一次函数的图像及性质

合集下载

一次函数图像与性质

一次函数图像与性质
(对比正比例函数的性质和图象的性质)
示 意 图
(1)k决定直线y=kx+b从左向右是什么趋势
(倾斜程度ቤተ መጻሕፍቲ ባይዱ,b决定它与y轴交点在哪个半轴,
k、b合起来决定直线y=kx+b经过哪几个象限;
注意看图识性,见数想形.
三、待定系数法求一次函数解析式
一次函数y=kx+b(k,b是常数,k≠0)中有两个待
定系数k,b,需要两个独立条件确定两个关于k,b的
5.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的 大致位置是( ).
7.已知一次函数y=kx+b的图象过点P(1,1),
与x轴交于点A,与y轴交于点B,且OA=3OB,
求一次函数的解析式.
8.如果一次函数当自变量的取值范围是-1<x<3时,
函数值的取值范围是-2<y<6,
求此函数的解析式.
一次函数的图像和性质
一、一次函数的定义
一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数. 说明:当b=0时,y=kx+b即y=kx,所以说正比例函数是
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 一种特殊的一次函数.
一次函数的定义是根据它的解析式的形式特征给出的,
四、分段函数
对于某些量不能用一个解析式表示,而需要分情况
(自变量的不同取值范围)用不同的解析式表示,
因此得到的函数是形式比较复杂的分段函数.解题中要
注意解析式对应的自变量的取值范围,分段考虑问题.
说明:对于分段函数的问题,特别要注意相应的自变
量变化范围.
在解析式和图象上都要反映出自变量的相应取值范围.

一次函数的图象及性质

一次函数的图象及性质
极小值点
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

15一次函数的图像与性质

15一次函数的图像与性质

15一次函数的图像与性质1.图像特点:一次函数的图像是一条直线,它经过原点(0,0)。

直线的斜率k可以表示函数的性质,决定了直线的倾斜程度和方向。

当k大于0时,直线向右上方倾斜;当k小于0时,直线向右下方倾斜;当k等于0时,直线平行于x轴。

2.变化趋势:一次函数的变化趋势与自变量x的变化直接相关。

当x变大时,若k大于0,则y也会增大;若k小于0,则y会减小。

反之,当x变小时,则y的变化情况也相应地相反。

由此可见,一次函数的图像呈现出一个直线,且变化趋势具有确定性。

3.斜率性质:斜率k是一次函数的重要性质,它表示了函数图像的倾斜程度和方向。

一次函数的斜率有以下几个关键性质:-当k大于0时,函数图像是向上倾斜的,即从左下向右上。

斜率越大,直线越陡峭。

-当k小于0时,函数图像是向下倾斜的,即从左上向右下。

斜率越小,直线越平缓。

-当k等于0时,函数图像是平行于x轴的水平直线。

4.截距性质:一次函数还有一个重要的性质是截距。

截距表示了一条直线与y轴的交点,记作(0,b)。

对于一次函数y=kx来说,截距b等于函数在x=0处的取值,即b=k*0=0。

因此,一次函数经过原点(0,0),并且与y轴没有交点。

5.定比关系:一次函数的数值关系具有一种特殊的定比关系。

对于一次函数y=kx来说,当x增大或减小时,y的值与x的比值始终保持不变,即y/x=k。

这称为一次函数的定比关系,可以用来解决一些实际问题,如单位换算、速度、密度等概念的计算。

6.定义域和值域:一次函数的定义域为所有实数集R,即函数在实数范围内都有定义。

值域则取决于斜率k的正负。

当k大于0时,一次函数的值域是(0,+∞);当k小于0时,值域是(-∞,0)。

由于一次函数的图像是直线,所以图像在纵轴方向上没有上下界限。

7.相关性质:一次函数的图像与直线的性质有密切关联,因为一次函数的图像就是一根直线。

因此,一次函数也具有直线的一些基本性质,如:-一次函数的斜率等于直线的斜率。

初中数学一次函数的图象和性质

初中数学一次函数的图象和性质

一次函数的图象和性质一、知识要点:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。

注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。

2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。

3、一次函数图象的性质:(1)图象在平面直角坐标系中的位置:(2)增减性:k>0时,y随x增大而增大;k<0时,y随x增大而减小。

4、求一次函数解析式的方法求函数解析式的方法主要有三种:一是由已知函数推导,如例题1;二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。

三是用待定系数法求函数解析式,如例2的第二小题、例7。

其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。

二、例题举例:例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。

分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x 的关系。

解:∵y=2y1y1=3x+2,∴y=2(3x+2)=6x+4,即变量y与x的关系为:y=6x+4。

例2、解答下列题目(1)(甘肃省中考题)已知直线与y轴交于点A,那么点A的坐标是()。

(A)(0,–3)(B)(C)(D)(0,3)(2)(杭州市中考题)已知正比例函数,当x=–3时,y=6.那么该正比例函数应为()。

一次函数的图像与性质

一次函数的图像与性质

一次函数的图像与性质一次函数,也被称为线性函数,是指一个变量与另一个变量之间的关系可以表示为 y = ax + b 的函数形式,其中 a 和 b 是常数。

本文将探讨一次函数的图像及其相关性质。

I. 一次函数的图像一次函数的图像是一条直线,在直角坐标系中表示为一条斜率为a、截距为 b 的直线。

斜率 a 决定了直线的倾斜方向和角度。

若 a > 0,则直线向右上方倾斜;若 a < 0,则直线向右下方倾斜;若 a = 0,则直线为水平直线。

截距 b 则表示了直线与 y 轴的交点。

II. 一次函数的性质1. 斜率一次函数的斜率 a 表示了直线的倾斜程度。

斜率的绝对值越大,则直线越陡峭;斜率为正值时表示直线上升,为负值时表示直线下降;斜率为零时表示直线水平。

通过斜率,我们可以判断一次函数的增减性。

2. 截距截距 b 表示了一次函数与 y 轴的交点,即当 x = 0 时,函数的取值。

截距的正负决定了直线在 y 轴上的位置,正值表示与 y 轴正向交点在上方,负值则在下方。

截距的大小也影响了直线与坐标轴的交点。

3. 零点一次函数的零点是指函数取值为零的点,也就是使得y = 0 的x 值。

通过求解一次函数的零点,我们可以求得函数与 x 轴的交点。

4. 增减性一次函数的增减性由斜率来决定。

当斜率a > 0 时,函数单调递增;当斜率 a < 0 时,函数单调递减;当斜率 a = 0 时,函数为常数函数,不具有增减性。

5. 定义域与值域一次函数的定义域为所有实数,因为 x 可以取任意实数值;值域则由斜率和截距来决定。

当斜率 a > 0 时,值域为 (-∞, +∞);当斜率 a < 0 时,值域为(+∞, -∞);当斜率 a = 0 时,值域只有截距 b。

6. 图像平移一次函数的图像可以通过改变斜率或截距来进行平移变换。

增加或减小截距 b 可以使得图像上下平移,增加或减小斜率 a 则使得图像左右平移。

一次函数概念、图象与性质

一次函数概念、图象与性质
制。
描点法步骤:首先确定两个点, 然后通过这两点绘制直线。通常 选择函数与坐标轴的交点作为描
点。
一次函数与x轴交点为(-b/k, 0), 与y轴交点为(0, b),其中k为斜
率,b为截距。
斜率对图象影响
斜率k决定了直线的倾斜程度。当k>0时,直线向右上方倾斜;当k<0时,直线向右 下方倾斜。
|k|的大小决定了直线的倾斜角。|k|越大,倾斜角越大,直线越陡峭;|k|越小,倾斜 角越小,直线越平缓。
边际收益分析
利用一次函数描述收益与 销量之间的关系,分析边 际收益。
边际利润决策
根据边际成本和边际收益, 确定最优产量和价格策略。
物理学中运动规律描述
匀速直线运动
通过一次函数表示位移与时间的 关系,描述匀速直线运动规律。
匀变速直线运动
利用一次函数表示速度与时间的关 系,分析匀变速直线运动过程。
自由落体运动
线性关系判断
判断方法
通过观察数据点是否大致分布在一条直线上来判断两个变量之间是否存在线性 关系。
线性关系特点
若两个变量之间存在线性关系,则它们的变化趋势是一致的,即当一个变量增 加时,另一个变量也相应地增加或减少。
02 一次函数图象绘制
直角坐标系中通过在直角坐标系中描点法绘
截距和斜率共同决定了直线的 位置和方向。不同的截距和斜 率组合可以得到不同的直线方 程和图象。
03 一次函数性质分析
单调性
一次函数在其定义域内具有单调性。具体来说,当一次函数的斜率k>0时,函数 在整个定义域内单调递增;当k<0时,函数在整个定义域内单调递减。
一次函数的单调性可以通过其图象直观地反映出来。在平面直角坐标系中,当 k>0时,函数的图象是一条从左下方到右上方的直线,表示函数值随x的增大而 增大;当k<0时,函数的图象是一条从左上方到右下方的直线,表示函数值随x 的增大而减小。

(完整版)一次函数的图像与性质

(完整版)一次函数的图像与性质

一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。

(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。

(常数项)b决定图象与y轴交点位置。

五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。

一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。

因此,正比例函数是一次函数当b=0时的特殊情况。

正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。

在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。

确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。

若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。

一次函数的概念_图像和性质复习

一次函数的概念_图像和性质复习

一次函数的概念,图像和性质一次函数的概念 一般地,解析式形如y=kx+b(k,b 是常数,且0≠k )的函数叫做一次函数。

一次函数的定义域是一切实数。

当b=0时,y=kx (0≠k )是正比例函数。

一般地,我们把函数y=c (c 为常数)叫做常值函数。

Y=-1,π=y ,2)(=x f 都是常值函数。

二、一次函数的图像1.正比例函数y=kx (k ≠0,k 是常数)的图像是经过O (0,0)和M (1,k )两点的一条直线(如图13-17).(1)当k >0时,图像经过原点和第一、三像限;(2)k <0时,图像经过原点和第二、四像限.2.一次函数y=kx+b (k 是常数,k ≠0)的图像是经过A (0,b )和B (-kb,0)两点的一条直线,当kb ≠0时,图像(即直线)的位置分4种不同情况:(1)k >0,b >0时,直线经过第一、二、三像限,如图13-18A (2)k >0,b <0时,直线经过第一、三、四像限,如图13-18B (3)k <0,b >0时,直线经过第一、二、四像限,如图13-18C (4)k <0,b <0时,直线经过第二、三、四像限,如图13-18D3.一次函数的图像的两个特征(1)对于直线y=kx+b(k ≠0),当x=0时,y=b 即直线与y 轴的交点为A (0,b ),因此b 叫直线在y 轴上的截距.(截距有正负)(2)直线y=kx+b(k ≠0)与两直角标系中两坐标轴的交点分别为A (0,b )和B (-kb ,0).4.一次函数的图像与直线方程(1)一次函数y=kx+b(k≠0)的图像是一条直线,因此y=kx+b(k≠0)也叫直线方程.但直线方程不一定都是一次函数.(2)与坐标轴平行的直线的方程.①与x轴平行的直线方程形如:y=a(a是常数).a>0时,直线在x轴上方;a=0时,直线与x轴重合;a<0时,直线在x轴下方.(如图13-19)②与y轴平行的直线方程形如x=b(b是常数),b>0时,直线在y轴右方,b=0时,直线与y轴重合;b<0时,直线在y轴左方,(如图13-20).三、两条直线的关系1.与坐标轴不平行的两条直线 l1:y1=k1x+b1,l2:y2=k2x+b, 若l1与l2相交,则k 1≠k2,其交点是联立这两条直线的方程,求得的公共解; 若l1与l2平行,则k1= k2.四、一次函数的增减性1.增减性如果函数当自变量在某一取范围内具有函数值随自变量的增加(或减少)而增加(或减少)的性质,称为该函数当自变量在这一取值范围内具有增减性,或称具有单调性.2.一次函数的增减性一次函数y=kx+b在x取全体实数时都具有如下性质:(1)k>0时,y随x的增加而增加;(2)k<0时,y随x的增加而减小.3.用待定系数法求一次函数的解析式若已知一次函数的图像(即直线)经过两个已在点A(x1,y1)和B(x2,y2)求这个一次函数的解析式,其方法和步骤是:(1)设一次函数的解析式:y=kx+b(k≠0)(2)将A、B两点的坐标代入所设函数的解析式,得两个方程:y1=kx1+b①y2=kx2+b②(3)联立①②解方程组,从而求出k、b值.这一先设系数k、b,从而通过解方程求系数的方法以称为待定系数法.一次函数的图像和性质练习题题组一:1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

一次函数图象和性质

一次函数图象和性质

一次函数图象和性质一次函数是数学中常见的一种函数形式,也被称为线性函数。

它的一般形式可以表示为y = ax + b,其中a和b是常数,且a≠0。

一次函数的图象是一条直线,拥有一些特殊的性质和规律。

本文将会详细介绍一次函数的图象和性质。

首先,我们来研究一次函数的图象。

一次函数的图象是一条直线,具有以下几个特点:1. 直线的斜率:斜率是直线特有的一个概念,表示直线的陡峭程度。

对于一次函数y = ax + b来说,a的数值就是斜率。

当a>0时,直线向右倾斜,表示随着x的增大,y也会增大;当a<0时,直线向左倾斜,表示随着x的增大,y会减小;当a=0时,直线是水平的,表示y的值保持不变。

斜率的绝对值越大,直线越陡峭。

2. 截距:截距是直线与y轴相交的点到原点的距离,表示直线在y轴上的位置。

对于一次函数y = ax + b来说,b的数值就是截距。

当b>0时,直线与y轴的相交点在原点上方;当b<0时,相交点在原点下方;当b=0时,直线经过原点。

3.图象的方向:由于一次函数是一个直线,它的图象可以是从左下到右上的斜线,也可以是从左上到右下的斜线,也可以是水平的线,或者是垂直的线。

图象的方向取决于斜率的正负以及截距的正负。

4.唯一确定:一次函数的图象是一个直线,因此可以通过两个不同的点来唯一确定。

而且,只要确定了两个点,就可以通过这两个点来确定直线的斜率和截距。

接下来,我们将讨论一次函数的一些性质:1. 函数值和自变量的关系:对于一次函数y = ax + b来说,自变量x的每一个取值都对应唯一的函数值y。

函数值和自变量之间的关系是线性的,即y随着x的变化而线性变化。

2. 零点:一次函数的零点是函数值等于零时对应的自变量的值。

将y = ax + b中的y设为0,可以解得零点为x = -b/a。

当a≠0时,函数的图象必经过零点。

3.增减性:一次函数的增减性由斜率a的正负来决定。

当a>0时,函数递增,即随着自变量的增大,函数值也增大;当a<0时,函数递减,即随着自变量的增大,函数值减小。

一次函数图像及其性质

一次函数图像及其性质

一次函数图像及其性质一、一次函数图像1、一次函数y=kx+b 的k 、b 的值对一次函数图象的影响:① ② ③ ④①k ﹥0,b ﹥0, y =kx +b 的图象在一、二、三象限;②k ﹥0, b ﹤0, y =kx +b 的图象在一、三、四象限; ③k ﹤0,b ﹥0, y =kx +b 的图象在一、二、四象限;④k ﹤0, b ﹤0, y =kx +b 的图象在二、三、四象限。

2、一次函数的性质⑴正比例函数y=kx(k≠0)是特殊的一次函数,当k>0时,图象过一、三象限,y 随x 的增大而_增大__; 当k<0时,图象过__二、四__象限;y 随x 的增大而_减小___.⑵一次函数y=kx +b(k ≠ 0)的图象平行于直线y = kx ,可由它平移而得,当k>0时,y 随x 的增大而_增大_; 当k<0时,y 随x 的增大而__减小_k>0时,k 越大,y 增长得越快;k<0时,k 越大,减小得越快;⑴在一次函数y=kx +b 中,令y=0,得一元一次方程kx +b=0,它的根就是一次函数y=kx +b 的图象与x 轴交点的横坐标.⑵一元一次不等式kx +b>0(或kx +b<0)的解集可以看作一次函数y=kx +b 当函数值大于或小于0时相应的自变量x 值的取值范围.⑶两直线交点的坐标,就是由这两条直线的解析式组成的二元一次方程组的解.题型考点一:一次函数的增减性例1、已知关于x 的一次函数2(3)2y m x m =-++-.(1) m 为何值时,函数的图象和直线y=-x 平行? (2)m 为何值时,y 随x 的增大而减小?【变式】已知一次函数y=(3-k )x-2k 2+18. (1)k 为何值时,它的图象经过原点? (2)k 为何值时,它的图象经过点(0,-2)?(3)k 为何值时,它的图象与y 轴的交点在x 轴的上方? (4)k 为何值时,它的图象平行于直线y=x ? (5)k 为何值时,y 随x 的增大而减小?题型考点二:一次函数图像与象限关系例2、直线y=x+b (b>0)与直线y=kx (k<0)的交点位于()A 、第一象限B 、第二象限C 、第三象限D 、第四象限【练习】若实数a ,b 满足ab <0,且a <b ,则函数y=ax+b 的图象可能是( )题型考点三:一次函数图像的交点例3、如图,在平面直角坐标系中,线段AB 的坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则k 的值不可能是() A 、-5 B 、-2 C 、3 D 、5【练习】如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限, 则a 可能在()A 、1<a<2B 、-2<a<0C 、32a -≤≤-D 、-10<a<-4二、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。

一次函数图像及性质总结(表格)zhyane

一次函数图像及性质总结(表格)zhyane
一次函数图像及性质总结
目 录
• 一次函数图像 • 一次函数的性质 • 一次函数的实际应用 • 一次函数与其他数学知识的联系 • 一次函数的应用题解析
01 一次函数图像
图像形状
直线
一次函数的标准形式为y=kx+b,其 中k为斜率,b为截距。当k≠0时,图 像为一条直线;当k=0时,图像为y轴。
斜率决定方向
02
二次函数的最值问题可以通过求 导找到一阶导数等于0的点,这些 点就是函数的极值点,从而转化 为一次函数的问题。
与线性方程的联系
一次函数与一元一次方程紧密相关, 因为一元一次方程的解就是函数的零 点。
线性方程组的解可以通过消元法或代 入法得到,这些方法在解决一次函数 问题时也经常用到。
与三角函数的联系
详细描述
在日常生活中,我们经常面临各种选择和决策,其中最优化问题是最常见的。例如,在 购物时,我们希望找到价格和质量的最佳平衡点,这可以通过比较不同产品的价格和质
量(即一次函数的斜率和y轴上的截距)来实现。
THANKS FOR WATCHING
感谢您的观看
斜率k决定了直线的倾斜方向。当k>0 时,直线从左下到右上倾斜;当k<0 时,直线从左上到右下倾斜。
图像与坐标轴的交点
与x轴交点
令y=0,解得x的值即为与x轴的交 点。
与y轴交点
令x=0,解得y的值即为与y轴的交 点。
图像的增减性
单调性
根据斜率k的正负判断。k>0时,函数为增函数;k<0时,函数为减函数。
高度与时间的关系
总结词
高度与时间的关系也是一次函数的应用之一。
详细描述
在航空学中,高度和时间的关系通常用一次函数来表示。例如,一个物体从静止开始自由落体运动时,其高度与 时间的关系就是一次函数。

第11节 一次函数的图象和性质

第11节   一次函数的图象和性质
解:因为 a,b,c 均不为 0,直线方程可化为:y=﹣ x﹣ ,则直线的斜率为﹣
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:


由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;

第11讲 一次函数的图象和性质

第11讲 一次函数的图象和性质

5.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段 AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周 长为10,则该直线的函数表达式是( C) A.y=x+5 B.y=x+10
C.y=-x+5
D.y=-x+10
D 【例1】 (1)(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( ) A.点(0,k)在l上 B.l经过定点(-1,0) C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限 (2)(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点 ,则a与b的大小关系是____. a>b 【点评】 一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0时,图象 经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).
解:①对于直线 y= 3x+ 3,令 x=0,则 y= 3,令 y=0, 则 x=-1, 故点 A 的坐标为(0, 3), 点 B 的坐标为(-1, 0), 则 AO= 3, AO BO=1,在 Rt△ABO 中,∵tan∠ABO=BO = 3,∴∠ABO=60°; ②在△ABC 中,∵AB=AC,AO⊥BC,∴AO 为 BC 的中垂线, 即 BO=CO,则 C 点的坐标为(1,0),设直线 l 的解析式为 y=kx+b(k, k=- 3, 3=b, b 为常数),则 解得 即函数解析式为 y=- 3x+ 3. 0=k+b, b= 3,
(2)在平面直角坐标系中,已知点 A(27 ,3),B(4,7),直线 y=kx-k(k≠0) ≤k≤3 与线段 AB 有交点,则 k 的取值范围为 3 .

八年级数学一次函数的图象和性质

八年级数学一次函数的图象和性质

描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)

人教版数学八年级下册课件 19.2一次函数的图像和性质 (共28张PPT)
(3)若直线y=(3-k)x-k经过 第二、三、四象限,求k的取值 范围:__________(4分)
课堂小结
说一说你在这节课上都收 获到了什么知识?
时间是一个常数,但对勤 奋者来说,是一个“变数”.
你在学业上的收获与你 平时的付出是成正比的
求出y=kx+b(k,b为常数,k≠0) 的图像与x轴、y轴的交点,你发现 了什么规律?
结论:
函数y=kx+b(k,b为
常数,k≠0)的图像
与x轴交于(-
b k
,0)
与y轴交于(0,b)
用你认为最简单的方法画出函 数y=2x-1与y=-2x+l的图象.
思考:一次函数解析式y=kx+b (k, b是常数,k≠0)中,k的正负对 函数图象有什么影响?(3分钟)
即它可以看作由直线
y=x向_上___平移 2 个
1 2 3 x 单位长度而得到.
函数y=x-2的图象与y轴 交于点(0,-2),即它可以看
作由直线y=x向下 平移_2_
个单位长度而得到.
一次函数y=3x-4的图象是 什么形状?它与直线y=3x有什 么关系?
函数y=-2x+3的图像是由 哪个正比例函数的图像平移 得到的? 需要平移几个单位 长度?
y=-2x+1
y
o·· x
y=-2x-1
k的取值范围 b的取值范围
的象限
一、三、二
k>0
b<0
一、三、四
k<0
b>0
二、四、一
k<0
b<0
二、四、三
比一比看谁记得快,你发现 什么规律了么?
直线y=2x-3与x轴交点坐标为_(_23__,0_)_, 与y轴交点坐标为_(__0_,_-_3_)__ 图象经过第__一_、__三_、__四__象限, y随x增大而__增__大_______.

一次函数与二次函数的图像与性质

一次函数与二次函数的图像与性质

一次函数与二次函数的图像与性质一次函数和二次函数是数学中常见的函数类型。

它们在图像和性质上有着明显的区别。

本文将分别对一次函数和二次函数的图像及性质进行介绍。

一、一次函数的图像与性质一次函数又称为线性函数,它的表达式为y = ax + b,其中a和b是常数,且a ≠ 0。

一次函数的图像是一条直线,具有以下性质:1. 斜率:一次函数的斜率代表了直线的倾斜程度。

斜率为正值时,直线向右上方倾斜;斜率为负值时,直线向右下方倾斜;斜率为零时,直线为水平线。

2. 截距:一次函数的截距代表了直线与y轴的交点。

当x=0时,直线与y轴的交点为截距b。

3. 线性关系:一次函数的图像是一条直线,表示了两个变量之间的线性关系。

直线方程中的斜率a表示了自变量x单位增加时因变量y的增加量。

二、二次函数的图像与性质二次函数的一般形式为y = ax² + bx + c,其中a、b和c是常数,且a ≠ 0。

二次函数的图像是一条抛物线,具有以下性质:1. 开口方向:二次函数的开口方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 零点:二次函数的零点是指函数图像与x轴相交的点,也就是函数的根。

零点也是方程y=0的解。

3. 极值点:二次函数的极值点是指函数图像的最高点或最低点。

当抛物线开口向上时,极值点是最低点;开口向下时,极值点是最高点。

4. 对称轴:二次函数的对称轴是指抛物线的中心线,对称轴的方程为x=-b/(2a)。

对称轴把抛物线分为两个对称的部分。

5. 最值:二次函数的最值是指函数图像的最低点或最高点的纵坐标值。

总结:一次函数和二次函数在图像与性质上具有明显的区别。

一次函数的图像是一条直线,具有斜率和截距,表示了线性关系。

而二次函数的图像是一条抛物线,具有开口方向、零点、极值点、对称轴和最值等性质。

了解和掌握一次函数和二次函数的图像与性质,对于数学问题的解决和实际应用具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数的图像及性质
知识技能目标
1.使学生熟练地作出一次函数的图象,会求一次函数与坐标轴的交点坐标;
2.会作出实际问题中的一次函数的图象.
过程性目标
1.通过画一次函数图象和实际问题中的一次函数图象,感受数学来源于生活又应用于生活;
2.探索一次函数图象的特点体会用“数形结合”思想解决数学问题.
教学过程
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y =kx +b (k ≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y =kx (k ≠0)的图象是经过哪一点的直线?
(正比例函数y =kx (k ≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x 轴、y 轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数12
1-=x y 的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数12
1-=x y 的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y 轴上,点(2,0)在x 轴上,我们把这两个点依次叫做直线与y 轴与x 轴的交点.
2.求直线y =-2x -3与x 轴和y 轴的交点,并画出这条直线.
分析 x 轴上点的纵坐标是0,y 轴上点的横坐标0.由此可求x 轴上点的横坐标值和y 轴上点的纵坐标值.
解 因为x 轴上点的纵坐标是0,y 轴上点的横坐标0,所以当y =0时,x =-1.5,点(-1.5,0)就是直线与x 轴的交点;当x =0时,y =-3,点(0,-3)就是直线与y 轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y =-2x -3.
所以一次函数y =kx +b ,当x =0时,y =b ;当y =0时,k
b x -=.所以直线y =kx +b 与y 轴的交点坐标是(0,b ),与x 轴的交点坐标是⎪⎭
⎫ ⎝⎛-0,k b .
三、实践应用
例1 若直线y =-kx +b 与直线y =-x 平行,且与y 轴交点的纵坐标为-2;求直线的表达式. 分析 直线y =-kx +b 与直线y =-x 平行,可求出k 的值,与y 轴交点的纵坐标为-2,可求出b 的值.
解 因为直线y =-kx +b 与直线y =-x 平行,所以k =-1,又因为直线与y 轴交点的纵坐标为-2,所以b =-2,因此所求的直线的表达式为y =-x -2.
例2 求函数32
3-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析 求直线32
3-=x y 与x 轴、y 轴的交点坐标,根据x 轴、y 轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标;结合图象,易知直线32
3-=x y 与x 轴、y 轴围成的三角形是直角三角形,两条直角边就是直线32
3-=x y 与x 轴、y 轴的交点与原点的距离.
解 当y =0时,x =2,所以直线与x 轴的交点坐标是A (2,0);当x =0时,y =-3,所以直线与y 轴的交点坐标是B (0,-3).
3322
121=⨯⨯=⨯=∆OB OA S OAB .
例3 画出第一节课中问题(1)中小明距北京的路程s (千米)与在高速公路上行驶的时间t (时)之间函数s =570-95t 的图象.
分析 这是一题与实际生活相关的函数应用题,函数关系式s =570-95t 中,自变量t 是小明在高速公路上行驶的时间,所以0≤t ≤6,画出的图象是直线的一部分.再者,本题中t 和s 取值悬殊很大,故横轴和纵轴所选取的单位长不一致.
讨论 1.上述函数是否是一次函数?这个函数的图象是什么?
2.在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.
例4 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y (元)可以看成他们携带的行李质量x (千克)的一次函数为56
1-=x y .画出这个函数的图象,并求旅客最多可以免费携带多少千克的行李?
分析 求旅客最多可以免费携带多少千克的行李数,即行李费为0元时的行李数.为此只需求一次函数与x 轴的交点横坐标的值.即当y =0时,x =30.由此可知这个函数的自变量的取值范围是x ≥30.
解 函数56
1-=x y (x ≥30)图象为:
当y =0时,x =30.
所以旅客最多可以免费携带30千克的行李.
例5 今年入夏以来,全国大部分地区发生严重干旱.某市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量x (吨)的函数,当0≤x ≤5时,y =0.72x ,当x >5时,y =0.9x -0.9.
(1)画出函数的图象;
(2)观察图象,利用函数解析式,回答自来水公司采取的收费标准.
分析 画函数图象时,应就自变量0≤x ≤5和x >5分别画出图象,当0≤x ≤5时,是正比例函数,当x >5是一次函数,所以这个函数的图象是一条折线.
解 (1)函数的图象是:
(2)自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.
四、交流反思
1.一次函数y =kx +b ,当x =0时,y =b ;当y =0时,k
b x -=.所以直线y =kx +b 与y 轴的交点坐标是(0,b ),与x 轴的交点坐标是⎪⎭
⎫ ⎝⎛-0,k b ; 2.在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.
五、检测反馈
1.求下列直线与x 轴和y 轴的交点,并在同一直角坐标系中画出它们的图象.
(1)y =4x -1; (2)23
2+-=x y . 2.利用例3的图象,求汽车在高速公路上行驶4小时后,小明离北京的路程.
3.已知函数y =2x -
4.
(1)作出它的图象;
(2)标出图象与x 轴、y 轴的交点坐标;
(3)由图象观察,当-2≤x ≤4时,函数值y 的变化范围.
4.一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .
5.某水果批发市场规定,批发苹果不小于100千克时,批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果,并以批发价买进.如果购买的苹果为x 千克,小王付款后的剩余现金为y 元,试写出y 与x 之间的函数关系式并指出自变量的取值范围,画出这个函数的图象.。

相关文档
最新文档