二组分共熔体系相图
物化实验
物化实验二组分简单共熔体系相图的绘制1. 对于不同成分混合物的步冷曲线,其水平段有什么不同?答:纯物质的步冷曲线在其熔点处出现水平段,混合物在共熔温度时出现水平段。
而平台长短也不同。
2. 作相图还有哪些方法?答:作相图的方法还有溶解度法、沸点法等。
3. 通常认为,体系发生相变时的热效应很小,则用热分析法很难测得准确相图,为什么?在含Bi30%和80%的二个样品的步冷曲线中第一个转折点哪个明显?为什么?答:因为热分析法是通过步冷曲线来绘制相图的,主要是通过步冷曲线上的拐点和水平段(斜率的改变)来判断新相的出现。
如果体系发生相变的热效应很小,则用热分析法很难产生拐点和水平段。
30%样品的步冷曲线中第一个转折点明显,熔化热大的Sn先析出,所以当发生相变时可以提供更多的温度补偿,使曲线斜率改变较大。
4. 有时在出现固相的冷却记录曲线转折处出现凹陷的小弯,是什么原因造成的?此时应如何读相图转折温度?答:这是由于出现过冷现象造成的,遇到这种情况可以通过做延长线的方式确定相图的转折温度。
5. 金属熔融系统冷却时,冷却曲线为什么出现折点?纯金属、低共熔金属、及合金等转折点各有几个?曲线形状为何不同?答:因为金属熔融系统冷却时,由于金属凝固放热对体系散热发生一个补偿,因而造成冷却曲线上的斜率发生改变,出现折点。
纯金属、低共熔金属各出现一个水平段,合金出现一个折点和一个水平段。
由于曲线的形状与样品熔点温度和环境温度、样品相变热的多少、保温加热炉的保温性能和样品的数量均有关系,所以样品的步冷曲线是不一样的。
对于纯金属和低共熔金属来说只有一个熔点,所以只出现平台。
而对于合金来说,先有一种金属析出,然后2种再同时析出,所以会出现一个折点和一个平台。
6. 有一失去标签的Sn-Bi合金样品,用什么方法可以确定其组成?答:可以通过热分析法来确定其组成。
首先通过热分析法绘制Sn-Bi的二组分相图,然后再绘制该合金样品的步冷曲线,与Sn-Bi的二组分相图对照即可得出该合金的组成。
二组分固液相图
5.4二组分系统的固~液平衡5.4.1形成低共熔物的固相不互溶系统当所考虑平衡不涉及气相而仅涉及固相和液相时,则体系常称为"凝聚相体系"或"固液体系"。
固体和液体的可压缩性甚小,一般除在高压下以外,压力对平衡性质的影响可忽略不计,故可将压力视为恒量。
由相律:因体系最少相数为Φ=1,故在恒压下二组分体系的最多自由度数f *=2,仅需用两个独立变量就足以完整地描述体系的状态。
由于常用变量为温度和组成,故在二组分固液体系中最常遇到的是T~x(温度~摩尔分数)或T~ω(温度~质量分数)图。
二组分固~液体系涉及范围相当广泛,最常遇到的是合金体系、水盐体系、双盐体系和双有机物体系等。
在本节中仅考虑液相中可以完全互溶的特殊情况。
这类体系在液相中可以互溶,而在固相中溶解度可以有差别。
故以其差异分为三类:(1)固相完全不互溶体系;(2)固相部分互溶体系和(3)固相完全互溶体系。
进一步分类可归纳如下:研究固液体系最常用实验方法为“热分析”法及“溶解度”法。
本节先在“形成低共熔物的固相不互溶体系”中介绍这两种实验方法,然后再对各种类型相图作一简介。
(一)水盐体系相图与溶解度法1.相图剖析图5-27为根据硫酸铵在不同温度下于水中的溶解度实验数据绘制的水盐体系相图,这类构成相图的方法称为"溶解度法"。
纵坐标为温度t(℃),横坐标为硫酸铵质量分数(以ω表示)。
图中FE线是冰与盐溶液平衡共存的曲线,它表示水的凝固点随盐的加入而下降的规律,故又称为水的凝固点降低曲线。
ME线是硫酸铵与其饱和溶液平衡共存的曲线,它表示出硫酸铵的溶解度随温度变化的规律(在此例中盐溶解度随温度升高而增大),故称为硫酸铵的溶解度曲线。
一般盐的熔点甚高,大大超过其饱和溶液的沸点,所以ME不可向上任意延伸。
FE线和ME线上都满足Φ =2,f *=1,这意味温度和溶液浓度两者之中只有一个可以自由变动。
物理化学第五章2
2、 等压T-x-y图( 沸点组成图 )
T x y
( yA )
p
等温p x
p
T4 T3 T2
T : 纯B物质的沸点 T : 纯A物质的沸点
A
B A
T1
B
x1
x2 xA
x3
x4
p xA yA p
T x y
气相线
A
T
TB
液相线
p
B
TA
xA
A
( yA )
T
B
T
A
T
B
T
A
l
完全互溶双液系
两个纯液体组分可以按任意比例相互混合 成均一液相的体系,称为完全互溶双液系(或 液体混合物)。
理想的完全互溶双液系
若混合溶液中任一组分在全部浓度范围内, 其蒸气压与液相组成的关系都符合Raoult定律, 则这样的双液系称为理想的完全互溶双液系(或 理想的液体混合物)。
B A
A A A B
说明1 液相线是直线,
p pA pB p ( p p ) xA
B B A
B
A
B
p p 气相线不是直线, p pA ( p pA ) yA
p
气相线
液相线
?
说明2
p p
A
B
yB pB p xB yA pA p xA
答案:A
三、杠杆规则
1、物系点与相点? 2、杠杆规则的内容? 3、杠杆规则推导的依据? 4、杠杆规则在相图中的应用?
三、杠杆规则 1、物系点与相点
物系点: 相图中表示体系总状态(总组 成、温度和压力)的点称为物系点。
二组分合金相图的绘制实验报告
二组分合金相图的绘制一、实验目的:1.通过实验,用热分析法测绘锡—铋二元合金相图。
2。
了解热分析法的测量技术与有关测量温度的方法。
二、实验原理:绘制相图常用的基本方法,其原理是根据系统在均匀冷却过程中,温度随时间变化情况来判断系统中是否发生了相变化.将金属溶解后,使之均匀冷却,每隔一定时间记录一次温度,表示温度与时间关系的曲线称为步冷曲线.若熔融体系在均匀冷却的过程中无相变,得到的是平滑的冷却线,若在冷却的过程中有相变发生,那么因相变热的释放与散失的热量有所抵偿,步冷曲线将出现转折点或水平线段,转折点所对应的温度即为相变温度。
时间(a)纯物质(b)混合物(c)低共熔混合物图1 典型步冷曲线对于简单的低共熔二元合金体系,具有图1所示的三种形状的步冷曲线。
由这些步冷曲线即可绘出合金相图。
如果用记录仪连续记录体系逐步冷却温度,则记录纸上所得的曲线就是步冷曲线。
用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此体系的冷却速度必须足够慢才能得到较好的结果。
Sn-Bi合金相图还不属简单低共熔类型,当含Sn 81%以上即出现固熔体。
三、实验仪器和药品:仪器和材料:金属相图实验炉(图2),微电脑温度控制仪,铂电阻,玻璃试管,坩埚,台天平。
药品:纯锡(CR)、纯铋(CR),石墨.四、实验步骤:1。
配制样品用感量为0.1g的托盘天平分别配制含铋量为30%、58%、80%的锡铋混合物各100g,另外称纯铋100g、纯锡100g,分别放入五个样品试管中。
2。
通电前准备①首先接好炉体电源线、控制器电源、铂电阻插头、信号线插头、接地线。
图2 金属相图实验炉接线图②将装好药品的样品管插入铂电阻,然后放入炉体.③设置控制器拨码开关:由于炉丝在断电后热惯性作用,将会使炉温上冲100℃—160℃(冬天低夏天高)。
因此设置拨码开关数值应考虑到这一点。
例如:要求样品升温为350℃,夏天设置值为170℃.当炉温加热至170℃时加热灯灭,炉丝断电,由于热惯性使温度上冲至350℃后,实验炉自动开始降温。
二组分固液平衡相图
按固态互溶情况液态完全互溶而固态完全不互溶液态完全互溶而固态部分互溶液态、固态完全互溶1、二组分固液态完全互溶的固-液平衡相图图a Ge(A) -Si(B)系统的熔点-组成图t /℃a0.00.20.40.60.81.0Ge(A)Si(B)x Bs(A+B)l(A+B)••s+lt 1L 1S 1t 2L 2S 2a 液相线固相线HgBr 2 (A)t /℃HgI 2 (B)w B图a 最低熔点的液固相图t /℃d-香芹(A)l-香芹(B)w B图a 最高熔点液固相图2 液态完全互溶而固态完全不互溶固相线l(A+B )EDCl (A+B )+s Bs(A)+l(A+B )s(A)+s(B)0.00.20.40.60.8 1.0邻硝基氯苯(A)对硝基氯苯(B)x B80602040t /℃*A t *Bt邻硝基氯苯(A )-对硝基氯苯(B )系统的熔点-组成图•••共晶线(温度、三个相的组成都不变)液相线(凝固点降低曲线)E 点:液相能存在的最低温度,也是固相A 和B 能同时熔化的最低温度。
a0.00.20.40.60.81.0300250200Sn(A)Pb(B)x Bt /℃CDE350*At *Bt3272320.0110.260.710.96GFSn (A) -Pb(B)熔点••••••l(A+B)l+s β(A+B)s β(A+B)s α(A+B)+s β(A+B)l+ s α(A+B)aCED (1) 具有低共熔点的熔点-组成图CF 为Pb 在Sn 中的溶解度曲线l(A+B)s α(A+B)+s β(A+B)E 点:低共熔点3.固态部分互熔,液态完全互溶系统的相图(2)具有转变温度的熔点—组成图三相平衡线:Ag (A) –Pt (B)系统熔点-组成图0.00.20.40.60.81.0200016008001200Ag(A)Pt(B)w Bt /℃CE*At*Bt961GFl(A+B)l+s β(A+B)s α(A+B)+s β(A+B)s α(A+B)l+ s α(A+B)转变温度的含义:-l E (A+B) +s α(A+B)+ s β(A+B)ECD CF 为α固熔体中Pt 在Ag 中的溶解度曲线s α(A+B)1200 ℃s β(A+B)+ l Ea(1)热分析法原理:将系统加热到熔化温度以上,然后使其徐徐冷却,记录系统的温度随时间的变化,并绘制温度-时间曲线,叫步冷曲线4、热分析法绘制相图——熔点-组成图有三种类型:(2) 由步冷曲线绘制t —x 图0.00.20.40.60.8 1.0邻硝基氯苯(A)对硝基氯苯(B)x B80602040℃*Bt*At τ/ st /℃80602040邻硝基氯苯(A)对硝基氯苯(x Bt /℃l(A+B )l (A+B )+s(B)s(A)+l(A+B )••x B =0.33x B =0.63相图应用举例(1)——结晶分离ClNO2ClNO 2ClClNO2w =0.33w =0.01w =0.66如何分离?邻硝基氯苯对硝基氯苯表:邻、对位硝基氯苯的物理常数邻硝基氯苯(B)系统结晶分离原理示意图0.00.20.40.60.8 1.0邻硝基氯苯(A)对硝基氯苯(B)x B(A+B )送82.2HG ••••结晶分离-精馏分离熔点-组成图沸点-组成图5、二组分形成化合物系统的相图C = S -R -R ´=3 -1 = 2根据生成化合物的稳定性:(1)形成相合熔点化合物(2)形成不相合熔点化合物几个组分相图?w B0.00.20.40.60.81.015001000t /℃1500Mg(A)Si(B)Mg 2Si(C)*At *Bt1430650•••638E 2看成由两个简单低共熔点相图组合而成x B =0.33a 步冷曲线l+s(B)s (C)+ll(A+B)s(A)+s(C)s(C)+ls(C)+s(B)a(1) 形成相合熔点化合物(熔化后液相与固相组成相同)ANa (A) -K(B)熔点-组成图0.00.20.40.60.81.010050-500Na(A)K(B)x Bt /℃H l(A+B)Js(A)+s(C)s(A)+*At Na 2K (C)(2)形成不相合熔点化合物(熔体与固相组成不同)Na 2K(s)Na(s)+熔体[l (Na+K)]在熔点以上,转晶反应同时消失C(s)降温a二组分系统相图小结(1)二组分相图的基本类型—按相互溶解度分类ABt/℃*At *Bt (a)二组分液态(或固态)完全互ABt /℃*At *Bt (b)二组分液态(或固态)完全不互溶类型*Bt具有转变温度的熔点—组成图生成相合熔点化合物系统二组分固态完全不互溶,液态完全互溶二组分固态部分互溶,液态完全互溶生成不相合熔点化合物系统。
物理化学实验报告二组分简单共熔合金相图绘制
一、实验目的1.掌握步冷曲线法测绘二组分金属的固液平衡相图的原理和方法。
2、了解固液平衡相图的特点,进一步学习和巩固相律等有关知识。
二、主要实验器材和药品1、仪器:KWL—II金属相图(步冷曲线)实验装置、微电脑控制器、不锈钢套管、硬质玻璃样品管、托盘天平、坩埚钳2、试剂:纯锡(AR)、纯铋(AR)、石墨粉、液体石蜡三、实验原理压力对凝聚系统影响很小,因此通常讨论其相平衡时不考虑压力的影响,故根据相律,二组分凝聚系统最多有温度和组成两个独立变量,其相图为温度组成图.较为简单的组分金属相图主要有三种:一种是液相完全互溶,凝固后固相也能完全瓦溶成固体混合物的系统最典型的为Cu- Ni系统;另一种是液相完全互溶,而固相完全不互溶的系统,最典型的是Bi— Cd 系统;还有一种是液相完全互溶,而固相是部分互溶的系统,如Pb- Sn或Bi- Sn系统。
研究凝聚系统相平衡,绘制其相图常采用溶解度法和热分析法.溶解度法是指在确定的温度下,直接测定固液两相平衡时溶液的浓度,然后依据测得的温度和溶解度数据绘制成相图。
此法适用于常温F易测定组成的系统,如水盐系统。
热分析法(步冷曲线法)则是观察被研究系统温度变化与相变化的关系,这是绘制金属相图最常用和最基本的实验方法。
它是利用金属及合金在加热和冷却过程中发生相变时,潜热的释出或吸收及热容的突变,来得到金属或合金中相转变温度的方法。
其原理是将系统加热熔融,然后使其缓慢而均匀地冷却,每隔定时间记录一次温度,物系在冷却过程中温度随时间的变化关系曲线称为步冷曲线(又称为冷却曲线)。
根据步冷曲线可以判断体系有无相变的发生。
当体系内没有相变时,步冷曲线是连续变化的;当体系内有相变发生时,步冷曲线上将会出现转折点或水平部分.这是因为相变时的热效应使温度随时间的变化率发生了变化。
因此,由步冷曲线的斜率变化可以确定体系的相变点温度。
测定不同组分的步冷曲线,找出对应的相变温度,即可绘制相图。
二组分简单共熔系统平衡相图
二组分简单共熔系统平衡相图二组分简单共熔系统平衡相图周韬摘要:本实验测定了Sn-Zn二组分简单共熔系统的平衡相图。
关键词:共熔体系; 1前言沈王庆、覃松、陈功在测定Sn-Pb二组分共熔相图时①利用热电偶和步冷曲线测定不同比例混合物的熔点,将实验数据用excel进行处理绘制出了平衡相图。
由于Pb有毒性,所以本次实验改测Sn-Zn二组分的共熔曲线。
热电偶数据用无纸记录仪通过电脑记录,最后的数据运用origin进行处理,得到的实验结果与文献值能够较好的符合。
2 实验部分 2.1原理一般,由于热分析法中的步冷曲线法仪器简单易得、操作简单以及结果准确等优点,二组分金属共熔系统相图的绘制都采用此种办法进行数据测定。
两种金属混合熔化,在进行缓慢冷却的过程中,混合组分没有相变时,温度连续下降,冷却的温度-时间曲线(步冷曲线)为一条光滑的曲线;当组分发生相变时,发出相变热,补偿了一部分的热量散失,所以连续下降的步冷曲线出现一个转折点或者一段平台。
而二组分的金属混合物一般会产生两个相变点,所以步冷曲线会出现如图1所示的步冷曲线:将不同含量的混合物的相变点都画到一个坐标图上,即为这两种金属的相图。
图1两组分金属步冷曲线图2二组分金属简单共熔相图在实际的实验操作过程中,步冷曲线常常出现过冷现象。
过冷现象是一种热力学上的不稳定状态,结晶时,实际结晶温度低于理论结晶温度的现象。
在通过外界摩擦等作用下会迅速凝固,并使温度回升,表现在步冷曲线上便是一个V字形。
出现过冷现象是,只需要将转折后的曲线延长与转折出现之前的曲线相交,交点温度即为相变温度。
2.2实验方法 2.2.1主要仪器及药品仪器镍铬-镍硅热电偶1支;盛合金的硬质玻璃管7只;高温管式电炉2只(加热炉、冷却炉);调压器(2kw)1只;二元合金相图计算机测试系统1套。
试剂锌、锡、铋(AR);石墨粉。
2.2.2实验方法①如图所示安装仪器并接好电路图3有过冷现象的步冷曲线图4步冷曲线测定装置图1 调压器;2 UJ-36电位差计;3 热电偶;4小瓷管; 5硬质玻璃管;6 金属混合物;7 加热炉(冷却炉);②校正热电偶以及制作步冷曲线。
物理化学 第四章 第六节 二组分固-液体系平衡相图2
有些二组分固 - 液平衡体系可能生成化合物, 形成第三个物种,例如:
aA +
bB
=
则体系中物种数增加 1 ,但同时有一独立的化 学反应R=1,按组分数的定义
AaBb
K=S-R-R,=3-1-0=2
因此仍然是二组分体系。这种体系分为形成稳定 化合物和不稳定化合物两种类型。
1.固相完全互溶体系的相图
当体系中的两个组分不仅在液相中 完全互溶,而且在固相中也能完全互溶, 它的T-x图与完全互溶的双液系的T-x图 形状相似。
以体系的相图及步冷曲线为例,根据相律,体 系的自由度不为零。因此,这种体系的步冷曲线 不可能出现水平线段。
液相 L A F B’ M S B 630℃ 温度
1.形成稳定化合物的相图
若生成的化合物熔 化时,固态化合物与熔融液的组成相同的话, T/K 则此化合物称为稳定 673 的化合物,其熔点称
为“相合熔点”。一般 可将此相图看作由二 573 个低共溶相图所组成。 当体系在C点时,实际 上是单组分体系。
473 A CuCl AB
B FeCl3
T/K
A CuCl
部分互溶固溶体的相图
两个组分在液态可无限混溶,而在固态只能部 分互溶,形成类似于部分互溶双液系的帽形区。在 帽形区外,是固溶体单相,在帽形区内,是两种固 溶体两相共存。 属于这种类型的相图形状各异,现介绍 (1)有一低共熔点
部分互溶固溶体的相图
(1) 有一低共熔点者 在相图上有三个单相区: AEB线以上,熔化物(L) AJF以左, 固溶体(1) BCG以右,固溶体 (2) 有三个两相区: AEJ区, L +(1) BEC区, L + (2) FJECG区,(1)+ (2) AE,BE是液相组成线;AJ,BC是固溶体组成线; JEC线为三相共存线,即(1)、(2)和组成为E的熔液三相 共存,E点为(1)、(2)的低共熔点。两个固溶体彼此互 溶的程度从JF和CG线上读出。
二组分简单共熔系统相图的绘制_3
课程名称:大学化学实验(P)指导老师:成绩:__________________实验名称:二组分简单共熔系统相图的绘制实验类型:物性测试实验一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得一、实验目的和要求1.用热分析法绘制Sn-Zn相图2.熟悉热分析法的测量原理3.掌握热电偶的标定和测温技术二、实验基本原理本实验采用热分析法中的步冷曲线方法绘制Zn-Sn系统的固液平衡相图。
在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。
体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。
从步冷曲线有无转折点就可以知道有无相变。
测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图。
在冷却过程中,常出现过冷现象,布冷曲线在转折点出现起伏,遇此情况可通过作图法找到正常的转折点。
用热分析法测绘相图时,被测系统必须时时处于或接近相平衡状态,因此,系统的冷却速度必须足够慢,才能得到较好的结果。
三、实验材料试剂与器材仪器仪器:镍铬-镍硅热电偶1支;U-36电位差计1台;小保温瓶1只;盛合金的硬质玻璃管7只高温管式电炉2只(加热炉、冷却炉);调压器(2KW)1只;坩埚钳1把;二元合金相图计算机测试系统1套。
试剂:锡、锌、铋(均为AR);石墨粉。
图1.整套装置图四、实验操作方法和步骤(1)热电偶的制作:取一段长约0.6m的镍铬丝,用小瓷管穿好,再取两段各长0.5m的捏个丝,参照教材制作热电偶。
(实验室已制作)(2)配置样品:100%Bi 100%Sn 100%Zn 45%Sn+55%Zn 91.2%Sn+8.8%Zn 95%Sn+5%Zn (3)安装:安装仪器并接好线路(4)加热溶化样品,制作步冷曲线依次测100%Zn 100%Bi 100%Sn 45%Sn+55%Zn 91.2%Sn+8.8%Zn 95%Sn+5%Zn样品的步冷曲线。
二组分系统的相图及应用
A
xB
B
非理想系统的 p-x 和 T-x 图
等温 p
液
pB
p
p
A
xB
气
B
pA
气
A
xB
T液
B
A
xB
B
如图所示,是对Raoult定律发生正偏差
虚线为理论值,实线为实验值。真实的蒸气压 大于理论计算值。
液相组成线不再是直线
(2)正偏差很大,在 p-x 图上有最高点
等温
p
A
xB
l
p
p*
g
A
定温
373 A'
An
A"
T1
在 T1 温度作水平线
两相
交点 A' A" 称为 共轭配对点
313 D
C
0 0.2 0.4 0.6
H2O 质量分数
E
0.8 1.0
C6H5 NH2
A n 是共轭层组成的平均值
H2O-C6H5 NH2的溶解度图
BC 是平均值的连线,不一定是垂直线
部分互溶的双液系
(2)具有最低会溶温度
组分的含量较高。
T1
定压
g
c g-l d b
a
一次简单蒸馏,馏出
物中B含量会显著增加,剩 0
余液体中A组分会增多。
A
x2 x1
xB
l
TB*
y2 y1
1.0 B
蒸馏(或精馏)的基本原理
简单蒸馏
TA*
T T2 T1
0 A
c g-l a
x2 x1
xB
定压
g
d b
l
二元混合物相图
液态完全互溶系统 p-x、t-x 图
正偏差
负偏差
液态部分互溶系统t-x图
液态完全不互溶系统 t-x图
15.1 理想的完全互溶的双液系统
一个液体二元混合物可以按任意比例互溶,则称为完全互溶体。根 据“相似相溶”原则,两种结构很相似的化合物都能以任意的比例混合, 并形成理想溶液,如苯和甲苯、正己烷和正庚烷等。
15.2 非理想的完全互溶的双液系统
形成恒沸混合物的系统的分馏: xB=0-x1 范围内,得纯A和最低 恒沸物 xB=x1-1范围内,得纯B和最低恒 T 沸物
lg lg l x1 xB l g
例:p下,H2O-CH3CH2OH体系,
Tb最低= 78.13 0C,恒沸物组成:x 乙醇 = 95.57% 若想将恒沸物中A、B分开,可 通过改变外压条件来蒸馏。
15.1 理想的完全互溶的双液系统
3.T-x图
亦称为沸点-组成图。外压为大气压力,当溶 液的蒸气压等于外压时,溶液沸腾,这时的温度 称为沸点。某组成的蒸气压越高,其沸点越低, 反之亦然。
T-x图在讨论蒸馏时
十分有用,因为蒸馏 通常在等压下进行。 T-x图可以从实验数 据直接绘制。也可以 从已知的p-x图求得。
T TB* D l B x1 xA x2 xA C g E
A的量
( l n g)x A nl x1 n g x 2 n ( x A x1 n g x 2 x A nl ) ( ) l CD n g CE n 此等式称杠杆规则
TA*
p p
L
T
G
G
A xB B
L
xB B A
xB (c) T-x-y图 B
A
(a) p-x图
物理化学课件二组分体系相图
假定 H vap m的值与温度无关,积分得:
lnp2 vapHm(11)
p1
R T1 T2
这公式可用来计算不同温度下的蒸气压或摩尔蒸发热。
6.2.2 Clapeyron方程
三条两相平衡线的斜率均可由Clausius-Clapeyron 方程或Clapeyron方程求得。
f * * = ( 3 - 1 ) - 1 + 0 = 1 ( X B )
d ) T = 4 5 0 ℃ , P = 1 5 0 P θ , 有 催 化 剂 , 发 生 反 应
投 料 比 : N 2 ∶ H 2 = 1 ∶ 3 R ’ = 1 f * * = ( 3 - 1 - 1 ) - 1 + 0 = 0
注意:
a ) 独 立 的 浓 度 限 制 条 件 ( 初 始 条 件 或 分 解 )
说明:不同物质在同一相中的浓度限制条件 R’=0 C a C O 3 ( s ) → C a O ( s ) + C O 2 ( g )
b ) 独 立 的 化 学 反 应 数 “ R ” 表 示
化 学 平 衡 时 , 平 衡 常 数 限 制 浓 度
d dT PV Sii,,m m
Si,m Vi ,m
Si,m Vi,m
相变摩尔熵 相变摩尔体积
Si,m
Hi,m T
得:
dP H i,m
Clapeyron equation 适用于纯物质两相
dT
TVi , m
平衡
6.2.2 Clapeyron方程
在一定温度和压力下,任何纯物质达到两相平 衡时,蒸气压随温度的变化率可用下式表示:
§ 6.1.1 基本概念
相(phase) 体系内部物理和化学性质完全均
§5.8 低共熔二元相图
Φ 3 f * 2 1 Φ 0 温度不能改变
f* 0 f * 1
E
3. 熔液消失,Bi和Cd共存
Φ 2
f * 2 1 Φ 1
7
t /s
温度又可下降
Cd-Bi二元相图的绘制
4.完成Bi-Cd T-x相图
连接A,C,E点,得到Bi(s) 与熔液两相共存的液相 组成线
C
0.2
0.4 wB
0.6
0.8
B(NH4 )2 SO4
1.0
BAC 线以下,
冰与 (NH4 )2 SO4 (s) 两相区
14
2. 溶解度法 有三条两相交界线: LA线 冰+溶液两相共 存时,溶液的组成曲 线,也称为冰点下降 曲线。
373 353 333
定压
N
T/K
313 293 273 253 233 0
程中温度随时间的变化曲线,即步冷曲线 当系统有新相凝聚,放 出相变热,步冷曲线的斜
f* 2
率变小
出现转折点
T
f 1
*
f * 1
f* 0
f * 1
出现水平线段
f* 0
据此在T-x图上标出对应的位
置,得到二组分低共熔T-x图
t
3
Cd-Bi二元相图的绘制
1.0Bi
a
A
0.4Cd 1.0Cd 0.2Cd 0.7Cd b c d e H A'
LAN 以上溶液单相区 LAB 之内冰+溶液两相区
373 353 333
定压
N
T/K
313 293 273 253 233 0
A(H2O)
溶液 单相
L
大学物理化学经典课件56相图
上一内容 下一内容 回主目录
返回
2024/7/18
非理想的完全互溶双液系
(1)对拉乌尔定律发生偏差
如图所示,是对拉乌 尔定律发生正偏差的情况, 虚线为理论值,实线为实 验值。真实的蒸气压大于 理论计算值。
上一内容 下一内容 回主目录
返回
2024/7/18
非理想的完全互溶双液系
2024/7/18
Question: 与冰共 存的硫酸水合物最 多几种,与硫酸水 溶液共存的水合物 最多有几种?
上一内容 下一内容 回主目录
返回
2024/7/18
Na(A)-K(B)系统的熔点-组成图
L+A A+C
L
L+C
L+B
B+C
JEG:共晶线
HFP:不稳定化合物生成
丁字尺型
P点为不相合熔点 TP为转熔温度 转熔反应: 化合物C (s) →Na (s) + l
返回
2024/7/18
形成稳定化合物的相图举例
上一内容 下一内容 回主目录
返回
2024/7/18
形成稳定水合物的相图举例
H 2O 与 H2SO 4 能形成三种稳定 的水合物,即 H2SO4 H2O (C3 ) , H2SO4 2H2O (C2 ) ,H2SO4 4H2O (C1) , 它们都有自己的熔点。
上一内容 下一内容 回主目录
返回
2024/7/18
p-x图 和 T-x图
二组分系统:变量通常是T,p 和组成 x 。
二组分系统状态图:需用三个坐标的立体图表示。 保持一个变量为常量,从立体图上得到平面截面图。
➢保持压力不变,得 T-x 图(恒压相图) (常用) ➢保持温度不变,得 p-
二组分液态部分互溶和完全不互溶系统液-气平衡相图精品PPT课件
液相组成 w[(NH4)2SO4] 0
0.167 0.286 0.375 0.384 0.411 0.422 0.438 0.458 0.479 0.498 0.518
固相
冰 冰
冰 冰
冰+(NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4 (NH4)2SO4
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
21
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
T、组成不变,三相组成分别为xM、xN、xP。
3.完全不互溶系统的温度-组成图
T-x图 a:纯A的沸点; b:纯B的沸点; aE、bE:气相线; aM、bN:液相线。 aEb以上:g; aME:A(l)-g bNE:B(l)-g
MNAB:A(l)- B(l)
E点:共沸点 A(l)+ B(l)→ g, 三相共存, F = 0,T、组成 不变,三相组成分别为xM、xN、 xE。
溶解度法绘制相图
373
p
353
333
N
OS 硫酸铵固+溶液
Q
溶液(单相) 313
T/K
293
L 273
yx
【最新精选】二组分简单共熔体系相图的绘制
实验七二组分简单共熔体系相图的绘制------Cd~Bi二组分金属相图的绘制1 实验目的及要求:1)应用步冷曲线的方法绘制Cd~Bi二组分体系的相图。
2)了解纯物质和混合物步冷曲线的形状有何不同,其相变点的温度应如何确定。
2 实验原理:…用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图,叫相图。
绘制相图的方法很多,其中之一叫热分析法。
在定压下把体系从高温逐渐冷却,作温度对时间变化曲线,即步冷曲线。
体系若有相变,必然伴随有热效应,即在其步冷曲线中会出现转折点。
从步冷曲线有无转折点就可以知道有无相变。
测定一系列组成不同样品的步冷曲线,从步冷曲线上找出各相应体系发生相变的温度,就可绘制出被测体系的相图,如图Ⅱ一6一l所示。
纯物质的步冷曲线如①⑤所示,从高温冷却,开始降温很快,口6线的斜率决定于体系的散热程度。
冷到A的熔点时,固体A开始析出,体系出现两相平衡(溶液和固体A),此时温度维持不变,步冷曲线出现bc的水平段,直到其中液相全部消失,温度才下降。
混合物步冷曲线(如②、④)与纯物质的步冷曲线(如①、⑤)不同。
如②起始温度下降很快(如a′b′段),冷却到b′点的温度时,开始有固体析出,这时体系呈两相,因为液相的成分不断改变,所以其平衡温度也不断改变。
由于凝固热的不断放出,其温度下降较慢,曲线的斜率较小(b′c′段)。
到了低共熔点温度后,体系出现三相,温度不再改变,步冷曲线又出现水平段c′d′,直到液相完全凝固后,温度又迅速下降。
曲线⑧表示其组成恰为最低共熔混合物的步冷曲线,其图形与纯物相似,但它的水平段是三相平衡。
用步冷曲线绘制相图是以横轴表示混合物的成分,在对应的纵轴标出开始出现相变(即步冷曲线上的转折点)的温度,把这些点连接起来即得相图。
3 仪器与药品:加热电炉1只,热电偶(铜一康铜)1根,不锈纲试管8只,控温测定装置1台,计算机1台,镉(化学纯),铋(化学纯)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二组分简单共熔系统相图的绘制
1 实验目的
(1) 用热分析法测绘Sn-Pb二组分金属相图。
(2) 掌握热电偶测量温度的原理及校正方法。
(3) 了解热分析法测量技术。
2 实验原理
相图就是通过图形来描述多相平衡体系的宏观状态与温度、压力及组成的相互关系,具有重要的生产实践意义。
对于二组分体系,C=2,f=4- 。
由于我们所讨论的体系至少有一个相,所以自由度数最多为3。
即二组分体系的状态可以由三个独立变量所决定,这三个变量通常为温度、压力及组成,所以二组分体系的状态图要用具有三个坐标的立体图来表示。
由于立体图在平面纸上表示起来很不方便,因此我们一般固定一个变量,如压力,得到一个两个变量的状态图。
在二组分体系中,温度-组成(T -X)图表示体系状态与组成之间的相互关系。
测绘金属相图常用的实验方法是热分析法,其原理是将一种金属或合金熔融后,使之均匀冷却,记录稳定随时间的变化趋势。
表示温度与时间关系的曲线叫步冷曲线。
当熔融体系在均匀冷却过程中无相变化时,其温度将连续均匀下降得到一光滑的冷却曲线;当体系内发生相变时,相变热使冷却曲线出现转折或形成水平线段,转折点所对应的温度即为该组成合金的相变温度。
利用冷却曲线所得到的一系列组成和所对应的相变温度数据,以横轴表示混合物的组成,纵轴上标出开始出现相变的温度,把这些点连接起来,就可绘出相图。
二元简单共熔体系的冷却曲线具有图1所示的形状。
图1 a.步冷曲线 b.有过冷现象时的步冷曲线 c.根据步冷曲线绘制相图用热分析法测绘相图时,被测体系必须时时处于或接近相平衡状态,因此必须保证冷却速度足够慢才能得到较好的效果。
此外,在冷却过程中,一个新的固相出现以前,常常发生过冷现象,使折点发生起伏,见图1.1.b。
遇此情况,可延长dc线与ab线相交,交点e即为转折点。
3 仪器与试剂
仪器:镍铬-镍硅热电偶1支;EF-07金属相图实验装置1套(包括加热单元,数显单元);sunyLAB200A实验数据分析记录仪;石英样品皿7支;电脑。
试剂:Sn;Pb;Bi(均为AR);石墨。
4 实验步骤
1)热电偶为市售凯装热电偶,样品配置部分由实验室事先完成;
2)仪器部分见图2。
图2 步冷曲线测定装置图
1. EF-07加热单元;
2. EF-07数显单元;
3.热电偶;
4.石英套管;
5.石英样品皿;
6.样品;
7. sunyLAB200A实验数据分析记录仪;
8.电脑
3)绘制步冷曲线
a. 将盛样品的石英皿放入加热炉内加热,即将达到熔点时开启记录仪,待温度超过样品熔点40℃左右后停止加热,并移入降温炉(注:样品选择由高熔点到低熔点;第一个样品加热时,同时加热降温炉达到150℃左右,避免样品降温速率过快)。
b. 将石英皿移至保温炉中冷却,记录仪同步绘制步冷曲线,直至水平线段以下为止(同时将待测样品置于加热炉中预热,此时加热炉电源处于切断状态)。
c.用上述方法绘制所有样品的步冷曲线。
5 数据处理
(1)用纯Pb、纯Sn、纯Bi的熔点作横坐标,以纯物步冷曲线中的平台温度为纵坐标作图,画出热电偶的工作曲线。
图3 热电偶的工作曲线
(2)找出各步冷曲线中拐点和平台对应的温度值。
(3)以温度为纵坐标,以组成为横坐标,绘出Sn —Pb 合金相图。
图4 Sn —Pb 合金相图
6 注意事项
(1)加热样品时,注意温度要适当,温度过高样品易氧化变质;温度过低或加热时间不够则样品没有全部熔化,步冷曲线转折点测不出(高于转折点40℃)。
(2)在测定一样品时,可将另一待测样品放入加热炉内预热,以便节约时
t 0
C
Sn %
间,合金有两个转折点,必须待第二个转折点测完后方可停止实验,否则须重新测定。
(3)实验依次从高熔点金属到低熔点金属,可节省时间。
(4)冷却速度要慢,开始时可将冷却炉加热至120-180℃。
郭永胜。