量运算中常用的两种运算方法。
本文将详细解析这两种运算,并对其进行归纳总结。
一、平面向量的数量积数量积,记作A·B,是两个向量A和B的数量上的乘积。
具体计算公式如下:A·B = |A| * |B| * cosθ其中|A|和|B|分别表示向量A和B的模(即长度),θ表示A和B 之间的夹角。
数量积有以下几个重要的性质:1. 交换律:A·B = B·A2. 分配律:(A + B)·C = A·C + B·C3. 数乘结合律:(kA)·B = k(A·B)这些性质使得数量积在计算中更加方便。
数量积的几何意义是,它等于一个向量在另一个向量方向上的投影长度与另一个向量的模的乘积。
通过数量积,我们可以计算向量的夹角、判断两个向量是否垂直以及计算向量的模等。
二、平面向量的向量积向量积,记作A×B,是两个向量A和B的向量上的乘积。
具体计算公式如下:A×B = |A| * |B| * sinθ * n其中|A|和|B|分别表示向量A和B的模,θ表示A和B之间的夹角,n为垂直于A和B所在平面的单位法向量,并满足右手法则。
向量积有以下几个重要的性质:1. 反交换律:A×B = -B×A2. 分配律:A×(B + C) = A×B + A×C3. 数乘结合律:(kA)×B = k(A×B)这些性质使得向量积在计算中更加灵活。
向量积的几何意义是,它等于一个向量在另一个向量所在平面上的投影的长度乘以一个单位法向量。
通过向量积,我们可以计算平行四边形的面积、判断两个向量是否平行以及计算平行四边形的对角线等。
三、数量积与向量积的关系数量积和向量积之间存在一定的关系:A×B = |A| * |B| * sinθ * n由此可得到以下等式:|A×B| = |A| * |B| * sinθ此等式表明,向量积的模等于数量积的模乘上夹角的正弦值。
平面向量的数量积教案
![平面向量的数量积教案](https://img.taocdn.com/s3/m/35bdf5340a1c59eef8c75fbfc77da26925c596b6.png)
平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。
2. 掌握平面向量的数量积的计算公式及运算性质。
3. 学会运用平面向量的数量积解决实际问题。
二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。
对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。
2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。
(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。
3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 教学难点:平面向量的数量积的几何意义的理解及应用。
四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。
3. 结合例题,引导学生运用平面向量的数量积解决实际问题。
五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。
2. 完成课后练习题,巩固所学知识。
3. 思考如何运用平面向量的数量积解决实际问题。
六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。
求平面向量数量积的5种方法
![求平面向量数量积的5种方法](https://img.taocdn.com/s3/m/a0b16e1f4028915f814dc26c.png)
平面向量数量积的5种方法一、定义:(与物理中功的定义一致,两向量通过数量积运算以后是标量或实数。
)(亦称内积)是两向量乘法运算中的一种,2121y y x x b a ⋅+⋅==⋅θ,叫做向量a 与b 的数量积。
θ为向量a 与b 的夹角,注意:求两向量的夹角应把向量的起点移到同一点,注意不能理解成两条直线的夹角,[]0,θπ∈。
二、几何意义为:b a ⋅等于a (或b )与b (或a )在a (或b )方向上的投影cos b θ(θcos a)的乘积。
三、运算率:①交换率:a b b a ⋅=⋅;②分配率:()c b c a c b a ⋅+⋅=⋅+;③不满足结合率:()()c b a c b a ⋅⋅≠⋅⋅,因为前面表示与c 共线的向量,后面表示与a 共线的向量。
四、三种方法:1.定义法:代入到数量积的公式中,对于较简单题(已知两向量的模与夹角),用此法计算。
2.绕法:当两向量的模与夹角不易求时,把两向量通过平行四边形或三角形绕成用已知向量(已知模与夹角的向量)表示,然后代入到数量积公式中。
3.坐标法:如果给出两向量所在图形存在垂直关系(易建系时)时,适当建立直角坐标系,代入坐标计算。
4.投影法:当一个向量在另一个向量上的投影易求时,用此法计算。
5.特殊图形法:如果图形形状不确定,则可取特殊图形,然后利用建系或投影计算。
1、利用定义计算(简单)。
1.(2010年辽宁卷)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于 ( ) 222()a b a b -⋅ 222()a b a b +⋅C.12222()a b a b -⋅ D.()22221ba b a ⋅+2.(2016年新课标全国卷II3)已知向量()()2,3,,1-==b m a 且()b b a ⊥+,则m = ( ) A.-8 B.-6 C.6 D.83.(2012年辽宁卷)已知向量)1,1(-=a ,),2(x b =,若1=⋅b a ,则x = ( ) A.—1 B.—12 C.12D.1 4.(2016年新课标全国卷II4)已知向量b a ,满足1,1-=⋅=b a a ,则()b a a -⋅2= ( ) A.4B.3C.2D.05.(高考题)已知a 是平面内的单位向量,若向量b 满足()0b a b ⋅-=,则||b 的取值范围是 。
平面向量向量的数量积与向量积的计算方法
![平面向量向量的数量积与向量积的计算方法](https://img.taocdn.com/s3/m/0b526bd6dc88d0d233d4b14e852458fb770b38aa.png)
平面向量向量的数量积与向量积的计算方法平面向量的数量积与向量积的计算方法平面向量是数学中常见的概念,它有两个基本运算:数量积和向量积。
数量积也称为点积或内积,而向量积也称为叉积或外积。
这两个运算在向量的计算和几何问题中起着重要的作用。
本文将详细介绍平面向量的数量积和向量积的计算方法。
一、数量积数量积是两个向量之间的一种运算,表示为A·B,其中A和B是两个向量。
数量积的计算方法是相同位置的两个分量相乘,再将结果相加。
设A和B是两个平面向量,其坐标表示分别为A=(x₁,y₁)和B=(x₂,y₂),则数量积的计算公式如下:A·B = x₁x₂ + y₁y₂这个公式表示了数量积的定义和计算方法。
数量积的结果是一个实数,它可以用于计算向量的模长、夹角和投影等问题。
二、向量积向量积是两个向量之间的一种运算,表示为A×B,其中A和B是两个向量。
向量积的计算方法是利用行列式的形式进行计算。
设A和B是两个平面向量,其坐标表示分别为A=(x₁,y₁)和B=(x₂,y₂),则向量积的计算公式如下:A×B = det | i j || x₁ y₁ || x₂ y₂ |其中,i和j分别表示x轴和y轴的单位向量。
行列式的计算方法是先计算主对角线上的乘积,再减去副对角线上的乘积。
即:A×B = (x₁y₂ - y₁x₂)·k这个公式表示了向量积的定义和计算方法。
向量积的结果是一个向量,它的方向垂直于A和B所确定的平面,并符合右手定则。
向量积可以用于计算面积、判定向量的共面性和计算法向量等问题。
综上所述,平面向量的数量积和向量积是两个重要的运算方法。
数量积是两个向量的乘积的加和,结果为实数;向量积是两个向量的乘积的行列式形式,结果为向量。
这两个运算在解决代数问题和几何问题中起着重要的作用,可以高效地计算向量的性质和运算结果。
掌握数量积和向量积的计算方法,对于理解和解决相关问题具有重要意义。
2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)
![2023年新高考数学大一轮复习专题22 平面向量的数量积及其应用(解析版)](https://img.taocdn.com/s3/m/61dc43eb09a1284ac850ad02de80d4d8d15a0166.png)
专题22 平面向量的数量积及其应用【考点预测】一.平面向量的数量积a (1)平面向量数量积的定义已知两个非零向量与b ,我们把数量||||cos θa b 叫做a 与b 的数量积(或内积),记作⋅a b ,即⋅a b =||||cos θa b ,规定:零向量与任一向量的数量积为0. (2)平面向量数量积的几何意义①向量的投影:||cos θa 叫做向量a 在b 方向上的投影数量,当θ为锐角时,它是正数;当θ为钝角时,它是负数;当θ为直角时,它是0.②⋅a b 的几何意义:数量积⋅a b 等于a 的长度||a 与b 在a 方向上射影||cos θb 的乘积. 二.数量积的运算律已知向量a 、b 、c 和实数λ,则: ①⋅=⋅a b b a ;②()()()λλλ⋅⋅=⋅a b =a b a b ; ③()+⋅⋅+⋅a b c =a c b c . 三.数量积的性质设a 、b 都是非零向量,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则 ①||cos θ⋅=⋅=e a a e a .②0⊥⇔⋅=a b a b .③当a 与b 同向时,||||⋅=a b a b ;当a 与b 反向时,||||⋅=-a b a b .特别地,2||⋅=a a a 或||=a . ④cos ||||θ⋅=a ba b (||||0)≠a b .⑤||||||⋅a b a b ≤. 四.数量积的坐标运算已知非零向量11()x y =,a ,22()x y =,b ,θ为向量a 、b 的夹角.(1)平面向量的数量积是一个实数,可正、可负、可为零,且||||||a b a b ⋅≤.(2)当0a ≠时,由0a b ⋅=不能推出b 一定是零向量,这是因为任一与a 垂直的非零向量b 都有0a b ⋅=. 当0a ≠时,且a b a c ⋅=⋅时,也不能推出一定有b c =,当b 是与a 垂直的非零向量,c 是另一与a 垂直的非零向量时,有0a b a c ⋅=⋅=,但b c ≠.(3)数量积不满足结合律,即a b c b c a ⋅≠⋅()(),这是因为a b c ⋅()是一个与c 共线的向量,而b c a ⋅()是一个与a 共线的向量,而a 与c 不一定共线,所以a b c ⋅()不一定等于b c a ⋅(),即凡有数量积的结合律形式的选项,一般都是错误选项.(4)非零向量夹角为锐角(或钝角).当且仅当0a b ⋅>且(0)a b λλ≠>(或0a b ⋅<,且(0))a b λλ≠< 【方法技巧与总结】(1)b 在a 上的投影是一个数量,它可以为正,可以为负,也可以等于0.(2)数量积的运算要注意0a =时,0a b ⋅=,但0a b ⋅=时不能得到0a =或0b =,因为a ⊥b 时,也有0a b ⋅=. (3)根据平面向量数量积的性质:||a a a =⋅,cos ||||a ba b θ⋅=,0a b a b ⊥⇔⋅=等,所以平面向量数量积可以用来解决有关长度、角度、垂直的问题.(4)若a 、b 、c 是实数,则ab ac b c =⇒=(0a ≠);但对于向量,就没有这样的性质,即若向量a 、b 、c 满足a b a c ⋅=⋅(0a ≠),则不一定有=b c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量. (5)数量积运算不适合结合律,即()()a b c a b c ⋅⋅≠⋅⋅,这是由于()a b c ⋅⋅表示一个与c 共线的向量,()a b c ⋅⋅表示一个与a 共线的向量,而a 与c 不一定共线,因此()a b c ⋅⋅与()a b c ⋅⋅不一定相等.【题型归纳目录】题型一:平面向量的数量积运算 题型二:平面向量的夹角 题型三:平面向量的模长题型四:平面向量的投影、投影向量 题型五:平面向量的垂直问题 题型六:建立坐标系解决向量问题 【典例例题】题型一:平面向量的数量积运算例1.(2022·全国·模拟预测(理))在ABC 中,π3ABC ∠=,O 为ABC 的外心,2BA BO ⋅=,4BC BO ⋅=,则BA BC ⋅=( )A .2B .C .4D .【答案】B 【解析】 【分析】设,AB BC 的中点为D,E ,将2BA BO ⋅=,变为2BD BO ⋅,根据数量积的几何意义可得||1BD =,同理求得||BC ,根据数量积的定义即可求得答案. 【详解】如图,设,AB BC 的中点为D,E ,连接OD,OE ,则,OD AB OE BC ⊥⊥ ,故2BA BO ⋅=,即22||||cos 2BD BO BD BO OBD ⋅=⋅∠= , 即2||1,||1BD BD ==,故||2BA =,4BC BO ⋅=,即22||||cos 4BE BO BE BO OBE ⋅=⋅∠= ,即2||2,||2BE BE ==,故||22BC =故1||||cos 22BA BC BA BC BAC ⋅=⋅∠=⨯=故选:B例2.(2022·河南安阳·模拟预测(理))已知AH 是Rt ABC △斜边BC 上的高,AH =,点M 在线段AH 上,满足()82+⋅=MB MC AH MB MC ⋅=( ) A .4- B .2- C .2 D .4【答案】A 【解析】 【分析】由()82+⋅=MB MC AH 2MH =,由AH 是Rt ABC △斜边BC 上的高,AH =,可得28HC HB AH ⋅==,然后对()()MB MC MH HB MH HC ⋅=+⋅+化简可求得结果因为AH 是Rt ABC △斜边BC 上的高,AH = 所以0,0AH HB AH HC ⋅=⋅=,28HC HB AH ⋅==, 因为()82+⋅=MB MC AH所以()82MH MH A HB HC H +⋅=++ 所以282MH AH HB AH HC AH ⋅+⋅+⋅= 所以42MH AH ⋅=, 所以42MH AH ⋅= 所以2MH =,所以()()MB MC MH HB MH HC ⋅=+⋅+ 2MH MH HC HB MH HC HB =+⋅+⋅+⋅2cos MH HC HB π=+⋅ 228(1)4=+⨯-=-,故选:A例3.(2022·全国·高三专题练习(理))已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅=( ) A .2- B .1- C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵222|2|||44-=-⋅+a b a a b b , 又∵||1,||3,|2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅a b a b ,故选:C.例4.(2022·四川省泸县第二中学模拟预测(文))如图,正六边形ABCDEF 中,2AB =,点P 是正六边形ABCDEF 的中心,则AP AB ⋅=______.【答案】2 【解析】 【分析】找到向量的模长和夹角,带入向量的数量积公式即可. 【详解】在正六边形中,点P 是正六边形ABCDEF 的中心,60PAB ︒=∴∠,且2AP AB ==, 1cos602222AP AB AP AB ︒∴⋅=⋅⋅=⨯⨯=. 故答案为:2.例5.(2022·安徽·合肥市第八中学模拟预测(理))已知向量,,a b c 满足0,||1,||3,||4a b c a b c ++====,则a b ⋅=_________.【答案】3 【解析】 【分析】由0a b c ++=,得a b c +=-,两边平方化简可得答案 【详解】由0a b c ++=,得a b c +=-, 两边平方,得2222a a b b c +⋅+=, 因为134a b c ===,,, 所以12916a b +⋅+=,得·3a b =. 故答案为:3.例6.(2022·陕西·模拟预测(理))已知向量()1,a x =,()0,1b =,若25a b +=,则⋅=a b __________ 【答案】0或4-##4-或0. 【解析】 【分析】由向量模长坐标运算可求得x ,由向量数量积的坐标运算可求得结果. 【详解】()21,2a b x +=+,(21a b x ∴+=+0x =或4x =-;当0x =时,()1,0a =,0a b ∴⋅=;当4x =-时,()1,4a =-,044a b ∴⋅=-=-; 0a b ∴⋅=或4-.故答案为:0或4-.例7.(2022·上海徐汇·二模)在ABC 中,已知1AB =,2AC =,120A ∠=︒,若点P 是ABC 所在平面上一点,且满足AP AB AC λ=+,1BP CP ⋅=-,则实数λ的值为______________. 【答案】1或14【解析】 【分析】根据平面向量的线性运算法则,分别把BP CP ,用AB AC ,表示出来,再用1BP CP ⋅=-建立方程,解出λ的值. 【详解】由AP AB AC λ=+,得AP AB AC λ-=,即BP AC λ=, (1)CP AP AC AB AC λ=-=+-,在ABC 中,已知1AB =,2AC =,120A ∠=︒, 所以2((1))(1))BP CP AC AB AC AC AB AC λλλλλ⋅=⋅+-=⋅+-22cos1204(1)451λλλλλ=+-=-=-, 即24510λλ-+=,解得1λ=或14λ= 所以实数λ的值为1或14. 故答案为:1或14. 例8.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====,则AC DB ⋅值为__________. 【答案】94【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ====, 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:94例9.(2022·福建省福州第一中学三模)过点M 的直线与22:(3)16C x y -+=交于A ,B 两点,当M 为线段AB中点时,CA CB ⋅=___________. 【答案】-8 【解析】 【分析】由题意可得M 在C 内,又由M 为线段AB 中点AB CM ⊥,由两点间距离公式得2CM ==12AC ,进而求得120ACB ∠=︒,再由向量的数量积公式计算即可得答案. 【详解】解:因为点M 在22:(3)16Cx y -+=内, 所以当M 为线段AB 中点时,AB CM ⊥,又因为C 的半径为4,2CM ==12AC ,所以60ACM ∠=°, 所以120ACB ∠=︒,所以,CA CB ⋅=||||cos120CA CB ︒=144()82⨯⨯-=-.故答案为:-8.例10.(2022·全国·模拟预测(理))已知向量a 与b 不共线,且()2a a b ⋅+=,1a =,若()()22a b a b -⊥+,则()b a b ⋅-=___________. 【答案】3- 【解析】 【分析】由()2a a b ⋅+=得1a b ⋅=,由()()22a b a b -⊥+得2b =,即可求解结果. 【详解】由()212a a b a a b a b ⋅+=+⋅=+⋅=得1a b ⋅=由()()22a b a b -⊥+得()()222240a b a b a b -⋅+=-=,所以2b = 则()2143b a b b a b ⋅-=⋅-=-=- 故答案为:3-例11.(2022·全国·高三专题练习(理))设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11 【解析】 【分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅,最后根据数量积的运算律计算可得. 【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=.故答案为:11.例12.(2022·江苏·徐州市第七中学模拟预测)如图是第24届国际数学家大会的会标,它是根据中国古代数学家赵爽的弦图设计的,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形EFGH 组成的.若E 为线段BF 的中点,则AF BC ⋅=______.【答案】4 【解析】 【分析】利用数量积的几何意义求解. 【详解】 解:如图所示:设CF x =,由题可得2BF x =, 所以()2225x x +=, 解得1x =.过F 作BC 的垂线,垂足设为Q , 故24AF BC BQ BC BF ⋅=⋅==, 故答案为:4. 【方法技巧与总结】(1)求平面向量的数量积是较为常规的题型,最重要的方法是紧扣数量积的定义找到解题思路. (2)平面向量数量积的几何意义及坐标表示,分别突出了它的几何特征和代数特征,因而平面向量数量积是中学数学较多知识的交汇处,因此它的应用也就十分广泛.(3)平面向量的投影问题,是近几年的高考热点问题,应熟练掌握其公式:向量a 在向量b 方向上的投影为||a bb ⋅. (4)向量运算与整式运算的同与异(无坐标的向量运算)同:222()2a b a ab b ±=±+;a b ±()a b c ab ac +=+公式都可通用 异:整式:a b a b ⋅=±,a 仅仅表示数;向量:cos a b a b θ⋅=±(θ为a 与b 的夹角) 22222cos ma nb m a mn a b n b θ±=±+,使用范围广泛,通常是求模或者夹角.ma nb ma nb ma nb -≤±≤+,通常是求ma nb ±最值的时候用. 题型二:平面向量的夹角例13.(2022·甘肃·高台县第一中学模拟预测(文))已知非零向量a →,b →满足a b a →→→-=,a a b →→→⎛⎫⊥- ⎪⎝⎭,则a→与b →夹角为______. 【答案】4π##45 【解析】 【分析】根据已知求出2=a a b →→→,||b a →→,即得解. 【详解】解:因为a b a →→→-=,所以22222,2a b a b a b a b →→→→→→→→+-=∴=.因为a a b →→→⎛⎫⊥- ⎪⎝⎭,所以22=0,=aa b a a b a a b →→→→→→→→→⎛⎫--=∴ ⎪⎝⎭, 所以22=2||b a b a →→→→∴,.设a →与b →夹角为θ,所以22cos =2|||||a ba ba b a θ→→→→→→→==. 因为[0,]θπ∈,所以4πθ=.例14.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________. 【答案】2π##90 【解析】【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 例15.(2022·湖北武汉·模拟预测)两不共线的向量a ,b ,满足3a b =,且t R ∀∈,a tb a b -≥-,则cos ,a b =( )A .12 B C .13D 【答案】C 【解析】 【分析】由a tb a b -≥-两边平方后整理得一元二次不等式,根据一元二次函数的性质可判断0∆≤,整理后可知∆只能为0,即可解得答案. 【详解】 解:由题意得:t R ∀∈,a tb a b -≥-t R ∴∀∈,2222222a t b ta b a b a b +-⋅≥+-⋅即222226cos ,6cos ,0t b t b a b b b a b --+≥ 0b ≠t R ∴∀∈,26cos ,16cos ,0t t a b a b --+≥()221Δ36cos ,46cos ,136cos ,03a b a b a b ⎛⎫∴=--=-≤ ⎪⎝⎭1cos ,03a b ∴-=,即1cos ,3a b =故选:C例16.(2022·云南师大附中模拟预测(理))已知向量()2,2a t =,()2,5b t =---,若向量a 与向量a b +的夹角为钝角,则t 的取值范围为( ) A .()3,1- B .()()3,11,1---C .()1,3-D .111,,322⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】求出a b +的坐标,求得当a 与a b +共线时12t =,根据向量a 与向量a b +的夹角为钝角,列出相应的不等式,求得答案. 【详解】因为(23)a b t +=--,,又a 与a b +的夹角为钝角, 当a 与a b +共线时,162(2)0,2t t t ---==, 所以()0a a b ⋅+<且a 与a b +的不共线,即2230t t --<且12t ≠, 所以111322t ⎛⎫⎛⎫∈-⋃ ⎪ ⎪⎝⎭⎝⎭,,, 故选:D .例17.(2022·广东深圳·高三阶段练习)已知向量()cos30,sin 210a =︒-︒,(3,1)b =-,则a 与b 夹角的余弦值为_________. 【答案】12-【解析】 【分析】化简向量a ,根据向量的模的公式,数量积公式和向量的夹角公式求解. 【详解】由()cos30,sin210a =︒-︒知31,22a ⎛⎫= ⎪ ⎪⎝⎭,故31(1122a b ⋅=⨯+⨯=-,||1a =,||2b =,记a 与b 的夹角为θ,则11cos 122||||a b a b θ⋅-===-⨯⨯.故答案为:12-.例18.(2022·全国·高三专题练习)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( ) A .6- B .5- C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =, 故选:C例19.(2022·湖南·长沙市明德中学二模)已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-=,则向量b 与向量a b -夹角的余弦值为( )A .B .0C D 【答案】A 【解析】 【分析】根据0a b ⋅=,设(1,0)a =,(0,)b t =,根据()()0a b a b +⋅-=求出21t =,再根据平面向量的夹角公式计算可得解. 【详解】因为0a b ⋅=,所以可设(1,0)a =,(0,)b t =,则(1,)a b t +=,(1,)a b t -=-, 因为()()0a b a b +⋅-=,所以210t -=,即21t =.则()cos ,||||b a bb a b b a b ⋅-<->=⋅-2==,故选:A.例20.(2022·辽宁·大连市一0三中学模拟预测)已知单位向量a ,b 满足3a b a b -=+,则a 与b 的夹角为( ) A .30° B .60°C .120°D .150°【答案】C【解析】 【分析】根据数量积的运算律及夹角公式计算可得; 【详解】解:因为a ,b 为单位向量,所以1a b ==, 又3a b a b -=+,所以()()223a b a b -=+,即()2222232a a b b a a b b -⋅+=+⋅+,所以()22240a a b b +⋅+=,即()22240a a b b+⋅+=,所以12a b ⋅=-, 所以1cos ,2a ba b a b ⋅==-⋅,因为[],0,a b π∈,所以2,3a b π=;故选:C例21.(2022·北京市大兴区兴华中学三模)已知a 为单位向量,向量()1,2b =,且2a b ⋅=,则,a b a -=( ) A .π6B .π4C .π3D .3π4【答案】B 【解析】 【分析】先根据已知条件求出()a b a ⋅-和b a -,然后利用向量的夹角公式可求出结果 【详解】因为a 为单位向量,向量()1,2b =,且2a b ⋅=, 所以()2211a b a a b a ⋅-=⋅-=-=,222()252b a b a b a b a -=-=-⋅+=-=所以()1cos ,2a b a a b a a b a⋅--===-, 因为[],0,πa b a -∈, 所以π,4a b a -=, 故选:B例22.(2022·全国·模拟预测(理))已知平面向量a b +与a b -互相垂直,模长之比为2:1,若||5a =,则a 与a b +的夹角的余弦值为( )A B C D .12【答案】A 【解析】 【分析】利用向量a b +与a b -互相垂直,模长之比为2:1,利用数量积求得向量,a b 的模长及数量积,然后利用平面向量夹角公式求得结果. 【详解】平面向量a b +与a b -互相垂直,模长之比为2:1,则()()0a b a b +⋅-=且||2||a b a b +=-,得22a b =,又||5a =,则||||5a b ==,将||2||a b a b +=-平方得22222484a a b b a a b b +⋅+=-⋅+,解得=3a b ⋅,222|=216a b a a b b +|+⋅+=,则4a b +=,设a 与a b +的夹角为θ,则()25+3cos =54a ab aa ba a ba a bθ⋅++⋅===⨯++ 故选:A.例23.(多选题)(2022·福建省福州格致中学模拟预测)已知单位向量,a b 的夹角为120︒,则以下说法正确的是( ) A .||1a b += B .(2)a b a +⊥C .3cos ,2a b b 〈-〉= D .2a b +与2a b +可以作为平面内的一组基底【答案】ABD 【解析】 【分析】根据向量的模的公式,数量积的运算,向量的夹角公式,判断向量共线的条件逐项验证即可 【详解】据题意221,1,11cos1202a b a b ︒==⋅=⨯⨯=-因为2221()211212a b a b a b ⎛⎫+=++⋅=++⨯-= ⎪⎝⎭所以||1a b +=,所以A 对因为21(2)21202a b a a a b ⎛⎫+⋅=+⋅=+⨯-= ⎪⎝⎭,所以(2)a b a +⊥,所以B 对.因为222213()1,()2322a b b a b b a b a b a b -⋅=⋅-=--=--=++⋅=所以3()2cos ,||||31a b b a b b a b b --⋅〈-〉===-⋅⨯所以C 错因为2a b +与2a b +不共线,所以可以作为平面内的一组基底,所以D 正确 故选:ABD例24.(多选题)(2022·江苏·模拟预测)已知向量(3,2)a =-,(2,1)b =,(,1)c λ=-,R λ∈,则( ) A .若(2)a b c +⊥,则4λ= B .若a tb c =+,则6t λ+=- C .a b μ+的最小值为D .若向量a b +与向量2b c +的夹角为锐角,则λ的取值范围是(,1)-∞- 【答案】ABC 【解析】 【分析】利用向量的坐标运算及向量垂直的坐标表示判断A ,利用向量坐标的表示可判断B ,利用向量的模长的坐标公式及二次函数的性质可判断C ,利用向量数量积的坐标表示及向量共线的坐标表示可判断D. 【详解】对于A ,因为2(1,4)a b +=,(,1)c λ=-,(2)a b c +⊥,所以14(1)0λ⨯+⨯-=,解得4λ=,所以A 正确. 对于B ,由a tb c =+,得(3,2)(2,1)(,1)(2,1)t t t λλ-=+-=+-,则32,21,t t λ-=+⎧⎨=-⎩解得93t λ=-⎧⎨=⎩,故6t λ+=-,所以B 正确.对于C ,因为(3,2)(2,1)(23,2)a bμμμμ+=-+=-+,所以a b μ+==则当45μ=时,a b μ+取得最小值,为,所以C 正确. 对于D ,因为(1,3)a b +=-,2(4,1)b c λ+=+,向量a b +与向量2b c +的夹角为锐角, 所以()(2)1(4)310a b b c λ⋅+=-⨯+⨯++>,解得1λ<-;当向量a b +与向量2b c +共线时,113(4)0λ-⨯-⨯+=,解得133λ=-, 所以λ的取值范围是1313,,133⎛⎫⎛⎫-∞-⋃-- ⎪ ⎪⎝⎭⎝⎭,所以D 不正确.故选:ABC.例25.(2022·河南·通许县第一高级中学模拟预测(文))已知1e ,2e 是单位向量,122a e e =-,123b e e =+,若a b ⊥,则1e ,2e 的夹角的余弦值为( )A .35B .12C .13D .15【答案】D 【解析】 【分析】根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可. 【详解】由题意知121e e ==,()()22121212122303250a b e e e e e e e e ⋅=-⋅+=⇒--⋅=,即1215e e ⋅=,所以121cos 5e e ⋅=. 故选:D.例26.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=, 所以a b -与a 的夹角为3π. 故选:B例27.(2022·内蒙古·海拉尔第二中学模拟预测(文))已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠,则a 与b 的夹角为( ) A .6πB .π3C .π2D .2π3【答案】C 【解析】 【分析】由题干条件平方得到()0a b λ⋅=,从而得到0a b ⋅=,得到a 与b 的夹角. 【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+,因为向量a ,b 为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅=. 因为0λ≠,所以0a b ⋅=,即a 与b 的夹角为π2. 故选:C【方法技巧与总结】 求夹角,用数量积,由||||cos a b a b 得121222221122cos||||x x y y a b a b xyx y ,进而求得向量,a b 的夹角.题型三:平面向量的模长例28.(2022·福建省厦门集美中学模拟预测)已知向量a 、b 、c 满足0a b c ++=,()()0a b a c -⋅-=,9b c -=,则a =______. 【答案】3 【解析】 【分析】由已知条件可得出a b c =--,根据平面向量的数量积可求得22b c +、b c ⋅的值,结合平面向量的数量积可求得a 的值. 【详解】由已知可得a b c =--,则()()()()()()22220a b a c b c b c b c b c -⋅-=--⋅--=+⋅+=, 即222250b c b c ++⋅=,因为9b c -=,则22281b c b c +-⋅=,所以,2245b c +=,18b c ⋅=-,因此,()2222229a a b c b c b c ==--=++⋅=,故3a =.故答案为:3.例29.(2022·辽宁沈阳·三模)已知平面向量,,a b c 满足1,1,0,1a c a b c a b ==++=⋅=-,则b =_______.【解析】【分析】由题意得c a b =--,直接平方即得结果. 【详解】由0a b c ++=可得c a b =--,两边同时平方得2222c a a b b =+⋅+,1,1,1a c a b ==⋅=-,2112b ∴=-+,解得2b =..例30.(2022·全国·高三专题练习(文))已知向量(2,1)(2,4)a b ==-,,则a b -( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a b -,然后求得a b -. 【详解】因为()()()2,12,44,3a b -=--=-,所以245-=+a b .故选:D例31.(2022·江苏·扬中市第二高级中学模拟预测)已知a 与b 为单位向量,且a ⊥b ,向量c 满足||2b c a --=,则|c |的可能取值有( )A .6B .5C .4D .3【答案】D 【解析】 【分析】建立平面直角坐标系,由向量的坐标计算公式可得(1,1)c a b x y --=--,进而由向量模的计算公式可得22(1)(1)4x y -+-=,分析可得C 在以(1,1)为圆心,半径为2的圆上,结合点与圆的位置关系分析可得答案. 【详解】根据题意,设OA a =,OB b =,OC c =,以O 为坐标原点,OA 的方向为x 轴正方向,OB 的方向为y 轴的正方向建立坐标系, 则(1,0)A ,(0,1)B ,设(,)C x y ,则(1,1)c a b x y --=--,若||2b c a --=,则有22(1)(1)4x y -+-=,则C 在以(1,1)为圆心,半径为2的圆上,设(1,1)为点M ,则||OM =||||||r OM OC r OM -+, 即22||22OC +,则||c 的取值范围为22⎡⎣;故选:D .例32.(2022·江苏·南京市天印高级中学模拟预测)已知平面向量a ,b 满足2a =,1b =,且a 与b 的夹角为3π,则a b +=( )AB C D .3【答案】C 【解析】 【分析】 由()2222a b a ba ab b +=+=+⋅+求解.【详解】解:因为2a =,1b =,且a 与b 的夹角为3π, 所以()2222a b a ba ab b +=+=+⋅+,==,故选:C例33.(2022·河南·开封市东信学校模拟预测(理))已知非零向量a ,b 的夹角为6π,()||3,a a a b =⊥-,则||b =___________. 【答案】2 【解析】 【分析】由平面向量的数量积的运算性质求解即可 【详解】由()a a b ⊥-得22π3()||||||||cos3||062a ab a a b a a b b ⋅-=-⋅=-⋅=-=, 解得||2b =. 故答案为:2例34.(2022·全国·高三专题练习)已知三个非零平面向量a ,b ,c 两两夹角相等,且||1a =,||2b =,||3c =,求|23|a b c -+.9 【解析】【分析】由三个非零平面向量a ,b ,c 两两夹角相等得 ,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0,再分别计算求解即可 【详解】因为三个非零平面向量a ,b ,c 两两夹角相等,所以,,,120a b b a c c 〈〉=〈〉=〈〉=︒或0 .当,,,120a b b a c c 〈〉=〈〉=〈〉=︒时,2|23|(23)a b c a b c -+=-+222||||9||4126a b c b b c a c a =++-⋅+⋅-⋅==当,,,0a b b c c a 〈〉=〈〉=〈〉=︒,即a ,b ,c 共线时. |23|2||||3||2299a b c a b c -+=-+=-+=∣∣.9例35.(2022·全国·高三专题练习)已知2=a ,3b =,a 与b 的夹角为120,求a b +及a b -的值. 【答案】7a b +=,19a b -=. 【解析】 【分析】利用向量数量积定义可求得a b ⋅,由向量数量积的运算律可求得2a b +和2a b -,由此可得结果. 【详解】cos ,6cos1203a b a b a b ⋅=⋅<>==-,22224697a b a a b b ∴+=+⋅+=-+=,222246919a b a a b b -=-⋅+=++=,7a b ∴+=,19a b -=.例36.(2022·福建泉州·模拟预测)已知向量(0,1)=a ,(,3)b t =,若,a b 的夹角为π3,则||b =___________.【答案】【解析】 【分析】根据平面向量的夹角公式可求出结果. 【详解】 由πcos3||||a b a b ⋅=⋅,得132||b ,得||23b =.故答案为:【方法技巧与总结】 求模长,用平方,2||a a .题型四:平面向量的投影、投影向量例37.(2022·新疆克拉玛依·三模(理))设a ,b 是两个非零向量,AB a =,CD b =,过AB 的起点A 和终点B ,分别作CD 所在直线的垂线,垂足分别为1A ,1B ,得到11A B ,则11A B 叫做向量a 在向量b 上的投影向量.如下图,已知扇形AOB 的半径为1,以O 为坐标原点建立平面直角坐标系,()1,0OA =,12OB ⎛= ⎝⎭,则弧AB 的中点C 的坐标为________;向量CO 在OB 上的投影向量为________ .【答案】12⎫⎪⎪⎝⎭3()4- 【解析】 【分析】由已知,根据给到的OA ,OB 先求解OA 与OB 的夹角,然后再利用点C 是弧AB 的中点,即可求解出AOC ∠,从而求解点C 的坐标;根据前面求解出的点C 的坐标,写出OB 和CO ,先计算向量CO 在OB 上的投影,然后根据OB 即可写出向量CO 在OB 上的投影向量. 【详解】由已知,()1,0OA =,12OB ⎛= ⎝⎭,所以112cos ,112OA OB OA OB OA OB ===⨯, 所以π3AOB ∠=,因为点C 为弧AB 的中点,所以π6AOC ∠=, 扇形AOB 的半径为1,所以弧AB 满足的曲线参数方程为cos π()sin 3xy αααα=⎧≤≤⎨=⎩为参数,0, 所以中点C 的坐标为πcos 6π1sin 62x y ⎧==⎪⎪⎨⎪==⎪⎩,所以C的坐标为12⎫⎪⎪⎝⎭,12CO ⎛⎫=-- ⎪ ⎪⎝⎭,12OB ⎛=⎝⎭, 向量CO 在OB 上的投影为3441CO OB OB-== 因为12OB ⎛= ⎝⎭,所以向量CO 在OB 上的投影向量为3()4-.故答案为:12⎫⎪⎪⎝⎭;3()4- 例38.(2022·江西鹰潭·二模(文))已知向量,,(3,1),||2,(2)3a b a b a b b ==-⋅=,则b 在a 方向上的投影为_________ 【答案】54【解析】 【分析】根据向量数量积性质和向量投影定义求解即可. 【详解】因为(3,1)a =,||2b =,所以2||1(2a =+,22b =,因为(2)3a b b -⋅=,所以222223a b b b a b b a b ⋅-⋅=⋅-=⋅-=,所以52a b ⋅=, 所以b 在a 方向上的投影为5||4a b a ⋅=, 故答案为:54. 例39.(2022·江西·南昌市八一中学三模(理))已知向量()1,2a =-,()3,b t =,且a 在b 上的投影等于1-,则t =___________. 【答案】4 【解析】 【分析】根据投影定义直接计算可得,注意数量积符号. 【详解】因为a 在b 上的投影等于1-,即cos ,1a b a a b b⋅〈〉==-1=-,且320t -<,解得4t =.故答案为:4例40.(2022·江苏淮安·模拟预测)已知||2a =,b 在a 上的投影为1,则a b +在a 上的投影为( )A .-1B .2C .3D 【答案】C 【解析】 【分析】先利用b 在a 上的投影为1求出a b ⋅,然后可求a b +在a 上的投影. 【详解】因为||2a =,b 在a 上的投影为1,所以1||a ba ⋅=,即2ab ⋅=; 所以a b +在a 上的投影为()24232||||a b a aa b a a +⋅+⋅+===;故选:C.例41.(2022·四川成都·三模(理))在ABC 中,已知7π12A ∠=,π6C ∠=,AC =BA在BC 方向上的投影为( ).A .B .2CD .【答案】C 【解析】 【分析】利用三角形内角和及正弦定理求得4B π∠=、2AB =,再根据向量投影的定义求结果.【详解】由题设4B π∠=,则sin sin AB AC C B=,可得122AB ==, 所以向量BA 在BC 方向上的投影为||cos 2BA B ==故选:C例42.(2022·广西桂林·二模(文))已知向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为( ) A .1- B .2- C .1 D .2【答案】B 【解析】 【分析】利用向量的投影公式直接计算即可. 【详解】向量(1,2),(0,1)==-a b ,则a 在b 方向上的投影为2||cos ,21||a b a a b b ⋅-<>===-, 故选:B .例43.(2022·内蒙古呼和浩特·二模(理))非零向量a ,b ,c 满足()b a c ⊥-,a 与b 的夹角为6π,3a =,则c 在b 上的正射影的数量为( )A .12-B .C .12D 【答案】D 【解析】 【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答. 【详解】非零向量a ,b ,c 满足()b a c ⊥-,则()·0b a c a b c b -=⋅-⋅=,即c b a b ⋅=⋅,又a 与b 的夹角为6π,3a =, 所以c 在b 上的正射影的数量3||cos ,||cos 62||||c b a b c c b a b b π⋅⋅〈〉====故选:D例44.(2022·辽宁·渤海大学附属高级中学模拟预测)已知单位向量,a b 满足||1a b -=,则a 在b 方向上的投影向量为( )A .12bB .12b -C .12aD .12a -【答案】A 【解析】 【分析】根据投影向量公式,即可求解. 【详解】22221a b a a b b -=-⋅+=,因为1==a b ,所以12a b ⋅=, 所以a 在b 方向上的投影向量为12a b b b b b ⋅⋅=. 故选:A例45.(2022·海南华侨中学模拟预测)已知平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-,则a 在b 方向上的投影向量为( )A .12⎫⎪⎪⎝⎭B .21⎛⎫⎪ ⎪⎝⎭ C .12⎛- ⎝⎭D .12⎛ ⎝⎭【答案】C 【解析】 【分析】利用投影向量的定义求解. 【详解】解:因为平面向量a ,b 的夹角为3π,且||2a =,(1,3)b =-, 所以a 在b方向上的投影向量为22cos 13(1,3)(2a b a b b bbπ⋅⋅⋅⋅=⋅-=- ,故选:C题型五:平面向量的垂直问题例46.(2022·海南海口·二模)已知向量a ,b 的夹角为45°,2a =,且2a b ,若()a b b λ+⊥,则λ=______. 【答案】-2 【解析】 【分析】先利用数量积的运算求解b ,再利用向量垂直数量积为0即可求解. 【详解】因为cos 452a b a b ⋅=︒=得2b =, 又因为()a b b λ+⊥,所以()2240a b b a b b λλλ+⋅=⋅+=+=,所以2λ=-. 故答案为:-2.例47.(2022·广东茂名·二模)已知向量a =(t ,2t ),b =(﹣t ,1),若(a ﹣b )⊥(a +b ),则t =_____. 【答案】12±【解析】 【分析】由(a ﹣b )⊥(a +b ),由垂直向量的坐标运算可得出a b =,再由模长的公式即可求出t . 【详解】因为(a ﹣b )⊥(a +b ),所以()()0a b a b -⋅+=,所以220a b -=,则a b =,所以22241t t t +=+,所以12t =±.故答案为:12±.例48.(2022·青海玉树·高三阶段练习(理))已知向量()1,1a =-,()1,b m =,若()3a b a +⊥,则m =______.【答案】13【解析】 【分析】根据向量的坐标运算和数量积的坐标运算即可求解. 【详解】()()23,3030a b a a b a aa b +⊥∴+⋅=⇒+⋅= ,所以()123103m m +-+=⇒=故答案为:13例49.(2022·河南开封·模拟预测(理))已知两个单位向量1e 与2e 的夹角为3π,若122a e e =+,12b e me =+,且a b ⊥,则实数m =( ) A .45-B .45 C .54-D .54【答案】A 【解析】 【分析】由向量垂直及数量积的运算律可得221122(2)20e m e e m e ++⋅+=,结合已知即可求m 的值.【详解】由题意1222121122)()(220()2a b e me m e e m e e e e ⋅=⋅+=++⋅++=, 又1e 与2e 的夹角为3π且为单位向量, 所以22021m m +++=,可得45m =-.故选:A例50.(2022·河南安阳·模拟预测(文))已知向量(22,4),1,cos 2⎛⎫=-= ⎪⎝⎭a b θ,其中(0,π)θ∈,若a b ⊥,则sin θ=___________. 【答案】1 【解析】 【分析】根据平面向量垂直的性质,结合平面向量数量积的运算坐标表示公式、特殊角的三角函数值进行求解即可. 【详解】因为a b ⊥,所以0a b ⋅=,即14cos0cos22θθ-+=⇒=,因为(0,π)θ∈,所以π(0,)22θ∈,因此ππ242θθ=⇒=,所以sin 1θ=, 故答案为:1例51.(2022·全国·模拟预测(文))设向量()2,1a =,()1,b x =-,若()a b a ⊥-,则b =___________.【答案】【解析】 【分析】由平面向量数量积的坐标运算求解 【详解】()3,1b a x -=--,由题意得()0a b a ⋅-=,即610x -+-=,得7x =149b =+=.故答案为:【方法技巧与总结】121200a b a b x x y y ⊥⇔⋅=⇔+=题型六:建立坐标系解决向量问题例52.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF =,即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .例53.(2022·贵州贵阳·模拟预测(理))在边长为2的正方形ABCD 中,E 是BC 的中点,则AC DE ⋅=( ) A .2 B .2-C .4-D .4【答案】A 【解析】 【分析】建立直角坐标系,用向量法即可 【详解】在平面直角坐标系中以A 为原点,AB 所在直线为x 轴建立坐标系,则()0,0A ,()0,2D ,()2,2C ,()2,1E ,所以()()2,22,1422AC DE ⋅=⋅-=-=, 故选:A例54.(2022·江苏·模拟预测)如图,在平面四边形ABCD 中,E ,F 分别为AD ,BC 的中点,(4,1)AB =,(2,3)DC =,(2,)AC m =-,若0E A F C =⋅,则实数m 的值是( )A .3-B .2-C .2D .3【答案】D 【解析】 【分析】根据题意得分别求出AD 和BC 的坐标,再分别求出AE 和BF 的坐标,EF EA AB BF =++,再利用数量积坐标运算求解即可. 【详解】根据题意得:(4,3)AD CD CA AC DC m =-=-=--,(6,1)BC AC AB m =-=--, 因为E ,F 分别为AD ,BC 的中点,所以13(2,)22m AE AD -==-,11(3,)22m BF BC -==-, 所以()3,2EF EA AB BF =++=,又0E A F C =⋅,即()2320m -⨯+⨯=,解得3m =. 故选:D.例55.(2022·四川南充·三模(理))在Rt ABC △中,90A ∠=︒,2AB =,3AC =,2AM MC =,12AN AB =,CN 与BM 交于点P ,则cos BPN ∠的值为( )A B .C .D 【答案】D 【解析】 【分析】将三角形放到直角坐标系当中,利用坐标法求向量夹角,即可求解. 【详解】解:建立如图直角坐标系,则(0,2),(0,1),(3,0),(2,0)B N C M , 得(3,1),(2,2)CN MB =-=-,所以co 10s CN MB CN P BB N M ⋅===⋅∠ 故选:D.例56.(多选题)(2022·山东聊城·三模)在平面四边形ABCD 中,1AB BC CD DA DC ===⋅=,12⋅=BA BC ,则( ) A .1AC = B .CA CD CA CD +=-C .2AD BC = D .BD CD ⋅=【答案】ABD 【解析】 【分析】根据所给的条件,判断出四边形ABCD 内部的几何关系即可. 【详解】因为1AB BC CD ===,1cos 2BA BC BA BC B ⋅==,可得3B π=,所以ABC 为等边三角形,则1AC = ,故A 正确;因为1CD =,所以21CD =,又1DA DC ⋅=,所以2CD DA DC =⋅ ,得()20DC DA DC DC DC DA DC AC -⋅=⋅-=⋅=,所以AC CD ⊥,则CA CD CA CD +=-,故B 正确; 根据以上分析作图如下:由于BC 与AD 不平行,故C 错误; 建立如上图所示的平面直角坐标系,则1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫⎪⎝⎭,12D ⎫⎪⎪⎝⎭,12BD ⎫=⎪⎪⎝⎭,3122CD ⎛⎫= ⎪ ⎪⎝⎭,所以BD CD ⋅=,故D 正确; 故选:ABD.例57.(多选题)(2022·湖南·长郡中学模拟预测)已知向量a b c ,,满足2222a b a b c c =-=-==,则可能成立的结果为( ) A .34b =B .54b =C .34b c ⋅= D .54b c ⋅=【答案】BCD 【解析】 【分析】不妨设()10C ,,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,利用坐标法,即可求解. 【详解】对于选项A 、B ,由题意2=a ,1c =,1a b b c -=-=,设OA a =,OB b =,OC c =,不妨设()10C ,,如图,动点A 在以原点为圆心2为半径的圆O 上,动点B 在以C 为圆心,1为半径的圆上,且满足1AB =, 圆C 方程是22(1)1x y -+=.当B 在圆C 上运动时,由AB OB OA +≥,得1OB ≥,当且仅当O ,A ,B 三点共线时取等号,又由图易知2OB ≤,即12b ≤≤,故选项A 不满足,选项B 满足;对于选项C 、D ,设()B x y ,,则()()10b c x y x ⋅=⋅=,,, 由22221(1)1x y x y ⎧+=⎨-+=⎩,解得12x y ⎧=⎪⎪⎨⎪=⎪⎩,12B x ∴≥, 又2B x ≤.即122x ≤≤. 122b c ⎡⎤∴⋅∈⎢⎥⎣⎦,,选项C ,D 满足.故选:BCD例58.(多选题)(2022·湖南·长郡中学模拟预测)如图甲所示,古代中国的太极八卦图是以同圆内的圆心为界,画出相等的两个阴阳鱼,阳鱼的头部有眼,阴鱼的头部有个阳殿,表示万物都在相互转化,互相涉透,阴中有阳,阳中有阴,阴阳相合,相生相克,蕴含现代哲学中的矛盾对立统一规律,其平面图形记为图乙中的正八边形ABCDEFGH ,其中2OA =,则( )A .20OB OE OG ++=B .22OA OD ⋅=- C .4AH EH += D .4+=+AH GH 【答案】ABC【分析】分别以,HD BF 所在的直线为x 轴和y 轴,建立的平面直角坐标系,作AM HD ⊥,结合向量的坐标运算,逐项判定,即可求解. 【详解】由题意,分别以,HD BF 所在的直线为x 轴和y 轴,建立如图所示的平面直角坐标系, 因为正八边形ABCDEFGH ,所以AOH HOG AOB EOF FOG ∠∠∠∠∠====DOE COB COD =∠=∠=∠360458==, 作AM HD ⊥,则OM AM =,因为2OA =,所以OM AM =(A ,同理可得其余各点坐标,()0,2B -,E ,(G ,()2,0D ,()2,0H -,对于A (02(2),2222)0OE OG ++=++--++=,故A 正确;对于B 中,(2(0OA OD ⋅=-⨯+⨯=-B 正确;对于C 中,(2AH =-,(2EH =-,(4,0)AH EH +=-,所以(4AH EH +=-=,故C 正确;对于D 中,(2AH =-,(2GH =-,(4AH GH +=-+,(4AH GH =-+=-D 不正确.故选:ABC.例59.(2022·江苏南京·模拟预测)在ABC 中,0AB AC ⋅=,3AB =,4AC =,O 为ABC 的重心,D 在边BC 上,且AD BC ⊥,则AD AO ⋅______. 【答案】9625【解析】根据O 为ABC 的重心,得到()13=+AO AB AC ,再由0AB AC ⋅=和AD BC ⊥,利用等面积法求得AD ,进而得到DB ,方法一:利用基底法求解;方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,利用坐标法求解. 【详解】解:因为O 为ABC 的重心, 所以()13=+AO AB AC , 因为0AB AC ⋅=,所以AB AC ⊥,则5BC =,因为AD BC ⊥,所以1122ABC S AB AC AD BC =⋅=⋅△, 即1134522AD ⨯⨯=⨯, 所以125AD =,在Rt ADB 中,95DB =. 方法一:因为925=+=+AD AB BD AB BC , ()9916252525=+-=+AB AC AB AC AB , 所以()191632525⎛⎫⋅=+⋅+ ⎪⎝⎭AD AO AB AC AC AB ,221916963252525⎛⎫=⨯+= ⎪⎝⎭AC AB . 方法二:以A 坐标原点,AC 为x 轴,AB 为y 轴建立平面直角坐标系,则()4,0AC =,()0,3AB =,由方法一可知9163648,25252525AD AC AB ⎛⎫=+= ⎪⎝⎭,()14,133AO AB AC ⎛⎫=+= ⎪⎝⎭, 所以136489513252525AD AO ⋅=⨯+⨯=.例60.(2022·北京·北大附中三模)已知正方形ABCD 的边长为2,E 是BC 的中点,点P 满足2AP AE AD =-,则PD =___________;PE PD ⋅=___________.【答案】 10 【解析】 【详解】解:以A 为原点,AB 为x 轴正方向建立平面直角坐标系, 所以()()()0,0,2,0,2,1A B E ,()0,2D ,设(),P x y ,所以()()(),,2,1,2,0AP x y AE AD ===,因为2AP AE AD =-,所以()()4,0,4,2P PD =-,所以25PD = 又()2,1PE =-,所以10PE PD ⋅=.故答案为:10.例61.(2022·天津市西青区杨柳青第一中学模拟预测)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,E ,F 分别为BC ,CD 上的点,2CE EB =,2CF FD =,若线段EF 上存在一点M ,使得5162AM AB AD =+,则||AM =__________,若点N 为线段BD 上一个动点,则AN MN ⋅的取值范围为__________.【答案】73 371,363⎡⎤-⎢⎥⎣⎦【解析】 【分析】以菱形的对角线为在不在建立平面直角坐标系,通过坐标运算先求M 坐标然后可得||AM ,再用坐标表示出AN MN ⋅,由二次函数性质可得所求范围. 【详解】因为ABCD 为菱形,所以AC BD ⊥,以BD 、AC 所在直线分别为x 、y 轴建立平面直角坐标系,因为2AB =,60BAD ∠=︒,所以1,OB OD OC OA ====则(0,(1,0),(1,0)A B D -,设((,0)M m N n 43(1,3),(1,3),(,),(,3),3AB AD AM m AN n ==-==因为5162AM AB AD =+,所以51((62m =+-解得13m =,所以17||93AM =又1(,3MN n =-所以21137()1()3636AN MN n n n ⋅=--=--因为11n -≤≤,所以当16n =时,AN MN ⋅有最小值3736-, 当1n =-时,AN MN ⋅有最大值13,所以AN MN ⋅的取值范围为371,363⎡⎤-⎢⎥⎣⎦故答案为:73,371,363⎡⎤-⎢⎥⎣⎦。
高考数学技巧解决平面向量的数量积与向量积问题
![高考数学技巧解决平面向量的数量积与向量积问题](https://img.taocdn.com/s3/m/b507795354270722192e453610661ed9ad515517.png)
高考数学技巧解决平面向量的数量积与向量积问题在高考数学中,平面向量是常见的考点之一,而数量积和向量积是平面向量的两个重要运算。
掌握解决平面向量的数量积与向量积问题的技巧,可以帮助我们更好地应对考试。
1. 数量积的计算技巧数量积,也被称为点积或内积,可以用来计算两个向量之间的夹角、判定向量是否垂直以及计算向量的模长等问题。
以下是一些解决数量积问题的技巧:1.1 向量坐标法当给定两个向量的坐标时,可以直接利用数量积的定义公式\( \vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y \)来计算数量积。
其中,\( \vec{a} = (a_x, a_y) \) 和 \( \vec{b} = (b_x,b_y) \) 分别表示两个向量的坐标。
1.2 向量解法在某些情况下,我们可以将两个向量表示为已知向量的线性组合。
例如,已知向量 \( \vec{a} = 2\vec{i} + 3\vec{j} \) 和 \( \vec{b} = 4\vec{i} - \vec{j} \),我们可以利用数量积的性质,将向量的线性组合展开并计算数量积:\( \vec{a} \cdot \vec{b} = (2\vec{i} + 3\vec{j}) \cdot (4\vec{i} - \vec{j}) = 8 + (-3) = 5 \)2. 向量积的计算技巧向量积,也被称为叉积或外积,可以用来计算两个向量之间的夹角、判定向量是否共线以及计算向量的面积等问题。
以下是一些解决向量积问题的技巧:2.1 行列式法对于平面向量 \( \vec{a} = a_x\vec{i} + a_y\vec{j} \) 和 \( \vec{b} =b_x\vec{i} + b_y\vec{j} \),利用向量积的定义公式\( \vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} \\ a_x &a_y \\ b_x & b_y \end{vmatrix} = (a_xb_y - a_yb_x)\vec{k} \)可以通过行列式的运算求得向量积。
例谈高考中平面向量数量积的三种探求思路
![例谈高考中平面向量数量积的三种探求思路](https://img.taocdn.com/s3/m/3bd0923af111f18583d05a73.png)
解 法 探 究
2 0 1 3 年 1 2月
例谈 高考 中平面 向量数量积 的三种探 求思路
⑧ 江 苏 省 启 东 市 汇龙 中 学 施 伟 琛
平面 向量是高 中数学 的核心 知识 . 把平 面向量 ( 高 中
一 —
l
— 一
X—
1 —
= — 一
、 / 1 0 .
内容 ) 与平面几何 ( 初中内容 ) 融合命题 , 并 以选择题或填 空题 的形式呈现 ,这已形成新 高考试题 中的一道靓丽风
所 以 ・ 百 = 4 + 0 — 2 : 2 .
点评 : 由平面向量的基本定理知 , 同一 平 面 内的 任 一
( 3 ) 本 题设计科学 合理 , 语 言 自然 简洁 , 图形 简明直
观. 以平 面 向量为背 景 , 通过求 平面 向量 的数量积 , 入口
较宽, 解法 灵活 , 有效考查 了平 面 向量 的核心知 识. 上面
所 以由余弦定理得
B D 2 + B I a - DF e
C 0S = — — — — 一 : ———
准备 : ( 1 ) 数量 积的定义 : 已知两个非零向量a 与b , 它
们的夹角为0 , 则口 ・ 6 = I a l ・ J I c o s O . 其中J b I c o s 0 称为向量
、 /
1 0 : 2 .
1 U
景. 而平面向量 的数量 积则是高考重点考查 的内容. { 2 0 1 3 年普通高等 学校招生全 国统一考试 大纲》 ( 文科数 学 ・ 课
程标准实验 版 ) 要求 : 掌握数量积 的坐标表 达式 , 会进行 平面 向量数量积 的运算. 可见 , 这 已是较高要求. 那如何求 平面 向量 的数量积 呢? 高考 中常有 三种不 同的探 求思路. 下面 以一道高考试题 为例谈谈具体的探求过程 ,以期 对 大家有一定的启发. 题目 ( 2 0 1 3 年高考课标 Ⅱ卷理 1 3 文1 4 ) 已知正方形
《平面向量的数量积及运算律》教案及说明
![《平面向量的数量积及运算律》教案及说明](https://img.taocdn.com/s3/m/3540f5d058f5f61fb73666c4.png)
5.平面向量数量积的运算律:
(1)
(2)数乘向量的结合律:( ) = ( ) = ( )
(3)分配律:( + ) = +
(引导学生利用数量积的定义证明)
不满足结合律: (作为思考题留给学生课余去证明)
(三)例题讲解
例1、求证:
(1)
(2)
例2、
(四)巩固练习
1、判断正误,说明理由。
①若 = ,则对任一向量 ,有 · =0;
平面向量的数量积及运算律
一、教学目标
1.正确理解平面向量的数量积的概念,能够运用这一概念求两个向量的数量积,并能根据条件逆用等式求向量的夹角;
2.掌握平面向量的数量积的5条重要性质及运算律,并能运用这些性质解决有关问题;
3.通过平面向量的数量积的概念,几何意义,重要性质及运算律的应用,培养学生的应用意识.
二、教学重点,教学难点
教学重点平面向量的数量积的概念、重要性质及运算律
教学难点平面向量的数量积的重要性质及运算律的理解和应用.
三、教具三角尺,实物投影仪,多媒体
四、教学方法
启发引导式
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的性质及运算律,然后通过习题加深学生对于平面向量数量积的认识.
②若 ≠ 则对任一 ≠ ,有 · ≠0;
③若 ≠ , · =0,则 ;
④若 · =0,则 , 中至少有一个为 ;
⑤对任一向量 ,有 ; ⑥
2、已知 =4, =5,当① // ② ⊥ ③ 与 的夹角为 时,分别求 与 的数量积。
(五)归纳小结:
1、平面向量的夹角:
(1)两向量要共起点; (2)范围:
2、平面向量的数量积定义和几何意义;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量数量积运算的解题方法与策略平面向量数量积运算一直是高考热点内容,它在处理线段长度、垂直等问题的方式方法上尤为有突出的表现,而正确理解数量积的定义和几何意义是求解的关键,同时平面向量数量积的运算结果是实数而不是向量,因此要注意数量积运算和实数运算律的差异,本文仅举数例谈谈求解向量数量积运算的方法和策略。
1.利用数量积运算公式求解在数量积运算律中,有两个形似实数的完全平方和(差)公式在解题中的应用较为广泛,即(a +b )2=a 2+2a ·b +b 2,(a -b )2=a 2-2a ·b +b 2上述两公式以及(a +b )(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用.例1 已知|a |=2,|b |=5,a ·b =-3,求|a +b |,|a -b |.解析:∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×(-3)+52=23∴|a +b |=23,∵(|a -b |)2=(a -b )2=a 2-2a ·b +b 2=22-2×(-3)×52=35,∴|a -b |=35.例2 已知|a |=8,|b |=10,|a +b |=16,求a 与b 的夹角θ(精确到1°).解析:∵(|a +b |)2=(a +b )2=a 2+2a ·b +b 2=|a |2+2|a |·|b |cosθ+|b |2 ∴162=82+2×8×10cosθ+102,∴cosθ=4023,∴θ≈55° 例3 已知a =(3,4),b =(4,3),求x ,y 的值使(xa +yb )⊥a ,且|xa +yb |=1.分析:这里两个条件互相制约,注意体现方程组思想.解:由a =(3,4),b =(4,3),有xa +yb =(3x +4y ,4x +3y )又(xa +yb )⊥a ⇔(xa +yb )·a =0⇔3(3x +4y )+4(4x +3y )=0即25x +24y =0 ①又|xa +yb |=1⇔|xa +yb |2=1⇔(3x +4y )2+(4x +3y )2=1整理得:25x 2+48xy +25y 2=1即x (25x +24y )+24xy +25y 2=1 ②由①②有24xy +25y 2=1 ③将①变形代入③可得:y =±75 再代回①得:⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==753524753524y x y x 和2. 利用定义直接求解.例4 若向量,a b 满足a b =2=,,a b 的夹角为45°,则a a a b ⋅+⋅=______.解析:根据数量积的定义得a a a b ⋅+⋅22445cos 22220+=⨯+⨯=,例5 设向量2172e e t +与向量21e t e +的夹角为钝角,求实数t 的取值范围.解析:∵0))(72(2121<++e t e e e t ,故071522<++t t ,解之217-<<-t . 另有λλt t ==7,2,解之14,214-=-=λt , ∴)21,214()214,7(--⋃--∈t . 例 6 如图, 已知正六边形123456PP P P P P ,下列向量的数量积中最大的是( )(A )1213PP PP ⋅ (B )1214PP PP ⋅(C )1215PP PP ⋅ (D )1216PP PP ⋅解析:选项中均有向量12PP ,根据数量积的几何意义,要找121(3,4,5,6)i PP PP i ⋅=的最大值,只需求1(3,4,5,6)i PP i =在12PP 方向上的投影最大即可,画图可知只有13PP 在12PP 方向上的投影最大,故最大选A.3. 利用数量积的定义、性质、运算律求解例7 判断正误,并简要说明理由.①a·0=0;②0·a=0;③0-AB =BA ;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2.分析:根据数量积的定义、性质、运算律,逐一判断.解:上述8个命题中只有③⑧正确;对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0;对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|;对于⑤:若非零向量a、b垂直,有a·b=0;对于⑥:由a·b=0可知a⊥b可以都非零;对于⑦:若a与с共线,记a=λс.则a·b=(λс)·b=λ(с·b)=λ(b·с),∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a若a与с不共线,则(a·b)с≠(b·с)a.评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律.4. 借助零向量. 即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理使用向量的移项以及平方等变形,求解数量积.例8 已知△ABC 中,c AB b CA a BC ===,,,若a c c b b a ⋅=⋅=⋅,求证:△ABC为正三角形.证明:a c c b ⋅=⋅ , ∴0)(=-a b c , 又∵0=++c b a , )(b a c +-=, 故0))((=-+-a b b a , 知a =b , 同理可知b=c , 故a =b=c , 得证.例9 已知平面上三点A 、B 、C 满足3,4,5AB BC CA ===则AB BC BC CA CA AB ⋅+⋅+⋅的值等于 。
解析:注意到∵0AB BC CA ++=,两边平方得 2222220AB BC CA AB BC BC CA CA AB +++++=所以AB BC BC CA CA AB ⋅+⋅+⋅=−255. 借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直条件关系或平行向量关系的向量数量积,借助a b ⊥,则0a b ⋅=等解决问题.例10 已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.解析:∵ a ∥b ,∴ 3x +8=0. ∴x =38-. ∴ b =(2, 38-) . ∵ a ⊥c , ∴ 6-4y =0. ∴ y =23. ∴ c =(2, 23). 而b -c =(2,38-)-(2,23)=(0,-256), ∴ |b -c |=256.例11 如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A为中心,问PQ 与BC 的夹角θ取何值时BP ·CQ 的值最大?,并求出这个最大值. 解析:∵AB ⊥AC ∴AB ·AC =0又∵AP =-AQ ,BP =AP -AB ,CQ =AQ -AC ,∴BP ·CQ =(AP -AB )·(AQ -AC )=AP ·AQ -AP ·AC -AB ·AQ +AB ·AC=-a 2-AP ·AC +AB ·AP =-a 2+AP (AB -AC )=-a 2+21PQ ·BC . ∴当cos θ=1,,即θ=0(PQ 与BC 方向相同)时,BP ·CQ 最大,最大值为0.例12 四边形ABCD 中,)3,2(),,(),1,6(--===CD y x BC AB(1)若DA BC //,试求x 与y 满足的关系式;(2)满足(1)的同时又有BD AC ⊥,求y x ,的值及四边形ABCD 的面积。
解析: ),(y x BC =)2,4()2,4()(+---=-+-=++-=-=y x y x CD BC AB AD DA(1)DA BC // 则有0)4()2(=--⋅-+-⋅x y y x 化简得:02=+y x(2))1,6(++=+=y x BC AB AC , )3,2(--=+=y x CD BC BD 又BD AC ⊥ 则 0)3()1()2()6(=-⋅++-⋅+y y x x化简有:0152422=--++y x y x 联立⎩⎨⎧=--++=+015240222y x y x y x 解得⎩⎨⎧=-=36y x 或⎩⎨⎧-==12y x DA BC // BD AC ⊥ 则四边形ABCD 为对角线互相垂直的梯形A B C当⎩⎨⎧=-=36y x 时,)0,8()4,0(-==BD AC 此时1621=⋅⋅=BD AC S ABCD 当⎩⎨⎧-==12y x 时, )4,0()0,8(-==BD AC 此时1621=⋅⋅=BD AC S ABCD 6. 借助向量的拆分将待求向量的数量积转化为题目中能求解的数量积.例13 如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则AD BC =·_______ .解析:直接利用定义求AD BC ·较困难,题目中给出了12021BAC AB AC ∠===,,°,可以利用定义直接求出ABAC ·,这样问题就转化为能否将向量AD BC ,都用AB AC ,形式表示.由2DC BD =得2()AC AD AD AB -=-即1233AD AC AB =+,BC AC AB =- ∴AD BC =2211283333AC AC AB AB +⋅-=-. 7. 建立坐标系,利用坐标运算求解数量积例14 已知O 为Rt △ABC 的内切圆的圆心,AB=5,BC=4,CA=3下列结论正确的是( )A. OA OB OB OC OC OA ⋅<⋅<⋅B. OA OB OB OC OC OA ⋅>⋅>⋅C. OA OB OB OC OC OA ⋅=⋅=⋅D. OA OB OB OC OC OA ⋅<⋅=⋅解析:建立如图直角坐标系:设A(0,3),B(4,0),C(0,0),∵O 为Rt △ABC 的内切圆的圆心∴O(1,1),∴(1,2)OA =-,(3,1)OB =-,(1,1)OC =--∴5OA OB ⋅=-,1OA OC ⋅=,2OB OC ⋅=-故选 A例15 如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则ADBC =·_______. 解析:建立以AB 为x 轴,过点A 作AB 的垂线为y 轴的直角坐标系,如图所示,则A(0,0),B(2,0),C(13,22-),由定比分点坐标公式得D(7,66),所以5(,22BC =-,AD=(7,66), 即ADBC =·57826263-⨯+=-.三角恒等式证明的基本技巧三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。