焊接过程的数值模拟

合集下载

焊接过程的数值模拟与优化

焊接过程的数值模拟与优化

焊接过程的数值模拟与优化一、引言焊接是一种常用的工业加工方法,可用于连接和修复金属、塑料、玻璃等各种材料。

然而,由于焊接过程中涉及到高温、气体、化学反应等多种复杂因素,使得焊接工艺参数的选择与优化具有一定的难度。

因此,为了提高焊接效率和质量,数值模拟和优化技术近些年来得到了广泛的应用。

二、数值模拟技术数值模拟技术是利用计算机运算模拟实际物理过程的一种方法。

在焊接过程中,数值模拟技术主要用于预测温度场、扭矩场、应力场、位移场等物理参量,以便优化焊接工艺参数以达到最佳的焊接效果。

1. 焊接过程模拟在焊接过程模拟中,主要涉及到热传递方程、能量守恒方程、动量守恒方程等基本模型。

通过数值求解这些模型,可以得到焊接过程中的温度场、熔池形状、焊缝形状等重要的参量。

2. 焊接残余应力模拟焊接残余应力是指焊接后焊件内部残留的应力状态。

焊接残余应力模拟主要涉及到材料本构关系、应力平衡方程等模型。

通过数值求解这些模型,可以得到焊接后的残余应力分布,进一步判断焊接件的稳定性和持久性等。

三、优化技术对于焊接加工过程而言,焊接质量和性能的优化是关键。

因此,针对焊接工艺参数进行优化是必不可少的。

1. 优化算法在焊接优化过程中,优化算法的选择对结果影响非常大。

常见的优化算法包括模拟退火、遗传算法、粒子群算法等。

这些算法可以根据不同的目标函数进行参数优化,以获得最优的焊接参数设置。

2. 优化目标焊接优化的目标参数有很多,通常包括焊接强度、裂纹敏感性、金属熔池尺寸、焊接速度、温度均匀性等方面。

这些目标量可以通过实验或数值模拟得到,然后通过优化算法进行校准。

四、实例以氩弧焊为例,通过焊接数值模拟和优化技术,得出最佳的焊接参数设置。

1. 模型建立在ANSYS软件中,建立了氩弧焊的热传递和流体模型,计算焊接过程中的热传递和气体流动。

2. 优化参数通过实验和数值模拟,优化了电流、电压、焊接速度和气体流量等参数,以获得最佳的焊接效果。

3. 优化结果最终的优化结果表明,当电流设置为85A、电压设置为20V、焊接速度设置为3mm/s、氩气流量设置为10L/min时,可以获得最优的焊接结果,焊缝质量和机械性能都得到了明显的提升。

焊接变形的数值模拟及其应用研究

焊接变形的数值模拟及其应用研究

焊接变形的数值模拟及其应用研究一、引言焊接是加工工业中普遍应用的一种连接材料的方法,焊接强度高且结构更简单。

但随着焊接工艺和设备的不断进步,焊接变形成为制约焊接质量和效率的重要因素之一。

因此,综合考虑焊接变形模拟与应用是现代焊接研究的重要内容之一。

二、焊接变形的数值模拟技术对于焊接变形数值模拟技术的研究,其主要是通过有限元方法来实现。

有限元是一种计算机数值分析的方法,通过将具有复杂形状的结构划分为若干个小单元,综合考虑边界条件进行数值计算,并将结构的应变和应力分布进行可视化,从而研究结构的力学性质。

1.数值模拟的基本方法数值模拟的基本方法是将物理模型划分为网格单元,并在每个单元上考虑其内的物理过程,从而建立数学模型。

通常,执行数值模拟需要经过以下几个步骤:(1)建立具有完整物理性质的模型;(2)将模型划分成若干网格单元;(3)在各网格上考虑基本方程和边界条件;(4)求解各网格应变和应力等数值值;(5)将各网格的结果合并起来得到整个结构的应变和应力等数值分布。

2.有限元法有限元法(FEM)是一种将一个连续物体分解为一系列小块的计算方法,即把复杂的体系分割成一个个基本单元。

该方法对于计算结构静力学、动力学、热力学和流体力学等有广泛应用,因而也成为研究焊接变形的一个常用方法。

三、焊接变形的数值模拟分析在实际焊接过程中,由于热循环阶段的高温和残余应力的影响,常常引起焊接件的塑性变形,其途中产生的变形甚至能超出生产技术所容许的范围。

焊接变形不仅影响外观质量,还会影响焊接结构的性能和寿命,对于大型结构更为明显。

基于上文中所提到的有限元算法,通过对焊接变形机理的研究,可进行以下两方面的分析:1. 焊接变形分析焊接变形分析是研究焊接过程中产生变形的本质和形式,而这种变形是由于瞬态热源和温度场的影响而发生的。

定量分析焊接变形可以为制定设备厂商提供合适的工艺参数和焊后变形纠正措施的参考。

2. 焊接残余应力分析焊接传热过程中容易形成扭曲和残余应力等现象,不仅可能导致焊接材料的变形或裂纹等问题,还可能破坏焊接件的力学强度和疲劳寿命。

焊接过程中的数值模拟与仿真技术

焊接过程中的数值模拟与仿真技术

单击添加标题
跨学科合作与创新:焊接过 程的数值模拟与仿真技术需 要与多个学科领域进行合作 和创新。未来发展需要加强 跨学科合作,推动焊接技术
的进步和应用。
结论与展望
结论
焊接过程中的数值模拟与仿真技术对于提高焊接质量和效率具有重要意义
通过数值模拟与仿真技术可以预测和优化焊接过程,降低成本和减少废品 率 未来随着计算机技术和数值计算方法的不断发展,数值模拟与仿真技术将 更加精确和高效
仿真结果分析:通过仿真计算,可以得 到焊接过程中的温度场、应力场等关键 参数,为优化焊接工艺和提高焊接质量
提供依据。
数值模拟与仿真技 术在焊接中的挑战
与未来发展
数值模拟与仿真技术在焊接中的挑战
焊接过程的复杂性:焊接过程中涉及的材料、温度、应力等多种因素,使得数值模拟与仿 真技术面临诸多挑战。
建模与计算的准确性:焊接过程的数值模拟与仿真需要精确的模型和计算方法,以确保结 果的准确性和可靠性。
性、焊接工艺参数等。
应 用 实 例 展 示 : 展 示 基 于 C OMS O L 的 焊 接过程仿真的实际应用案例,包括焊接
缺陷预测、焊接工艺优化等。
添加标题
添加标题
添加标题
添加标题
C OMS O L 软 件 介 绍 : C OMS O L 是 一 个 强大的多物理场仿真软件,支持电场、 力学、流体等多种物理场的耦合计算。
焊接过程中数值模 拟的原理与方法
焊接过程的物理模型
焊接过程的物理模型概述 焊接过程的物理模型建立 焊接过程的物理模型求解方法 焊接过程的物理模型应用案例
数值模拟的基本原理
有限元法的基本原理
有限差分法的基本原理
边界元法的基本原理
数值模拟的精度与稳定性 分析

焊接过程中的数值模拟与仿真技术

焊接过程中的数值模拟与仿真技术

焊接过程中的数值模拟与仿真技术引言焊接是一种常见的金属加工方法,广泛应用于制造业领域。

然而,在焊接过程中,由于高温、高压和复杂的热力学环境,焊接工艺参数的选择和优化往往存在一定的挑战。

因此,借助数值模拟与仿真技术来模拟、预测和改善焊接过程已经成为焊接工程师的重要工具。

本文将介绍焊接过程中的数值模拟与仿真技术及其应用。

数值模拟与仿真技术的原理和方法数值模拟与仿真技术是利用数学方法和计算机技术对焊接过程进行模拟和预测的一种手段。

它基于物理学原理和数学方程,将焊接过程分解为多个离散的时间和空间步骤,并通过建立数学模型来描述焊接过程中的各种物理现象。

数值模拟与仿真技术的主要原理和方法包括:1. 热传导方程模型热传导方程模型是数值模拟与仿真技术中最基本的模型之一。

它基于热传导原理,通过建立热传导方程来描述焊接过程中热量的传递和分布。

该模型可以准确地预测焊接过程中的温度场分布和热应力分布,为焊接工艺参数的优化提供重要参考。

2. 流固耦合模型焊接过程中存在流体流动和固体熔化的复杂耦合现象。

为了更准确地模拟焊接过程,可以建立流固耦合模型。

该模型基于流体力学和固体力学原理,同时考虑熔化金属的流动和固体材料的变形。

通过该模型,可以分析焊接过程中的速度场、应力场和变形场等关键参数,为焊接过程的优化提供依据。

3. 相变模型焊接过程中熔化金属会发生相变,而相变过程对焊接接头的性能和质量具有重要影响。

为了准确预测焊接接头的相变行为,可以建立相变模型。

相变模型基于热力学和相变动力学原理,通过数学方程描述金属的熔化和凝固过程。

利用相变模型,可以研究焊接接头的晶体结构和应力分布,从而提高焊接接头的强度和可靠性。

4. 材料性能模型焊接过程中材料的热物理性质和机械性能会发生变化,对焊接接头的质量和性能产生重要影响。

为了更好地预测焊接接头的材料性能,可以建立材料性能模型。

材料性能模型基于材料力学和热学理论,通过数学方程描述材料在焊接过程中的变化规律。

焊接热过程数值模拟的主要任务及其意义

焊接热过程数值模拟的主要任务及其意义

焊接热过程数值模拟的主要任务及其意义一、引言焊接技术在现代工业中具有重要的地位,但是焊接过程中存在着许多问题,如焊缝质量不稳定、变形过大等。

为了解决这些问题,研究人员利用数值模拟技术对焊接热过程进行了模拟分析。

本文将介绍焊接热过程数值模拟的主要任务及其意义。

二、任务1. 焊接热源建模在焊接过程中,热源是产生温度场和应力场的主要因素之一。

因此,建立准确的热源模型对于预测温度和应力场分布非常重要。

目前常用的热源模型有高斯函数、双高斯函数和移动点源等。

2. 材料性能建模材料性能是影响焊缝质量和变形度的重要因素之一。

材料性能建模包括材料塑性行为、导热系数、比热容等参数的确定。

通过这些参数的确定可以更准确地预测温度场和应力场分布。

3. 焊接过程仿真根据上述两个步骤得到的数据进行计算机仿真,预测出焊接过程中的温度场和应力场分布。

通过仿真结果可以预测焊缝质量和变形度,并且可以为实际焊接工艺提供参考。

三、意义1. 优化焊接工艺通过数值模拟技术,可以预测出焊接过程中的温度场和应力场分布,从而优化焊接工艺,提高焊缝质量和减小变形度。

2. 减少试验成本传统的焊接工艺设计需要进行大量的试验才能确定最佳方案,这不仅耗费时间而且成本高昂。

而通过数值模拟技术可以在计算机上进行仿真实验,避免了试验成本的浪费。

3. 提高生产效率采用数值模拟技术可以快速地评估不同的焊接工艺方案,从而选择最优方案并加以应用。

这样可以大大提高生产效率。

4. 推动科学研究数值模拟技术在研究领域中有着广泛的应用。

通过对焊接热过程进行数值模拟,可以深入了解材料行为、热传递规律等基础知识,并且为新材料的研究提供了参考。

四、总结焊接热过程数值模拟技术在现代工业中具有重要的地位。

通过建立准确的热源模型和材料性能模型,进行计算机仿真,可以预测出焊接过程中的温度场和应力场分布,优化焊接工艺,减少试验成本,提高生产效率,并且推动科学研究的发展。

焊接过程中的数值模拟计算

焊接过程中的数值模拟计算
( Pr 如 o/En ne r、 NA S gi e TR AN 、 Alg r DE 和 Au o AD等 )共享 o o 、I AS tC


) 十] 考- + 抛 g 善 (++] + 雾 鲁
作用的规律 ,包括 :
1. )热流 边界 条件 如前面所述 ,由于 在试 验 时 ,保 持焊 枪 不 动 而 工件 移 动 ,
OT 2
O2 T
+ +
动量方程 :
X方向:
图 3数值模拟 结果与实验验证比较
20 9一
维普资讯
的部位有 关 ,因为周 围气体 流 动特 性不

程本质的基础 上 ,建立 了熔池热场 与流场 的三维瞬态模型 , 模型充分 考虑 到热传导 、 对流、蒸发、辐射 和熔化散热等 众多物理
— —
的分量 ,
计算 的精 度 ,节省 计算 时 间 ,在 电弧加 热的区域 ,网格划分细 密,而其它 区域则 采用自由网格划分方式 , 总节点数为2 ,0 70 0 个 ,中间区域 的节 点数为 9 0 0 。 ,0 个
焊 接刚开始时 ,温度场是 不稳定 的 ,
密度;
粘度;
( sp o esn 。 Po t r c s i g)
焊接 过 程 由于速 度快 , 时 间短 .熔 池 成开 迅 j
速 .所 以对罅 池形 患的研 究就 显得 非常 复杂 本文主要 是在芹析 T I &焊熔池 中流体 流动 殪传 鹅过程 末质的 基础 上 , 立熔 池的 鼓学楗 型 . 建 特 别 对温度 埽 模型进 行 了有限 元化 处理 ,井
L 整个系统 离散 为有限个元素 t . 2 利 用能量最低 原理 ( ni1 . Mi 1 um 3 P tn ilE eg e r oe t n r y Th o y)与泛函数值 a

焊接数值模拟技术

焊接数值模拟技术

对流换热问题数学描述
(1)换热微分方程
T
T y
y0
α—对流换热系数 (2)连续性方程 单位时间流入、流出微元体质量相等。 (3)动量微分方程 作用于微元体表面和内部所有外力的总和, 等于微元体中流体动量的变化率。
(4)能量微分方程 由导热进入微元体的热量与由对流进入微元 体的热量之和等于微元体中流体的热焓增量。 Q1 + Q2 = △H
h界面换热系数3对称轴表示径向conv焊接熔池传质传热数值模拟研究主要成果1熔池内液体金属流动影响焊接熔深熔池的表面张力影响液体金属流动1如随温度升高表面张力增加则焊接熔深大2如随温度升高表面张力减小则焊接熔深浅2焊接电流线发散增加熔深3浮力对熔池内流体流动的作用较小4熔滴对熔池的冲击力对熔深影响较小5焊接热源导致熔池表面金属蒸发对熔池表面温度的影响1激光焊接熔池表面金属蒸发是影响熔池表面温度分布的主要原因2一般电弧焊表面张力引起的对流是影响温度的主要原因2
{ T(t)}—未知节点温度列向量; { F(t)} —节点温度载荷列向量; [KT] —整体温度刚度矩阵; [C] —整体变温矩阵
(2)边界条件和初始条件
G F
电极计算界面
电: U U(I , R) 热: T T o
水冷通道
电 : U / n 0 热 : T / n h ( T T ) w
V
T(r,z)—温度函数; qV—单位体积单位时间内热源生成热量
λ—热导率,CP—比热容,ρ—密度
内热计算
1 1 U U 2 2 q UU [ ( ) ( ) ] V r z E E
3)有限元数学模型
整体组集方程式
T () t [ C ] [ K ] T () t F () t T t

焊接工艺中的数值模拟与仿真优化

焊接工艺中的数值模拟与仿真优化

焊接工艺中的数值模拟与仿真优化焊接是一种常见的金属连接方法,广泛应用于制造业的各个领域。

然而,传统的试错方法在焊接工艺的优化中存在一些困难和不足。

为了提高焊接工艺的效率和质量,数值模拟与仿真技术成为了焊接工艺优化的重要手段。

数值模拟是利用计算机模拟焊接过程中的热传导、相变、应力和变形等物理现象的方法。

通过建立数学模型和采用数值计算方法,可以预测焊接过程中的温度场、应力场和变形情况,从而为优化焊接工艺提供理论依据。

数值模拟不仅可以减少试验成本和时间,还可以提高焊接工艺的稳定性和可靠性。

在数值模拟中,材料的热物性参数是一个重要的输入参数。

通过实验和理论计算,可以获得材料的热导率、比热容和熔点等参数。

同时,焊接过程中的热源也需要进行建模。

根据焊接方式和焊接材料的不同,可以采用点源模型、线源模型或面源模型来描述热源的分布和功率。

除了热传导,相变也是焊接过程中的一个重要现象。

在焊接过程中,金属经历了固态、液态和气态三个相态的转变。

相变过程会引起温度的变化,从而影响焊缝的形成和性能。

数值模拟中,可以采用相变模型来描述相变过程,并通过计算相变潜热和相变温度来确定相变的位置和时间。

焊接过程中产生的应力和变形对焊缝的质量和性能也有重要影响。

应力和变形的产生主要是由于焊接过程中的热膨胀和材料的塑性变形。

数值模拟中,可以采用有限元方法来计算焊接过程中的应力和变形。

通过调整焊接参数和优化焊接序列,可以减少应力和变形的产生,提高焊接工艺的稳定性和可靠性。

数值模拟不仅可以用于焊接过程的优化,还可以用于焊接接头的设计和评估。

通过数值模拟,可以预测焊接接头的强度、疲劳寿命和断裂行为。

同时,还可以优化焊接接头的几何形状和尺寸,提高焊接接头的性能和可靠性。

除了数值模拟,仿真优化也是焊接工艺优化的重要手段之一。

仿真优化是利用计算机模拟和优化算法来寻找最优的焊接参数和工艺条件。

通过建立数学模型和采用优化算法,可以在设计空间中搜索最优解。

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言随着科技的发展,焊接技术作为制造行业中的关键工艺之一,其质量和效率直接关系到产品的性能和寿命。

因此,对焊接过程中的温度场和应力分布进行精确的数值模拟显得尤为重要。

ANSYS作为一种功能强大的工程仿真软件,被广泛应用于焊接过程的数值模拟。

本文将基于ANSYS,对焊接温度场和应力进行数值模拟研究,以期为实际生产提供理论依据。

二、焊接温度场的数值模拟1. 模型建立在ANSYS中建立焊接过程的有限元模型,包括焊件、焊缝、热源等部分。

其中,焊件采用实体单元进行建模,焊缝则通过线单元进行描述。

热源模型的选择对于模拟结果的准确性至关重要,应根据具体的焊接工艺选择合适的热源模型。

2. 材料属性及边界条件根据实际材料,设定焊件和焊缝的热导率、比热容、热扩散率等物理参数。

同时,设定初始温度、环境温度等边界条件。

3. 数值模拟过程根据焊接过程的实际情况,设定加载步和时间步长,模拟焊接过程中的温度变化。

通过ANSYS的热分析模块,得到焊接过程中的温度场分布。

三、焊接应力的数值模拟1. 耦合分析焊接过程中,温度场的变化会导致应力的产生。

因此,在ANSYS中,需要将在热分析中得到的温度场结果作为应力分析的输入条件,进行热-结构耦合分析。

2. 本构关系与材料模型根据材料的本构关系和力学性能,设定材料的弹性模量、泊松比、热膨胀系数等参数。

同时,选择合适的材料模型,如各向同性模型或各向异性模型。

3. 应力分析通过ANSYS的结构分析模块,结合耦合后的温度场结果,进行应力分析。

得到焊接过程中的应力分布和变化情况。

四、结果与讨论1. 温度场结果分析通过ANSYS的后处理功能,可以得到焊接过程中的温度场分布图。

分析温度场的分布情况,可以了解焊接过程中的热传导和热扩散情况,为优化焊接工艺提供依据。

2. 应力结果分析同样,通过后处理功能可以得到焊接过程中的应力分布图。

分析应力的分布和变化情况,可以了解焊接过程中产生的残余应力和变形情况。

基于数值模拟的焊接虚拟仿真实验教学软件设计与实现

基于数值模拟的焊接虚拟仿真实验教学软件设计与实现

基于数值模拟的焊接虚拟仿真实验教学软件设计与实现近年来,虚拟仿真技术在教学领域得到了广泛应用。

基于数值模拟的焊接虚拟仿真实验教学软件能够以直观形象的方式展示焊接过程,并进行实时的数值模拟,有助于学生理解焊接原理和技巧,提高实践操作能力。

本文将介绍基于数值模拟的焊接虚拟仿真实验教学软件的设计与实现方法。

首先,我们需要对焊接过程进行数值模拟。

焊接过程包括熔化、液池形成、焊缝形成和固化等过程,涉及到多种物理场如热传导、流体流动和相变等。

因此,我们需要基于有限元方法建立焊接过程的数值模型,并利用数值方法求解模型,得到焊接过程的数值模拟结果。

在数值模拟部分,首先需要建立焊接过程的几何模型。

通常,焊接过程可以简化为一个三维几何模型,包括焊头、焊接材料和焊接工件。

焊头可以根据实际情况进行建模,其形状和温度分布是影响焊接过程的重要因素。

焊接材料和焊接工件的几何形状对焊接过程也有一定影响,需要进行准确建模。

建立几何模型后,需要确定焊接材料的材料特性和焊接工艺参数。

焊接材料的热导率、热膨胀系数和熔点等是数值模拟中必须考虑的物理特性。

焊接工艺参数包括焊接速度、焊接电流和焊接电弧长度等,对焊接过程的运行状态有直接影响。

接下来,需要对焊接过程的物理场进行数值求解。

焊接过程中涉及到的物理场包括热传导、流体流动和相变等。

对于热传导问题,可以利用热方程进行求解,考虑热源、材料特性和边界条件等。

对于流体流动问题,可以利用流体动力学方程进行求解,考虑焊接材料的熔化和液相流动等。

对于相变问题,可以利用相变方程进行求解,考虑焊接材料的熔化和凝固等。

在数值模拟结果的可视化方面,可以采用计算机图形学的方法将焊接过程的数值结果可视化为三维图像。

通过调整视角和焊接速度等参数,可以观察焊接过程中液池形成、焊缝形成和固化等重要过程。

同时,可以对焊接过程的数值结果进行分析,比如温度分布、熔池形状和焊缝质量等。

除了数值模拟部分,焊接虚拟仿真实验教学软件还需要提供交互式的实验界面和相关功能。

焊接质量控制中焊缝焊接变形的数值模拟分析

焊接质量控制中焊缝焊接变形的数值模拟分析

焊接质量控制中焊缝焊接变形的数值模拟分析焊接是金属结构连接中常用的一种方法,但焊接过程中产生的热量和应力往往会导致焊缝的变形,从而影响焊接质量。

因此,在焊接过程中进行焊接变形的数值模拟分析是非常重要的。

本文将使用数值模拟方法对焊接质量控制中焊缝焊接变形进行分析。

一、数值模拟方法的选择数值模拟方法是通过计算机对焊接过程进行仿真,可以提供焊接过程中的温度场分布和应力场分布,进而预测焊缝的变形情况。

在本文中,我们选择有限元方法进行数值模拟。

有限元方法是一种广泛应用的数值计算方法,通过将焊接过程划分为离散的有限元素,对每个元素进行计算得到温度场和应力场的分布。

二、建立焊接模型在进行数值模拟之前,需要建立一个逼真的焊接模型。

首先,根据具体的焊接工艺和焊接材料选择适当的焊接参数和材料参数。

其次,根据焊接结构的几何形状和尺寸,建立三维几何模型。

最后,根据焊接方式和边界条件,定义模型的边界和约束条件。

三、计算焊接过程中的温度场分布通过有限元分析软件,我们可以计算出焊接过程中的温度场分布。

在数值模拟中,可以根据焊接材料的热传导性质和焊接参数来计算瞬态温度场。

瞬态温度场计算完成后,可以得到焊接过程中的最高温度和温度分布情况。

四、计算焊接过程中的应力场分布在焊接过程中,热量的集中和膨胀冷却会导致焊接结构产生应力。

通过计算焊接过程中的瞬态应力场分布,可以得到焊接结构在焊接过程中的最大应力和应力分布情况。

在数值模拟中,可以考虑焊接结构的塑性行为和材料的非线性特性,从而得到准确的应力场分布。

五、预测焊缝的变形情况根据焊接过程中的温度场和应力场分布,可以预测焊缝的变形情况。

焊缝的变形通常表现为拉伸、收缩、扭曲等形式。

通过数值模拟,可以计算出焊缝的变形量和变形分布情况。

根据变形情况,可以判断焊接质量是否符合要求,并根据需要进行调整和改进。

六、优化焊接参数和结构设计通过数值模拟分析,我们可以得到焊接过程中的温度场、应力场和焊缝变形情况。

焊接过程温度场和应力场三维数值仿真技术

焊接过程温度场和应力场三维数值仿真技术

焊接过程温度场和应力场三维数值仿真技术史平安莫军材料加工过程虚拟与仿真一直是近年来材料加工领域的研究热点。

对于焊接过程而言,其物理现象本身非常复杂,是一个涉及高温电弧物理、传热、冶金和力学的复杂过程,因此在建立精确的物理模型方面存在着较大的难度。

由于焊接过程温度梯度很大,在空间域内大的温度梯度导致严重的材料非线性,产生求解过程中的收敛困难和解的不稳定性;在时间域内大的温度梯度决定了瞬态分析时离散程度上的加大,直接导致求解时间步的增加。

由于上述原因,焊接过程数值模拟的研究长期以来一直停留在二维水平上。

近年来,随着计算机技术的发展,焊接过程三维数值模拟成为该领域的重要研究课题。

由于焊接过程的复杂性,焊接过程的三维数值模拟仍停留在基础性研究阶段,且大多是以典型接头作为研究对象,远未达到应用于实际结构的水平。

影响加工过程三维数值模拟在实际生产中应用的主要因素可概括为三点:(1) 焊接结构三维模型自由度数目庞大;(2) 严重的材料非线性导致求解过程收敛困难;(3) 高温区的存在使得数值模拟的精度和稳定性难以保证。

这些因素的存在直接导致计算时间的增多。

针对上述问题,为了减少计算时间和三维模型的自由度数目,本文选择了适当的数学模型和物理模型。

在区域W中,有力学平衡方程和应力应变间的本构方程以及热过程控制方程为了真实反映焊接过程中不同时刻的温度场和应力场,焊接热源按表面移动热流处理,热源内的能量按高斯函数分布。

在焊接电流、电压和热效率分别为I、U和h时,取电弧中心处最大比热流为q m=KhUI/2p,距电弧中心处的比热流为q R =q m exp(-KR2)。

图1布布根据上述方法计算单元点上的热流强度,再在单元内部按分段线性计算表面的热流,热源移动通过自定义的子程序实现。

还采用了适用于焊接过程数值模拟的网格自适应技术:把焊接看作相对较小的非线性区域在大的弹性体上的运动。

非线性区域代表着电弧作用的区域,发生着较大的非线性变形行为,且存在很大的温度梯度,此区域采用加密网格描述;而结构远离非线性区域的部分在焊接过程中基本保持线性,温度变化范围也相对较小,此区域采用稀疏的网格描述。

【doc】焊接过程数值模拟热源模式的比较

【doc】焊接过程数值模拟热源模式的比较

焊接过程数值模拟热源模式的比较WeldingTechnologyV o1.35No.1Feb.2006?试验与研究?9文章编号:1002-025X(2006)01-0009-03焊接过程数值模拟热源模式的比较陈家权,肖顺湖,吴刚,杨新彦(广西大学机械工程学院,广西南宁530004)擅要:焊接热源模式是焊接数值模拟研究的一个重要内容.文中简要介绍了焊接过程数值模拟热源的各种加栽模式:高斯分布函数,双椭球分布函数,生死单元方法.针对具体算例,采用3种不同的热源加栽模式进行三雏焊接温度场的数值计算,并比较不同方法计算焊接温度场结果的差异.结果表明,生死单元方法是一种简单的热源加栽模式,其计算效率优于其他2种加栽方法.关t词:焊接;高斯热源;双椭球热源;生死单元;有限元中圈分类号:1'(02:TP15文献标识码:A在焊接结构设计和工艺分析中,一般是通过大量焊接工艺试验来评定工艺因素的变化对焊接残余应力和变形乃至使用寿命的影响.近年来,随着数值计算理论和有限元方法的发展以及计算机的普及和性能的提高,焊接过程的数值模拟得以实现.通过数值模拟计算,动态仿真焊接过程,预测不同焊接工艺条件下的残余应力和变形,进而实现对焊接工艺的优化设计.焊接热源模型是实现焊接过程数值模拟的基本条件.焊接热源具有电弧局部集中,瞬时和快速移动的特点,易形成在时间和空间域内梯度都很大的不均匀温度场,这种不均匀温度场会导致在焊接过程中和焊后出现较大的焊接应力和变形.因此,在数值模拟计算焊接过程的温度场时,热源模型的研究至关重要,它关系到焊接温度场和应力变形的计算精度,特别是在靠近热源的地方影响更大.对此,人们提出了一系列的热源计算模式,其中应用较广的是高斯分布热源模型,双椭球热源模型和基于生死单元的焊接热源加载模型.本文采用具有高斯表面热源模型,双椭球热源模型,生死单元热源模型加载焊接热源,进行温度场的有限元计算,并时3种热源模型的计算结果作进一步比较,确定符合焊接过收稿日期:2005一o6—15;修回日期:2005—12一O5基金项目:广西自然科学基金项目(桂科自013505)程效值模拟计算的热源模型.l焊接热源基本模型1.1高斯热源模型Eagar和TsaiⅢ将焊接加热斑点上热流密度的分布近似地用高斯数学模型来描述,即焊接热源的热流密度可表示为如下高斯分布函数:g(r)=q~exp(一),(1)gm=素Q,(2)Q=,(3)式中:g为加热斑点中心最大热流密度,J/(m?S);R为电弧有效加热半径,mm:r为热源某点至电弧加热斑点中心的距离,mm:Q为热源瞬时给焊件的热能,w;为焊接热效率;(,为电弧电压,V;,为焊接电流,A.1.2双椭球型热源模型由于高斯分布函数没有考虑电弧的穿透作用,为了克服这个缺点,AGoldakv?出了双椭球形热源模型.这种模型将焊接熔池的前半部分作为一个1/4椭球,后半部分作为另一个1/4椭球.设前半部分椭球能量分数,后半部分椭球能量分数,2.前半部分椭球内热源分布函数:较小,即OHz处的幅频值随熔核尺寸的变化最为敏感.参考文献:【1】中国机械工程学会焊接学会电阻焊(Ⅲ)专业委员会.电阻焊理论与实践【M】.北京:机械工业出版社,1994.【2】曾鸿志.电阻点焊过程及质量控制方法的研究【J】.焊接技术,2000, 29(5):1—3.【3】应怀樵.波形和频谱分析与随机数据处理【M】.北京:中国铁道出版社,1983.【4】陈汉友.Matlab在数字信号处理中的应用忉.计算机与现代化,20O4, (1):103—1O5.作者简介:马铁军(1972一),男,新疆米泉人,讲师,在职博士,1995年毕业于西北工业大学焊接专业,主要从事压焊工艺与设备及压焊质量检测方面的研究.lO?试验与研究?焊接技术第35卷第1期20O6年2月gcr,=唧{-3[(詈(舌(),c4,后半部分椭球内热源分布函数:r,=唧{一3[(詈)2+(舌)+2(),c5,式(4)和式(5)中的a,6,C,Cr可取不同的值,它们相互独立.在焊接不同材质时,可将双椭球分成4个1/8的椭球瓣.每个可对应不同的a,6,Cf,cr值.1.3生死单元热源加载高斯,双椭球2种热源模型将焊接热流直接施加在整个焊件有限元模型上,不能模拟焊缝金属熔化和填充,无法模拟实际焊接过程,而生死单元能够克服这个缺点.生死单元技术搠就是采用生死单元模拟焊缝填充的方法来模拟焊接热输入过程.通过试验测量,将全部焊接热Q均匀分布在焊缝上,假设所有焊缝单元在计算前是不激活的.在开始计算前,将焊缝中所有单元"杀死".在计算过程中,按顺序将被"杀死"的单元"激活",模拟焊缝金属的填充.同时,给激活的单元施加生热率(日GEⅣ),热载荷的作用时间等于实际焊接时间. HGEN--Q/(A=~xvxdt),(6)式中:HGEN为每个载荷步施加的生热率,w/m;A为焊缝的横截面积,m;为焊接速度,m/s;dI为每个载荷步的时间步长,8.2焊接叠度场的有限元计算2.1物理模型焊接温度场模拟计算所采用的焊板尺寸为200mmxT.00mmx6mm,如图1所示.试样材料为s355K2G3碳锰钢(BS426o Grade50D,相当于国内16Mn钢),材料的比热容和热导率随温度变化曲线如图2所示.材料的密度近似为常数.lZP7800I~Jm3.焊板由2块200mmxl00minx6lnln钢板焊接而成,为保证焊透,在钢板待焊边上加T60o坡口.焊接采用Co2+混合气体保护焊,焊接参数为:焊接电流180A,电弧电压20V,焊接速度4.8mm/s,焊接热输入O.75kJ/ram,焊接效率',=0.825,焊缝的几何模型与实际焊缝尺寸一致.在本次数值计算中,假定焊板表面与空气的换热系数为15w/(m2?℃).啊1爆接试样尺寸凝萁羹置厦/啊2材辩比热軎和热导搴2.2有限元模型由于采用3D几何模型,所以划分有限元模型时采用8节点热单元SoHd70.为保证焊缝及其附近高温区域得到较精确的温度分布,采用了较小的尺寸单元,焊板有限元模型如图3所示,其中包括13100个单元,19392个节点.E3霹板有限元曩型2.3焊接热源模型的处理2.3.1高斯分布函数的热源模型高斯热源按表面移动热流处理,在ANSYS中按热流率加载,用函数加载功能将高斯热流加载在焊件表面,每一步计算前,先删除上一步热流,再重构高斯函数,对于高斯热源,R= 5.5mm,通过计算,得出:q*---9.4xl05ce-~'.2.3.2双椭球形热源模型双椭球形热源按内热源处理,在ANSYS中按生热率(日GEⅣ)加载,用函数加载功能将双椭球形热流加载在焊件上,在每一步开始计算前,先删除上一步生热率.然后重构双椭球函数,双椭球形热源的几何参数:f:o.6,=1.4,5mm,b=5mm,cf=3.75mm,c.5mlrl.前半部分椭球内热源分布函数为:fr22211)=8.8xl叫I()+()+(0--~375川,(7)后半部分椭球内热源分布函数为:fr2221tg(r)叫一3.x)+()+()J0(8)2.3.3生死单元焊接热源加载在开始计算前,将焊缝中所有单元"杀死",相当于焊前的装配状态.在计算过程中,按顺序将被"杀死"的单元"激活",模拟焊缝金属的填充,同时给激活的单元施加生热率(HGEN),其中生热率(HGEN)的作用时间为每步的焊接WeldingTechnologyV o1.35No.1Feb.2006?试验与研究?11时间,每一步计算完成之后,删除该步的生热率,重新进入下一步加载计算,得到HGEN--6.6xl09.2.4计算结果与分析分别采用3种不同的焊接热载荷的施加方式,进行了焊接温度场的数值模拟计算.3种热源的焊接熔池某个时刻剖面温度场云图结果如图4所示.从图中可以看出,在焊接热参数输入一致的情况下,高斯热源和双椭球形热源计算出的焊件底部温度均低于金属的熔点(1435℃)四,未能达到真正焊透的效果,而采用生死单元技术施加热载荷,焊件表面至焊件底部的温度都能达到金属的熔点,确保整个工件能被焊透,从而能够较好地模拟深熔型焊缝的温度场.图5为焊板上参考点的温度循环曲线,其中,点A及点剧匈位于焊缝位置,.3种热源模式计算的各点温度循环特征相似, 随着热源的接近和离去,参考点的温度迅速上升和下降,3种热源比较相似,但各点的最高温度有所差异,以生死单元方法为最高,高斯热源次之,双椭球形热源最低.通过比较不同热源模型加载条件的计算时间,发现在计算机配置不变的情况下,生死单元法的计算时间最短,为85rain,高斯热源次之,为125min,双椭球形热源为180min,因此采用生死单元法的计算效率明显高于其他2种热源的计算效率. WOD札5ouffrlOXS丁E}-5SU譬?lTI如E-.41666"7TIE/qP(^V6'RSYS-OS知阿2OSID:tl268——E:::::::::::r二::.=:.::=:.:—●20338657.5976.3l454(a)高斯热源0l6032048064O时间/s(a)高斯热源—一l26820297r7485l(b)双椭球形热源圈4焊接熔池形状比较016032048064O时间/s(b)双椭球热源豳S参考点计算焊接温度变化历程3结论采用ANSYS有限元软件对不同焊接热源加载模式的温度场进行计算,并对计算结果加以比较.结果表明:①用高斯分布的表面热源分布函数计算,引入材料的非线性,可模拟焊接温度场,但未考虑电弧挺度对熔池的影响.②由于双椭球热源模型是一种体热源,热流密度函数复杂,参量较多,因此计算结果比高斯热源准确,但计算时需不断重构焊接移动热源的分布函数,导致计算量增加.③应用生死单元方法加载,能够有效地模拟焊缝的形成过程和焊接热载荷的输入,而且这种处理方法较构造焊接热流密度函数的方法简单,更适用于复杂结构的焊接过程模拟, 且计算效率和精度均高于前2种方法.参考文献——:::l二:=:::::二:.:一::.:一2O4l2.58051324l787(c)生死单元热源加载o16032048064O时间/s(c)生死单元热源加载[1】EagerTW,TsaiNS.Temperaturefieldsproducedbytraveling distributedheat8ource$[J】.WeldingJournal,1983,62(12):346—355.【2】GoldakA,ChakravartiAandBibbyM.Adoubleellipsoidfinite elementmodelforweldingheatsources[Z].11wDoe.,1985.【31GoldakA,ChakravartiAandBibbyM.Anewfiniteelementmodel forweldingheatsoul'ces[J].MetTrans.1984,13(15B):299—305.【4】陈家权.基于单元生死的焊接温度场模拟计算[J】.热加工工艺,2O05, 34(7):64—65.【5】张树华.TC4,16Mn合金及Al陶瓷的高温弹性模量Ⅱl高压物理学报,1999,9(2):133—137.^P£PS啪嚣蝴伽咖咖猢湖伽o222llp\趟赠咖咖鲫枷抛咖咖鲫枷猢o,'}ll\魁赠湖瑚咖聊姗瑚咖姗瑚0222llll魁赠。

焊接数值模拟PPT课件

焊接数值模拟PPT课件
• 焊接热效应,[德]D.拉达伊,机械工业出版社, 1997
16
焊接数值计算
2-1 热加工过程模拟的研究现状 热加工过程模拟的意义
• 材料热加工
–铸造:液态流动充型、凝固结晶等; –锻压:固态流动变形、相变、再结晶等; –焊接:熔池金属熔化、凝固结晶;热影响区金属经
历不同的热处理过程; –热处理:相变、再结晶等; –特点:复杂的物理、化学、冶金变化
6
焊接数值计算
Fluid Flow and Surface Deformation in Weld Pool
The following computer simulation shows the flow of metal within a weld pool during welding. The colours represent the temperature in Kelvin. Notice also that the surface of the pool is deformed (i.e., it is not flat. The shape of the surface trailing the welding arc becomes frozen in and determines the surface topology of the final weld. A surface topology which causes the concentration of stress during service can be detrimental to the fatigue life of the engineering structure containing the weld. The work is due to G. G. Roy and T. DebRoy of Penssylvania State University, U.S.A.

焊接数值模拟PPT课件

焊接数值模拟PPT课件


3 K R02
z 0, H
q(x,
y,
z)
Q πR02 H
x2 y 2 R02 , z 0, H
所需给定的初始参数
热源总功率 Q = 3 500 W 热源高度 H = 0.01 m 热源开口半径 R0 = 0.003 m
热源总功率 Q = 3 500 W 热源形状参数 a = 0.003 m b = 0.010 m
3 R02
q(x, y, z) q(0,0,0) e3x2 / a2 e e 3z2 / b2 3 y2 / a2
q(0,0,0) 6 3Q a2bπ π
q(x, y) qm eK x2 y2
QK qm π

K
3 R02
q(x, y, z) qm eKx2 y2
qm
QK πH
For a review of the subject, see: T. DebRoy, Role of Interfacial Phenomena in Numerical Analysis of Weldability, Mathematical Modelling of Weld Phenomena II, The Institute of Materials, London, (1995) pp. 3-21.
• 焊接熔池中的流体动力学和热过程 • 热源与金属的相互作用
– 焊接电弧物理,焊接电弧的传热与传质
• 电弧作用于熔池表面的热能和压力分布 • 熔池表面的变形 • 液态金属的蒸发 • 氢及氮氧等在熔池及环境之间的分配
• 焊接冶金和焊接接头组织性能的预测,包括相变过程 • 焊接应力与变形 • 焊接过程中的氢扩散 • 特种焊的数值模拟

焊接应力和变形的数值模拟研究

焊接应力和变形的数值模拟研究

焊接是一种常见的金属加工工艺,它通常用于将两个或更多金属件连接起来。

在焊接过程中,金属会受到热量的影响,从而产生应力和变形。

为了更好地理解焊接过程中的应力和变形机理,以及预测焊接件的性能和寿命,数值模拟研究成为了焊接领域的研究热点之一。

1. 应力分布的数值模拟焊接过程中,焊缝和母材会受到热量的影响,产生应力。

通过有限元分析等数值模拟方法,可以准确地预测焊接件中的应力分布。

这对于避免焊接件的变形、裂纹和疲劳寿命的提高至关重要。

数值模拟可以帮助工程师优化焊接工艺参数,减少焊接应力,提高焊接件的质量和性能。

2. 变形控制的数值模拟除了应力之外,焊接过程中还伴随着焊接件的变形。

焊接变形可能导致产品尺寸的偏差,从而影响其装配质量和外观。

数值模拟可以帮助工程师预测焊接件的变形情况,优化焊接设计,减少变形产生的影响。

通过数值模拟,工程师可以选择合适的焊接序列、布局和残余应力的预处理方法,从而有效地控制焊接变形。

3. 焊接残余应力的数值模拟焊接过程中产生的应力不仅会影响焊接件的性能和寿命,还会导致焊接残余应力的存在。

焊接残余应力可能导致产品的破坏和失效,因此需要对其进行有效的控制。

数值模拟可以模拟焊接残余应力的分布和大小,帮助工程师选择合适的残余应力消除方法,如后续热处理、切割释应力等,从而提高焊接件的质量和可靠性。

总结数值模拟是研究焊接应力和变形的重要手段,通过数值模拟,工程师可以更好地理解焊接过程中的物理现象,预测和控制焊接件的应力和变形,提高焊接件的质量和性能。

相信随着数值模拟技术的不断发展和完善,焊接应力和变形的研究将会取得更加深入和全面的成果,为焊接工艺的改进和创新提供更可靠的技朧支撑。

在焊接工艺中,焊接应力和变形的研究一直是焊接工程领域的一个重要课题。

在实际工程中,焊接应力和变形的控制对于确保焊接件的质量、性能及使用寿命至关重要。

针对焊接过程中产生的应力和变形问题,数值模拟成为了研究人员以及工程师进行预测和优化的重要工具。

焊接过程的数值模拟

焊接过程的数值模拟

《焊接过程的数值模拟》课程简介课程编号:02044906课程名称:焊接过程的数值模拟/ Numerical simulation of welding process学分:2学时:32 (课内实验(践):上机:16 课外实践:)适用专业:焊接技术与工程专业建议修读学期:7开课单位:材料科学与工程学院材料加工工程系课程负责人:卢云先修课程:焊接冶金学、计算机基础、VB语言及程序设计考核方式与成绩评定标准:采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、上机实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。

教材与主要参考书目:主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,20032、计算材料学,D.罗伯编著,项金钟、吴兴惠译,化学工业出版社,2002内容概述:本课程初步介绍焊接过程中数值模拟技术的一些基本原理,基本方法,研究进展和研究内容。

初步探讨使用有限元软件作为平台实现焊接的数值模拟过程。

重点介绍焊接热传导在有限元程序中的使用及应用。

通过本课程的学习,使学生了解焊接数值模拟的基本方法,学会综合运用其它方面的知识来实现简单焊接过程的数值模拟,并能够对模拟的结果进行有效的分析。

初步具备分析和解决焊接工程问题的能力。

This course introduces some basic principles, methods, research progress and contents of the numerical simulation technology in the welding process. The realization of numerical Simulation of welding based on finite element software platform is also discussed briefly. The application of welding heat conduction in the finite element program is emphasized on. Through this course, the students should understand the basic methods of numerical simulation of welding, learn the integrated use of the knowledge of other aspects to achieve a simple welding numerical simulation, and can effectively analyze the simulation results. This course is to present the practical analysis and solve for welding engineering problems.《焊接过程的数值模拟》教学大纲课程编号:02044906课程名称:焊接过程的数值模拟/ Numerical simulation of welding process学分:2学时:32 (课内实验(践):上机:16 课外实践:)适用专业:焊接技术与工程专业建议修读学期:7开课单位:材料科学与工程学院材料加工工程系课程负责人:卢云先修课程:焊接冶金学、计算机基础、VB语言及程序设计一、课程性质、目的与任务《焊接过程的数值模拟》是焊接技术与工程专业教学体系中的选修课程。

焊接材料成型加工过程数值模拟与仿真分析方法研究

焊接材料成型加工过程数值模拟与仿真分析方法研究

焊接材料成型加工过程数值模拟与仿真分析方法研究焊接材料成型加工过程数值模拟与仿真分析方法研究1.引言焊接是一种常用的金属连接方法,在工业生产中应用广泛。

焊接材料的成型加工过程决定了焊接接头的质量和性能。

为了提高焊接接头的质量和效率,需要进行数值模拟和仿真分析,以预测焊接过程中的温度场、应力场、相变和变形等物理现象,并优化焊接参数和工艺。

本文将重点介绍焊接材料成型加工过程数值模拟与仿真分析的研究方法及其应用。

2.数值模拟方法2.1 有限元方法有限元方法是一种常用的数值模拟方法,它将连续的物理领域离散化为有限数量的小单元,通过求解这些小单元上的方程组,得到整个物理领域的解。

在焊接材料成型加工过程中,可以将焊接区域划分为多个小单元,根据材料的热传导、应力-应变关系和相变规律,建立有限元模型,并求解温度场、应力场和相变变化等。

有限元方法可以对焊接过程中的多个物理现象进行耦合分析,提供详细的信息,对焊接过程进行准确的数值模拟。

2.2 计算流体力学方法计算流体力学方法是一种求解流体动力学方程的数值方法,可以用于模拟焊接过程中的流动和换热现象。

在焊接过程中,熔化金属的流动对焊接接头的形成和质量有重要影响。

计算流体力学方法可以建立焊接过程中的流动模型,模拟熔融金属的流动和焊接池的形成过程,从而预测焊接接头的形态和性能。

计算流体力学方法在焊接过程中的应用主要包括熔化金属的流动和焊接池的形成、焊接接头的形态和质量预测等方面。

2.3 相场模型相场模型是一种描述各相界面和相变过程的数学模型,适用于焊接材料成型过程中的相变和相界面追踪。

相场模型通过引入一个连续的相场函数,描述了相变系统中每种物质的存在程度,并与守恒方程和变分原理相结合,建立了相变系统的方程组。

在焊接材料成型加工过程中,相场模型可以用于预测焊接材料的熔化、凝固和晶体生长等相变过程,研究焊接接头的形态和组织演变。

3.仿真分析方法3.1 温度场分析温度场是焊接过程中的重要参数,直接影响焊接接头的组织和性能。

焊接过程中材料熔池流动行为的数值模拟与分析

焊接过程中材料熔池流动行为的数值模拟与分析

焊接过程中材料熔池流动行为的数值模拟与分析引言:焊接是一种常见的连接金属材料的方法,其在工业生产中应用广泛。

焊接过程中,材料的熔池流动行为对于焊接接头的质量和强度具有重要影响。

因此,研究焊接过程中材料熔池流动行为的数值模拟与分析,对于优化焊接工艺、提高焊接接头质量具有重要意义。

1. 现有研究概况在过去的几十年里,许多学者对焊接过程中材料熔池流动行为进行了研究。

其中,数值模拟方法被广泛应用于研究熔池的形成和流动过程。

数值模拟方法能够更好地理解焊接过程中的各个参数之间的相互作用,从而揭示熔池流动机制。

2. 熔池形成过程的数值模拟焊接过程中,熔池的形成过程受到多种因素的影响,如热源的热输入、材料的热导率等。

通过数值模拟可以模拟这些因素对熔池形成的影响,从而得到不同焊接工艺参数下熔池的形态和尺寸。

研究表明,焊接速度和焊接电流对熔池形态和尺寸有着显著影响。

3. 熔池流动行为的数值模拟熔池流动行为对于焊接接头的质量和强度具有决定性的影响。

数值模拟可以通过求解焊接区域的流体动力学方程来模拟熔池的流动行为。

这些方程包括质量守恒方程、动量守恒方程和能量守恒方程。

通过数值模拟可以得到焊接过程中熔池的流速、流动方向和温度分布等信息,进一步分析熔池的流动机制。

4. 数值模拟与实验的结合研究数值模拟与实验相结合是研究焊接过程中材料熔池流动行为的常用方法。

实验可以提供真实的焊接过程的数据,而数值模拟可以对实验结果进行验证和解释。

通过数值模拟与实验相结合的方法,可以更准确地模拟焊接过程中的熔池流动行为,并深入研究其机制。

5. 应用前景随着计算机技术和数值模拟方法的不断发展,研究焊接过程中材料熔池流动行为的数值模拟与分析将会得到更广泛的应用。

数值模拟可以为焊接工艺的优化和焊接接头质量的提高提供重要参考依据。

另外,数值模拟还可以辅助设计和优化焊接设备,提高焊接生产的效率和质量。

结论:通过数值模拟与实验相结合的研究方法,焊接过程中材料熔池流动行为得到了深入的研究和认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《焊接过程的数值模拟》课程简介
课程编号:02044906
课程名称:焊接过程的数值模拟/ Numerical simulation of welding process
学分:2
学时:32 (课内实验(践):上机:16 课外实践:)
适用专业:焊接技术与工程专业
建议修读学期:7
开课单位:材料科学与工程学院材料加工工程系
课程负责人:卢云
先修课程:焊接冶金学、计算机基础、VB语言及程序设计
考核方式与成绩评定标准:采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、上机实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。

教材与主要参考书目:
主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,2003
2、计算材料学,D.罗伯编著,项金钟、吴兴惠译,化学工业出版社,2002
内容概述:
本课程初步介绍焊接过程中数值模拟技术的一些基本原理,基本方法,研究进展和研究内容。

初步探讨使用有限元软件作为平台实现焊接的数值模拟过程。

重点介绍焊接热传导在有限元程序中的使用及应用。

通过本课程的学习,使学生了解焊接数值模拟的基本方法,学会综合运用其它方面的知识来实现简单焊接过程的数值模拟,并能够对模拟的结果进行有效的分析。

初步具备分析和解决焊接工程问题的能力。

This course introduces some basic principles, methods, research progress and contents of the numerical simulation technology in the welding process. The realization of numerical Simulation of welding based on finite element software platform is also discussed briefly. The application of welding heat conduction in the finite element program is emphasized on. Through this course, the students should understand the basic methods of numerical simulation of welding, learn the integrated use of the knowledge of other aspects to achieve a simple welding numerical simulation, and can effectively analyze the simulation results. This course is to present the practical analysis and solve for welding engineering problems.
《焊接过程的数值模拟》教学大纲
课程编号:02044906
课程名称:焊接过程的数值模拟/ Numerical simulation of welding process
学分:2
学时:32 (课内实验(践):上机:16 课外实践:)
适用专业:焊接技术与工程专业
建议修读学期:7
开课单位:材料科学与工程学院材料加工工程系
课程负责人:卢云
先修课程:焊接冶金学、计算机基础、VB语言及程序设计
一、课程性质、目的与任务
《焊接过程的数值模拟》是焊接技术与工程专业教学体系中的选修课程。

本课程的教学目的是使学生初步掌握焊接过程中数值模拟的基本概念、基本方法以及用有限元软件实现简单焊接过程的数值模拟。

本课程从数值模拟角度研究焊接过程中的热传导以及简单焊接过程的模拟实现。

主要介绍焊接数值模拟技术的基本原理和方法,介绍有限元软件如何实现焊接过程中的建模、有限元计算、后处理过程以及模拟结果的分析等。

通过本课程的学习,使学生可以结合具体材料实现简单焊接结构的数值模拟过程,初步具备分析和解决焊接工程问题的能力。

该课程主要培养学生的分析问题、解决问题的能力,为以后从事焊接教学、技术及研究工作打下坚实的基础,使学生走向工作岗位后能够更好地为我国的经济建设服务。

(对应焊接技术与工程专业培养方案毕业要求:2.1,3.2,4.1)
二、教学内容及学时分配(按章节列出内容要求学时等,实验上机项目要列在课程内容一栏)
焊接过程的数值模拟总学时数为32学时,其中理论教学为16学时,实验教学为16学时;课程教学
(教学基本要求:A-掌握;B-熟悉;C-了解)
三、建议实验(上机)项目及学时分配
上机学时共16
四、教学方法与教学手段
课程教学以课堂讲授为基础,结合上机实验、作业等共同实施。

使学生基本掌握本课程的学习内容,初步具备分析和解决实际焊接生产中问题的能力。

五、考核方式与成绩评定标准
课程考核成绩采用平时成绩+上机考试成绩相结合的方式,平时成绩占课程考核成绩的50%,平时成绩考核采用作业、实验和报告相结合的方式;上机考试成绩占课程考核成绩的50%。

六、教材与主要参考书目
无教材
主要参考书目:1、焊接数值模拟技术及其应用,汪建华,上海交通大学出版社,2003
2、计算材料学,D.罗伯编著,项金钟吴兴惠译,化学工业出版社,2002
七、大纲编写的依据与说明
本课程教学大纲是根据2016年修订的焊接技术与工程专业培养方案中对本科生的培养目标与要求,结合本课程的性质、教学的基本任务和基本要求,参考相关院校金属材料工程专业关于本课程的教学大纲进行制定与撰写。

起草人:卢云审核人:方俊飞日期:2016.12.1。

相关文档
最新文档