2.3.1 几种常见的晶体结构

合集下载

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向

三种晶体结构的最密排晶面和最密排晶向1.引言1.1 概述晶体是具有长程有序排列的原子、离子或分子的固体物质。

晶体的结构是由最密排列的晶面和晶向构成的。

最密排晶面是指在晶体结构中,原子、离子或分子最紧密地靠近的面,而最密排晶向则指的是在晶体中最紧密地排列的方向。

本文将分析三种不同的晶体结构,探讨它们各自的最密排晶面和最密排晶向。

通过深入研究这些结构的排列方式,可以更好地理解晶体的性质和行为。

第一种晶体结构是立方晶系,也是最简单的晶体结构之一。

它的最密排晶面是(111)晶面,最密排晶向则是[110]晶向。

这些晶面和晶向在晶体中具有紧密的排列,使晶体的结构呈现出高度的对称性。

第二种晶体结构是六方晶系,它相对于立方晶系而言稍复杂一些。

在六方晶系中,最密排晶面是(0001)晶面,最密排晶向是[10-10]晶向。

与立方晶系不同,六方晶系具有六方对称性,呈现出更复杂的晶体结构。

第三种晶体结构是四方晶系,它也是一种常见的晶体结构。

在四方晶系中,最密排晶面是(100)晶面,最密排晶向是[110]晶向。

四方晶系的晶体结构与立方晶系相似,但具有更多的对称性和排列方式。

通过对这三种晶体结构的最密排晶面和最密排晶向进行研究,我们可以更好地理解晶体的基本结构和性质。

这对于材料科学、凝聚态物理和相关领域的研究具有重要意义,同时也有助于开发新材料和改进现有材料的性能。

1.2文章结构文章结构部分的内容可以包括以下几个方面的介绍:1.2 文章结构本文主要分为引言、正文和结论三个部分。

引言部分概述了晶体结构和最密排晶面、最密排晶向的研究背景和重要性,并提出了本文研究的目的和意义。

正文部分分为三个小节,分别介绍了三种晶体结构的最密排晶面和最密排晶向。

每个小节将首先介绍该种晶体结构的一般特点和常见应用,然后详细讨论最密排晶面和最密排晶向的确定方法和规律,并给出具体的实例和数据进行说明。

结论部分对于每种晶体结构的最密排晶面和最密排晶向进行总结和回顾,并指出各种晶体结构最密排晶面和最密排晶向的综合特点和应用前景。

压电材料的晶体结构

压电材料的晶体结构

压电材料的晶体结构1. 引言压电材料是一类具有压电效应的材料,能够在受到外力作用时产生电荷分离,从而产生电压。

压电效应广泛应用于传感器、声学器件、振动能量收集等领域。

压电材料的晶体结构对其压电性能具有重要影响。

本文将对压电材料的晶体结构进行全面详细、完整且深入的介绍。

2. 压电材料的晶体结构分类压电材料的晶体结构可以分为以下几类:2.1 离子型压电材料离子型压电材料的晶体结构由阳离子和阴离子构成。

常见的离子型压电材料有氧化锆(ZrO2)、氧化铅(PbO)等。

这些材料的晶体结构通常为立方晶系或四方晶系,晶格常数较大。

2.2 极化型压电材料极化型压电材料的晶体结构具有非零的极化矢量,其中极化矢量在外电场作用下发生反转。

常见的极化型压电材料有二氧化钛(TiO2)、硅酸铅(PbZrO3)等。

这些材料的晶体结构通常为钙钛矿结构,具有较高的压电性能。

2.3 复合型压电材料复合型压电材料是指由两种或两种以上的晶体结构组成,具有复合的压电性能。

常见的复合型压电材料有铅锆钛酸铅(PZT)、铅镁酸铌(PMN)等。

这些材料的晶体结构由多种晶体相组成,具有较高的压电性能和优良的机械性能。

3. 压电材料的晶体结构特点压电材料的晶体结构具有以下几个特点:3.1 极化方向压电材料的晶体结构中存在一个或多个极化方向,即在外力作用下产生电荷分离的方向。

不同的晶体结构具有不同的极化方向,极化方向的选择对材料的压电性能具有重要影响。

3.2 晶格畸变压电材料的晶体结构中常常存在晶格畸变,即晶格的周期性不完全。

晶格畸变会导致晶体结构的非对称性增强,从而增强材料的压电效应。

3.3 电荷分离压电材料的晶体结构在受到外力作用时,会导致晶体内部电荷的分离,形成电偶极子。

电荷分离使得晶体产生电压,从而实现压电效应。

4. 压电材料的晶体结构与压电性能的关系压电材料的晶体结构对其压电性能具有重要影响。

晶体结构的特点决定了材料的极化方向、晶格畸变和电荷分离等性质,进而影响材料的压电性能。

第二章晶体结构与常见晶体结构类型

第二章晶体结构与常见晶体结构类型
2.2.1 对称性的基本概念
对称就是物体相同部分有规律的重复。
对称不仅针对几何形态,还有更深和更广的含义,它包含了自然 科学、社会科学、文学艺术等各领域的对称性,如战争中的非对称 战略。
晶体对称的特点
1)由于晶体内部都具有格子构造,通过平移,可使相同质点重 复,因此所有的晶体结构都是对称的。
2)晶体的对称受格子构造规律的限制,它遵循“晶体对称定 律” 。
4 平行六面体(parallelepiped)
平行六面体:结点在三维空间的分布构成空间格子。 特点:任意三个相交且不在同一个平面的行列构成一个空间点阵。 根据基矢的不同选择可以得到不同的平行六面体。
计算由基矢构成的平行六面体点阵点数量时 必须考虑: (1)在平行六面体顶角上的点阵点时由8 个相邻平行六面体所共有的; (2)位于平行六面体棱上的点阵点是由4 个相邻平行六面体所共有的; (3)位于平行六面体面上的点阵点时2个 相邻平行六面体所共有的; (4)位于平行六面体内部的点阵点完全属 于该平行六面体。
1 结点(node):点阵中的点。 结点间距:相邻结点间的距离。
空间点阵几何要素(点线面)
2 行列(row) :结点在直线上的排列。 特点:平行的行列间距相等。
3 面网(net)
面网:由结点在平面上分布构成的平面。 特点:任意两个相交行列便可以构成一个面网。
面网密度:面网上单位面积内的结点数目。 面网间距:两个相邻面网间的垂直距离,平行面网间距相等。
三轴定向通式为[uvw],四轴定向通式为[uvtw], 晶向符号的确定步骤:
①选定坐标系,以晶轴x、y、z为坐标轴,轴单位分别是a、b和c; ②通过原点作一直线,使其平行于待标定晶向AB; ③在直线上任取一点P,求出P点在坐标轴上的坐标xa、yb、zc; ④xa/a:yb/b:zc/c=u:v:w应为整数比,去掉比号,以方括号括之,

常见晶体结构

常见晶体结构
(5)FCC和HCP的两种间隙的相对大小相等。(原因见堆垛方式)
常见晶体结构
FCC和HCP ➢配位数是一样的 ➢间隙相对大小是一样的 ➢间隙数和原子数比是一样的 ➢堆垛密度(致密度)是一样的
0.155R<100>
常见晶体结构
三、常见晶体结构及其几何特征
4 常见晶体的堆垛方式 任何晶体都可以看成由任给的{hkl}原子面一层一层堆垛而成的。 主要讨论FCC和HCP的密排面的堆垛次序。
➢这里,“最邻近”是就同种元素的原子 相比较而言,而配位数则是一个原子周 围的各元素的最近邻原子数之和。 ➢ 配位数通常用 CN 表示。例如, CN 12 表示配位数为12。
体心立方结构 CN8常见晶 Nhomakorabea结构四 面 体 配 位4
立方 体配
位 8
常见晶体结构
八 面 体 配 位6
十 四 面 体 配 位 12
体中的原子看成是有一定直径的刚球,则紧密系 数可以用刚球所占空间的体积百分数来表示。
以一个晶胞为例,致密度就等于晶胞中原子所 占体积与晶胞体积之比 即: 致密度 =晶胞中原子所占体积之和/晶胞的体积。
=nv/V n: 晶胞原子数 v:每个原子所占的体积 V: 晶胞的体积
常见晶体结构
三、常见晶体结构及其几何特征
1 常见晶体结构 (1)体心立方结构 简写为BCC 例如:V Nb Ta Cr Mo W (2)面心立方结构 简写为FCC 例如:Al Cu Ag Au (3)密排六方结构 简写为HCP 例如:-Ti -Zr -Hf
常见晶体结构
2 几何特征 2.1 配位数 简写CN 一个原子周围最邻近的原子数 ➢ 纯元素金属 这些最邻近的原子到所论原子的距离是相等的 ➢ 多元素晶体 不同元素的最邻近原子到所论原子的距离不一定相等

盐型 晶型-概念解析以及定义

盐型 晶型-概念解析以及定义

盐型晶型-概述说明以及解释1.引言1.1 概述概述部分是对整篇文章进行一个简要介绍,主要概括了盐型和晶型的相关内容。

在这篇长文中,我们将讨论盐型晶体和晶型晶体的定义、特点以及它们在科学领域和实际应用中的重要性。

我们将深入探讨盐型晶体和晶型晶体的结构和特性,以及它们在材料科学、化学、生物学等领域的广泛应用。

此外,我们还将研究盐型晶体和晶型晶体之间的关系,包括它们的区别、相互转化以及应用比较。

最后,我们将总结盐型晶体和晶型晶体的重要性以及它们在未来的研究中的潜在前景。

通过对这些内容的深入研究,我们可以更好地理解盐型晶体和晶型晶体,并为未来的科学研究和技术应用提供重要的参考。

1.2文章结构2. 正文2.1 盐型2.1.1 定义和特点盐型是一种晶体结构类型,其特点是由离子网状结构构成。

在盐型晶体中,正离子和负离子以离子键的形式相互吸引,形成稳定的晶格结构。

正离子和负离子的比例通常是1:1,所以盐型晶体也被称为化合物型晶体。

2.1.2 盐型晶体结构盐型晶体由正离子和负离子以无序排列的方式组成。

正离子和负离子通过离子键相互连接,共享和交换电子,形成离子化合物的晶体结构。

在盐型晶体中,正负离子形成紧密堆积的晶格,其排列方式和距离取决于离子尺寸和电荷。

2.1.3 盐型晶体的应用盐型晶体在化学、材料科学和生命科学等领域具有广泛的应用。

由于盐型晶体具有稳定的结构和独特的性质,可以用于储能材料、光电器件、催化剂以及药物控释等方面。

盐型晶体还可以作为反应物、催化剂和电解质,在化学反应和电化学过程中具有重要作用。

2.2 晶型2.2.1 定义和特点晶型是指晶体的几何形状和结构特征。

不同的晶体材料具有不同的晶型,晶型决定了晶体的物理和化学性质。

晶体的晶型包括晶体的对称性、晶胞参数和晶体的晶面排布等方面。

2.2.2 晶型的分类晶型可以根据晶格结构和晶体对称性进行分类。

常见的晶型包括立方晶系、四方晶系、正交晶系、单斜晶系、三斜晶系、菱面晶系和六方晶系等。

上海交大材基-第二章晶体结构--复习提纲讲解

上海交大材基-第二章晶体结构--复习提纲讲解

第2章晶体结构提纲:2.1 晶体学基础2.2 金属的晶体结构2.3 合金相结构2.4 离子晶体结构2.5 共价晶体结构2.6 聚合物的晶态结构2.7 非晶态结构学习要求:掌握晶体学基础及典型晶体的晶体结构,了解复杂晶体(包括合金相结构、离子晶体结构,共价晶体的结构,聚合物的晶态结构特点)、准晶态结构、液晶结构和非晶态结构。

1.晶体学基础(包括空间点阵概念、分类以及它与晶体结构的关系;晶胞的划分,晶向指数、晶面指数、六方晶系指数、晶带和晶带定律、晶面间距的确定、极射投影);2.三种典型金属晶体结构(晶胞中的原子数、点阵常数与原子半径、配位数与致密度、堆垛方式、间隙类型与大小);3.合金相结构(固溶体、中间相的概念、分类与特征);4.离子晶体的结构规则及典型晶体结构(AB、AB2、硅酸盐);5、共价晶的结构规则及典型晶体结构体(金刚石)6、聚合物的晶态结构、准晶态结构、液晶结构和非晶态结构。

重点内容1.选取晶胞的原则;Ⅰ) 选取的平行六面体应与宏观晶体具有同样的对称性;Ⅱ)平行六面体内的棱和角相等的数目应最多;Ⅲ)当平行六面体的棱角存在直角时,直角的数目应最多;Ⅳ)在满足上条件,晶胞应具有最小的体积。

2.7个晶系,14种布拉菲空间点阵的特征;(1)简单三斜(2)简单单斜底心单斜(3)简单正交底心正交体心正交面心正交(4)简单六方(5)简单四方体心四方(6)简单菱方(7)简单立方体心立方面心立方3.晶向指数与晶面指数的标注,包括六方体系,重要晶向和晶面需要记忆。

4.晶向指数,晶面指数,晶向族,晶面族,晶带轴,共带面,晶面间距5.8种,即1,2,3,4,6,i,m,。

或C1,C2,C3,C4,C6 ,C i,C s,S4。

微观对称元素6.极射投影与Wulff网;标hkl直角坐系d4⎧⎨⎩微观11213215243滑动面 a,b,c,n,d螺旋轴 2;3,3;4,4,4;6,6,6,6,67.三种典型金属晶体结构的晶体学特点;在金属晶体结构中,最常见的是面心立方(fcc)、体心立方(bcc)和密排六方(hcp)三种典型结构,其中fcc和hcp系密排结构,具有最高的致密度和配位数。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

ch2-2 金属的晶体结构

ch2-2 金属的晶体结构

(4)致密度
0.74 (74%)
(5)空隙半径 ●四面体空隙半径: r四=0.225r原子 ●八面体空隙半径: r八=0.414r原子
(6)配位数 12
3. 密排六方晶格(胞) ( HCP 晶格) 12个金属原子分布在六方体的12个角 上, 在上下底面的中心各分布1个原子, 上下底面之间均匀分布3个原子。 具有这种晶格的金属有镁(Mg)、镉 (Cd)、锌(Zn)、铍(Be)等。
1.晶胞中的原子数 立方结构
Nc N=Ni 2 8
Nf
面心立方结构:n=8×1/8+6×1/2=4 体心立方结构:n=8×1/8+1=2 密排六方结构:n=12×1/6+2×1/2+3=6
2.2 金属的晶体结构
2.点阵常数与原子半径 若把原子看成等径的刚性小球, 其半径r称为原子半径。
对于1g碳,当它为金刚石结构时的体积
(cm3)
当它为石墨结构时的体积
(cm3) 故由金刚石转变为石墨结构时其体积膨胀
E.g. Mn的同素异构体有一为立方结构,其晶格常 数为0.6326nm,ρ为7.26g/cm3,r为0.112nm,问 Mn晶胞中有几个原子,其致密度为多少? Solution:
每单位晶胞内20个原子
单胞原子数 摩尔质量 单胞体积 阿佛伽德罗常数
例题:计算晶格常数为0.2866nm的BCC铁的密度.
对于BCC铁单胞, 单胞原子数= 2
a0 = 0.2866nm = 2.866×10-8cm 摩尔质量 = 55.847g/mol 单胞体积 = a03 = 23.54×10 -24cm3/cell 密度:
plane indices
BCC
FCC

晶体学基础

晶体学基础

晶体学基础一、晶体学的定义和基本概念1.1 晶体学的定义晶体学是研究晶体结构、晶体形态和晶体性质的学科,是物理学、化学和材料科学的重要分支。

它研究的对象是晶体,即具有规则、周期性排列的原子、分子或离子结构的固体物质。

1.2 晶体学的基本概念晶体学有一些基本概念,包括晶体的晶系、晶胞、晶面和晶点等。

1.2.1 晶体的晶系晶体的晶系是指晶体中晶胞的对称性,常见的晶系有立方晶系、四方晶系、正交晶系、单斜晶系、斜方晶系、三斜晶系和三角晶系。

不同的晶系具有不同的对称性和晶胞形状。

1.2.2 晶体的晶胞晶体的晶胞是晶体中具有一定对称性的最小重复单元,它由一组原子、分子或离子构成。

晶胞的形状和大小决定了晶体的外形和晶系。

1.2.3 晶体的晶面晶体的晶面是晶胞的界面,它可以由晶胞的截面所确定。

晶体的晶面具有一定的对称性和形状,不同的晶面反映了晶体内部的原子、分子或离子的排列方式。

1.2.4 晶体的晶点晶体的晶点是晶体中原子、分子或离子的位置,它们通过相对位置的排列而形成晶体的结构。

晶点的排列方式决定了晶体的周期性。

二、晶体学的研究方法2.1 X射线衍射方法X射线衍射是研究晶体结构的重要方法之一。

通过将X射线照射到晶体上,通过对衍射光的观察和分析,可以确定晶体的晶胞参数、原子位置和晶体结构。

2.2 电子显微镜方法电子显微镜是一种利用电子束来观察物体的显微镜。

通过电子显微镜,可以对晶体进行高分辨率的成像,揭示晶体的微观结构和原子排列方式。

2.3 光学显微镜方法光学显微镜是利用光学原理观察物体的显微镜。

通过光学显微镜,可以对晶体的形态、结构和颜色进行观察和分析,从而了解晶体的基本特征。

2.4 计算方法晶体学还利用计算方法对晶体结构进行模拟和计算。

通过计算方法,可以预测晶体的结构、性质和响应等,对晶体学研究起到重要的辅助作用。

三、晶体学的应用领域3.1 材料科学晶体学在材料科学领域有着广泛的应用。

通过研究晶体的结构和性质,可以设计和合成新材料,提高材料的性能和功能。

化学晶体结构

化学晶体结构

化学晶体结构化学晶体是由各类原子、离子或分子按照规则排列而形成的固体材料,其结构的研究对于理解物质的性质和应用具有重要的意义。

本文将介绍化学晶体的结构特点以及常见的晶体结构类型。

一、晶体结构的特点化学晶体的结构具有多种特点,包括周期性、三维有序性、对称性等。

1. 周期性:晶体结构中的原子、离子或分子按照一定的规律周期性地排列。

这种周期性不仅在表面上可见,而且在内部也呈现出规律的重复性。

2. 三维有序性:晶体结构是三维空间中有序排列的。

每个晶体结构可以由一个基本单元重复堆积而成,这个基本单元被称为晶胞,晶胞之间按照一定的方式相互排列。

3. 对称性:晶体结构具有一定的对称性,包括平移对称性、旋转对称性和镜像对称性等。

这种对称性能够确定晶体的空间群,并对晶体的物理性质产生影响。

二、常见的晶体结构类型根据晶胞的形状、元素的空间排列和结构的对称性等因素,晶体结构可以分为不同类型。

以下是几种常见的晶体结构类型:1. 立方晶系:立方晶系是最简单的晶体结构类型,具有最高的对称性。

在立方晶系中,晶胞的边长相等且相互垂直,原子、离子或分子以立方体的形式排列。

2. 六方晶系:六方晶系是由具有六角晶胞的晶体组成。

六方晶系具有四个相等的边长和两个垂直的边长,形状类似于长方体。

3. 正交晶系:正交晶系具有三个垂直的晶胞边长,内部原子、离子或分子按照长方体的形式排列。

正交晶系是最常见的晶体结构类型之一。

4. 斜方晶系:斜方晶系的晶胞具有三个边长和三个角度都不相等的特点。

这种晶体结构通常没有对称面,并且形状不规则。

5. 单斜晶系:单斜晶系的晶胞具有三个边长和三个角度,只有一个角度不等于90度。

这种晶体结构在结构上具有一定的扭曲。

6. 菱面晶系:菱面晶系具有三个等长的晶胞边长和两个不等的角度。

这种结构常见于氧化物等化合物。

以上只是几种常见的晶体结构类型,实际上还有许多其他类型的晶体结构,每种结构都具有不同的特点和应用。

结论化学晶体的结构对于物质的性质和应用具有重要的影响。

碳化硅的晶体结构

碳化硅的晶体结构

碳化硅的晶体结构简介碳化硅(SiC)是一种重要的半导体材料,具有广泛的应用前景。

在研究和工业领域中,了解碳化硅的晶体结构对于理解其性质和优化应用至关重要。

本文将详细介绍碳化硅的晶体结构及其相关特性。

二级标题1:晶体结构的分类三级标题1.1:单晶结构碳化硅可以以单晶形式存在,单晶结构是指其晶体中只含有一种晶体结构。

碳化硅的单晶结构主要有以下几种形式: 1. 三方堆积结构:在这种结构中,碳化硅的晶格呈圆柱状,由六角形环组成。

这种结构的碳化硅被称为4H-SiC。

2. 六方堆积结构:在这种结构中,碳化硅的晶格呈六边形柱状,由六角形环及五角形环组成。

这种结构的碳化硅被称为6H-SiC。

3. 其他形式的单晶结构:除了4H-SiC和6H-SiC,碳化硅还可以形成其他多样的单晶结构,如3C-SiC等。

三级标题1.2:多晶结构碳化硅也可以以多晶形式存在,多晶结构是指晶体中包含多种晶体结构。

碳化硅的多晶结构主要有以下几种形式: 1. β-SiC:这是一种典型的多晶结构,在晶格中包含有4H-SiC和6H-SiC两种单晶结构。

2. α-SiC:这是一种略微不规则的多晶结构,包含有α-SiC、2H-SiC和其他形式的多晶结构。

二级标题2:晶体结构的特性三级标题2.1:硅原子与碳原子的排列在碳化硅的晶体中,硅原子与碳原子以特定的方式排列。

碳逐渐取代硅的位置,形成晶格结构。

这种排列方式使碳化硅具有优异的机械、热学和电学性能。

碳化硅的晶格常数随着晶体结构的不同而有所变化。

晶格常数的变化会直接影响碳化硅的电学和热学性能。

例如,在4H-SiC和6H-SiC中,晶格常数的差异导致了它们的电子迁移率和热导率的差异。

三级标题2.3:晶格缺陷和杂质在碳化硅的晶体结构中,常常存在晶格缺陷和杂质。

晶格缺陷可以影响碳化硅的结构和性能,而杂质可以改变碳化硅的电学和光学特性。

因此,研究和控制晶格缺陷和杂质对于优化碳化硅的性能具有重要意义。

三级标题2.4:生长技术和晶体结构相关性碳化硅的晶体结构与其生长技术密切相关。

原子排列方式不同

原子排列方式不同

原子排列方式不同原子排列方式不同。

1. 非晶态物质的原子排列非晶态物质是一种无定形的物质,其原子排列方式并没有规律可言。

在非晶态物质中,原子之间的排列呈现出无序、不规则的状态。

在固体材料中,非晶态常见于玻璃和某些合金中,其原子排列方式具有较高的自由度。

2. 晶体的原子排列晶体是一种有规则的物质,其原子排列方式呈现出高度的有序性。

晶体的形成取决于原子之间的相互作用力和结构。

晶体的原子排列可以分为以下几种方式:2.1 简单立方格子简单立方格子是一种最简单的晶体原子排列方式。

在简单立方格子中,每个原子与其周围的六个原子相邻,形成一个正方体结构。

这种原子排列方式常见于某些金属和离子晶体中。

2.2 面心立方格子面心立方格子也是一种常见的晶体原子排列方式。

在面心立方格子中,每个原子与其周围的十二个原子相邻,形成一个立方体结构。

这种原子排列方式常见于一些金属和某些离子晶体中。

2.3 体心立方格子体心立方格子是另一种常见的晶体原子排列方式。

在体心立方格子中,每个原子与其周围的八个原子相邻,形成一个立方体结构。

这种原子排列方式常见于一些金属中。

2.4 其他晶体结构除了简单立方格子、面心立方格子和体心立方格子,还存在着许多其他的晶体结构,如六方密排、钻石结构等。

这些晶体结构具有不同的原子排列方式,呈现出不同的化学和物理性质。

总结:原子的排列方式因物质的性质而异。

在非晶态物质中,原子排列方式呈现出无序、不规则的状态;而在晶体中,原子排列方式具有高度的有序性,可分为简单立方格子、面心立方格子、体心立方格子和其他晶体结构。

不同的原子排列方式决定了物质的性质和应用。

第二章 晶体结构(3)-无机单质及化合物晶体结构

第二章 晶体结构(3)-无机单质及化合物晶体结构

CaF2——激光基质材料,在玻璃工业中常作为助熔剂
和晶核剂,在水泥工业中常用作矿化剂;
TiO2——集成光学棱镜材料;
SiO2——光学材料和压电材料。
此外还有层状CdI2和CdCl2型结构,可作固体润滑剂。
AX2型晶体也具有按r+/r-选取结构类型的倾向。 第二章 晶体结构——2.3~4无机单质及化合物晶体结构
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
纤锌矿结构中六方柱晶胞
纤锌矿结构中平行六面体晶胞
资源加工与生物工程学院
(2)纤锌矿结构与热释电性及声电效应
某些纤锌矿型结构,其结构中无对称中心存在,使得晶体具 有热释电性,可产生声电效应。
热释电性是指加热使晶体温度变化时,在与该晶体c轴平行
一、AX型结构, 二、AX2型结构, 三、A2X3型结构, 四、 ABO3型结构, 五、 AB2O4型(尖晶石)结构, 六、无机化合物结构与鲍林规则(Pauling’s rule)
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
资源加工与生物工程学院
一、AX型结构
有CsCl,NaCl,ZnS,NiAs等类型结构,其中:
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
资源加工与生物工程学院
r AX型化合物的结构类型与 的关系 r
结构类型 CsCl型 NaCl型
r r
1.000~0.732 0.732~0.414
实 例(右边数据为
r r 比值)
CsCl 0.91 CsBr 0.84 CsI 0.75 KF 1.00 SrO 0.96 BaO 0.96 RbF 0.89 RbCl 0.82 BaS 0.82 CaO 0.80 CsF 0.80 PbBr 0.76 BaSe 0.75 NaF 0.74 KCl 0.73 SrS 0.73 RbI 0.68 KBr 0.68 BaTe 0.68 SrSe 0.66 CaS 0.62 KI 0.61 SrTe 0.60 MgO 0.59 LiF 0.59 CaSe 0.56 NaCl 0.54 NaBr 0.50 CaTe 0.50 MgS 0.49 NaI 0.44 LiCl 0.43 MgSe 0.41 LiBr 0.40 LiF 0.35 MgTe 0.37 BeO 0.26 BeS 0.20 BeSe 0.18 BeTe 0.17

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年大学_固体物理基础第三版(阎守胜著)课后题答案下载

2023年固体物理基础第三版(阎守胜著)课后题答案下载固体物理基础第三版(阎守胜著)课后答案下载第一章金属自由电子气体模型1.1 模型及基态性质1.1.1 单电子本征态和本征能量1.1.2 基态和基态的能量1.2 自由电子气体的热性质1.2.1 化学势随温度的变化1.2.2 电子比热1.3 泡利顺磁性1.4 电场中的`自由电子1.4.1 准经典模型1.4.2 电子的动力学方程1.4.3 金属的电导率1.5 光学性质1.6 霍尔效应和磁阻1.7 金属的热导率1.8 自由电子气体模型的局限性第二章晶体的结构2.1 晶格2.1.1 布拉维格子2.1.2 原胞2.1.3 配位数2.1.4 几个常见的布拉维格子2.1.5 晶向、晶面和基元的坐标2.2 对称性和布拉维格子的分类2.2.1 点群2.2.2 7个晶系2.2.3 空间群和14个布拉维格子2.2.4 单胞或惯用单胞2.2.5 二维情形2.2.6 点群对称性和晶体的物理性质 2.3 几种常见的晶体结构2.3.1 CsCl结构和立方钙钛矿结构 2.3.2 NaCl和CaF、2结构2.3.3 金刚石和闪锌矿结构2.3.4 六角密堆积结构2.3.5 实例,正交相YBa2Cu307-82.3.6 简单晶格和复式晶格2.4 倒格子2.4.1 概念的引入2.4.2 倒格子是倒易空间中的布拉维格子 2.4.3 倒格矢与晶面2.4.4 倒格子的点群对称性2.5 晶体结构的实验确定2.5.1 X射线衍射2.5.2 电子衍射和中子衍射2.5.3 扫描隧穿显微镜第三章能带论I3.1 布洛赫定理及能带3.1.1 布洛赫定理及证明3.1.2 波矢七的取值与物理意义3.1.3 能带及其图示3.2 弱周期势近似3.2.1 一维情形3.2.2 能隙和布拉格反射3.2.3 复式晶格3.3 紧束缚近似3.3.1 模型及计算3.3.2 万尼尔函数3.4 能带结构的计算3.4.1 近似方法3.4.2 n(K)的对称性3.4.3 n(K)和n的图示3.5 费米面和态密度3.5.1 高布里渊区3.5.2 费米面的构造3.5.3 态密度第四章能带论Ⅱ4.1 电子运动的半经典模型 4.1.1 模型的表述4.1.2 模型合理性的说明4.1.3 有效质量4.1.4 半经典模型的适用范围4.2 恒定电场、磁场作用下电子的运动4.2.1 恒定电场作用下的电子4.2.2 满带不导电4.2.3 近满带中的空穴4.2.4 导体、半导体和绝缘体的能带论解释 4.2.5 恒定磁场作用下电子的准经典运动 4.3 费米面的测量4.3.1 均匀磁场中的自由电子4.3.2 布洛赫电子的轨道量子化4.3.3 德哈斯一范阿尔芬效应4.3.4 回旋共振方法4.4 用光电子谱研究能带结构4.4.1 态密度分布曲线4.4.2 角分辨光电子谱测定n(K)4.5 一些金属元素的能带结构4.5.1 简单金属4.5.2 一价贵金属4.5.3 四价金属和半金属4.5.4 过渡族金属和稀土金属第五章晶格振动5.1 简谐晶体的经典运动5.1.1 简谐近似5.1.2 一维单原子链,声学支 5.1.3 一维双原子链,光学支 5.1.4 三维情形5.2 简谐晶体的量子理论5.2.1 简正坐标5.2.2 声子5.2.3 晶格比热5.2.4 声子态密度5.3 晶格振动谱的实验测定 5.3.1 中子的非弹性散射5.3.2 可见光的非弹性散射 5.4 非简谐效应5.4.1 热膨胀5.4.2 晶格热导率第六章输运现象6.1 玻尔兹曼方程6.2 电导率6.2.1 金属的直流电导率6.2.2 电子和声子的相互作用 6.2.3 电阻率随温度的变化 6.2.4 剩余电阻率6.2.5 近藤效应06.2.6 半导体的电导率6.3 热导率和热电势6.3.1 热导率6.3.2 热电势6.4 霍尔系数和磁阻第七章固体中的原子键合7.1 概述7.1.1 化学键7.1.2 晶体的分类7.1.3 晶体的结合能7.2 共价晶体7.3 离子晶体7.3.1 结合能7.3.2 离子半径7.3.3 部分离子部分共价的晶体7.4 分子晶体、金属及氢键晶体7.4.1 分子晶体7.4.2 量子晶体7.4.3 金属……第八章缺陷第九章无序第十章尺寸第十一章维度第十二章关联固体物理基础第三版(阎守胜著):基本信息阎守胜,1938生出生,1962年毕业于北京大学物理系,现任北京大学物理学院教授,博士生导师,兼任中国物理学会《物理》杂志主编,他长期从事低温物理,低温物理实验技术,高温超导电性物理和介观物理方面的实验研究,并讲授大学生的固体物理学,低温物理学和现代固体物理学等课程。

晶体学基础与材料结构

晶体学基础与材料结构

晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。

因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。

本章将扼要的介绍晶体学的基础知识,并了解材料结构。

1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。

虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。

所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。

在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。

应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。

显然,⽓体和液体都是⾮晶体。

在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。

固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。

玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。

从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。

⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。

⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。

晶体的异向性是因其原⼦的规则排列⽽造成的。

⾮晶体在⼀定条件下可转化为晶体。

例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。

⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。

几种常见晶体结构分析

几种常见晶体结构分析

几 种 常 见 晶 体 结 构 分 析河北省宣化县第一中学栾春武 邮编 075131栾春武:中学高级教师,张家口市中级职称评委会委员。

河北省化学学会会员。

市骨干教师、市优 秀班主任、模范教师、优秀共产党员、劳动模范、县十佳班主任。

联系电话:::一、氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。

阴阳离子在晶体中按一定的规则 排列,使整个晶体不显电性且能量最低。

离子的配位数分析如下:离子数目的计算:在每一个结构单元(晶胞) 处于不同位置的微粒在该单元中所占的份额也有 同,一般的规律是:顶点上的微粒属于该单元中所1份额为1棱上的微粒属于该单元中所占的份额为81上的微粒属于该单元中所占的份额为2,中心位置(嚷里边)的微粒才完全属于该单元,即所占的份额为1Na +周围有6个Cl _,每个C 厂周围有6个Na +,与一个Na +距离最近且相等的C 「围成的空间构型为正八面体。

每个Na +周围与其最近且距离相等的 Na +有12个。

见图1 _ 1 1 1晶胞中平均 CI _个数:8X + 6 X = 4;晶胞中平均 Na +个数:1 + 12 X = 4 8 2 4因此NaCI 的一个晶胞中含有 4个NaCI (4个Na +和4个Cl _)。

2.氯化铯晶体中每个 Cs +周围有8个CI _,每个CI _周围有8个Cs +,与 一个Cs +距离最近且相等的 Cs +有6个。

晶胞中平均 Cs +个数:1;晶胞中平 _ 1 均CI _个数:8X - = 1 8 图3 CsCI 晶体因此CsCI 的一个晶胞中含有 1个CsCI (1个Cs +和1个CI _) 、金刚石、二氧化硅 原子晶体 1.金刚石是一种正四面体的空间网状结构。

每个 个C 原子紧邻,因而整个晶体中无单个分子存在。

结构中有6个碳原子,不在同一个平面上,每个 用,每C — C 键共6个环,因此六元环中的平均 C 原子以共价键与 4由共价键构成的最小环C 原子被12个六元环共1 1C原子数为6X 12 = 2,图4金刚石晶体1平均C — C 键数为6 X 丄=1 6C 原子数:C — C 键键数 =1:2; C 原子数:六元环数=1:22.二氧化硅晶体结构与金刚石相似, C 被Si 代替,C 与C 之间插氧,即为 Si02晶体,贝U Si02晶体 中最小环为12环(6个Si ,6个0), 最小环的平均 Si 原子个数:6 X 土 =寸;平均0原子个数:6X 6 = 1。

第二章2 固体结构 郭锐

第二章2 固体结构 郭锐

影响因素:电负性、电子浓度和原子尺寸
分 类:正常价化合物、电子化合物、与原子尺寸因素相关的 化合物&有序固溶体(超结构)
1. 正常价化合物 指符合原子价规则的化合物,其成分可以用化学式表达,如AB, A2B(或AB2),A3B2型。正常化合物稳定性与组元间的电负性差 有关,一般电负性差愈小,化合物愈不稳定,愈趋于金属键结合; 电负性差愈大,化合物愈稳定,愈趋于离子键结合。如由Mg与
a、间隙相和间隙化合物
原子半径较小的非金属元素如C、H、
N、B等可与金属元素(主要是过渡元素)形成间隙相或间隙化合 物。主要取决于非金属(X)和金属(M)原子半径的比值(rX/rM);当
rX/rM < 0.59,形成具有简单晶体结构的相,称为间隙相。如小
半径元素H和N和过渡金属形成的氢化物和氮化物;rX/rM > 0.59, 形成具有复杂晶体结构的相,称为间隙化合物。如较大尺寸的B 元素与过渡金属形成的硼化物。而碳化物则介于间隙相和间隙 化合物。
(EAA+ EBB)/2 > EAB,则溶质原子呈部分有序或完全有序排列。
短程序参数:用来描述固溶体的微观不均匀性。假定在以溶质
B原子为中心的各同心球分布着A、B组元原子。如果i层球面上 共有ci个原子,其中A原子的平均数目为ni个,若已知该合金成
分中A的原子分数为mA,则此层上A原子数目应为mAci。短程
Pb、Sn、Ge、Si形成的正常价化合物中Mg2Si最稳定,熔点为
1102℃,为典型的离子化合物;而Mg2Pb熔点仅550℃,显示出 典型的金属性质,其电阻值随温度升高而增大。
形成条件:由周期表上相距较远、电负性差值较大的元素组成
IVA(C Si, Ge, Sn, Pb) 即由金属元素与 VA(N, P, As, Sb, Bi) 元素组成。 VIA(O, S, Se, Te)

氯化铍晶体的晶体类型__概述说明以及解释

氯化铍晶体的晶体类型__概述说明以及解释

氯化铍晶体的晶体类型概述说明以及解释1. 引言1.1 概述:本文将围绕着氯化铍晶体的晶体类型进行详细论述。

晶体类型是指晶格结构中原子或离子的排列方式和几何形状,对于材料的物理性质和化学性质具有重要影响。

而氯化铍作为一种重要的化合物,在材料科学领域扮演着关键角色。

1.2 文章结构:本文首先介绍了概述、文章结构和目的,然后进入主题,分析了氯化铍晶体的不同类型以及相关解释。

接下来,阐述了氯化铍晶体的概述、其化学性质和用途简介、物理性质和研究发现、实验制备和表征方法。

最后一部分是对氯化铍晶体的晶体类型做出解释,并讨论了离子半径比、晶格参数以及其他因素对其稳定性和相变的影响。

1.3 目的:本文旨在通过对氯化铍晶体的晶体类型进行探讨与解释,增加对该材料及其应用领域的理解。

深入了解不同类型的氯化铍晶格对材料性质和结构具有的影响,既能为相关领域的研究提供理论依据,也有助于进一步挖掘氯化铍晶体在材料科学和工程中的潜在应用价值。

2. 晶体类型:2.1 定义和背景:晶体是由原子、分子或离子通过一定的空间排列规律而组成的固态物质。

根据晶体内部原子或离子的排列方式,可以将晶体分为不同的晶体类型。

不同类型的晶体具有不同的晶格结构和物理性质。

2.2 六方晶格结构:六方晶格是最简单且常见的晶体结构之一。

在六方晶格中,原子或离子以六边形密堆积形式排列,每个原子或离子周围都环绕着六个邻近原子或离子。

此种排列形成了一个紧密堆积的三维网络。

2.3 其他晶体结构类型:除了六方晶格外,还存在其他各种类型的晶体结构。

例如:- 立方晶格:在立方晶格中,原子或离子以立方形式排列,并且在空间中形成立方对称性。

- 正交晶格:正交晶格具有长方形的基本单元,并且在不同轴上的长度可以不相等。

- 斜方晶格:斜方晶格是正交晶格中两条轴长度相等、两条轴长度不相等的特殊情况。

- 单斜晶格:单斜晶格具有一个二重轴,使得晶体具有了旋转对称性。

- 三斜晶格:三斜晶格是最一般的晶体结构类型,所有的轴长度均不相等,并且各个轴之间的夹角也都不相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档