XXXX版滚动轴承故障诊断案例 2 2003
滚动轴承引起的故障事故案例
滚动轴承引起的故障事故案例滚动轴承是机械设备中常见的部件,但如果使用不当或者出现问题,可能会导致故障事故。
以下是一些可能由滚动轴承引起的故障案例:
1.轴承损坏:如果滚动轴承受到过大的负荷、振动或者温度过高,可能会导致轴承损坏。
例如,轴承过载或不正确的安装可能会导致轴承内部零件断裂或损坏,进而引发设备停机或者事故。
2.轴承磨损:长时间的运行或者不及时的维护保养可能会导致轴承磨损。
磨损轴承可能会导致设备运行不稳定、噪音增加以及性能下降,进而影响设备的正常运行。
3.轴承过热:轴承过热可能会由于润滑不足、轴承内部有异物、轴承密封不良等原因引起。
过热的轴承可能会造成润滑脂老化、轴承材料硬化,甚至引发润滑脂着火,造成设备损坏或者火灾事故。
4.轴承卡滞:如果轴承受到严重的污染或者润滑不良,可能会导致轴承卡滞。
轴承卡滞可能会导致设备运转不畅,增加摩擦力,最终引发设备故障或者事故。
5.轴承断裂:轴承断裂通常是由于过载、冲击负荷或者材料缺陷等原因引起的。
轴承断裂可能会造成设备停机、部件损坏甚至危及人身安全。
这些故障案例都说明了滚动轴承在机械设备中的重要性,以及在使用过程中需要进行适当的维护保养和监测,以确保设备的安全运行。
定期检查和维护轴承,保持良好的润滑状态,以及根据实际情况调整负荷和运行参数,都是预防轴承故障的关键措施。
滚动轴承故障诊断实例
滚动轴承故障诊断实例
滚动轴承故障诊断实例可以包括以下几种情况:
1. 声音异常:当滚动轴承出现故障时,可能会出现异常的噪音,如嘶嘶声、刮擦声或者咔咔声等。
这种情况下,可以通过听觉判断故障的类型和位置。
噪音一般源于滚珠或滚道表面的损伤或者磨损。
2. 振动异常:故障的滚动轴承会导致轴承运行不稳定,产生过大的振动。
可以通过振动传感器来检测振动的频率和幅度,进而判断故障的严重程度和位置。
振动异常可能是由于轴承内部松动、滚子损伤或滚道不平整等问题引起的。
3. 温度异常:滚动轴承运行时,由于磨擦和摩擦产生的热量,轴承温度会有所上升。
但是,如果滚动轴承的温度明显高于正常值,可能表明存在故障。
可以通过红外测温仪或接触式温度计来测量轴承的温度,判断是否存在异常。
4. 润滑问题:滚动轴承需要得到正确的润滑以保持正常运行。
如果滚动轴承出现故障,润滑不足或者污染等问题,会导致滚动轴承的寿命缩短。
可以通过观察润滑脂或润滑油的颜色、黏度以及滚动轴承周围是否有渗漏等来判断润滑是否正常。
上述实例中的故障诊断需要依靠专业的设备和工具,同时需要具备相应的专业知识和经验,建议请专业人士进行诊断和修复。
滚动轴承故障及其诊断方法
而一旦有了压痕,压痕引起的冲击载荷会进一步引起附近 表面的剥落。
这样,载荷的累积作用或短时超载就有可能引起轴承塑性 变形。
1滚动轴承异常的基本形式
(4).腐蚀
润滑油、水或空气水分引起表 面锈蚀(化学腐蚀)
轴承内部有较大的电流通过造 成的电腐蚀
2.3 滚动轴承的振动及其故障特征
2. 幅值域中的概率密度特征 滚动轴承正常时和
发生剥落损伤时的轴 承振动信号的幅值概 率密度分布如图。
轴承振动的概率密度分布
从图中可以看出,轴承发生剥落时,幅值分布的幅 度广,这是由于存在剥落的冲击振动。这样,从概率 密度分布的形状,就可以进行异常诊断。
3 滚动轴承故障诊断方法
2.2 滚动轴承的特征频率
➢ 为分析轴承各部运动参数,先做如下假设: (1)滚道与滚动体之间无相对滑动; (2)每个滚道体直径相同,且均匀分布在内外滚道之间 (3)承受径向、轴向载荷时各部分无变形;
方法: 研究出不承受轴向力时轴承缺陷特征频率,进而,推导出 承受轴向力时轴承缺陷特征频率
1. 不承受轴向力时 轴承缺陷特征频率
d Dm
)
fr
滚动轴承的特征频率
➢ (3) 轴承内外环有缺陷时的特征频率:
➢ 如果内环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fi
f Bi Z
1 (1 2
d Dm
) frZ
➢ 如果外环滚道上有缺陷时,则Z个滚动体滚过该缺陷时的
频率为
fo
f Bo Z
1 (1 2
d Dm
)
f
r
Z
➢ (4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
轴承跑内圈故障案例分析
轴承跑内圈故障案例分析该文章取自网络,分享给大家者供参考,在此谈一点关于轴承跑内圈的个人体会,曾多次在现场遇到轴承跑内圈故障,振动特征也不尽相同,但也有共同之处。
不同之处为频谱形态,最常见的是工频及大量谐波,大部分谐波幅值接近于基频的1/3~1/2,且3X明显高于其他谐波,甚至超过基频的1/2,但也有个别频谱如文中所示基本为基频振动,这也是转发该文的主要原因;所遇跑内套故障共同特点是,振动不稳定,特别是停启设备后振幅大概率会发生突变,相位无规律变化大约在0~60度范围变化。
轴承跑内圈故障案例分析1、设备问题运行期间,发现风机轴承处的振动强度明显增大,振动的速度值超过10㎜/s。
而通过近几次的监测结果来看,其相位并不稳定。
并且,在停机时进行的实时跟踪监测结果表明:在降速时,振动强度并没有降低,反而进一步增加。
遂进行停车处理。
对设备检查时发现:定位侧轴承座上半体出现两条尚未贯穿的轴向裂纹。
由于缺乏备件,当时对轴承座进行了简单的加固处理,用夹具以及底部焊接在基础上的4条M18的锚螺栓将轴承座加固。
经过上述处理后,振动强度有所下降。
在接下来的几天中,由于锚螺栓因振动而导致螺母松动,使振动强度又有所回升。
在此期间,只要重新紧固锚螺栓。
振动的强度就会有一定程度的下降。
问题的关键是:究竟是什么原因使转子振动强度增加,并且能够达到如此高的峰值,导致轴承座损坏。
只有找到引起振动的主要因素,然后进行针对性的整改,才能从根本上解决这个设备故障。
2、设备结构轴功率: 400kW;吸入压力: 常压;排出压力: 5200 Pa;排出温度: 20~45ºC;吸入/排出流量:1593m³/min;转速为1490r/min 该风机采用悬臂式结构,使用两个独立的轴承座支承转子。
风机侧轴承座为转子定位端,电机侧为转子自由端,这样,转子热膨胀就是以风机侧轴承座为零点向两端发生。
两支承轴承型号为22222CK + H322为锥孔双列向心球面滚子轴承,具有承受一定的轴向力。
11种轴承损伤的典型案例,原因分析及解决方案
11种轴承损伤的典型案例,原因分析及解决方案轴承在各个领域各个行业应用都非常广泛,今天为大家带来轴承损伤的经典案例,希望大家能有所收获!高质量的轴承在正确的使用下,可以使用很长一段时间,如果过早的出现损伤,很可能是因为选型错误,使用不当或润滑不良造成的。
因此,在安装轴承时,我们需要记录机器种类,安装部位,使用条件及周围配合。
通过研究总结轴承损伤的类型,发生问题时的使用环境,以避免类似情况再次发生。
轴承损伤方式按下述图片分类,我们可以图片中显示的主要特征来判断轴承损伤形式。
裂纹缺陷,部分缺口有裂纹。
原因:主机的冲击负荷过大,主轴与轴承配合过盈量大;也有较大的剥离摩擦引起裂纹;安装时精度不良;使用不当(用铜锤、卡入大异物)和摩擦裂纹。
解决措施:应检查使用条件,同时设定适当过盈及检查材质,改善安装及使用方法,检查润滑剂以防止摩擦裂纹。
滚道表面金属剥离运转面剥离。
剥离后呈明显凹凸状。
原因:轴承滚动体和内、外圈滚道面上均承受周期性脉动载荷作用,产生周期变化的接触应力。
当应力循环次数达到一定数值后,在滚动体或内、外圈滚道工作面上就产生疲劳剥离。
如果轴承的负荷过大,会使这种疲劳加剧。
另外,轴承安装不正、轴弯曲也会产生滚道剥离现象。
解决措施:应重新研究使用条件和选择轴承及游隙,并检查轴和轴承箱的加工精度、安装方法、润滑剂及润滑方法。
烧伤轴承发热变色,进而烧伤不能旋转。
原因:一般是润滑不足,润滑油质量不符合要求或变质,以及轴承装配过紧等。
另外游隙过小和负荷过大(预压大),滚子偏斜。
解决措施:选择适当的游隙(或增大游隙),要检查润滑剂的种类,确保注入量,检查使用条件,以防定位误差,改善轴承组装方法。
保持架碎裂铆钉松动或断裂,滚动体破碎。
原因:力矩负荷过大,润滑不足,转速变动频繁、振动大,轴承在倾斜状态下安装,卡入异物。
解决措施:要查找使用条件和润滑状态是否适宜,注意轴承的使用,研究保持架的选择是否合适和轴承箱的刚性是否负荷要求。
滚动轴承的故障诊断
滚动轴承的故障诊断一、滚动轴承的常见故障滚动轴承是转动设备中应用最为广泛的机械零件,同时也是最容易产生故障的零件。
据统计,在使用滚动轴承的转动设备中,大约有30%的机械故障都是由于滚动轴承而引起的。
滚动轴承的常见故障形式有以下几种。
1. 疲劳剥落(点蚀)滚动轴承工作时,滚动体和滚道之间为点接触或线接触,在交变载荷的作用下,表面间存在着极大的循环接触应力,容易在表面处形成疲劳源,由疲劳源生成微裂纹,微裂纹因材质硬度高、脆性大,难以向纵深发展,便成小颗粒状剥落,表面出现细小的麻点,这就是疲劳点蚀。
严重时,表面成片状剥落,形成凹坑;若轴承继续运转,将形成大面积的剥落。
疲劳点蚀会造成运转中的冲击载荷,使设备的振动和噪声加剧。
然而,疲劳点蚀是滚动轴承正常的、不可避免的失效形式。
轴承寿命指的就是出现第一个疲劳剥落点之前运转的总转数,轴承的额定寿命就是指90%的轴承不发生疲劳点蚀的寿命。
2. 磨损润滑不良,外界尘粒等异物侵入,转配不当等原因,都会加剧滚动轴承表面之间的磨损。
磨损的程度严重时,轴承游隙增大,表面粗糙度增加,不仅降低了轴承的运转精度,而且也会设备的振动和噪声随之增大。
3. 胶合胶合是一个表面上的金属粘附到另一个表面上去的现象。
其产生的主要原因是缺油、缺脂下的润滑不足,以及重载、高速、高温,滚动体与滚道在接触处发生了局部高温下的金属熔焊现象。
通常,轻度的胶合又称为划痕,重度的胶合又称为烧轴承。
胶合为严重故障,发生后立即会导致振动和噪声急剧增大,多数情况下设备难以继续运转。
4. 断裂轴承零件的裂纹和断裂是最危险的一种故障形式,这主要是由于轴承材料有缺陷和热处理不当以及严重超负荷运行所引起的;此外,装配过盈量太大、轴承组合设计不当,以及缺油、断油下的润滑丧失也都会引起裂纹和断裂。
5. 锈蚀锈蚀是由于外界的水分带入轴承中;或者设备停用时,轴承温度在露点以下,空气中的水分凝结成水滴吸附在轴承表面上;以及设备在腐蚀性介质中工作,轴承密封不严,从而引起化学腐蚀。
滚动轴承故障诊断分析全解
滚动轴承故障诊断分析全解
滚动轴承是机械设备中的重要元件,也是故障率最高的构件。
其突发的故障可能会严重影响机械设备的正常运行,即使是轻微的故障,也会降低设备的使用寿命。
因此,对滚动轴承的故障进行及时诊断和维修,是确保轴承的正常运行的关键。
本文将对滚动轴承故障诊断进行全面阐述,以便于有助于轴承的可靠运行。
一般来讲,滚动轴承的故障可以归结为以下几类:
(1)疲劳损坏:由于长期的使用,滚动轴承中的滚动体和锥形齿轮等内部零件可能会因疲劳而损坏,最终导致轴承的故障;
(2)腐蚀破坏:由于设备运行时的温度、湿度及磨损较大,滚动轴承容易受到空气、油品及其他化学性腐蚀剂的作用,从而造成内部零件的磨损;
(3)水分侵入:滚动轴承组装后,如果存在漏油现象,则滚动轴承内部容易污染,从而导致滚动体及锥形齿轮等内部零件受损;
(4)润滑油工作性能不佳:润滑油在机械设备运行时,若由于品质或温度等原因,润滑油的性能不佳,轴承容易受到损坏;
(5)安装不良:滚动轴承安装后,若没有正确地调整轴的负荷和动转瞬间,将会对轴承组件产生振动和噪音,从而导致故障。
滚动轴承故障诊断
滚动轴承故障诊断滚动轴承故障诊断初步1、故障原因滚动轴承的早期故障是滚⼦和滚道剥落、凹痕、破裂、腐蚀和杂物嵌⼊。
即主要故障形式:疲劳剥落、磨损、塑性变形、锈蚀、断裂、胶合、保持架损坏。
产⽣主要原因包括搬运粗⼼、安装不当、不对中、轴承倾斜、轴承选⽤不正确、润滑不⾜或密封失效、负载不合适以及制造缺陷。
2、频谱和波形特征滚动轴承它是由内圈、外圈、滚动体和保持架四部分组成。
当滚动体和滚道接触处遇到⼀个局部缺陷时,就有⼀个冲击信号产⽣。
缺陷在不同的元件上,接触点经过缺陷的频率是不相同的,这个频率就称为滚动轴承的特征频率。
滚动轴承的故障特征频率的数值⼀般在⼏赫兹到⼏百赫兹之间,在频谱图中的1000Hz以内的低频区域轴承故障特征频率如下:1、滚动轴承故障特征频率(外圈静⽌)式中:Z——滚动体个数fr——转频(Hz)D——轴承节径(mm)d——滚动体直径(mm)α——接触⾓(1)滚动轴承内圈故障特征频率(2)滚动轴承外圈故障特征频率(3)滚动轴承滚动体特征频率(4)滚动轴承保持架特征频率2、滚动轴承故障特征频率的计算经验公式:⼆、滚动轴承故障诊断的要素滚动轴承由内圈、外圈、滚动体和保持架四部分组成,每个轴承部件对应⼀个轴承故障特征频率。
滚动轴承的故障频率分布有⼀个明显的特点,往往在低频和⾼频两个频段内都有表现。
所以在频率分析时,可以选择在这两个频段进⾏分析。
根据滚动轴承的故障形式在频域中的表现形式,将整个频域分为三个频段,既⾼频段、中频段和低频段。
l ⾼频阶段指频率范围处于2000-5000Hz 的频段,主要是轴承固有频率,在轴承故障的早期,⾼频段反映⽐较敏感;中频阶段指频率范围处于800-1600Hz 的频段,⼀般是由于轴承润滑不良⽽引起碰磨产⽣的频率范围;l 低频阶段指频率范围处于0-800Hz 的频段,基本覆盖轴承故障特征频率及谐波;在⾼频段和低频段中所体现的频率是否为轴承故障频率,还要通过其他⽅法进⾏印证加以确认。
轴承故障案例
轴承故障案例轴承故障案例:1. 轴承负荷过大:某工厂的一台设备在运行过程中,由于负荷过大导致轴承故障。
经过检查发现,设备的工作负荷超过了轴承的额定负荷,导致轴承过早磨损和失效。
2. 轴承润滑不良:一辆机动车的后轮轴承出现异常噪音,经过检查发现轴承润滑不良。
原因是车辆长期在恶劣环境下运行,导致润滑油污染和减少,轴承无法正常润滑,进而导致故障。
3. 轴承安装不当:某工程项目中,一台重型设备的轴承出现异常振动。
经过检查发现,轴承安装时没有按照规定的步骤和方法进行,导致轴承与设备的配合不良,引发故障。
4. 轴承材料疲劳:一台风力发电机的主轴承发生故障,经过分析发现轴承材料出现疲劳现象。
由于风力发电机长期在恶劣环境下运行,轴承受到很大的载荷和振动,导致轴承材料疲劳失效。
5. 轴承过热:一台冶金设备的轴承在运行过程中发生过热现象。
经过检查发现,轴承润滑不良,摩擦热量无法及时散发,导致轴承过热并最终失效。
6. 轴承进水:一台造纸机的轴承发生异常噪音,经过检查发现轴承进水。
原因是设备长期在潮湿环境下运行,导致轴承密封不严,进水进入轴承内部,引发故障。
7. 轴承磨损:一台机床的主轴承出现磨损现象,导致设备运行不稳定。
经过检查发现,轴承长期在高速运转下,摩擦力度大,导致磨损加剧,最终引发故障。
8. 轴承外环裂纹:一台电机的轴承外环出现裂纹,导致设备运行时噪音增大。
经过检查发现,轴承在运行过程中受到过大的外力冲击,导致外环出现裂纹,最终导致轴承失效。
9. 轴承内圈磨损:一台工程机械的转向轴承出现内圈磨损现象,导致设备转向不灵活。
经过检查发现,由于设备长期在恶劣工况下运行,轴承内圈受到严重磨损,进而引发故障。
10. 轴承过度紧固:一台卷烟机的轴承发生异常振动,经过检查发现轴承过度紧固。
由于设备在安装过程中,操作人员将轴承过度紧固,导致轴承无法正常运行,最终引发故障。
以上是关于轴承故障的十个案例,涵盖了轴承负荷过大、润滑不良、安装不当、材料疲劳、过热、进水、磨损、外环裂纹、内圈磨损和过度紧固等不同类型的故障。
傅里叶分析滚动轴承的故障诊断
作业名称:傅里叶分析滚动轴承的故障诊断院系:机械工程系学号:姓名:指导教师:20XX年XX月XXXXXXXXX校区傅里叶分析滚动轴承的故障诊断摘要:简要介绍了快速傅里叶变换(FFT)在滚动轴承故障分析中的应用,滚动轴承在机械设备中使用非常广泛,其工作状态直接影响整个设备的运行品质。
对滚动轴承进行状态监测与故障诊断,能够避免重大事故的发生,获得较大的经济和社会效益。
通过快速傅里叶变换(FFT)对滚动轴承运行时的实时数据信号进行分析,可以实现对滚动轴承的状态监测和故障诊断。
同时,采用对正常轴承和故障轴承信号对比分析、各种故障轴承之间信号的对比分析,加深了快速傅里叶变换(FFT)对轴承实时信号分析的运用和理解,能够更好的对轴承进行状态监测和故障分析。
关键词:快速傅里叶变换(FFT);滚动轴承;故障诊断;状态监测Abstract:This paper describes a fast Fourier transform (FFT) in the rolling bearing failure analysis applications, bearing in machinery and equipment is widely used, and its working status directly affects the quality of the operation of the entire device. Rolling element bearing condition monitoring and fault diagnosis, able to avoid major accidents and achieve greater economic and social benefits. Through Fast Fourier Transform (FFT) for real-time data bearing signal runtime analysis can be achieved on the rolling bearing condition monitoring and fault diagnosis. Meanwhile, the use of normal bearings and bearing fault signal comparative analysis of various fault signals comparative analysis between the bearings and deepened the fast Fourier transform (FFT) of the bearing using real-time signal analysis and understanding of the bearing can be better condition monitoring and fault analysis.Keywords: fast Fourier transform (FFT); Rolling; fault diagnosis; condition monitoring一、概述通过对快速傅里叶变换(FFT)的原理的理解和学习,利用MATLAB软件编程应用快速傅里叶变换(FFT)的方法,对滚动轴承的1组正常数据和2组故障数据(故障类型不同)进行信号分析和处理,并对正常轴承和故障轴承信号对比分析、各种故障轴承之间信号的对比分析,并得出结论,实现对滚动轴承的状态监测和故障分析。
滚动轴承的故障机理与诊断
温度诊断法
总结词
通过测量轴承的温度变化,判断轴承的工作状态是否正常。
详细描述
温度诊断法是一种间接的滚动轴承故障诊断方法。通过在轴承座或轴承端盖上安装温度传感器,监测轴承的工作 温度,可以判断轴承的工作状态是否正常。如果温度过高或温差过大,可能表明轴承存在故障,如润滑不良、摩 擦过大等。
04
滚动轴承故障诊断实例
实例一:振动诊断法的应用
01
总结词
振动诊断法是通过监测滚动轴 承的振动信号来判断其运行状
态的方法。
02
详细描述
振动诊断法具有非破坏性、实 时性等优点,通过分析振动信 号的频率、幅值和波形等信息 ,可以识别滚动轴承的故障类 型和位置,以及评估故障的严
重程度。
03
总结词
振动诊断法需要使用专业的振 动测量仪器,如振动分析仪或 频谱分析仪,对滚动轴承进行
促进智能化发展
随着工业4.0和智能制造的推进,对设备的监测和故障诊断要求越来越高。滚动轴承的故 障机理与诊断研究有助于推动设备智能化的发展,提高生产效率和产品质量。
对未来研究的建议
01
加强跨学科合作
滚动轴承的故障机理与诊断涉及多个学科领域,如机械工程、材料科学
、信号处理等。建议加强跨学科合作,综合运用各学科的理论和方法,
其在实践中的可行性和效果。
THANKS
声学诊断法
要点一
总结词
通过测量轴承的声学信号,分析其频率和幅值等信息,判 断轴承的故障类型和程度。
要点二
详细描述
声在 轴承座或轴承端盖上安装声学传感器,采集轴承的声学信 号,然后分析这些信号的频率和幅值等信息,可以判断轴 承是否存在故障以及故障的类型和程度。常见的故障类型 包括轴承内圈、外圈和滚动体的故障等。声学诊断法的优 点是可以在线监测轴承的工作状态,但受环境噪声影响较 大。
滚动轴承引起的故障事故案例
滚动轴承引起的故障事故案例全文共四篇示例,供读者参考第一篇示例:滚动轴承是一种常见的机械部件,广泛应用于各类机械设备中,如汽车、飞机、工业设备等。
由于滚动轴承在运转过程中承受着较大的载荷和转速,在一些情况下可能出现故障,甚至引发事故。
本文将通过几个关于滚动轴承引起的故障事故案例,来探讨滚动轴承故障的原因和应对方法。
1.案例一:汽车轮胎脱落某车主驾驶着一辆年轻车辆在高速公路上行驶,突然听到了一声巨响,汽车突然失控,最终停在了紧急车道。
经过检查,发现是汽车的一个轮胎脱落导致的事故。
经过进一步调查,发现轮胎脱落的原因是由于滚动轴承故障导致的。
滚动轴承在汽车行驶过程中承受着车辆的重量、行驶速度等动力作用,如果滚动轴承内部发生故障,可能会导致轮胎不稳定,最终出现脱落的情况。
该事故提醒我们,在日常驾驶中要定期检查车辆的轮胎和滚动轴承,确保其正常运转,以避免类似的交通事故发生。
2.案例二:工业设备故障某工厂一台重要的生产设备突然停止运转,导致生产线的生产受阻,造成了较大经济损失。
经过维修人员的检查,最终确定是设备的滚动轴承引起的故障。
滚动轴承在工业设备中扮演着重要的角色,如果滚动轴承出现故障,可能会导致设备停止运转,造成生产线的中断。
针对这种情况,工厂需要建立健全的设备维护保养制度,定期对设备的滚动轴承进行检查和维护,确保设备的正常运转,以减少生产事故的发生。
3.案例三:飞机起落架故障某航班正在准备起飞时,机组人员发现飞机的起落架出现异常,无法正常收放。
经过检查,发现是飞机起落架中的滚动轴承出现了故障,导致了起落架无法正常运转。
飞机的起落架是飞机安全飞行的重要组成部分,如果滚动轴承出现故障,可能会影响飞机的正常运行,甚至引发空中事故。
为避免类似事故的发生,航空公司需要对飞机起落架的滚动轴承进行定期检查和维护,确保飞机运行时的安全可靠性。
滚动轴承在各类机械设备中扮演着重要的角色,但也存在一定的故障风险。
为了确保设备的安全运行,我们需要加强对滚动轴承的检查和维护,及时发现并排除滚动轴承的故障,为设备运行提供保障。
滚动轴承的故障诊断
理想 , 其 是 在故 障 的 初 期 。本 文使 用 小波 分 析技 尤
术 对 检测 的信 号进 行 分 解 , 后对 故障特 征 的信 号 然
进 行 重构 , 过 Hi et 通 l r变换 进 行解 调 和 细化 频 谱分 b 析, 滚动 轴承 的故 障特 征信 息就 可 以检测 出来 , 并且 判 断 出故 障发 生 的部位 。
滚动 轴承 的ห้องสมุดไป่ตู้ 障诊断
l3 3
文章 编 号: 0 6 1 5 (0 10 — 1 30 10 -3 52 1)50 3 —4
滚 动轴 承 的故 障诊 断
陈永会 , 姜 旭 , 张学 良1 李海虹 ,
(1太原 科技 大 学 机 电学 院,太原 00 2 ; . 30 4 2机 械 工业 工程 机械 军 用改装 车试验 场 ,北京 12 0 . 0 10)
关键词 : 振动与波; 滚动轴承 ; 故障诊 断; 小波分解; let Hi r变换 b
中 图分 类 号 : H133 T 6 .;H131 T 3 .; H1 5 T 1. 3 文献标识码 : A DO 编 码 :03 6/i n10 —3 52 1. . 1 I 1. 9 .s.06 15 —0 1 5 3 9 js 00
Re e r h o l n a i g a l Dig o i sac f Ro l g Be r s u t a n ss i n F
CHEN o g- i , JAN G X u2 ZHAN G u -in , L1 H a- n Y n hu I X ela g iho g
Ab t c s a t:F r h o —t t n r n d lt n fau e f o l g b a n Sf u t in l, t o a e n wa ee r o e n n sa i a y a d mo u a i e t r so l n e t g’ a l sg a s ame h db s d o v lt t o o r i i a ay i mp o e . h i a s n l d n u t n o ma i n a ed c mp s d a dr c n t ce y wa e e n l ss eh d n l ssi e ly d T esg l i cu ig f l i f r t r e o o e n o sr t d b v lt ay i t o . s n a o e u a m T e , e d lt n a d f e s e ta n l ss o e s n l r are u y u i g Hi e tt n f r . h h r c e si h n d mo u a i n n p cr la ay i ft i a s ae c ri d o t sn l r r so o i h g b b a m T e c a a tr t i c f q e ce f h a l sg a sa ee t c e , n e f u t at r so er l n e rn sc n b e o n z d I i f u d t a r u n iso e fu t i l r x r t d a d t a l p t n ft o l g b a g a e r c g i e . t s o n t e t n a h e h i i h t ewa e e n l ssa dHi et r n f r r fe t e i e t yig t el c l e e t f o l g b a n s h v lt ay i n l r a so a b t m a ee f ci i n i n a f c s r li e t g . v nd f h o d o n i Ke r s: ir t na dwa e; o l gb a i g; a l d a o i wa e e n l ss; l e t n f r y wo d v b a i n v r l n e r o i n f u t ig ss; v l t ay i Hi  ̄ r so m n a b a
轴承故障诊断
01
良
02
当(间隙过大,间隙过小)
03
摩
半速涡动 ωj=ω/ 2 ω—轴角频率
ωj—轴径中心O’ 绕轴承中心旋转角频率,方向同。 一般ωj ≤ ω/ 2
油膜振荡
当转子转速升高到第一临界转速两倍时,而 ωj= ω/2= ωr,此时会产生激 烈振动,振幅突然升高。 ωr —谐振角频率
油液不结会引起运转不稳
03
额定功率1860KW,额定转速72094R/MIN,五块可倾瓦径向轴承
问题:
压缩机曾进水并造成机组功率突然提高,排水后重新开车,振动恶化。
在800ch,振值由4μm增到10μm
在801ch,振值达满量程
但机组轴瓦温度及润滑油温度没变化
01
02
03
04
二频F0振值明显增大,在1/2 F0 处出现低值宽带,但振值不稳定,机组负荷由80%提高到85%时,全频道振值增大,在1/2处振幅增大更明显。
指轴与轴瓦间不能形成稳定油膜来支撑转子运转。
小——不能形成稳定的油膜层,有小的高频的振动,间有低频振动。 可以通过瓦温与回油温度即可判别。 大——主振频率为轴频Fo(与不平衡及平行不对中故障类似)径向振动大。 同处:A)单一方向定向振动(松动是上下的) 振动随负荷增大而增大 降低油温回有好转 频谱图上会出现高信频率成分
“咣!咣!咣!”的声音,滑动轴承停机时间过长,轴承润滑油流失,在启动时的瞬间润滑油未形成一个完整的具有流体压力的油膜,未将轴“托”起来,使轴颈与轴承没有足够的油膜完全隔开,相互接触的缘故。
2
处理:把油温降低50C
反应:振动值下降从160μm降至150μm,主频转为Fo
效果:一切正常
维修:把油过滤除去油中杂质及水分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
117.188 117.188
0
0
1.508
锥箱 I轴转频二倍频
3
180.664 175.782 4.882 2.8%
2.458 锥箱I轴转频的三倍频
4
239.258 234.376 4.882 2.1%
0.908 锥箱I轴转频的四倍频
?3) 趋势分析:
300 250 200 150 100
50 0
2.频(同时也是该轴轴承内圈旋 转频率)及大量谐波,达5000Hz以上,这是典型的部件松动特征。 b) 58.59Hz的振幅已经超过10m/s2;(图7-11)
3.该齿轮箱可能存在两种故障隐患: a)I轴轴承损坏(可能性较大); b)26架底座刚度弱(有松动、裂纹等),有被外力所激起的振动。
实际情况
厂方接到报告后,立即组织检修。开箱后发现1轴 MRC—7126 KRD4S轴承损坏。
(注:这个诊断报告中 将锥箱 I 轴的转动频率 及大量谐波解释成典型 的部件松动特征,实际 是因为 轴承破损 ,造成 I轴定心失效所致)
图5 破裂的 1轴轴承
例2 2005年1月5日,宣化钢铁公司高速线材轧机的 20架出现振
1 、经过初步分析该振 动成份并非轴与齿轮的故 障特征频率(轴转动频率 小于 30HZ ,齿轮啮合频 率大于2000HZ);
2、由于轴承参数不全, 无法计算精确的故障特征 频率,根据估计值计算有 轴承故障可能。
在随后的紧急检修中, 开箱发现输出高速轴联轴 节端滚动轴承内圈断裂。
图4 轴承内圈断裂
例4:
2006年6月27日,安阳钢铁公司高速线材轧制线上的吐丝机Ⅱ轴发 生轴承碎裂事故,被迫停产检修。事后检视在线故障诊断监测系统,发 现早在4月13日时域峰值指标状态监测已经发出红色警报。图1是吐 丝机传动简图。
图7-26 吐丝机传动简图
作为事后调查,欲对所有故障监测指标作一下回顾,以便认识哪些 指标对这类故障信息敏感。所以将各项时域监测指标列举分析如下:
1、时域指标趋势分析
(1) Φ6.5钢吐丝机a35测点峰值趋势图
吐丝机水平测点峰值趋势
400
300
值 峰
200
a35
100
0
月1日 2
2月15日
2月19日
月7日 3
3月11日
28日 13日 17日 3月 日4月期 4月
月6日 5
5月10日
5月26日
月7日 6
6月27日
图2 峰值指标趋势图
滚动轴承故障诊断案例-2
实例1 宣化钢铁公司高速线材轧机26架 实例2 宣化钢铁公司高速线材轧机20架 实例3 唐山钢铁公司高速线材轧机的增速箱 实例4 安阳钢铁公司高速线材轧制线上吐丝机
滚动轴承故障诊断案例-2
例1
2005年1月31日,宣化钢铁公司高速线材轧机的26架出现振动 异常。图1 为高线轧机的传动机构示意图。
建议:及时更换20#锥箱I轴轴承,以免发生故障。
20# 轧机拆检结果
图4
图5
图6
例3
2005 年 12 月 15 日,唐山 钢铁公司高速线材轧机的增速 箱振动异常升高的故障诊断。
根据系统的时域指标监测, 在12月14日发现精轧机增速箱 南侧时域指标连续呈黄色警报, 到12月15日时域指标报警值大 于150变为红色,引起技术人 员的关注,因此进一步对该设 备进行频谱分析。
动异常。图 7-10为高线轧机的传动机构示意图。 查20架的频谱变化过程,见图 1、图2、图3。
图1 12 月28日谱图锥箱 I轴转频 58Hz幅值为 0.447 m/s 2
图2 1月2日频谱图(锥箱Ⅰ轴转动频率58Hz的振幅为2.502 m/s2 图3 1月4日频谱图(锥箱Ⅰ轴转动频率58Hz的振幅为3.664 m/s2
0.537/59.13 =0.91%
100 锥箱I轴转频
2.504
118.26-117.188 =1.072
1.072/118.26 =0.91%
100
锥箱 I 轴转频 的2倍频
从2004年12月28日的频谱图到2005年1月4日的频谱图,可以看到 轴转频的振幅上升了7倍,而且频域图形中出现很多谐波并向上漂起 ,时域图形越来越混乱,呈很强的非对称形态。由此可以判断20#架 锥箱Ⅰ轴轴承出现故障.
图1 高线精轧机齿轮箱传动链图
频谱图分析 0位线
图2 增速箱 12月15日时域振动波形
在图2增速箱时域振动波形图中可以明显看到高频冲击现象,并且相对 0位线偏向上方。
图3 增速箱 12月15日频谱图
时域信号有明显下延结构是冲击类振动的表现,频域含有410HZ成份, 并伴随有高阶倍频成份。
诊断结论
图1 高线轧机的传动机构示意图
1)频谱分析图:
图2 26 架轧机振动频谱图
?2)数据分析:
表 1 数据分析表 (测量转速1100rpm;推导转速1078.2rpm)
序号
故障特征频率( Hz) 测量值 计算值
误差 绝对 相对
振幅 (m/S2)
特征描述
1
58.594 58.594
0
0
3.245
锥箱 I轴转频
数据分析
表1 数据分析表 (测量转速1088rpm;推导转速1078.2rpm)
序 故障信号 计算特征 号 频率 (Hz) 频率 (Hz)
振幅
绝对误差 (Hz)
相对误差 %
可 信 故障部位及 度 % 性质分析
1 58.594 2 117.188
59.13 118.26
2.502
59.13-58.593 =0.537
从图4 中可以看到,Ⅰ轴转频(58.59Hz)及2倍频(117.19Hz)的振 幅也是在1月29日开始上升。
?5)当时的诊断结论与处理建议
1.时域信号特征 a)26#架精轧机在1月29日柱状图(棒图a、b、c,这里未给出)峰值 开始报警,30日报警值达255; b)29日时域信号发生严重畸变,30日时域信号完全紊乱; c)时域趋势图从27日的22.6m/s2急剧上升到30日的245 m/s2(图7-12 ),突变了10倍左右。
26#趋势图
26#趋势图
图3 26架通频振动有效值趋势图
从趋势图上可以看到振动是在1月29日开始上升的,说明故障发 展很快。
?4)特征频率趋势分析
18 16 14 12 10 8 6 4 2 0
58.59 61.04 117.19 175.78 178.22 603.03 605.47
图4 26 架特征频率趋势图