汨罗江特大桥主桥0、1号块支架方案计算书xg -

汨罗江特大桥主桥0、1号块支架方案计算书xg -
汨罗江特大桥主桥0、1号块支架方案计算书xg -

汨罗江特大桥主桥(50+80+50)m

预应力砼连续梁0、1号块现浇支架方案计算书

一、设计依据

1、岳望高速第II施工合同段两阶段施工设计图;

2、《公路桥涵施工技术规范》(JTJ/TF50-2011);

3、《公路工程质量检验评定标准》(土建工程)(JTG F80/1-2004);

4、《路桥施工计算手册》(人民交通出版社);

5、现场踏勘调查资料;

6、我单位类似工程的施工经验及设备情况;

7、招标文件明确的技术规范、投标文件,相关部门或行业有关施工安全、职业健康、劳动保护、环境保护与文明施工方面的具体规定和技术标准;

8、混凝土质量控制标准(GB50164—92);

9、施工现场临时用电安全技术规范(JGJ 46—2005);

10、建筑施工扣件式钢管脚手架安全技术规范(JGJ130—2001);

11、建筑施工高处作业安全技术规范(JGJ80—91)

二、支架总体设计

在悬臂浇注施工过程中,为保证“T”形结构的稳定性,设计图纸考虑为在桥墩顶面与梁底间设置4个临时固结,临时固结采用C40混凝土浇筑成0.5×8.75m的混凝土块(与梁底同宽),每个临时支墩内部配置φ32钢筋118根,钢筋埋入桥墩120cm,埋入梁体100cm。在临时固结与桥墩中设置一道水泥硫磺砂浆夹层,待全桥施工完后将临时固结解除。按设计图纸浇筑临时固结混凝土块后,桥墩顶部将形成了一个封闭的空间,成桥后无法拆除梁底的模板和支撑体系,运营期间也无法对支座进行检查。

因此,拟上报设计变更将临时固结变更为两个分开的混凝土块,混凝土块尺寸为0.5*2.5m、间距3.75m,以实现施工期间的模板拆除,以及运营期间的支座检查维修。同时为了确保施工过程的“T”构稳定性,在0号支架的悬臂部分,单端各设置两条Φ600*10mm的钢管桩临时支墩和3条Φ32的精轧螺纹钢作为临时锚固体系。

支架搭设布置方案为:

1、0、1号块悬臂现浇部分,单端在纵桥向与临时支墩平行布置一排Φ529 mm,δ=8 mm的钢管,每排4根;在临时支墩与桥墩之间布置一排529 mm,δ=8 mm的钢管,每排4根;

2、钢管顶布置双拼56a工字钢纵向分配梁与钢管连接牢固,横桥向共4道;

3、纵向分配梁上布置3组单层双排贝雷梁,贝雷梁上铺设工25a纵梁作为调坡钢管架的平台;

4、调坡钢管架平台上采用碗扣钢管布设调坡架,调坡钢管架上部铺设2[10方钢作为横向连接,纵向采用间距10 cm 的10×10 cm方木铺设;

5、调坡钢管架上方铺设厚15 mm竹胶板作为0、1号块的底模。

三、计算参数

3.1、模板参数

竹胶板:箱梁底模、内模、顶板底模、端头模、底板堵头模均采用LY/T1574-2000规范B类50型竹胶板,型号规格1220×2440×15(mm)。箱梁外侧模及外翼缘板模均采用δ=6 mm厚厂家加工的整体组合钢模板。

竹胶板各项参数如下:容许抗弯应力:[σ]=15.0 MPa,容许剪应力:[τ]=1.7 MPa,弹性模量:E=9×10^3 MPa,模板容重:γ=10.4 KN/m3。

3.2、方木参数(查路桥施工计算手册表8-6)

10cm×10cm方木:

容重:γ=7.5 KN/m^3,弹性模量:E=9×10^3 MPa,顺纹承压应力:[σa]=12.0 MPa,顺纹抗弯应力:[σw]=12.0 MPa,顺纹抗剪应力:[σj]=1.3 MPa。

3.3、钢管参数

碗扣件钢管截面特性:外径d=48 mm,壁厚t=3.5 mm,截面积A=4.89 cm^2,惯性矩I=12.19 cm^4,截面抵抗矩W=5.078 cm^3,回转半径=1.578 cm,单位重=3.841 Kg/m 。抗拉、抗压和抗弯强度设计值:205 MPa;弹性模量:E=2.06×10^5 MPa;底座抗压:[P]=40 KN;容许挠度:[ν]=L/150及10 mm;容许长细比:[λ]=210;

(查路桥施工计算手册表8-29)

3.4、工字钢、贝雷梁参数

(查路桥施工计算手册附表3-31)

(1)纵梁I56a普通工字钢:

截面惯性矩Ix=65600 cm^4,,截面模量Wx=2342.857 cm^3,截面积A=135cm^2,型钢自重105.975kg/m。

(2)钢管架斜撑I32a普通工字钢:

截面惯性矩Ix=11100 cm^4,,截面模量Wx=693.75 cm^3,截面积A=67.1cm^2,型钢自重52.674kg/m。

(3)调坡钢管架底平台I25a普通工字钢:

截面惯性矩Ix=5020 cm^4,,截面模量Wx=1431 cm^3,截面积A=48.5cm^2,型钢自重38.07kg/m。

(4)贝雷梁:

力学性能:双排单层(不加强型)截面抵抗矩W=7157.1cm3,截面惯性矩I=500994.4cm4。

桁架容许内力:双排单层容许弯矩M=1576.4KN.m,容许剪力Q=490.5KN。

(5)材料容许应力:工字钢采用A3钢,容许抗弯应力[σ]=145 MPa,容许剪应力[τ]=85 MPa,弹性模量E=2.1×10^5 MPa。(查路桥施工计算手册表8-7)

3.5、容许挠度

木材:[]400

/L

f=,钢材:[]400

/L

f=

3.6、钢管桩参数

Φ529 mm钢管桩由Q235钢板卷制δ=8 mm,截面面积:A=123.65cm^2,截面惯性矩Ix=37425 cm^4,截面抵抗矩:W x=1497 cm^3,单位重:97.06 kg/m。 Q235抗拉、抗压、抗弯强度设计值[σ]=215 N/mm^2,抗剪强度设计值[τ]=125 N/mm^2,弹性模量E=2.06×10^5 N/mm^2。

四、0、1号块支架受力验算

4.1、荷载计算:

(1)、箱梁梁体自重荷载:

钢筋砼容重按26 KN/m^3计算,因箱梁截面是变截面,各截面面积及砼体积情况见下表:

0、1号块各截面面积及砼体积

根据《0号块钢管支架设计图》,墩顶部分砼荷载由主墩墩身支撑,本计算书主要验算两侧悬臂部分范围箱梁和支架受力。则单位面积的梁体自重:q1=2030.27÷(4.6×8.75)=50.44 KN/m^2

(2)、模板自重荷载:

外模重量190 KN,内模重量50 KN,底模竹胶板重量15 KN,S=12×8.75=105 m^2

则单位面积的模板自重q2=(190+50+15)÷105=2.429 KN/m^2

(3)、方木自重荷载:

方木自重:65 KN,S=12×8.75=105 m^2

则单位面积方木的自重:q3=65÷105=0.62 KN/m^2

(4)、2[10方钢自重荷载:

采用2[10方钢布设于钢管托架上,横向连接为一体。每根方钢长8.75m,单根自重8.75*2*10.001=175.02kg 每侧布设10根,单侧2[10方钢自重为: 20*175.02=3500kg=35KN ,q4=35KN/(8.75×4.6)= 0.87 KN/m2 (5)、钢管支架自重荷载(单侧):

立杆平均高度1.8 m,横桥向16排,每排10根,合计1.8×16×10=288 m

水平杆(沿桥纵向)平均长度5m,水平方向4排,每排16根,合计5×4×16=320m

水平杆(沿桥横向)平均长度9m,水平方向3排,每排10根,合计9×3×10=270 m

则钢管支架自重荷载(288+320+270)×3.841=3372.4Kg=33.724 KN,

单位面积的钢管支架自重:q5=33.724÷(8.75×4.6)=0.84 KN/m2(剪刀撑忽略不计)

(6)、调坡钢管支架平台工25a自重荷载:

调坡钢管支架平台采用工25a,每侧共16根,每根长5m,

则25a工字钢自重:16×5×38.073=3045.84Kg=30.458 KN q6=30.458÷(8.75×4.6)=0.76 KN/m2(7)、贝雷架横梁自重荷载:

横梁采用双排单层贝雷架为一组,每组为12片桁架,长18m;每片贝雷梁桁架长3m,高1.5m,自重300Kg。

则贝雷架自重12*300*6=21600 Kg=216 KN q7=216÷(8.75×4.6)=5.37 KN/m2

(8)、纵梁工56a自重荷载:

纵梁双拼工56a,每侧共4排,合计16根,每根长5m,

则56a工字钢自重:16×5×105.975=8478Kg=84.78 KN q8=84.78÷(8.75×4.6)=2.11 KN/m2

(9)、施工荷载:

施工人员和施工材料、机具行走运输或堆放荷载q9=2.0 KN/m^2

(10)、振动荷载:振捣砼产生的施工荷载q10=2.0 KN/m^2

(11)、砼倾倒产生的水平冲击荷载:Q11=3.0 KN/m2(采用汽车泵)

(12)、荷载:q12=1.0 KN/m^2

荷载分项系数:模板、支架和砼自重分项系数取1.2,施工人员、设备和振捣砼荷载分项系数取1.4。

4.2、模板与支架计算:

①、模板验算:

考虑支架的稳定性,只对箱梁的底模进行验算。以底模受力最不利位置验算(悬臂起点腹板底部处):箱梁底模采用15 mm厚的高强度竹胶板,竹胶板背楞方木采用10 cm×10 cm的方木,间距为10 cm,方木下铺设2[10方钢将调坡钢管架连接成整体。

1)、强度验算:

模板力学性能:弹性模量E=9000 MPa,截面惯性矩:I=bh^3/12=10×1.5^3/12=2.813 cm^4,截面抵抗矩:W=bh^2/6=10×1.5^2/6=3.75 cm^3,截面积A=bh=10×1.5=15 cm^2。

竹胶板上荷载为:砼荷载、人员、机具、模板荷载、砼振捣荷载。

截面2至墩顶截面的单侧腹板平均面积为3.951m^2,单侧腹板重量为3.951*4.6*26=472.5KN,单侧腹板处梁体自重q1=472.5KN/(4.6*0.8)=128.39KN/ m^2

单侧腹板处总荷载为:Q=(q1+q2)×1.2+(q9+q10+q11+q12)×1.4=168.2 KN/m^2

则作用在梁底模板上的均布荷载为q=168.2×0.1=16.82 KN/m

最大跨中弯矩按照简支梁计算,取横桥向10cm宽计算:

最大弯矩M=1/8 qL^2,M=1/8×16.82×0.1^2=0.021 KN?m,

σ=M/W=0.021/3.75×10^-6=5.61MPa<[σ]=15 MPa。

所以竹胶板抗弯强度满足要求。

2)、刚度验算:

按照简支梁计算,最大挠度

ω=5ql^4/384EI=(5×q×10^3×0.1^4)/(384×9×10^9×2.813×10^-8)

=0.0865mm

所以竹胶板刚度满足要求。

②、方木验算:

1)、强度验算:

箱梁通过底模把荷载传递给纵向方木,纵向方木力学性能:弹性模量E=9×10^3 MPa,截面惯性矩:I=bh^3/12=10×15^3/12=2812.5 cm^4,截面抵抗矩:W=bh^2/6=10×15^2/6=375 cm^3。

方木上荷载为:砼荷载、人员、机具、模板荷载、砼振捣荷载。

腹板处总荷载为:Q=(q1+q2+q3)×1.2+(q7+q8+q9+q10)×1.4=168.9 KN/m^2

纵向方木布设在调坡钢管架顶面的2[10方钢上,方钢纵向间距50cm,0、1号块悬臂浇筑部分,腹板宽80cm 范围布设4条方木,则作用在方木上的均布荷载为q=168.9*0.8/4=33.8 KN/m

最大跨中弯矩按照简支梁计算最大弯矩:

M=1/8 qL^2=0.125×33.8×0.5^2=1.06 KN?m,

σ=M/W=1.06/375×10^-6=2.82MPa<[σ]=15 MPa。

所以方木抗弯强度满足要求。

2)刚度验算:

挠度验算:按照简支梁计算最大挠度:

ω=5ql^4/384EI=(5×33.8×10^3×0.5^4)/(384×9×10^9×2812.5×10^-8)

=0.11mm

所以方木挠度满足要求。

③、2[10方钢验算:

2[10方钢力学性能:弹性模量E=2.06×10^5 MPa,截面惯性矩:I=bh^3/12 =833cm3,

截面抵抗矩:W=bh^2/6=1666.67 cm2

1)强度验算:

箱梁通过底模及纵向方木把荷载传递给调坡钢管架顶面的2[10方钢上,方钢上荷载为:砼荷载、人员、机具、模板荷载、木方、砼振捣荷载。

腹板处总荷载为:Q=(q1+q2+q3+q4)×1.2+(q7+q8+q9+q10)×1.4=170 KN/m^2

则作用在方钢上的均布荷载为q=170×0.5=85 KN/m

最大跨中弯矩按照简支梁计算最大弯矩:

M=1/8 qL^2=0.125×85×0.5^2=2.66 KN?m,

σ=M/W=2.66/166.67×10^-6=15.94 MPa<[σ]=215 MPa。

所以方钢抗弯强度满足要求。

2)刚度验算:

挠度验算:按照简支梁计算最大挠度:

ω=5ql^4/384EI=(5×q×10^3×0.5^4)/(384×2.06×10^11×0.8333×10^-8)

=0.04mm

所以方钢挠度满足要求。

④、调坡钢管架验算:

碗扣件钢管截面特性:

外径d=48 mm,壁厚t=3.5 mm,截面积A=4.89 mm2,惯性矩I=12.19 cm4,截面抵抗矩W=5.08 cm3,回转半径=1.58 cm,单位重=3.841 Kg/m 。

抗拉、抗压和抗弯强度设计值:205 MPa;弹性模量:弹性模量E=2.06×105 MPa;底座抗压:[P]=40 KN;容许挠度:[ν]=L/150及10mm;容许长细比:[λ]=210;

1)立杆承受荷载

立杆顶面由2[10方钢连接,使碗扣支架整体受力。腹板处钢管支架顶面均布荷载为q=170 KN/m2,

纵向间距50cm,横向间距40cm,则N=P×S=170×0.5×0.4=34 KN

2)立杆稳定性

支架纵杆步距为0.5 m,长细比λ=L0/i=0.5/1.58×10^-2=32,《查钢结构设计规范》GBJ 17-88附录1,稳定系数Φ取0.959,则有:[N]=ΦA[σ]=0.959×4.89×10^-4×205×103=96.1 KN

N=34 KN<[N]=96.1 KN,安全系数[N]/N=96.1/34=2.8

所以立杆稳定性满足要求。

⑤、调坡钢管架平台I25a普通工字钢验算:

1)强度验算:

I25a普通工字钢:截面惯性矩Ix=5020 cm^4,截面模量Wx=401.6 cm^3,截面积A=48.5cm^2,型钢自重38.073kg/m。(查路桥施工计算手册附表3-31)

纵梁I25a普通工字钢间距40~70cm,最大跨径为190cm,取腹板下调坡钢管架平台I25a,最不利荷载计算。

纵梁I25a普通工字钢上荷载为:砼荷载、人员、机具、模板荷载、砼振捣荷载、方木荷载、钢管荷载。

总荷载为:Q=(q1+q2+q3+q4+q5)×1.2+(q9+q10+q11+q12)×1.4=171 KN/m^2

0、1号块悬臂浇筑部分,腹板宽80cm范围布设3条I25a作为调坡钢管架平台,

则作用在单根I25a上的均布荷载为q=171*0.8/4=45.6 KN/m

调坡钢管架平台I25a计算模型图

调坡钢管架平台I25a弯矩图

调坡钢管架平台I25a剪力图

由上图可知:最大弯矩M=11.85 KN.m

I25a最大弯曲应力σ=M/W=11.85*10^6/401.6*10^3=29.51Mpa<[σ]=215 Mpa

2)刚度验算:

取I25a最大跨径1.9m,按照简支梁计算最大挠度为:

ω=5ql^4/384EI=(5×45.6×10^3×1.900^4)/(384×2.06×10^11×5.02×10^-8)

=0.75<1900/400=4.75mm

所以I25a挠度满足要求。

横桥向布置16根I25a,将上部悬浇砼、支架、模板、人员、机具等荷载传递给横梁,横梁由3组双排单层贝雷桁架组成,每组横梁由12片贝雷梁,组拼为长18m的双排单层贝雷桁架。

腹板宽80cm范围布设的3根I25a上的传递上部荷载为q=171*0.8/4=45.6 KN/m,

I25a传递给贝雷桁架横梁的支点反力分别为:

支点2 R2=68.76 KN 支点3 R3=77.65 KN 支点4 R4=63.35 KN

⑥、横梁贝雷桁架验算:

由调坡钢管架平台I25a支点反力计算可知,中间一组贝雷桁架横梁受力最大,取其验算横梁受力如下:将16根I25a传递给横梁的荷载,均按腹板下得最大反力计算,

则横梁上得均布荷载为q=16*77.65/8.75=142 KN/m,横梁自重300*2/3=200kg/m=2KN/m

横梁贝雷桁架计算模型图

横梁贝雷桁架弯矩图

横梁贝雷桁架剪力图

由上可知:横梁贝雷桁架最大弯矩为-266.73 KN.m <双排单层贝雷架容许弯矩M=1576.4 KN.m;

最大剪力为376.3 KN <双排单层贝雷架容许弯矩M=490.5 KN

⑦、纵梁I56a普通工字钢验算:

I56a普通工字钢材料特性:

截面惯性矩Ix=65600 cm^4,,截面模量Wx=2342.857 cm^3,截面积A=135cm^2,型钢自重105.975kg/m。

3组贝雷梁桁架将上部悬浇砼、支架、模板、人员、机具等荷载传递给Φ529*8mm钢管桩顶的4排I56a工字钢纵梁。I56a工字钢纵梁,最大跨径为195cm,最大悬臂长225cm。

I56a工字钢纵梁上荷载为:砼荷载、人员、机具、模板荷载、砼振捣荷载、方木荷载、钢管荷载、贝雷梁等。

总荷载为:Q=q*8.75*4.6

=((q1+q2+q3+q4+q5+q6+q7+q8)×1.2+(q9+q10+q11+q12)×1.4) *8.75*4.6=3514.3KN 总荷载Q主要由中间底板下的2排I56a工字钢纵梁承受,单根双拼I56a工字钢按承受1757.1 KN计算,贝雷梁支点位置分别承受P=585.7 KN 的集中力。

对钢管支架及I56a工字钢建立结构模型,进行纵梁受力验算如下:

钢管支架计算模型图纵梁弯矩图纵梁剪力图

由上图可知:最大弯矩M= -732.12 KN.m

I56a最大弯曲应力σ=M/W=732.12*10^6/(2*2342857)=156.25 Mpa<[σ]=215 Mpa

2)刚度验算:

取I56a最大跨径1.95m,按照简支梁计算最大挠度为:

ω=Pl^3/48EI=0.67mm<1900/400=4.75mm

所以I56a挠度满足要求。

⑧、钢管桩验算:

钢管桩:Φ529mm ,δ=8mm ,Q235钢板卷制。Q235钢抗拉、抗压、抗弯强度设计值[σ]=215N/mm2,抗剪强度设计值[τ]=125N/mm2,弹性模量E=2.06×10^5N/mm2。 钢管桩上荷载:

Q= ((q1+q2+q3+q4+q5+q6+q7+q8)×1.2+(q9+q10+q11+q12)×1.4)*8.75*4.6=3514.3KN 单根钢管承受荷载Q1=3514.3/10=878.57 KN= 87.86 T

《钢结构设计规范》GB50017-2003第5.1.2条,轴心受压构件的稳定性按下式计算:

f

≤A N ?

?为轴心受压构件的稳定系数,根据构件的长细比、钢材屈服强度,截面分类查附录C 采用。

计算长细比λx = l x /i x ;构件计算长度/回转半径:

回转半径i x =A

Ix

=

65

.12337425=17.40cm 。

稳定性验算:

取自由长度l x =500cm,λx =l x /i x =28.74 按下端固定、上端自由,取钢管长度系数为2 按钢管a 类截面,235÷f λ

=28.74*0.957=27.5 查附录C 采用, ?=0.959

N/?A= =74.1MPa<215MPa 故钢管桩满足要求。

箱涵设计计算书

公路桥涵设计计算书 一,设计资料 公路上箱涵,净跨径L 0为2.5m ,净高h 0为3.0m ,箱涵顶平均为2.0m 夯填砂砾石,顶为300mm 沥青混凝土路面铺装层,两侧边为砂砾石夯填,土的内摩擦角?为40o ,砂砾石密度γ=23KN/m 3,箱涵选用C25混凝土和HRB335钢筋。本设计安全等级为二级,荷载为公路-Ⅱ级。 二 设计计算 (一)截面尺寸 顶板、底板厚度 δ=40cm(C1=30cm) 侧墙厚度 t=40cm(C2=30cm) 故 横梁计算跨径 L p =L 0+t=2.5+0.4=2.9m 侧墙计算高度 hp=h0+δ=3.0+0.4=3.4m (二) 荷载计算 1.恒载 恒载竖向压力 221/0.56m KN H P =+=δγγ 恒载水平压力 顶板处 2 002 11 /00.1024045tan m KN H e p =???? ? ?-=γ 底板处 2 002 12 /01.2934045tan )(m KN h H e p =??? ? ??-+=γ 2.活载

汽车后轮地宽度0.6m ,公路-Ⅱ级车辆荷载由《公路桥涵设计通用规范》(JTG D60-2004)第4.3.4条计算一个汽车后轮横向分布宽,按30。角向下分布。 m m H 23 .145.0130tan 26.00?=+ m m H 2 8 .145.0130tan 26.00?=+ 故,横向分布宽度为029.43.1230tan 1.026.00=+??? ? ??+=a m 同理,纵向,汽车后轮招地长度0.2m : m H o 2 4 .1255.130tan 22.0?=+ 故,m H b 509.2230tan 22.00=??? ? ???= ∑G=140KN 车辆荷载垂直压力 2m /25.13509 .2029.4140KN b a G q =?=?∑= 车 车辆荷载水平压力 2 002 m /2.8820445tan KN q e =??? ? ??-?=车车 (三)内力计算 1.构件刚度比 1.171 21=?= P L h I I K 2.节点弯矩和轴向力计算 (1)a 种荷载作用下(图1)

碗扣式支架计算书汇总

碗扣式钢管模板支架工程 施工方案计算书 工程名称:兰州新区保障性住房项目A-4#、9#、10#、11#楼工程编制人: 日期:

目录 一、编制依据 (1) 二、工程参数 (1) 三、模板面板验算 (2) 四、次楞方木验算 (3) 五、主楞验算 (5) 六、立杆轴向力及承载力计算 (6) 七、立杆底地基承载力验算 (8) 八、架体抗倾覆验算 (9)

一、编制依据 1、工程施工图纸及现场概况 2、《混凝土结构工程施工规范》GB50666-2011 3、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-2008 4、《建筑施工模板安全技术规范》JGJ162-2008 5、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 6、《建筑施工手册》第四版(缩印本) 7、《混凝土结构工程施工质量验收规范》GB50204-2002(2011年版) 8、《建筑结构荷载规范》GB50009-2012 9、《混凝土模板用胶合板》GB/T17656-2008 10、《冷弯薄壁型钢结构技术规范》GB 50018-2002 9、《木结构设计规范》GB50005-2003 二、工程参数

三、模板面板验算 面板采用竹胶合板,厚度为10mm ,取主楞间距0.9m的面板作为计算宽度。 面板的截面抵抗矩W= 900×10×10/6=15000mm3; 截面惯性矩I= 900×10×10×10/12=75000mm4; (一)强度验算 1、面板按三跨连续梁计算,其计算跨度取支承面板的次楞间距,L=0.3m。 2、荷载计算 取均布荷载或集中荷载两种作用效应考虑,计算结果取其大值。 均布线荷载设计值为: q1=0.9×[1.2×(24×0.18+1.1×0.18+0.3)+1.4×2.5]×0.9=7.518KN/m q1=0.9×[1.35×(24×0.18+1.1×0.18+0.3)+1.4×0.7×2.5]×0.9= 7.253KN/m 根据以上两者比较应取q1= 7.518N/m作为设计依据。 集中荷载设计值: 模板自重线荷载设计值q2=0.9×1.2×0.9×0.3=0.292 KN/m 跨中集中荷载设计值P=0.9×1.4×2.5= 3.150KN 3、强度验算 施工荷载为均布线荷载: M 1=0.1q 1 l2=0.1× 7.518×0.32=0.068KN·m 施工荷载为集中荷载: M 2=0.08q 2 l2+0.213Pl=0.08× 0.292×0.32 +0.213× 3.150×0.3=0.203KN·m

0号、1号块支架现浇施工工艺标准,

0号、1号块支架现浇施工工艺标准 FHEC - QH -45 -1 -2007 1 适用围 落地式支架主要以承台为支架基础,承台尺寸较小时可在承台侧面周围预埋钢板安装牛腿,或在承台周围布设钻孔桩、钢管桩、粉喷桩等作基础;承台周围地基承载力较大时可将地基硬化处理后,直接将支架布设在地基基础上。一般情况下,落地式支架适用于连续刚构桥梁墩身高度小于20m的0号、l号块施工。非落地式支架一般由万能杆件拼装而成,由托架、预埋件、垫梁、底模支架组成,通常适用于连续刚构桥梁墩身高度大于20m的0号块施工。 2 主要应用标准和规 2.0.1中华人民国行业标准《公路桥涵施工技术规》(JTJ 041-2000)。 2.0.2中华人民国行业标准《公路桥涵设计通用规》( JTG D60-2004)。 2.0.3中华人民国行业标准《公路工程质量检验评定标准》(土建工程)( JTGF80/1-2004)。 2.0.4 中华人民国行业标准《公路工程施工安全技术规程》( JTJ 076-95)。 2.0.5中华人民国行业标准《公路工程水泥及水泥混凝土试验规程》(JTGE30-2005)。 3 施工准备 3.1 技木准备

3.1.1根据结构设计要求及现行 有关规、规程等要求,进行支架设计, 绘制支架及相关构件的细部图。支架的 一般类型如图3.1. 1-1。 1)落地满堂式门式支架(具体设计 形式见图3.1.1-1) 要点:落地式支架主要以承台为支 架基础,承台尺寸较小时可在承台侧面 周围预埋钢板安装牛腿,或在承台周围 布设钻孔桩、钢管桩、粉喷桩等作基础;承台周围地基承载力较大时可将地基硬化处理后,直接将支架布设在地基基 础上,但施工时要注意进行预压处理, 最大限度消除地基沉降,防止承台和地 基承载力不同造成的支架沉降差。在支 架上摆放纵横向方木、槽钢或工字钢作 为底模、侧模纵横肋,底模、侧模亦可 采用定型框架结构钢模。 2)落地柱式支架(如图3.1.1-2) 要点:落地混凝土立柱框架式支架 采用钢图3.1.1-2落地柱式支架示意 筋混凝土墩柱加系梁形成框架式承力结构,如图3.1.1-2将大钢管改为受力相当的混凝土柱即可。 3)托架(非落地式支架)(如图3.1. 1-3)

满堂式碗扣支架支架设计计算知识讲解

满堂式碗扣支架支架设计计算 杭州湾跨海大桥XI合同段中G70~G76墩的上部结构为预应力混凝土连续箱梁,该区段连续箱梁结构设计有两种形式,一为等高段,一为变高段,G70~G70为变高段连续箱梁。为此,依据设计图纸、杭州湾跨海大桥专用施工技术规范、水文、地质情况,并充分结合现场的实际施工状况,为便于该区段连续箱梁的施工,保证箱梁施工的质量、进度、安全,我部采用满堂式碗扣支架组织该区段连续箱梁预应力混凝土逐段现浇施工。 一、满堂式碗扣件支架方案介绍 满堂式碗扣支架体系由支架基础(厚50cm宕渣、10cm级配碎石面层)、Φ48×3mm碗扣立杆、横杆、斜撑杆、可调节顶托、10cm×15cm底垫木、10cm×15cm或10cm×10cm木方做横向分配梁、10cm×10cm木方纵向分配梁;模板系统由侧模、底模、芯模、端模等组成。10cm×15cm木方分配梁沿横桥向布置,直接铺设在支架顶部的可调节顶托上,箱梁底模板采用定型大块竹胶模板,后背10cm×10cm木方,然后直接铺装在10cm×15cm、10cm×10cm 木方分配梁上进行连接固定;侧模、翼缘板模板为整体定型钢模板。(主线桥30m跨等高连续梁一孔满堂支架结构示意图见附图XL-1、2、3所示)。 根据箱梁施工技术要求、荷载重量、荷载分布状况、地基承载力情况等技术指标,通过计算确定,每孔支架立杆布置:纵桥向为:3*60cm+30*90cm +2*60cm,共计36排。横桥向立杆间距为:120cm+3*90cm+3*60cm +6*90cm +3*60cm +3*90 cm+120cm,即腹板区为60cm,两侧翼缘板(外侧)为120cm,其余为90cm,共21排;支架立杆步距为120cm,在横梁和腹板部位的支架立杆步距加密为60cm,支架在桥纵向每360cm间距设置剪刀撑;支架两端的纵、横杆系通过垫木牢固支撑在桥墩上;立杆顶部安装可调节顶托,立杆底部支立在底托上,底托安置在支架基础上的10cm×15cm木垫板上。以确保地基均衡受力。 二、支架计算与基础验算 (一)资料 (1)WJ碗扣为Φ48×3.5 mm钢管; (2)立杆、横杆承载性能: 立杆横杆 步距(m)允许载荷(KN)横杆长度(m)允许集中荷载 (KN)) 允许均布荷载 (KN) 0.6 40 0.9 4.5 12

涵洞模板支架计算

涵洞模板支架计算 (一)、箱涵侧模板承受水平推力 1、新浇混凝土对箱涵侧模板的最大水平压力计算 (1)箱涵最大浇筑高度:3+ (2)箱涵每段第二次浇筑工程量(混凝土):(×+××2+×2)×24= (3)箱涵采用商品混凝土浇筑,其浇筑能力20m3/h,考虑÷20≈3h浇筑完成。 故浇筑速度:÷3=h (4)由于在冬季施工,贵阳地区按5℃气温考虑。 (5)新浇混凝土对箱涵侧模板的最大水平压力 根据《路桥施工计算手册》当混凝土浇筑速度在6m/h以下时作用于侧面模板的最大压力P m按下式计算:

P 1=K ×γ×h 当v/T ≤时:h=+T 当v/T >时:h=+T 式中:P 1—新浇混凝土对侧面模板的最大压力,kPa ; h —有效压头高度,m ; T —混凝土入模时的温度,℃m ; K —外加剂影响修正系数,不加时,K =1;掺缓凝外加剂时,K = v —混凝土的浇筑速度,m/h ; r —钢筋混凝土容重,取25KN/m 3 当5=>时,新浇混凝土有效压头高度h=+×=(m ) 故P 1=×25×= 2、采用插入式振捣器振捣混凝土,其侧面模板的水平压力取P 2= 3、箱涵侧模板承受水平推力P =P 1+P 2=+4= (二)墙体模板计算 墙体内外模板均采用×竹胶板,横向、竖向肋板采用10×10cm 方木,墙体两侧模板采用对拉杆固定。 1.横向肋板间距计算: 根据《路桥施工计算手册》当墙侧采用木模板时支撑在内楞上一般按三跨连续梁计算,按强度和刚度要求确定: 取1m 宽的模板,则作用于模板上的线荷载: q=×1=m ①按强度要求时的横肋间距: 式中:l —横肋间距,mm mm q b h l 3513.7010002065.465.4=??==

碗扣式支架计算书

现浇板模板(碗扣式支撑)计算书 本标段内K58+288(2-6m小桥)、K60+739(1-8m)小桥、K61+800(1-8m)小桥及6座涵洞的桥面板和涵洞盖板均采用现场浇筑施工,模板支撑采用Ф48mm碗扣式支架搭设,搭设结构为:立杆步距h(上下水平杆轴线间的距离)取1.2及1.5m,立杆纵距l y取0.9m,横距l x取0.9m。为确保施工安全,现选择支架高度最高,荷载最大的K60+739(1-8m)小桥作为代表性结构物进行支架稳定性计算,以验证该类结构物碗扣式支架搭设方案是否安全可靠,计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 一、综合说明 K60+739(1-8m)小桥现浇板模板支架高度在4.96m范围内,按高度5m进行支架稳定性验算。设计范围:K60+739小桥现浇板,长×宽=13.91m×6.38m,厚0.5m。 二、搭设方案 (一)基本搭设参数 模板支架高H为5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l y 取0.9m,横距l x取0.9m。整个支架的简图如下所示。

碗扣支架布置图 模板采用1.5cm厚竹胶板拼接,模板底部的采用双层10*10cm方木支撑,其中底模方木布设间距为0.3m;横向托梁方木布设间距0.9m。 (二)材料及荷载取值说明 本支撑架使用Φ48 ×3.5钢管,钢管壁厚不小于3.5-0.025mm,钢管上严禁打孔;采用的扣件,不得发生破坏。 上碗扣、可调底座及可调托撑螺母应采用铸钢制造,其材料性能应符合GB11352中ZG270-500的规定。 模板支架承受的荷载包括:模板及模板支撑自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。 三、板模板支架的强度、刚度及稳定性验算 荷载首先作用在板底模板上,按照"底模→底模方木/钢管→横向水平方木→可调顶托→立杆→可调底托→基础"的传力顺序,分别进行强度、刚度和稳定性验算。 (一)板底模板的强度和刚度验算 模板按三跨连续梁考虑,取模板长1m计算,如图所示:

现浇拱圈碗扣式满堂支撑架计算书

一、荷载分析 本工程现浇拱圈满堂支架的设计与验算参考公路施工手册《桥涵》及《建筑施工碗扣式钢管脚手架安全技术规范(JGJ166-2016)》等规范选取以下参数: 1.模板支架参数 横向间距或排距(m):0.60;纵距(m):0.90;步距(m):1.20; 立杆上端伸出至模板支撑点长度(m):0.65;模板支架搭设高度(m):8.50; 采用的钢管(mm):Φ48×3.5 ;板底支撑连接方式:方木支撑; 立杆承重连接方式:可调托座; 2.荷载参数 模板自重(kN/m2):0.5;混凝土与钢筋自重(kN/m3):26; 施工人员和施工材料、机具走运或堆放等施工均布荷载标准值(kN/m2):4; 武穴地区10年一遇最大风压0.25kN/m2,小于0.35kN/m2,可不予考虑。 3.材料参数 面板采用胶合面板,厚度为12mm;板底支撑采用方木; 面板弹性模量E(N/mm2):6500;面板抗弯强度设计值(N/mm2):13; 木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):300.000; 木方弹性模量E(N/mm2):9000.000;木方抗弯强度设计值(N/mm2):13.000; 木方的截面宽度(mm):50.00;木方的截面高度(mm):100.00; 托梁材料为:钢管(单钢管) :Ф48×3.5; 4.拱圈参数 拱圈的计算厚度(mm):500.00;

二、模板面板计算 模板面板为受弯构件,按三跨连续梁对面板进行验算其抗弯强度和刚度模板面板的截面惯性矩I和截面抵抗矩W分别为: W = 90×1.22/6 = 21600mm3; I = 90×1.23/12 = 129600mm4; 模板面板的按照三跨连续梁计算。

箱涵模板支架计算书

箱涵模板支架计算书 一、方案选择 1、通道涵施工顺序 通道涵分三次浇筑,第一次浇至底板内壁以上500mm,第二次浇至顶板以下500mm,第三次浇筑剩余部分。 2、支模架选择 经过分析,本通道涵施工决定采用满堂式模板支架,采用扣件式钢筋脚手架搭设。 顶板底模选用18㎜厚九层胶合板,次楞木为50×100,间距为300㎜,搁置在水平钢管?48×3.5上,水平钢管通过直角扣件把力传给立柱?48×3.5,立柱纵、横向间距均为500×500㎜,步距 1.8m。侧壁底模为18㎜九层胶合板,次楞木50×100,间距为200㎜,主楞采用?48×3.5钢管,间距为400mm。螺栓采用?12,间距400mm。满堂支架图如下:

具体计算如下。 二、顶板底模计算 顶板底模采用18mm厚胶合板,木楞采用50×100mm,间距为300mm。 按三跨连续梁计算 1.荷载 钢筋砼板自重:0.6×25×1.2=18KN/㎡(标准值17.85KN/㎡) 模板重:0.3×1.2=0.36KN/㎡(标准值0.30 KN/㎡) 人与设备荷载:2.5×1.4=3.50KN/㎡ 合计:q=21.9KN/㎡ 2.强度计算 弯矩:M==0.1×21.9×0.32=0.197KN·m q: 均布荷载 l:次楞木间距 弯曲应力:f ==(0.197×106)/(×1000×182)=3.64 N/mm2 M: 弯矩 W: 模板的净截面抵抗矩,对矩截面为bh2 b: 模板截面宽度,取1m h: 模板截面高度,为18mm 因此f<13.0 N/mm2 ,符合要求。 3.挠度计算

W==(0.677×(17.85+0.3)×3004)/(100×9.5×103×1000×183/12) < =0.216㎜<300/400=0.75㎜,符合要求. q:均布荷载标准值 E: 模板弹性模量,取9.5×103 I:模板的截面惯性矩,取 三、顶板下楞计算 楞木采用50×100mm,间距为300,支承楞木、立柱采用?48×3.5钢管,立柱间距为500mm。 楞木线荷载:q=21.9×0.3=6.57KN/㎡(标准值18.15×0.3=5.45N/mm2) (1)、强度计算 弯矩:M==0.1×6.57×0.52=0.164KN·m : 楞木截面宽度 弯曲应力:f ==(0.164×106)/(×50×1002)=1.968N/mm2 因此f<13.0 N/mm2,符合要求。 (2)、挠度计算 W==(0.677×(17.85+0.3)×5004)/(100×9.5×103×1000×183/12) < =0.194㎜<500/400=1.25㎜,符合要求. 四、支承顶板楞木水平钢管计算 顶板支承钢管线荷载:q=25.28×0.5=12.64KN/㎡(标准值

满堂碗扣式脚手架计算书

附二满堂碗扣式脚手架计算书 一、试算(采用J41~J47联一截面形式进行试算) 金城路J41~J47连续梁典型截面 设计图5-5剖面 A=24.2063-5.9051-3.2853-4.3915=10.6244m2 (一)取1m纵向计算单元进行荷载计算 1、首次混凝土自重=(5.2069m2×1m×2600kg/m3)/(16.17m× 1m)=837.23kg/m2 2、方木及模板=45kg/m2 3、人行机具=200kg/m2 4、冲击荷载=837.23×0.3=251.17kg/m2 5、二次混凝土自重=5.4175×1×2600/(16.17×1)=871.09kg/m2 6、超过10m排架计算立杆稳定时需计算排架、托架自重 荷载组合Q=1.2×(837.23+45+871.09)+1.4×(200+251.17)=2735.62kg/m2 (二)单肢立杆可支撑面积,按图示二种形式进行初步计算 1、若按支撑支架荷载面积图(1)所示,S=0.6×0.9=0.54m2,立杆步距按

1.2m,则单肢立杆支撑荷载为2735.62×0.54=1477.235kg,此时,应按底柱进行计算,需计算杆件自重产生的压力。按22米计算,则其长度为22×1.8+(1.2+0.6)×12=53.4m,重量为53.4×5=267kg,此时单肢立杆支撑荷载N2=1477.235+1.2×267=1797.635,合1797.635×9.8=17617N (17.617KN)。 2、若按支撑支架荷载面积图(2)所示,S=0.6×0.6=0.36m2,立杆步距按1.2m,则单肢立杆可支撑荷载为N3=2735.62×0.36=984.823kg,此时,若分析单肢杆压杆稳定,则需计算杆件自重产生的压力。按22米计算,则其长度为22×1.8+(1.2+0.6)×12=53.4m,重量为53.4×5=267kg,此时单肢立杆支撑荷载N3=984.823+1.2×267=1305.223kg,合1305.223×9.8=12791N(12.791KN)。 (三)分析计算、结论 1、整体稳定验算: 已知碗扣式脚手架的立杆计算长度系数μw=0.9325μ=0.9325×1.55=1.4454;[μ为相应条件下扣件式脚手架整体稳定的计算长度系数(转化为对长度为步距h的立杆段进行计算)]。f=205N/mm2,D=48mm,d=48-3.5=44.5mm,步距h=1.2m。 长细比λ=μw h/i=1.4454×1.2/[(√(D2+d2))/4]=1.7345/0.0166=105根据λ,查得支架稳定系数φ=0.551。 容许荷载Ncr=φAf/(0.9γm)=0.551×489mm2×205N/mm2/(0.9×1.59)=38598N=38.598KN。[γm为材料强度附加分项系数=1.19(1+η)/

0号块托架结构检算报告

托架结构检算报告2012年10月

托架结构检算报告 2012年10月 II

0号块托架结构检算报告 目录 1、工程概况及计算依据 (2) 1.1 工程概况 (2) 1.2 计算依据 (2) 2、计算荷载与材料参数 (3) 2.1 计算荷载 (3) 2.2 钢材参数 (3) 2.3 竹胶板及方木材料参数 (3) 3、托架检算 (4) 3.1托架模型 (4) 3.2工字钢纵梁检算 (8) 3.3斜撑检算 (8) I

1、工程概况及计算依据 1.1 工程概况 图1-1为0号块托架设计立面图。图1-2为0号块托架设计侧面图。图1-3为0号块托架设计平面图。 图1-1 0号块托架设计立面图(单位:cm) 图1-2 0号块托架设计侧面图(单位:cm) 图1-3 0号块托架设计平面图(单位:cm) 1.2 计算依据 (1)**************; (2)《铁路桥涵设计基本规范》(TB 10002.1-2005); (3)《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB 10002.2-2005);(4)《铁路桥涵地基和基础设计规范》(TB10002.5-2005); (5)《铁路桥梁钢结构设计规范》(TB 10002.2-2005); (6)《铁路桥涵施工技术规范》(TB 10203-2002); (7)《客运专线铁路桥涵工程施工技术指南》(TZ213-2005); (8)《铁路混凝土工程施工技术指南》(铁建设[2010]241号); (9)《路桥施工计算手册》,人民交通出版社;

2、计算荷载与材料参数 2.1 计算荷载 计算荷载: (1)0号块总重量:G1=228.1×2.65=604.5t; (2)施工荷载5kpa; (2)荷载安全系数取1.3。 2.2 钢材参数 纵梁、横梁、托架工字钢均为A3钢,根据《铁路桥梁钢结构设计规范》及 《路桥施工计算手册》,其基本容许弯曲应力为[]140 w Mpa σ=,[]85Mpa τ=。临 时结构容许应力提高系数为 1.3,则[]182 w Mpa σ=,[]110Mpa τ=。弹性模量5 2.110 E Mpa =?。 2.3 竹胶板及方木材料参数 (1)竹胶板:规格:1220×2440×15mm 弹性模量:104MPa 弯曲强度:[σ]=55MPa (2)方木:落叶松容许抗弯应力:[σ]=14.5MPa, 弹性模量:E=11×103MPa 允许剪应力:[τ]=2.0Mpa

模板支架计算书

模板支架 计 算 书

一、概况: 现浇钢筋砼检查井,板厚(max=200mm),最大满包截面为300×600 mm,沿梁方向梁下立杆间距为800 mm,最大层高4.7 m,施工采用Ф48×3.5 mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100 mm。剪力撑脚手架除在两端设置,中间隔12m-15m设置。应支3-4根立杆,斜杆与地面夹角450-600。搭设示意图如下: 二、荷载计算: 1.静荷载 楼板底模板支架自重标准值:0.5KN/ m3 楼板木模板自重标准值:0.3KN/m2 楼板钢筋自重标准值:1.1KN/ m3 浇注砼自重标准值:24 KN/ m3 2.动荷载 施工人员及设备荷载标准值:1.0 KN/ m2 掁捣砼产生的荷载标准值:2.0 KN/ m2 架承载力验算: 大横向水平杆按三跨连续梁计算,计算简图如下:

q 作用大横向水平杆永久荷载标准值: qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32 KN/m 作用大横向水平杆永久荷载标准值: q1=1.2 qK1=1.2×4.32=5.184 KN/m 作用大横向水平杆可变荷载标准值: qK2=1×1+2×1=3KN/m 作用大横向水平杆可变荷载设计值: q2=1.4 qK2=1.4×3=4.2 KN/m 大横向水平杆受最大弯矩 M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01 KN/m 抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/ m2<205N/ m2=f 滿足要求 挠度:V=14×(0.667 q1+0.99 qK2)/100EI =14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104 =2.6 mm<5000/1000=5 mm滿足要求 3.扣件抗滑力计算 大横向水平杆传给立杆最大竖向力 R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。 4.板下支架立杆计算: 支架立杆的轴向力设计值为大横杆传给立杆最大竖向力与楼板底模板支架自重产生的轴向力设计值之和,即: N=R+0.5×1.2+10.74+0.5×1.2=11.34KN

碗扣式脚手架结构设计计算(含计算书)

碗扣式脚手架结构设计计算 1 基本设计规定: 1.1本规范的结构设计依据《建筑结构设计统一标准》GBJ68-84、《建筑结构荷载规范》GB5009-2001和《钢结构设计规范》GB50017-2003及《冷弯薄壁型钢结构技术规范》GB50018-2002等国家标准的规定。采用概率理论为基础的极限状态设计法,以分项系数的设计表达式进行设计。 1.2脚手架的结构设计应保证整体结构形成几何不变体系,以“结构计算简图”为依据进行结构计算。脚手架立、横、斜杆组成的节点视为“铰接”。 1.3脚手架立、横杆构成网格体系几何不变条件应保证(满足)网格的每层有一根斜杆(图1.3)。 图 1.3 网络结构几何不变条件 1.4 模板支撑架(满堂架)几何不变条件应保证(是)沿立杆轴线(包括平面x、y两个方向)的每行每列网格结构竖向每层有一根斜杆(图1.4),也可采用侧面增加链杆与结构柱、墙相连(图 1.4-1所示)或采用格构柱法(图 1.4-2)。

图 1.4满堂架几何不变体系 图 1.4-1侧面增加支撑链杆法图 1.4-2 格构柱法 1.5 双排脚手架沿纵轴x方向形成两片网格结构的几何不变条件可采用每层设一根斜杆(图 1.5),在y轴方向应与连墙件支撑作用共同分析: 1当两立杆间无斜杆时(图 1.5a),立杆的计算长度l0等于拉墙件间垂直距离;

2当两立杆间增设斜杆(图 1.5 b)则其立杆计算长度l0等于立杆节点间的距离。 3无拉墙件立杆应在拉墙件标高处增设水平斜杆,使内外大横杆间形成水平桁架(图1.5A-A剖面)。 图 1.5双排外脚手架结构计算简图 1.6 双排脚手架无风荷载时,立杆一般按承受垂直荷载计算,当有风荷载时按压弯构件计算。 1.7 当横杆承受非节点荷载时,应进行抗弯强度计算,当风荷载较大时应验算连接斜杆两端扣件的承载力; 1.8 所有杆件长细比λ=l0 /i不得大于250。 1.9当杆件变形有控制要求时,应按照正常使用极限状态验算其变形。 1.10脚手架不挂密目网时,可不进行风荷载计算;当脚手架采用密目安全网或其他方法封闭时,则应按挡风面积进行计算。 2 施工设计

连续梁桥0号块托架设计

模板与支架计算 1、荷载取值 静载:静载主要为梁段混凝土和钢筋自重,以及模板支架重量。活载:施工荷载 将截面分成如所示 根据规范要求,在箱梁自重上添加荷载 ⑴、砼单位体积重量:26.5kN/3 m ⑵、倾倒砼产生的荷载:4.0kN/2 m ⑶、振捣砼产生的荷载:2.0kN/2 m ⑷、模板及支架产生的荷载:2.0kN/2 m m ⑸、施工人员及施工机具运输或堆放荷载:2.5 kN/2 荷载系数: ⑴、钢筋砼自重:1.2; ⑵、模板及支架自重:1.2; ⑶、施工人员及施工机具运输或堆放荷载:1.4; ⑷、倾倒砼产生的竖向荷载:1.4; ⑸、振捣砼产生的竖向荷载:1.4; ⑹、倾倒砼产生的水平荷载:1.4; ⑺、振捣砼产生的水平荷载:1.4; 作用在面板顺桥向1m 长,横桥向1m 宽的面荷载:

2、模板验算 模板宽度取1m 计算,作用在底模板上每m 宽的均布荷载为: 翼缘荷载: Q1=1.2×(29.495/3.55+2)+1.4×(2.5+4.0+2.0)=24.27 kN/m 腹板荷载: Q2=1.2×(82.865/0.5+2)+1.4×(2.5+4.0+2.0)=213.176kN/m 底板荷载: Q3=1.2×(128.26/4.375+2)+1.4×(2.5+4.0+2.0)=49.48 kN/m 2.1、底板底模板验算 外部模板均采用高强度竹胶板板厚15mm,各部位下模板均按三跨连续梁结构计算。取方木间距为0.3m。按三跨连续梁计算,竹胶板力学参数:h=0.015m; I=bh3/12=1×0.0153/12=2.81×10-7 m4; A=bh=1×0.015=0.015m2; E=9.5×103 Mpa; W=bh2/6=1×0.0152/6=3.75×10-5 m3; EA=9.5×103×106×0.015=1.425×108; EI=9.5×103×106×2.81×10-7=2669.5; P= Q3=49.48KN/m; 建立力学模型: 结构弯矩图: M max=0.45kN·m 弯矩正应力σ=M/W=0.45×103 /(3.75×10-5)=12MPa<[σw]=13 MPa 结构位移图: fmax=0. 7mm<0.3/400= 0.75mm

钢筋砼箱涵模板计算例子

一、工程概况 本设计为安徽肥东龙潭东风大道改造工程。由于肥东东风大道的建设,东风大道在K17+52处,与安徽省天然公司已建D400高压管道交叉。为防止管道发生意外,需对该段交叉管道进行箱涵保护。本工程箱涵保护长度65米。 二、施工部署 2.1、组织机构 为确保优质、高速、安全、文明地完成本工程建设,我公司本着科学管理,精干高效、结构合理的原则,已选派了具有开拓进取精神、施工经验丰富、态度诚恳、勤奋实干、科学务实的工程技术人员和管理人员组建了项目管理班子和管理机构。根据本工程的特点,从已组建的项目管理机构中指派工程师林奕和具体负责本工程的施工,其他各部门人员协助配合,以质量、安全、工期成本为中心。开展高效率的工作。 2.2、管理目标 质量目标:本部位工程质量达到优良标准。 安全目标:杜绝人身伤亡事故。 工期目标:绝对工期44日历天,开工时间计划为2010年1月20日 2.3、劳动力安排计划 根据该工程的特点,我项目部已组织了专门施工箱涵,通道工程的劳务作业施工队,配置了普工20人、模板工20人、架子工10人、钢筋工15人、砼工8人、防水工2人。各工种紧密配合,具体分工如下: 普工:清理基槽土方,搬移材料、碎石垫层铺设、袋装土护坡、基槽回填,配合技术工种作业等。 模板工:支模前的放线,配模,支模,拆模等。 架子工:施工脚手架及支撑、承重脚手架搭设等。 钢筋工:钢筋加工及半成品的运输,绑扎,保护层的控制等。 砼工:砼的浇筑入模,振捣,养护等(砼的搅拌运输由商品砼站集中组织供应) 防水工:涵洞的沉降缝处理等。 2.4、投入的主要施工机械设备 为满足本工程的施工需要,拟投入主要施工机械设备如下: ①、为满足基槽土方开挖,投入1.25m3反铲挖掘机1台,自卸汽车3台, 潜水泵3台。 ②、为满足砼施工需要,砼计划从商品砼站购置,采用3台9m3砼搅拌 运输车运至现场浇筑,现场配备砼振动器3台,30kw发电机1台,同时 投入成套的钢筋加工设备,木工机械,测量设备及其他设备等,均已按 施工组织总设计的配置要求组织到位,满足本工程的施工需要。 2.5、投入的主要施工材料 主要施工材料计划如下表:

0号块支架计算书

0#块支架计算书 一、工程概况 0#块支架以三根钢管桩及预埋在临时支撑内的双片40#槽钢为支撑,其中钢管桩外径40cm、壁厚6mm。三根钢管桩中心在一条直线上,距离墩身边线50cm,相邻钢管桩间距3.8m,中间一根位于墩身轴线上。钢管桩顶上放置两片45#工字钢,临时支撑悬挑出的双片40#槽钢上各放置一片45#工字钢,此四根工字钢作为横梁,横梁上共放置12根28#工字钢作为纵梁,纵梁上再放置15根12#工字钢作为分配梁,分配梁上满铺10cm×10cm的方木,方木上铺1.5cm的新竹胶板作为底模。具体布置见示意图。 二、支架受力检算 受力检算顺序:12#工字钢-28#工字钢-45#工字钢-钢管桩-双片40#槽钢 1、12#工字钢 ⑴简述 均布荷载q 12#工字钢沿8m底板全宽铺设,相邻工字钢中心间距35cm,为了计算方便,可将工字钢简化成支撑在28#工字钢上受均布荷载的简支梁,简支梁跨度取夹临时支撑的两根28#工字钢中心间距92.2cm, 受力简图如下: 12#工字钢参数:13.987kg/m,Ix=397cm4,Wx=66.2cm3 断面面积17.9cm2 跨度0.922m 反力R2 反力R1

问题:如何求均布荷载的大小。 通过0#块的纵横断面分析,取距中横梁根部0.75m处高侧腹板处的受力最大。 ①混凝土自重 W=(0.8+1.04)/2×0.75×7.372×2.6×10=132.3KN 经计算q1=67KN/m。 ②施工人员和施工材料、机具按均布荷载取值1KPa,推出q2=0.35KN/m ③振捣混凝土产生对底板的荷载取值为2 KPa, 推出q3=0.7KN/m ④工字钢自重13.987×0.922×10=128.96N, 推出q4=0.14KN/m 结论:12#工资钢所受的最大均布荷载q=67+0.35KN+0.7 KN+0.14 KN=68.19 KN/m。 为了计算更加安全q取值70 KN/m。 弯曲应力检算: 跨中最大弯矩M=ql2/8=70000×0.922×0.922/8=7.438KN.m 跨中最大弯曲应力σ=M/W=7.438×1000/(66.2×10-6)=112.4MPa<【σ】=145 MPa 跨中最大挠度w=5×q×l4/(384×E×I)=5×70000×09224/(384×2×1011×397×10-8) =0.00083m< l/400=0.0023m。 综上所述,12工字钢的强度和刚度满足施工需要。 2、28#工字钢 28#工字钢可简化为支撑在45#工字钢上受集中荷载的连续梁。 13×0.35m 0.2m 根据支架示意图知高侧腹板下28#工字钢受力最大,简化图如下: 0.5m 1.575m 1.35m 1.325m

碗扣式脚手架满堂支架计算

现浇箱梁碗扣式脚手架满堂支架设计计算 摘要以***高速公路***互通立交主线K135+525桥左幅第7联为例,详细论述了碗扣式脚手架满堂支架现浇箱梁施工支架的设计及计算。 关键词碗扣式脚手架满堂支架现浇梁施工设计计算 碗扣式脚手架运用于现浇桥梁已是相当成熟的技术,其施工工艺简单、操作方便,***高速公路***立交工程中现浇箱梁施工量采用该体系支架。 1 工程概况 1.1 总概况 ***高速***互通立交位于市以北约10 km处***镇,为连接己通车**速公路和拟建的***泸高速公路而设,互通区起点里程为K135+260,终点里程为K137+950,互通区共设主线桥4桥,匝道桥6座,桥梁的形式主要为3跨或4跨为一联现浇连续箱梁。 施工方案确定中对于地基承载力高、墩柱高度小于15m的桥跨考虑采用碗扣式脚手架搭设满堂红作为支架体系,整个***互通工程共计有22联现浇箱梁采用该体系。 1.2 主线K135+135桥左幅第7联 本联跨上部结构为19+19+15m钢筋混凝土现浇连续箱梁,箱梁高度为1.4m,底板、顶板厚度均为0.25m,桥面宽为12m,底板宽为7.5m,共有408.9m3C40混凝土。下部为1.6× 1.6m和1.4×1.4m钢筋混凝土方墩,墩柱倒角为0.2×0.2m,墩柱平均高度为7m。 2 支架初步设计 2.1 立杆及横杆的初步设计 根据经验及初略计算,来选定立杆间距。腹板重Q1=36.4kn/ m2,空心段重 Q2=13kn/m2,底板宽b=7.5m,箱梁长s=53m,单根立杆允许承载力保守取[N]=40kn。 腹板处每平方米需要立杆根数:1.2Q1/[N]=1.1;取安全系数1.3,则为1.43。 空心段每平方米需要立杆根数:1.2Q2/[N]=0.4;取安全系数1.3,则为0.52. 所以选定空心段底板立杆纵横向间距为:0.9×0.9=0.81m2<1/0.52=1.92 m2,满足要求。 腹板及中、端横梁等实心处立杆间距为:0.6×0.9=0.54m2<1/1.43=0.70 m2,满足要

光伏支架受力计算书.doc

支架结构受力计算书 设计: ___ ___ _日期: ___ 校对: _ 日期: ___ 审核: __ _____ 日期: ____ 常州市 ** 实业有限公司

1工程概况 项目名称:工程地址:建设单位:结构高度:*****30MW 光伏并网发电项目 新疆 ** 集团 电池板边缘离地不小于500mm 2参考规范 《建筑结构可靠度设计统一标准》 GB50068— 2001 《建筑结构荷载规范》 GB50009—2012 《建筑抗震 设计规范》 GB50011—2010 《钢结构设计规范》 GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280— 2007 《光伏发电站设计规范》GB50797-2012 3主要材料物理性能 材料自重 铝材—————————————————————— 27 kN / m 3钢材———————————————————— 78.5 kN / m 3 弹性模量 铝材————————————————————70000 N / mm 2 钢材———————————————————206000 N / mm 2 设计强度 铝合金 铝合金设计强度 [ 单位:N / mm2 ]

牌号抗拉强度抗剪强度端面承压 6063-T5 90 55 185 钢材 钢材设计强度 [ 单位:N / mm2 ] 牌号抗拉强度抗剪强度端面承压 Q235 215 125 325 Q345 310 180 400 不锈钢螺栓 不锈钢螺栓连接设计强度[ 单位:N / mm2 ] 性能等级抗拉强度抗剪强度端面承压 A2-50 230 175 405 普通螺栓 普通螺栓连接设计强度 [ 单位:N / mm2 ] 性能等级抗拉强度抗剪强度端面承压 级170 140 350 级400 320 405 角焊缝 容许拉 / 剪应力—————————————————160 N / mm 2 4结构计算 光伏组件参数 晶硅组件: 自重 G PV: 0.196 kN ( 20 kg / 块 ) 尺寸(长×宽×厚)164 0 992 40 mm

箱涵模板支架计算书

K204+136.9 1-6.0m模板支架计算书 一、计算依据 1、K204+136.9 1-6.0m设计图纸; 2、《客货共线铁路桥涵工程施工技术指南》(TZ203-2008) 3、国家、铁道部、济南铁路局发布的有关施工技术安全规程《铁路桥涵工程施工安全技术规程》(TB10303-2009)。 二、计算说明 1、K204+136.9 1-6.0m,其断面尺寸为7.7m×4.9m,钢筋混凝土断面(顶、底板及墙身)厚度均为70cm。 2、根据施工方案,箱涵浇筑分两次完成,第一次浇筑框架地板,第二次浇筑边墙及顶板。 3、箱涵墙体外模板、内模板、顶模板均采用0.9×1.5m大型组合钢模板。墙体侧模背5×10cm木枋,外模背钢管作为大小楞并设拉杆。内支架采用碗扣搭设支承顶板荷载,设顶底托抄两层分配枋(管)。 4、模板、支架属于临时结构,其强度设计计算按容许应力法计算。 三、箱涵侧模板系统计算 (一)、箱涵侧模板承受水平推力 1、新浇混凝土对箱涵侧模板的最大水平压力计算 (1)箱涵最大浇筑高度:4.9-0.7=4.2(m) (2)箱涵每段第二次浇筑工程量(混凝土):10.28*15=154.2(m3)(3)箱涵采用商品混凝土浇筑,其浇筑能力18m3/h,考虑10.28÷9≈8.6(h)浇筑完成。 故浇筑速度:4.2÷8.6=0.49(m/h) (4)由于在春季施工,本地区按15℃气温考虑。 (5)新浇混凝土对箱涵侧模板的最大水平压力P1 按P=K1K2rh公式计算(路桥施工计算手册) 式中:K1——外加剂影响系数,取1.2 K2——混凝土拌合物的稠度影响系数,取K2=1.25 r——钢筋混凝土容重,取26KN/m3 当1.2/15=0.08>0.035时,新浇混凝土有效压头高度h=1.53+3.8×0.08=1.834(m)

碗扣支架计算书

目录 一、计算概况 (3) 二、计算依据 (3) 三、荷载分析 (3) 四、设计计算参数确定 (4) 五、底板底模竹胶板计算 (5) (一)跨中A-A断面荷载计算 (5) 1、荷载分析 (5) 2、强度计算 (6) 3、刚度验算 (6) (二)跨边B-B断面荷载计算 (6) 1、荷载分析 (7) 2、强度计算 (7) 3、刚度验算 (8) 六、腹板钢模板计算 (8) (一)水平荷载 (8) (二)截面参数及材料力学性能指标 (8) (三)承载力检算 (9) 1、强度 (9) 2、刚度 (9) 七、底模纵向方木计算 (9) (一)跨中A-A断面荷载计算 (9) 1、荷载分析 (10) 2、强度计算 (10) 3、刚度验算 (11) (二)跨边B-B断面荷载计算 (11) 1、荷载分析 (11) 2、强度计算 (12) 3、刚度验算 (12)

八、底模横向方木计算 (13) (一)跨中A-A断面荷载计算 (13) 1、荷载分析 (13) 2、强度计算 (14) 3、刚度验算 (15) (二)跨边B-B断面荷载计算 (15) 1、荷载分析 (16) 2、强度计算 (16) 3、刚度验算 (17) 九、贝雷梁钢管支架受力计算 (17) (一)跨中A-A断面荷载计算 (18) 1、荷载分析(S1、S3部分立杆间距为0.9m时) (18) 2、荷载分析(S2、S4部分立杆间距为0.6m时) (19) (二)跨边B-B断面荷载计算 (20) 1、荷载分析(S1部分立杆间距为0.9m时) (20) 2、荷载分析(S2部分立杆间距为0.6m时) (21) 十、贝雷梁钢管支架重量计算 (22) 十一、垫层混凝土强度验算 (24) (一)跨中A-A断面荷载计算 (24) 1、荷载分析(S1、S3部分,支架间距90cm×120cm) (24) 2、荷载分析(S2、S4部分,支架间距60cm×120cm) (25) (二)跨边B-B断面荷载计算 (26) 1、荷载分析(S1部分,立杆横向间距0.9m) (26) 2、荷载分析(S2部分,立杆横向间距0.6m) (27) 十二、地基土承载力验算 (28)

相关文档
最新文档