(完整版)平方根与立方根典型题.doc

合集下载

平方根立方根基础训练及答案

平方根立方根基础训练及答案

平方根立方根基础训练姓名: 速度: 一.判断正误(1) 5是25的算术平方根.( ) (2)4是2的算术平方根.( )(3)6.( ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( ) (5)56-是2536的一个平方根.( ) (6)81的平方根是9.( ) (7)9的平方根是3 ( ) (8)8的立方根是2 ( )(9)-0.027的立方根是-0.3( ) (10)31271±的立方根是 ( ) (11)-9的平方根是-3 ( ) (12)-3是9的平方根 ( )二.选择题1的值为 ( ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( )A .2B .2-C .±2D 11.下列运算正确的是 ( )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 ).A ..13.如果a 是实数,则下列各式中一定有意义的是( ).A B14的大小估计正确的是( ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是_______.2.749±=±的意义是 .3.如果一个数的平方等于a ,这个数就叫做 .4.一个正数的平方根有 个,它们互为 .5. 0的平方根是 ,0的算术平方根是 .6.一个数的平方为719,这个数为 . 7.若x 的一个平方根,则这个数是 .8.比3的算术平方根小2的数是 .9.若a 9-的算术平方根等于6,则a= .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是 .12.已知1y 3=,则x= ,y= . 13. 64的平方根是 ,立方根是 ,算术平方根是 14. =31-,=3216125 ,15.若==m m 则,10 ,若的平方根是,则m m 43= 16.8的立方根与25的平方根之差是17.若==m m m 则,3182=_____________________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是 .20.若a 、b 互为相反数,c 、d互为负倒数,则______3=++cd b a ;21= .22.若13是的一个平方根,则m 的另一个平方根为 .23.比较大小π, 24.满足不等式x <<x 共有 个.25.若实数x 、y0=,则x 与y 的关系是 . 26.-64 .27.(1)3027.0-- =(2)3125216-= (3= (4+= 28.求下列各式中的x .(1) 364125x = (2) 31(23)18x -=b a 0平方根、立方根基础训练答案一.判断正误 (1) 5是25的算术平方根.( √ ) (2)4是2的算术平方根.( × )(3)6.( × ) (4)37是237⎛⎫- ⎪⎝⎭的算术平方根.( √ ) (5)56-是2536的一个平方根.( √ ) (6)81的平方根是9.( × ) (7)9的平方根是3 ( × ) (8)8的立方根是2 ( √ )(9)-0.027的立方根是-0.3( √ ) (10)31271±的立方根是 ( × ) (11)-9的平方根是-3 ( × ) (12)-3是9的平方根 ( √ )二.选择题1的值为 ( B ).(A )6- (B )6 (C )8± (D )362.一个正数的平方根是a ,那么比这个数大1的数的平方根是( D ).(A )2a 1- (B )(C (D )30.1311==,则x 等于( A ).(A )0.0172 (B )0.172 (C )1.72 (D )0.0017242=,则()2m 2+的平方根是( C ).(A )16 (B )16± (C )4± (D )2±5.立方根等于本身的数是 ( C )A .±1 B.1,0 C .±1,0 D .以上都不对6.若一个数的算术平方根等于这个数的立方根,则这个数是( D )A .±1 B.±1,0 C .0 D .0,17.下列说法正确的是( C )A .1的立方根与平方根都是1B .233a a =C .38的平方根是2±D .252128183=+=+8.一个数的算术平方根是a ,则比这个数大2的数是( D )A .2a +B 2C 2D .22a + 9.下列运算中,错误的是( D )①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A .1个 B .2个 C . 3个 D . 4个10.8的立方根是( A )A .2B .2-C .±2D 11.下列运算正确的是 ( D )A .3311--=-B .3333=-C .3311-=-D .3311-=-12 C ).A ..13.如果a 是实数,则下列各式中一定有意义的是( D ).A B14的大小估计正确的是( D ).A .在4~5之间B .在5~6之间C .在6~7之间D .在7~8之间15.若a ,b为实数,且43b a =++,则a b +的值为( D ). A .-1 B .1 C .1或7 D .716.实数a ,b||a b +的结果是( A ). A .2a b + B .b C .b - D .2a b -+三.填空题1.若4-m 没有算术平方根,则m 的取值范围是4m <.2.749±=±的意义是 49的平方根是±7 .3.如果一个数的平方等于a ,这个数就叫做 a 的平方根 .4.一个正数的平方根有 两 个,它们互为 相反数 .5. 0的平方根是 0 ,0的算术平方根是 0 .6.一个数的平方为719,这个数为43± . 7.若x 的一个平方根,则这个数是 3 .8.比3的算术平方根小2的数是2 .9.若a 9-的算术平方根等于6,则a= 45 .10.已知2y x 3=-,且y 的算术平方根是4,则x= .11的平方根是12.已知1y 3=,则x=12,y= 13. 13. 64的平方根是 ±8 ,立方根是 4 ,算术平方根是 8 14. =31- -1,=3216125 56,3833= 32 15.若==m m 则,10 100 ,若的平方根是,则m m 43= ±8 16.8的立方根与25的平方根之差是 7或-317.若==m m m 则,3 ±1,0182=____6___________. 19.已知一个正数的平方根是3x-2和5x+6,则这个数是494. 20.若a 、b 互为相反数,c 、d1=-;213.22.若13是m 的一个平方根,则m的另一个平方根为 -13 .23.比较大小2π, 24.满足不等式x <<x 共有 3 个. 25.互为相反数26. -6或-2 .27.(1)3027.0-- = 0.3 (2)3125216-=65-(323=-(415= 28. (1) 54x = (2) 52x = b a 0。

平方根与立方根练习题及答案

平方根与立方根练习题及答案

平方根与立方根练习题及答案平方根与立方根练习题及答案数学作为一门基础学科,对于我们的日常生活和学习都有着重要的作用。

而在数学中,平方根和立方根是我们常常会遇到的概念。

它们不仅有着实际应用,还能够锻炼我们的逻辑思维和计算能力。

下面,我们将给大家提供一些平方根和立方根的练习题及答案,希望能够帮助大家更好地理解和掌握这两个概念。

一、平方根练习题1. 计算下列各数的平方根:a) 9b) 16c) 25d) 36e) 49答案:a) √9 = 3b) √16 = 4c) √25 = 5d) √36 = 6e) √49 = 72. 计算下列各数的平方根(保留两位小数):a) 2b) 5c) 8d) 10e) 13答案:a) √2 ≈ 1.41b) √5 ≈ 2.24c) √8 ≈ 2.83d) √10 ≈ 3.16e) √13 ≈ 3.613. 判断下列各数是否为完全平方数:a) 16b) 21c) 36d) 42e) 49答案:a) 是b) 否c) 是d) 否e) 是二、立方根练习题1. 计算下列各数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) ∛8 = 2b) ∛27 = 3c) ∛64 = 4d) ∛125 = 5e) ∛216 = 62. 计算下列各数的立方根(保留两位小数):a) 1b) 10c) 25d) 50e) 100答案:a) ∛1 = 1b) ∛10 ≈ 2.15c) ∛25 ≈ 2.92d) ∛50 ≈ 3.68e) ∛100 ≈ 4.643. 判断下列各数是否为完全立方数:a) 8b) 27c) 36d) 49e) 64答案:a) 否b) 是c) 是d) 否e) 是通过以上的练习题,我们可以更好地理解和掌握平方根和立方根的概念。

同时,这些练习题也能够帮助我们提高计算能力和逻辑思维能力。

在实际生活中,平方根和立方根的运用也非常广泛,比如在测量、建模和解决实际问题时,我们常常需要用到这些概念。

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题

算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。

‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。

2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。

被开方数越大,对应的算术平方根也‗‗‗‗‗。

3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。

4、81的算术平方根是‗‗‗‗‗。

16的算术平方根是‗‗‗‗‗。

5、求下列各数的算术平方根。

(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。

8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。

比较大小:215-‗‗‗21。

9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。

10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。

平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。

正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。

平方根_立方根综合练习(二) (1)

平方根_立方根综合练习(二) (1)

第十章 平方根 立方根综合练习(二)一 平方根【例题精选】: 例1:求下列各数的平方根: (1)81 (2)1625(3)214 (4)0.49解:(1)∵()±=9812,∴81的平方根是±9,即:±=±819(2)∵±⎛⎝ ⎫⎭⎪=4516252,∴1625的平方根是±45,即:±=±162545(3)∵2149432942=±⎛⎝ ⎫⎭⎪=,,∴214的平方根是±32,即:±=±=±2149432(4)∵()±=070492..,∴0.49的平方根是±07.,即:±=±04907..例2:下列各数有平方根吗?如果有,求出它的平方根;如果没有,要说明理由。

(1)-64(2)0(3)()-142 (4)102-解:(1)因为-64是负数,所以-64没有平方根。

(2)0有一个平方根,它是0。

(3)∵()-=>1419602,所以()-142有两个平方根,且()±-=±=±14196142(14)因为10110022-=>,所以102-有两个平方根,且±=±⎛⎝ ⎫⎭⎪=±-1011011022例3:求下列各数的算术平方根: (1)25 (2)4964(3)0.81 (4)81解:(1)∵5252=∴25的算术平方根是5即:255=(2)∵7849642⎛⎝ ⎫⎭⎪=,∴4964的算术平方根是78即:496478= (3)∵090812..=∴0.81的算术平方根是0.9即:08109..=(4)∵819=(注:计算81的算术平方根,也就是计算9的算术平方根。

) ∵9的算术平方根是3∴81的算术平方根是3例4:求下列各式的值:(1)144(2)-36121 (3)±00001.(4)214116+解:(1)∵121442=,∴14412=(2)∵611361212⎛⎝ ⎫⎭⎪=,∴-=-36121611 (3)∵()001000012..=,∴±=±00001001..(4)21411694116321474+=+=+= 例5:(1)已知正方形的边长为5cm ,求这个正方形的面积;(2)已知正方形的面积是25cm 2,求这个正方形的边长。

(完整版)平方根、立方根练习题

(完整版)平方根、立方根练习题

平方根、立方根、实数练习题一、选择题1、化简(-3)2 的结果是( )A.3B.-3C.±3 D .9 2.已知正方形的边长为a ,面积为S ,则( ) A.S =a = C.a =.a S =± 3、算术平方根等于它本身的数( )A 、不存在;B 、只有1个;C 、有2个;D 、有无数多个; 4、下列说法正确的是( )A .a 的平方根是±a ;B .a 的算术平方根是a ;C .a 的算术立方根3a ;D .-a 的立方根是-3a . 5、满足-2<x <3的整数x 共有( )A .4个;B .3个;C .2个;D .1个.6、如果a 、b 两数在数轴上的位置如图所示,则()2b a +的算术平方根是( );A 、a+b ;B 、a-b ;C 、b-a ;D 、-a-b ;7、如果-()21x -有平方根,则x 的值是( ) A 、x ≥1;B 、x ≤1;C 、x=1;D 、x ≥0;8a 是正数,如果a 的值扩大100 ) A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9、2008最接近的一个是( ) A .43;B 、44;C 、45;D 、46;10.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( ) A 、n+1;B 、2n +1;C D 11. 以下四个命题①若a 是无理数,②若a 是有理数,是无理数;③若a 是整数,是有理数;④若a ) A.①④ B.②③ C.③D.④12. 当01a <<,下列关系式成立的是( ) a >a >a <a <a . -1. 0b .. 1.a <a > a >a <13. 下列说法中,正确的是( )A.27的立方根是33= B.25-的算术平方根是5C.a 的三次立方根是D.正数a 14. 下列命题中正确的是( )(1)0.027的立方根是0.3;(2)3a 不可能是负数;(3)如果a 是b 的立方根,那么ab ≥0;(4)一个数的平方根与其立方根相同,则这个数是1.A.(1)(3)B.(2)(4)C.(1)(4)D.(3)(4) 15. 下列各式中,不正确的是( )><>5=-16.若a<0,则aa 22等于( )A 、21B 、21- C 、±21 D 、0二、填空题17、0.25的平方根是 ;125的立方根是 ;18.计算:412=___;3833-=___;1.4的绝对值等于 .19.若x 的算术平方根是4,则x=___;若3x =1,则x=___; 20.若2)1(+x -9=0,则x=___;若273x +125=0,则x=___; 21.当x ___时,代数式2x+6的值没有平方根; 22.381264273292531+-+= ; 23.若0|2|1=-++y x ,则x+y= ; 24.若642=x ,则3x =____. 25.立方根是-8的数是___,64的立方根是____。

(完整word版)平方根与立方根典型题大全,推荐文档

(完整word版)平方根与立方根典型题大全,推荐文档

平方根与立方根典型题大全一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.若一个实数的算术平方根等于它的立方根,则这个数是_________;3.算术平方根等于它本身的数有________,立方根等于本身的数有________.4.x ==则 ,若,x x =-=则 。

4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;5.当______m 时,m -3有意义;当______m 时,33-m 有意义;6.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 7.21++a 的最小值是________,此时a 的取值是________.二、选择题8.若2x a =,则( )A.0x >B. 0x ≥C. 0a >D. 0a ≥8.2)3(-的值是( ).A .3-B .3C .9-D .99.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、510.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .311.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定 12.若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤13.若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +14.若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >三、解方程12. 8)12(3-=-x 13.4(x+1)2=8 14. 2(23)2512x x -=-四、解答题15.已知:实数a 、b 满足条件0)2(12=-+-ab a 试求)2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab ΛΛ的值。

平方根和立方根(习题及答案).

平方根和立方根(习题及答案).

平方根和立方根(习题)复习巩固1.下列说法错误的是()A .2(1)1-=B .33(1)1-=-C .2的平方根是2±D .-81的平方根是9± 2.下列说法正确的是()A .-0.064的立方根是0.4B .-9的平方根是3±C .16的立方根是316D .0.01的立方根是0.0000013.下列说法正确的是()A .7是49的算术平方根,即749±=B .7是2)7(-的算术平方根,即2(7)7-=C .7±是49的平方根,即749=±D .7±是49的平方根,即749±=4.若22(3)x =-,则x =_________. 5.0.09=________;30.027=_______;916=_________;2(4)-=_______;33(6)=-_______;2)196(=_______.6.若一个数的平方根是8±,则这个数的立方根是_________.7.若某个数的平方根是a +2与3a -6,则a 的值为________.8.已知一个正数的平方根是a +1与-2a +1,求这个正数.9.81的平方根是_______;210-的算术平方根是_________;8116的平方根是_______;2(2)-的算术平方根是______;25的立方根是_______;2(27)-的立方根是________.10.323(2)2-+=________;39216464-=________;3189-+=__________;2331(4)2-⎛⎫--= ⎪⎝⎭________;3644=12525-+_______;233(3)(3)-+-=________.11.若213a -=,则5a +2的立方根是________.12.若a 的平方根是±4,则a =__________.13.若a 的算术平方根是2,则a =_________.14.若一个正数的算术平方根是m ,则比这个正数大2的数的算术平方根是_________.15.若2m +2的平方根是±2,n +1的平方根是±3,则m +2n 的立方根是________.16.一个正方体木块的体积为1000cm 3,现要把它锯成8块同样大小的正方体小木块,小木块的棱长是________.17.若一个正方形的面积变为原来的4倍,则它的边长变为原来的______倍;若面积变为原来的9倍,则它的边长变为原来的______倍;若面积变为原来的100倍,则它的边长变为原来的______倍;若面积变为原来的n 倍,则它的边长变为原来的______倍.思考小结1.对于任意数a ,2a 一定等于a 吗?2()a 一定等于a 吗?①当a ≥0,2a =________;当a <0,2a =_________,所以2a ____________a .(“一定等于”或“不一定等于”)②对于2()a ,a 作为被开方数,所以a ______0,因为平方和开平方互为_________,所以2()a _______a .(“一定等于”或“不一定等于”)2.若一个直角三角形的两边长分别为3和4,则第三边的长为________.【参考答案】复习巩固1.D2.C3.B4.±35.0.3;0.3;34;4;-6;1966.47.18.这个正数为99.±3;110;±32;2;35;310.4;0;53-;6;25-;011.312.25613.414.22m+15.31716.5cm17.2,3,10,n思考小结1.①a,a-,不一定等于②≥,逆运算,一定等于2.5或7。

平方根立方根解答题60题有答案ok

平方根立方根解答题60题有答案ok

平方根立方根解答题专项练习60题(有答案)1.求下列各式中的x:①(x+1)2+8=72;②3(2x﹣1)2﹣27=0.2.求下列各式中x的值.(1)4x2=9(2)(x﹣1)2=25.3.求x的值:2(x+1)2=984.已知a﹣1与5﹣2a是m的平方根,求a和m的值.5.求正数x的值:3(2x﹣1)2=27.6.一个正数x的平方根是a﹣1和a+3,求x和a的值.7.已知(x+1)2﹣1=24,求x的值.8.已知a+3与2a﹣15是m的两个平方根,求m的值.9.已知x+3与2x﹣15是正数y的两个不同平方根,试求y的值.10.求下列各式中的x的值.(1)x2=25(2)(x﹣3)2=4(3)=3.11.已知x没有平方根,且|x﹣3|=6,求x的值.12.求下列各数的平方根:(2)(3).13.解下列关于x的方程:.14.已知(x﹣1)2+|y﹣5|=0,求的平方根.15.(4x﹣1)2=225.16.计算下列各式中x的值:(1)16x2﹣49=0;(2)(x﹣1)2=100.17.已知2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,求x+2y的平方根.18.﹣a是否有平方根?为什么?19.解方程:x2﹣=0.20.求下列各式中的x:(1)x2=16;(2);(3)x2=15;(4)4x2=18;(5)2x2=10;(6)3x2﹣75=0.21.某数的平方根为和.22.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.23.求值:已知y=x2﹣5,且y的算术平方根是2,求x的值.24.计算:25.小明家的客厅是用正方形地板砖铺成的,面积为21.6㎡,小明数了一下地面所铺的地板砖正好是60块,请你帮小明计算他家地板砖的边长是多少?26.研究下列算式,你会发现有什么规律?==2;==3;==4;==5;…请你找出规律,并用公式表示出来.27.小文房间的面积为10.8m2,房间地面恰巧由120块相同的正方形地砖铺成,每块地砖的边长是多少?28.有一个正方体的集装箱,原体积为216m2,现准备将其扩容用以盛放更多的货物,若要使其体积达到343m2,则它的棱长需增加多少m?29.半径为R的圆的面积恰好是半径为5与半径为2的两个圆的面积之差,求R的值.30.我们来看下面的两个例子:,,和都是9×4的算术平方根,而9×4的算术平方根只有一个,所以.,和都是5×7的算术平方根,(2)运用以上结论,计算:的值.31.求下列各式中的x的值:(1)25x2=36(2)(x+1)3=832.(1)X2﹣7=0(2)X3+27=0(3)(x﹣3)2=64(4)(2x﹣1)3=﹣833.34.一个非零实数的平方根式3a+1和a+11,求这个数及它的立方根.35.求下列各式中的x(2)(x﹣2)3=3.36.求下列各式中的x:(1)4x2﹣24=25(2)(x﹣0.7)3=﹣0.027.37.已知,a是的平方根,b=,c是﹣8的立方根,试求a+b﹣c的值.38.已知M=是m+3的算术平方根,是n﹣2的立方根,试求M+N的算术平方根.39.(1)化简:+﹣(2)求x的值:x2+23=25.40.(1)﹣+;(2)﹣+.41.已知x、y都是实数,且,求:(1)3x﹣y的平方根(2)x+3y的立方根.42.已知:x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.43.已知:一个正方体的棱长是5cm,要再做一个正方体,它的体积是原正方体积的8倍,求新的正方体的棱长.44.我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.45..46.已知立方根为x﹣,求x的平方根.47.小明买了一箱苹果,装苹果的纸箱的尺寸为50×40×30(长度单位为厘米),现小明要将这箱苹果分装在两个大小一样的正方体纸箱内,问这两个正方体纸箱的棱长为多少厘米?(结果精确到1cm)48.计算:+(﹣2)3×.49.已知A=是m+2n的立方根,B=是m+n+3的算术平方根、求m+11n的立方根.50.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?51.学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:39.众人十分惊奇,忙问计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的问题试一试:(1)103=1000,1003=1000000,你能确定59319的立方根是几位数吗?答:_________位数.(2)由59319的个位数是9,你能确定59319的立方根的个位数是几吗?答:_________.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,由此你能确定59319的立方根的十位数是几吗?答:_________.因此59319的立方根是_________.(4)现在换一个数185193,你能按这种方法说出它的立方根吗?答:①它的立方根是_________位数,②它的立方根的个位数是_________,③它的立方根的十位数是_________,④185193的立方根是_________.52.问题:(1);(2);(3).探究1,判断上面各式是否成立.(1)_________(2)_________(3)_________探究2:并猜想=_________.探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展,,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.53.若球的半径为R,则球的体积V与R的关系式为V=πR3.已知一个足球的体积为6280cm3,试计算足球的半径.(π取3.14,精确到0.1)54.若是一个正整数,则满足条件的最小正整数x=_________.55..56.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.57.求下列各数的立方根:(1)(2)(3)﹣(4)58.计算(1)用计算器计算:(结果精确到0.01);(2)计算:;59.用计算器求下列各式的值:(结果精确到0.01)(1)﹣;(2).60.利用计算器计算,把答案填在横线上:(1)=_________;(2)=_________;(3)=_________;(4)=_________;(5)=_________;(6)猜想=_________.(用含n的式子表示)参考答案:1.①∵(x+1)2=64∴x+1=±8∴x=7或﹣9;②∵3(2x﹣1)2=27∴(2x﹣1)2=9∴2x﹣1=±∴x=2或x=﹣1.2.(1)x2=,∴x=±,x=±;(2)x﹣1=±,∴x﹣1=±5,∴x﹣1=5或x﹣1=﹣5,∴x1=6,x2=﹣4.3.原方程可化为:(x+1)2=49,∴x+1=±7,解得:x1=6,x2=﹣84.a﹣1与5﹣2a是同一个数的平方根,a﹣1+5﹣2a=0,解得a=4;∴a﹣1=4﹣1=3∴m=32=9 ∴a的值为4,m的值为95.方程的两边同除以3得:(2x﹣1)2=9,∴2x﹣1=3或2x﹣1=﹣3,∴x1=2,x2=﹣1(不符合题意,舍去),∴x=26.由题意,得:a﹣1+a+3=0,解得a=﹣1;所以正数x的平方根是:2和﹣2,故正数x的值是4 7.移项得:(x+1)2=25,∴x+1=±5,即x=4或﹣68.由题意得:a+3+(2a﹣15)=0,解得:a=4.所以m=(a+3)2=72=49.9.由题意,得x+3+2x﹣15=0,解得x=4,则y=(4+3)2=49.故y的值为4910.(1)x2=25,x=±5;(2)(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,故x=5或1;(3)=3,两边平方得:x=911.由题意得,x为负数,又∵|x﹣3|=6,∴x﹣3=±6,解得:x1=9(不合题意舍去),x2=﹣3.故x=﹣312.(1)∵(±0.7)2=0.49,∴0.49的平方根是±0.7;(2)∵=1,(±1)2=1,∴的平方根是±1;(3)∵(±)2=,∴的平方根是±.13.原方程即:(x﹣2)2=6,则(x﹣2)2=12,x﹣2=±2,则x=2+2或x﹣214.∵(x﹣1)2+|y﹣5|=0,∴x﹣1=0,y﹣5=0,x=1,y=5,∴x+y=1+×5=2,∴的平方根是±15.4x﹣1=±15,则4x﹣1=15,解得x=4;或4x﹣1=﹣15,解得x=﹣.16.(1)16x2﹣49=0,x2=,∵(±)2=,∴x=±;(2)∵(±10)2=100,∴x﹣1=10或x﹣1=﹣10,解得x=11或x=﹣9.故答案为:(1)±,(2)x=11或﹣917.∵2x﹣1的平方根为±3,3x+y﹣1的平方根为±4,∴2x﹣1=9,3x+y﹣1=16,解得:x=5,y=2,∴x+2y=5+4=9,∴x+2y的平方根为±318.当a≤0时,﹣a有平方根;当a>0时,﹣a没有平方根.理由是:∵一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,19.移项得,x2=,所以,x=±20.(1)x2=16,x=±4;(2),x=±;(3)x2=15,x=±;(4)4x2=18,x2=,x=±;(5)2x2=10,x2=5,x=±;(6)3x2﹣75=0,x2=25,x=±521.(1)依题意得+=0,解得a=3;(2)==1,==﹣1.故答案为:(1)3,(2)1、﹣122.∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=23.∵y的算术平方根是2,∴∴y=4;又∵y=x2﹣5∴4=x2﹣5∴x2=9∴x=±3.24.原式=7+5﹣15=﹣3.25.设他家地板砖的边长是a,∵地板砖是正方形,∴一块地板砖的面积是a2,∴60a2=21.6,得,a=0.6(m)26.第n项a n===n+1,即a n=n+127.设每块地砖的边长是x,则120x2=10.8,解得x=0.3,即每块地砖的边长是0.3m28.∵正方体的集装箱,原体积为216m2,∴棱长为=6m,要使其体积达到343m2,则棱长为=7m,∴正方体的棱长需增加=1(m).答:正方体的棱长需增加1m29.根据题意可知:πR2=π(25﹣4),解得R2=21,即R=30.根据题意,有=;(1)根据题意,有=;(2)=×=8×15=120.故答案为:=31.(1)25x2=36两边同时除以25得∴.(2)(x+1)3=8 开立方,得,∴x+1=2解得x=132.(1)∵x2=7,∴x=±;(2)∵x3=﹣27 ∴x=﹣3;(3)∵(x﹣3)2=64 ∴x﹣3=±8 ∴x=11或﹣5;(4)∵(2x﹣1)3=﹣8∴2x﹣1=﹣2 ∴x=﹣.33.原式=()2﹣3=5﹣2﹣3=2﹣.35.(1)由原方程,得2x﹣1=±,∴x=±,∴x1=,x2=;(2)由原方程,得(x﹣2)3=,∴x﹣2=,解得,x=36.(1)4x2﹣24=25,∴4x2=25+24,x2=,x=±;(2)(x﹣0.7)3=﹣0.027,∵(﹣0.3)3=﹣0.027,∴x﹣0.7=﹣0.3,∴x=0.437.∵a是的平方根,b=,c是﹣8的立方根,∴a=±2,b=3,c=﹣2,∴当a=2时,a+b﹣c=7,当a=﹣2时,a+b﹣c=338.解:根据题意,得:解得,所以,所以M+N=4,故M+N算术平方根是239.(1),=5﹣1﹣3,=1;(2)移项、合并得,x2=2,∴x=±40.解:(1)原式=0.5﹣2+2,=0.5;(2)解:原式=0.5﹣+,=﹣41.∵,∴x﹣3=0,8﹣y=0,解得x=3,y=8,∴(1)3x﹣y=3×3﹣8=1,∵1的平方根=±1,∴±=±1;(2)∵x=3,y=8,∴x+3y=3+3×8=27,∵=3,∴=342.∵x﹣2的平方根是±2,∴x﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 把x的值代入解得:y=8,∴x2+y2的算术平方根为10.43.设新正方形的棱长为x cm,则新正方体体积为x3cm3,依题意得:x3=8×53=(2×5)3,∴x=10(cm).答:新正方体的棱长为10cm.44.(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣145.原式==046.∵立方根为x﹣,而的立方根为,∴x﹣=,解得x=4∴4的平方根为±2,∴x的平方根±247.设正方体的棱长为x,由题意知,2x3=50×40×30,解得x≈31,故这两个正方体纸箱的棱长31厘米48.原式=2+4+0.1+8×0.4=4+5.349.由题意,有,解得.∴m+11n=5+22=27,=3,∴m+11n的立方根是350.设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.51.(1)103=1000,1003=1000000,你能确定59319的立方根是2位数.故答案是:2;(2)由59319的个位数是9,你能确定59319的立方根的个位数是9.故答案是9.(3)如果划去59319后面的三位319得到数59,而33=27,43=64,∵103=1000,1003=1000000,1000<185193<1000000,∴185193的立方根是一个两位数,∵185193的最后一位是3,∴它的立方根的个位数是7,185193去掉后3位,得到185,∵53<185<63,∴立方根的十位数是5,则立方根一定是:57.答:①它的立方根是2位数,②它的立方根的个位数是7,③它的立方根的十位数是5,④185193的立方根是57.故答案是:2,7,5,5752.探究1:(1)成立;(2)成立;(3)成立;探究2:5;探究3:=n(n≥2的整数).理由如下:===n;拓展:=n.理由如下:===n53.由已知6280=π•R3∴6280≈×3.14R3,∴R3=1500∴R≈11.3cm54.∵128=27,∴128x=29=27×4时,是一个正整数,即最小的正整数x=4.故答案为:455.﹣1=﹣,∵(﹣)3=﹣,∴=﹣.56.设书的高为xcm,由题意得:(4x)3=216,解得:x=1.5.答:这本书的高度为1.5cm.57.(1)=﹣2;(2)=0.4;(3)﹣=﹣;(4)=958.(1)解:原式=3×1.414213562+0.745355992﹣3.141592654+5×0.2=2.8446404026≈2.84;(2)解:原式=2+0﹣=59.(1)原式≈﹣8.59;(2)原式≈﹣1.66.60.用计算器计算并猜想:(1)=3,(2)=6,(3)=10,(4)=15,(5)=21,(6)1+2+3+…+n=n(n+1).故本题的答案是3,6,10,15,21,n(n+1)平方根立方根解答题60题---- 11。

平方根和立方根专题(比较难)

平方根和立方根专题(比较难)

平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。

规定,$\sqrt{1}=1$。

2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。

3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。

2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。

2)一个正数的立方根有1个,负数有1个立方根。

3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。

4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。

设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。

解得$a=7$,$x=64$。

5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。

由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。

6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。

4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。

7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。

乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。

哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

立方根和平方根试题与答案

立方根和平方根试题与答案

1.2立方根同步练习第1题. 64的立方根是( )A.4- B.4 C.4±D.不存在第2题. 若一个非负数的立方根是它本身,则这个数是( )A.0B.1C.0或1D.不存在第3题的立方根是( )A.4±B.2±C.2第4题. 求下列各数的立方根: (1)10227(2)0.008- (3)0第5题. 求下列各等式中的x :(1)3271250x -= (2)3x =(3)3(2)0.125x -=-第6题. 用计算器求下列各式的值(结果保留4个有效数字)(1(2(3(4)第7题. 用计算器求下列方程的解(结果保留4个有效数字) (1)332520x += (2)318108x -= (3)3(1)500x +=(4)32(31)57x -=第8题. 用计算器求下列各式的值(结果保留4个有效数字)(1 (2)(3)参考答案1. 答案:B2. 答案:C3. 答案:C4. 答案:(1)43(2)0.2- (3)05. 答案:(1)53x =(2)2x =- (3) 1.5x =6. 答案:(1)4.174 (2) 1.493- (3)16.44 (4) 1.913-7. 答案:(1) 4.380x ≈- (2)0.5200x ≈ (3) 6.937x ≈ (4) 1.352x ≈8. 答案:(1)0.4170 (2)39.68- (3)5.54213.2立方根情景再现:夏日的一天,欢欢的爸爸给他买了一对话眉鸟,装在一个很小的笼子里送给了他,欢欢非常高兴,每天早晨,欢欢在话眉鸟婉转的歌声中醒来,可是没几天,话眉鸟却变得无精打采,他赶紧去问爸爸,噢,原来是笼子太小,天气太热,而话眉鸟需要嬉水、玩沙以保持清洁、散发热量.小明在爸爸的建议下,准备动手做一个鸟笼,他设想:(1)如果做一个体积大约为0.125米3的正方体鸟笼,鸟笼的边长约为多少? (2)如果这个正方体鸟笼的体积为0.729立方米呢? 请你来帮他计算,好吗? 一.判断题(1)如果b 是a 的三次幂,那么b 的立方根是a .( ) (2)任何正数都有两个立方根,它们互为相反数.( ) (3)负数没有立方根.( )(4)如果a 是b 的立方根,那么ab ≥0.( ) 二.填空题(1)如果一个数的立方根等于它本身,那么这个数是________. (2)3271-=________, (38)3=________ (3)364的平方根是________.(4)64的立方根是________. 三.选择题(1)如果a 是(-3)2的平方根,那么3a 等于( )A.-3B.-33C.±3D.33或-33(2)若x <0,则332x x 等于( )A.xB.2xC.0D.-2x(3)若a 2=(-5)2,b 3=(-5)3,则a +b 的值为( )A.0B.±10C.0或10D.0或-10(4)如图1:数轴上点A 表示的数为x ,则x 2-13的立方根是( )A.5-13B.-5-13C.2D.-2(5)如果2(x -2)3=643,则x 等于( ) A.21B.27 C.21或27 D.以上答案都不对四.若球的半径为R ,则球的体积V 与R 的关系式为V =34πR 3.已知一个足球的体积为6280 cm 3,试计算足球的半径.(π取3.14,精确到0.1)参考答案 情景再现:解:∵0.125米3=125立方分米,0.729立方米=729立方分米 ∴53=125,93=729∴体积为0.125米3的正方体鸟笼边长为5分米.0.729立方米正方体鸟笼的边长为9分米.一.(1)√ (2)× (3)× (4)√二.(1)0与±1 (2)-318 (3)±4 (4)2 三.(1)D (2)C (3)D (4)D (5)B 四.解:由已知6280=34π·R 3 ∴6280≈34×3.14R 3,∴R 3=1500 ∴R ≈11.3 cm13.2立方根同步练习第1课时(一)基本训练,巩固旧知 1.填空:(1)03= ; (2)13= ; (3)23= ; (4)33= ; (5)43= ; (6)53= ; (7)0.53= ; (8)(-2)3= ;(9)(23-)3= ; 2.填空:(1)因为 3=27,所以27的立方根是 ; (2)因为 3=-27,所以-27的立方根是 ; (3)因为 3=1000,所以1000的立方根是 ; (4)因为 3=-1000,所以-1000的立方根是 ; (5)因为 3=0.027,所以0.027的立方根是 ; (6)因为 3=-0.027,所以-0.027的立方根是 ; (7)因为 3=64125,所以64125的立方根是 ; (8)因为 3=64125-,所以64125-的立方根是 . 3.判断对错:对的画“√”,错的画“×”.(1)1的平方根是1. ( ) (2)1的立方根是1. ( )(3)-1的平方根是-1. ()(4)-1的立方根是-1. ()(5)4的平方根是±2. ()(6)27的立方根是±3. ()(7)18的立方根是12. ()(8)116的算术平方根是14. ()第2课时(一)基本训练,巩固旧知1.填空:如果一个数的平方等于a,那么这个数叫做a的;如果一个数的立方等于a,那么这个数叫做a的 .2.填空:(1)正数的平方根有个,它们;正数的立方根有个,这个立方根是数.(2)0的平方根是;0的立方根是 .(3)负数平方根;负数的立方根有个,这个立方根是数.3.填空:(1)因为3=0.064,所以0.064的立方根是;(2)因为3=-0.064,所以-0.064的立方根是;(3)因为3=8125,所以8125的立方根是;(4)因为3=8125-,所以8125-的立方根是 .4.填空:(1)1000的立方根是;(2)100的平方根是;(3)100的算术平方根是;(4)0.001的立方根是;(5)0.01的平方根是;(6)0.01的算术平方根是 . 5.填空:64的 ,= ;(2)表示64的 ,= ;64的 ,= . 6.计算:= ;= .7.探究题:(1)= ,= ,所以(2)= ,= ,所以(3)由(1)(2).1.1 平方根同步练习第1题. 9的算术平方 ( )A .-3B .3C .± 3D .81第2题. 化简:(-= .第3题. 一块正方形地砖的面积为0.25平方米,则其边长是 米.第4题. 函数y =x 取值范围是 . 第5题. 0.25的平方根是______;2(3)-的平方根是_______. 第6题. 一个正数的两个平方根的和是_____,商是_____.第7题. 下列说法:(1)2(5)-的平方根是5±;(2)2a -没有平方根;(3)非负数a 的平方根是非负数;(4)因为负数没有平方根,所以平方根不可能为负.其中不正确的是( ) A.1个B.2个C.3个D.4个第8题. 求下列各数的平方根:(1)49 (2)0.36 (3)2564第9题. 25的平方根是_______,算术平方根是_______.第10题. _________的平方根是它本身,________的算术平方根是它本身. 第11题. 21x +的算术平方根是2,则x =_________.第12题. 2(7)-的算术平方根是_______;27的算术平方根是_________. 第13题. 求下列各式中的x 的值. (1)2250x -= (2)2(1)81x +=第14题. 若a b ,满足7a =,求ba 的值.参考答案1. 答案:B2.3. 答案:0.5米4. 答案:3x ≤5. 答案:0.5±;3±6. 答案:0;1-7. 答案:C8. 答案:(1)7±;(2)0.6±;(3)58±9. 答案:5±;510. 答案:0;0,111. 答案:3212. 答案:7;713. 答案:(1)5x =± (2)8x =或10x =-14. 答案:4913.1平方根同步练习1.判断正误(1) 5是25的算术平方根. ( ) (2)4是2的算术平方根. ( )(3)6. ( )(4)37是237⎛⎫- ⎪⎝⎭的算术平方根. ( )(5)56-是2536的一个平方根. ( ) (6)81的平方根是9. ( ) (7)平方根等于它本身的数有0和1. ( ) 2.填空题(1)如果一个数的平方等于a ,这个数就叫做 . (2)一个正数的平方根有 个,它们 .(3)一个正数a 的正的平方根用符号 表示,负的平方根用符号 表示,平方根用符号 表示.(4)0的平方根是 ,0的算术平方根是 .(53的 ;925的算术平方根为 . (6)没有算术平方根的数是 .(7)一个数的平方为719,这个数为 .(8)若a=15±,则a2= ;若=0,则a= .若2=9,则a= .(9)一个数x 的平方根为7±,则x= .(10)若x 的一个平方根,则这个数是 . (11)比3的算术平方根小2的数是 .(12)若a 9-的算术平方根等于6,则a= .(13)已知2y x 3=-,且y 的算术平方根是4,则x= .(14的平方根是 .(16)已知1y 3=,则x= ,y= .3.选择题(1)下列各数中,没有平方根的是( )(A )0 (B )()23- (C )23- (D )()3--(2)25的算术平方根是( ).(A )5 (B (C )5- (D )5± (3)9的平方根是( ).(A )3 (B )3- (C )3± (D )81 (4)下列说法中正确的是( ).(A )5的平方根是(B )5的平方根是5(C )5-的平方根是5± (D )2-(5的值为 ( ).(A )6- (B )6 (C )8± (D )36(6)一个正数的平方根是a ,那么比这个数大1的数的平方根是( ).(A )2a 1- (B ) (C (D )(70.1311==,则x 等于( ). (A )0.0172 (B )0.172 (C )1.72 (D )0.00172(82=,则()2m 2+的平方根是( ).(A )16 (B )16± (C )4± (D )2± 4.求下列各数的算术平方根和平方根:(1)0.49 (2)11125 (3)()25- (4)6110(5(6)0 5.求下列各式的值:(1(2(36.求满足下列各式的未知数x :(1)2x 3= (2)2x 0.010-=(3)23x 120-= (4)()24x 125-=7.y 4=+,你能求出x ,y 的值吗?y 10+=,你能求出20032004x y +的值吗?13.1平方根(第1课时)1.填空:(1)因为 2=64,所以64的算术平方根是 ,即= ;(2)因为 2=0.25,所以0.25的算术平方根是 ,即= ;(3)因为 2=1649,所以1649的算术平方根是 ,即= .2.求下列各式的值:= ;= ;= ;= ;= ;= . 3.根据112=121,122=144,132=169,142=196,152=225,162=256,172=289,182=324,192=361,填空并记住下列各式:= ,= ,= ,= ,= ,= ,= ,= ,= .4.辨析题:卓玛认为,因为(-4)2=16,所以16的算术平方根是-4.你认为卓玛的看法对吗?为什么?13.1平方根(第2课时)1.填空:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,记作 .2.填空:(1)因为 2=36,所以36的算术平方根是 ,即= ;(2)因为( )2=964,所以964的算术平方根是 ,即= ;(3)因为 2=0.81,所以0.81的算术平方根是 ,即= ;(4)因为 2=0.572,所以0.572的算术平方根是 ,即= .3.师抽卡片生口答.4.填空:(1)面积为9= ;(2)面积为7≈ (利用计算器求值,精确到0.001).5.用计算器求值:= ;=;≈(精确到0.01).6.选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出下列各式的值:=,=,=,= .13.1平方根(第3课时)1.填空:如果一个的平方等于a,那么这个叫做a的算术平方根,a的算术平方根记作 .2.填空:(1)面积为16的正方形,边长=;(2)面积为15的正方形,边长≈(利用计算器求值,精确到0.01).3.填空:(1)因为1.72=2.89,所以2.89的算术平方根等于,即=;(2)因为1.732=2.9929,所以3的算术平方根约等于,即≈ .4.填空:(1)因为()2=49,所以49的平方根是;(2)因为()2=0,所以0的平方根是;(3)因为()2=1.96,所以1.96的平方根是;5.填表后填空:(1)121的平方根是,121的算术平方根是;(2)0.36的平方根是,0.36的算术平方根是;(3) 的平方根是8和-8,的算术平方根是8;(4) 的平方根是35和35-,的算术平方根是35.6.判断题:对的画“√”,错的画“×”.(1)0的平方根是0;()(2)-25的平方根是-5;()(3)-5的平方是25;()(4)5是25的一个平方根;()(5)25的平方根是5;()(6)25的算术平方根是5;()(7)52的平方根是±5;()(8)(-5)2的算术平方根是-5. ()13.1平方根(第4课时)1.填空:(1)如果一个正数的平方等于a,那么这个正数叫做a的;如果一个数平方等于a,那么这个数叫做a的 .(2)正数有个平方根,它们;0的平方根是;负数.2.填空:(1)因为()2=144,所以144的平方根是;(2)因为()2=0.81,所以0.81的平方根是 .3.填空:(1)169的平方根是,169的算术平方根是;(2)964的平方根是,964的算术平方根是 .4.填空:196的,=;5的,≈(利用计算器求值,精确到0.01).5.填空:3的平方根,也就是3的平方根;(2)有意义,表示3的平方根;(3)有意义,表示3的两个;(4)表示的算术平方根;6.计算下列各式的值:=;(2)=;(3)= .7.完成下面的解题过程:求满足121x2-81=0的x的值.解:由121x2-81=0,得 .因为,所以x是的平方根.即x=, x=.13.1平方根一.填空题 (1)1214的平方根是_________;(2)(-41)2的算术平方根是_________;(3)一个正数的平方根是2a -1与-a +2,则a =_________,这个正数是_________;(4)25的算术平方根是_________;(5)9-2的算术平方根是_________; (6)4的值等于_____,4的平方根为_____;(7)(-4)2的平方根是____,算术平方根是_____.二.选择题 (1)2)2(-的化简结果是( )A.2B.-2C.2或-2D.4(2)9的算术平方根是( )A.±3B.3C.±3D. 3(3)(-11)2的平方根是A.121B.11C.±11D.没有平方根(4)下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6(5)7-2的算术平方根是( ) A.71 B.7 C.41 D.4(6)16的平方根是( )A.±4B.24C.±2D.±2(7)一个数的算术平方根为a ,比这个数大2的数是( )A.a +2B.a -2C.a +2D.a 2+2(8)下列说法正确的是()A.-2是-4的平方根B.2是(-2)2的算术平方根C.(-2)2的平方根是2D.8的平方根是4(9)16的平方根是()A.4B.-4C.±4D.±29 的值是()(10)16A.7B.-1C.1D.-7三、要切一块面积为36 m2的正方形铁板,它的边长应是多少?四、小华和小明在一起做叠纸游戏,小华需要两张面积分别为3平方分米和9平方分米的正方形纸片,小明需要两张面积分别为4平方分米和5平方分米的纸片,他们两人手中都有一张足够大的纸片,很快他们两人各自做出了其中的一张,而另一张却一下子被难住了.(1)他们各自很快做出了哪一张,是如何做出来的?(2)另两个正方形该如何做,你能帮帮他们吗?(3)这几个正方形的边长是有理数还是无理数?参考答案一:(1)±112 (2) 41 (3)-1 9 (4)5 (5)91 (6)2 ±2 (7)±4 4 二:(1)A (2)B (3)C (4)C (5)A (6)A (7)D (8)B (9)D (10)A三、6 m四、(1)很快做出了面积分别为9平方分米和4平方分米的一张.(2)首先确定要做的正方形的边长.3平方分米的正方形的边长为3.5平方分米的正方形的边长为5.分别以1分米为边长作正方形,以其对角线长和1分米为边长作矩形所得矩形的对角线长为3分米.以3分米和2分米为边长作矩形得对角线长为5.(3)显然,面积为4平方分米和9平方分米的正方形边长为有理数,面积为3平方分米和5平方分米的正方形边长为无理数.。

(进阶版)平方根立方根实战练习题

(进阶版)平方根立方根实战练习题

(进阶版)平方根立方根实战练习题
本练题旨在帮助您巩固和应用平方根和立方根的知识。

它包含一系列实战练题,涵盖了不同难度级别的问题。

问题1:平方根计算
请计算以下数的平方根:
1. 16
2. 25
3. 36
4. 49
5. 100
请使用合适的数学运算符计算每个数的平方根,并将结果写在下面的空格处:
1. √16 = ___
2. √25 = ___
3. √36 = ___
4. √49 = ___
5. √100 = ___
问题2:立方根计算
请计算以下数的立方根:
1. 8
2. 27
3. 64
4. 125
5. 216
请使用适当的数学运算符计算每个数的立方根,并将结果写在下面的空格处:
1. ∛8 = ___
2. ∛27 = ___
3. ∛64 = ___
4. ∛125 = ___
5. ∛216 = ___
问题3:混合计算
请计算以下数的平方根和立方根,并将结果填入表格中:
总结
通过完成上述练习题,您可以巩固和应用平方根和立方根的知识。

这些计算技巧在数学和实际生活中都有广泛的应用。

继续练习和掌握这些概念,将帮助您在数学和相关领域取得更好的成绩和表现。

祝愉快学习!。

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题

(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。

正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。

2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。

联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。

3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。

方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析例1.求()-32的平方根。

2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。

例2. 求9的算术平方根。

2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。

93=,而3的算术平方根为3,故9的算术平方根应为3。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

平方根立方根计算题50道

平方根立方根计算题50道

平方根立方根计算题50道一、平方根计算题(25道)1. 计算√(4)- 解析:因为2^2 = 4,所以√(4)=2。

2. 计算√(9)- 解析:由于3^2 = 9,所以√(9)=3。

3. 计算√(16)- 解析:因为4^2 = 16,所以√(16)=4。

4. 计算√(25)- 解析:由于5^2 = 25,所以√(25)=5。

5. 计算√(36)- 解析:因为6^2 = 36,所以√(36)=6。

6. 计算√(49)- 解析:由于7^2 = 49,所以√(49)=7。

7. 计算√(64)- 解析:因为8^2 = 64,所以√(64)=8。

8. 计算√(81)- 解析:由于9^2 = 81,所以√(81)=9。

9. 计算√(100)- 解析:因为10^2 = 100,所以√(100)=10。

10. 计算√(121)- 解析:由于11^2 = 121,所以√(121)=11。

11. 计算√(144)- 解析:因为12^2 = 144,所以√(144)=12。

12. 计算√(169)- 解析:由于13^2 = 169,所以√(169)=13。

13. 计算√(196)- 解析:因为14^2 = 196,所以√(196)=14。

14. 计算√(225)- 解析:由于15^2 = 225,所以√(225)=15。

15. 计算√(0.04)- 解析:因为0.2^2 = 0.04,所以√(0.04)=0.2。

16. 计算√(0.09)- 解析:由于0.3^2 = 0.09,所以√(0.09)=0.3。

17. 计算√(0.16)- 解析:因为0.4^2 = 0.16,所以√(0.16)=0.4。

18. 计算√(0.25)- 解析:由于0.5^2 = 0.25,所以√(0.25)=0.5。

19. 计算√(1frac{9){16}}- 解析:先将带分数化为假分数,1(9)/(16)=(25)/(16),因为((5)/(4))^2=(25)/(16),所以√(1frac{9){16}}=(5)/(4)。

(完整版)平方根立方根测试题(精选)

(完整版)平方根立方根测试题(精选)

一、填空题。

(每空1分,共33分)1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________;8.若一个数的平方根是8±,则这个数的立方根是 ;9.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;10.21++a 的最小值是________,此时a 的取值是________.11.12+x 的算术平方根是2,则x =________.12.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.13、比较大小:2______3; 6_____214、9的算术平方根是 ,3的平方根是 ,0的平方根是 ,2的平方根是 。

15、-1的立方根是 ,1/27的立方根是 ,9的立方根是 。

2)4(-=______,16、2的相反数是_______,整数部分是_______,小数部分是_______,-63 的绝对值是______。

二、选择题。

(每题2分,共20分)17.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 18.2)3(-的值是( ). A .3- B .3 C .9- D .919.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(- D .11.120.计算3825-的结果是( ). A.3 B.7 C.-3 D.-7 21.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a22.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .323.下列说法中不正确的是( )A .9的算术平方根是3B . 4的平方根是±2C .27的立方根是±3D .立方根等于-1的实数是-124.若2m-4与3m-1是同一个数的平方根,则m 的值是( )A .-3B .1C .-3或1D .-125、在下列各数中是无理数的有( )-0.333…,4 ,5,-∏ ,3 ∏ ,3.1415,2.010101…(相邻两个1之间有1个0,)A 、3个B 、4个C 、5个D 、6个26、下列说法正确的是( )A 、有理数只是有限小数B 、无理数是无限小数C 、无限小数是无理数D 、无限小数是分数四、求下列各式的值 (每题3分,共15分)(1)44.1 (2)-027.03 (3) 649 (5)41613+-27、一正方形的面积为10厘米,求以这个正方形的边为半径的圆的面积(保留π)?28、一水管每6秒钟水的流量为3140立方厘米,一分钟后能注满一个半径为多大的圆柱形的容器。

(完整版)平方根和立方根专题(比较难)

(完整版)平方根和立方根专题(比较难)

平方根和立方根【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。

规定,0的算术平方根为 。

(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。

(3)两个公式:(a )2= ( );=2a 2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。

3)立方根的性质:(1)()33a = ,(2)33a = .4).已知某数有两个平方根分别是a +3与2a -15,求这个数.5).已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.6).已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.7)甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1. 乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5. 哪一个解答是正确的?错误的解答错在哪里?为什么?【巩固练习】:1、16的算术平方根是_______,平方根是_______;2、若x 2=16,则5-x 的算术平方根是 ;3、3664-的平方根是 ,算术平方根是 ;4、若4a +1的平方根是±5,则a 2的算术平方根是 ;5、0)2(12=-+-b a ,则b a +的平方根为 .6.第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 平方根立方根的综合应用1、若x 、y 为实数,且20x y y ++-=,则2010()x y的值为 2、若22-a 与|b +2|互为相反数,则(a -b )2=__________3、若2x +1+|y -1|=0,则x 2+y 2=__________4、已知x 、y 为实数,且499+---=x x y .求y x +的值5、已知,,a b c 实数在数轴上的对应点如图所示,化简22()a a b c a b c --+-+-6、已知实数,,a b c 满足2112()022a b b c c -+++-=,求()a b c +的值7、已知51024a a b -+-=+,求,a b 的值8、已知20092010a a a -+-=,求22009490a -+的值9、如果22a a b +=--,且3b a m =+,求m 的值是多少?10、已知120a ab -+-=,1111(1)(1)(2)(2)(1998)(1998)ab a b a b a b +++++++++求的值11、一个三角形的两边长为3,2,则它的第三边长可能是( )A.0.2 B.1 C. 32+ D.512、一个三角形的三边分别是,,a b c ,则2()a b c +-=______________,2()a b c --=________________13、求下列各式中的x(1)(x-2)2-4=0 (2)(x+3)3 +27=0 (3) 271253+x =0 (4) (2x-1)2=2514、已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。

(完整版)平方根与立方根练习题

(完整版)平方根与立方根练习题

平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。

平方根与立方根(人教版)(含答案)

平方根与立方根(人教版)(含答案)
C.2 D.3
答案:C
解题思路:
3.1415926和0.2是有限小数, 是分数, 0.7, 3,
因此它们都是有理数; 为无理数, 且 为无理数.
故选C.
试题难度:三颗星知识点:无理数的概念
16.下列说法正确的是( )
A.一个数的平方根有两个B.有理数与数轴上的点一一对应
C.两个无理数的和不一定是无理数D.绝对值最小的实数不存在
3.平方根等于它本身的数是______,立方根等于它本身的数是______.空格上依次填写正确的是( )
A.±1和0,1和0 B.1和0,±1和0
C.0,±1和0 D.0,±1
答案:
解题思路:
1的平方根是±1,0的平方根是0,所以平方根等于它本身的只有0;
1的立方根是1,0的立方根是0,-1的立方根是-1,
A.8 B.-8
C.8或-8 D.4或-4
答案:C
解题思路:
4的平方根为2或-2,因此这个数为2或-2,2的立方为8,-2的立方为-8.
故选C.
试题难度:三颗星知识点:平方根
10.-27的立方根与 的平方根之和为( )
A.0 B.6
C.0或-6 D.0或6
答案:C
解题思路:
-27的立方根是-3, ,9的平方根为±3,-3与±3的和为0或-6,
A. B.
C. D.
答案:D
解题思路:
因为 , , ,…,
可以发现一个数如果扩大100倍,那么它的算术平方根扩大10倍,
由于20是0.2的100倍,所以 .
故选D.
试题难度:三颗星知识点:平方根
13.若 ,则( )
A.a>1 B.a<1
C.a≧1 D.a≦1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根算术平方根立方根三说
一、平方根、算术平方根、立方根知识点概要
1.平方根、算术平方根的概念与性质
如果一个数 x 的平方等于 a(即x2 a ),那么这个数x 就叫做 a 的平方根(或二次方根),记作:
x a ,这里a是x的平方数,故 a 必是一个非负数即 a 0;例如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0 的平方根只有一个0,即为它本身。

正数 a 的正的平方根叫做 a 的算术平方根,表示为 a a 0 ,例如 16 的算术平方根是16 4 ,从定义中容易发现:算术平方根具有双重非负性:① a 0 ;② a 0 。

2.平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④
取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。


系:①它们之间具有包含关系;
②它们赖以生存的条件相同,即均为非负数;
③ 0 的平方根以及算术平方根均为0。

3. 立方根的定义与性质
如果一个数x 的立方等于a(即x3 a ),那么这个数x 就叫做 a 的立方根(或三次方根),记作:x 3 a 。

立方根的性质:正数的立方根是正数,0 的立方根是0,负数的立方根是负数。

二、解题中常见的错误剖析
第 1 页共7 页
例 1. 求 3 2的平方根。

2
错解:39
3 2的平方根是 3
剖析:一个正数有两个平方根,它们互为相反数,而2
是一个正数,故它的平方根应有39
两个即± 3。

例 2. 求9 的算术平方根。

错解:329
9 的算术平方根是 3
剖析:本题是没有搞清题目表达的意义,错误的认为是求9 的算术平方根,因而导致误解,事实上本题9 就是表示的9 的算术平方根,而整个题目的意义是让求9 的算术平方根的算术平方根。

9 3 ,而3的算术平方根为 3 ,故9 的算术平方根应为 3 。

仿此你能给出64 的平方
根的结果吗?
三、典型例题的探索与解析
例 3. 已知:M a b 2 a8 是a8 算数平方根,N 2 a b 4 b 3 是b 3 立方根,求M N 的平方根。

分析:由算术平方根及立方根的意义可知 a 80
a b 2 2 1
2a b 4 3 2
联立 <1><2> 解方程组,得: a 1, b 3
第 2 页共7 页
代入已知条件得: M 9, N 3 0
所以 M N9 3 0 3 0 3
故 M +N 的平方根是± 3 。

例 4. 已知x 2 y 3,3 4x 3y 2 ,求 x y 的算术平方根与立方根。

分析:由已知得 x 2 y 32 9 1
4 x 3y 2 3
2
8
联立 <1><2> 解方程组,得:x 1, y 4
所以 x y 5
因而 x y 的算术平方根与立方根分别为5、3 5 。

例 5. 若一个正数 a 的两个平方根分别为x 1 和 x 3 ,求 a 2005的值。

分析:由平方根的性质:一个正数有两个平方根,它们互为相反数,因而可构造方程x 1 x 3 0,解得 x 2
从而 a x 1 2 2
2 1 1
a 2005 1
评注:本题利用平方根的性质,构造一元一次方程,先求出其平方根,再进一步求出a,解法可谓简捷明了,令人耳目一新。

事实上方程思想是初中阶段一种重要的数学思想方法,应引起同学们
高度重视。

例 6. 比较a、1
、a 的大小。

a
第 3 页共7 页
分析:要比较 a、1
、 a 的大小,必须搞清 a 的取值范围,由
1
知 a 0 ,由 a 知a 0 ,
综合得 a 0 a a
,此时仍无法比较,为此可将 a 的取值分别为① 0 a 1;② a 1;③ a 1
三种情况进行讨论,各个击破。


0 a 时,取
a 001. 1
则1
100、 a 01. ,显然有 1 a a a a
当 a 1 时, a 1
a a
当 a 1 时,仿①取特殊值可得 a
1 a
a
评注:本题的解答用到了分类讨论的思想,所谓分类思想就是根据问题的需要将涉及的对象按一定的标准分成若干类,然后再逐类讨论求解的思维方法。

分类要遵循三条原则:
①标准统一;
②任何两种情况不重复;
③每一种情况都不能遗漏。

例 7. 已知有理数 a 满足2004a a 2005 a ,求 a20042的值。

分析:观察表达式 a 2005 中的隐含条件,被开方数应为非负数即 a 20050 ,亦即a2005,故原已知式可化为:
2004 a a 2005 a
a 20052004
2
a 20052004
2
a 20042005
例 8. 若 x、 y、 m 适合关系式
3x 5y 3 m2x 3y m x 2005 y2005 x y ,试求m的值。

分析:观察等式的右边的两个表达式的被开方数互为相反数,再结合只有非负数才有算术平方根,第 4 页共7 页
因而必有 x 2005 y0
所以 x y2005 。

原已知式可化为:
3x 5y 3 m 2 x 3y m0
3 x y 2 y 3 m 2 x y y m 0⋯ (* )
再变形得:
将x y 2005代入(*)得:
6015 2 y 3 m4010 y m0
由算术平方根的非负性,再根据“若干个非负数的和为零,则其中每一个非负数均为零”,可得
6015 2y 3 m0
4010 y m0
解这个方程组得:m2008
评注:抓住题目中隐含的——算术平方根具有双重非负性:① a 0;②a0 是解决此类问题的关键。

例 9. 有理数 a、 b、 c 在数轴对应点如下图所示,化简 b a 2 b c a c 2。

分析:根据数轴上的点表示的数,右边的总比左边的数大可知:
b a 0, b
c 0, a c0
再结合算术平方根应为非负数,因而
原式 b a b c a c2b 2c 2a
评注:本例借助以形(数轴)辅数(确定 b a, b c, a c 的符号)的方法解题的,是数形结合思想的具体体现。

所谓数形结合思想——就是在已知条件下建立数和形之间的关系,以形辅数,以数定形,利用数、形的相互关系来解题的思维方法。

第 5 页共7 页
例10. 借助计算器计算下列各题:
( 1)11 2
(2)1111 22
(3)111111 222
(4)11111111 2222
仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?
分析:利用计算器计算得:
(1)11 2 3
(2)1111 22 33
(3)111111 222 333
(4)11111111 2222 3333
观察上述各式的结果,容易猜想其中的规律为:2n 个1与n个2组成的数的差的算术平方根等于 n 个 3 组成的数。

即11⋯ 1 22 ⋯ 2 33⋯ 3
2n个 1n个 2n个 3
解释理由如下:
第 6 页共7 页
11⋯ 1 22⋯ 2
2 n个 1 n个 2
11⋯ 1 10 n 11⋯ 1 22⋯ 2
n个 1 n 个1 n个 2
11⋯ 1 10 n 11⋯ 1
n个 1 n 个1
11⋯ 1 10n 1
n个 1
9 11⋯ 12
n个 1
33⋯ 3
n个 3
第7 页共7 页。

相关文档
最新文档