数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

合集下载

最新人教版七年级数学上册 4.3.3 余角和补角教案 新人教版(1)

最新人教版七年级数学上册 4.3.3 余角和补角教案 新人教版(1)

余角与补角一、教学目标1.知识与技能:(1)在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质;(2)能够运用余角和补角的定义及性质解决相关问题;2.过程与方法:进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3.情感态度与价值观:体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

二、教学重点与难点重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点;难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点;三、教学方法采用情境式和问题式教学模式,结合多媒体和学案实施教学.四、学法指导通过动口、动手、动脑等活动,主动探索、发现问题、互动合作、归纳概括、解决问题. 五、教学准备教师:多媒体课件、学案、直尺等;学生:预习课题内容;六、教学过程1、创设情境、进入新课:【多媒体展示】问题 1.比萨斜塔位于意大利比萨城的奇迹广场上,是建筑史上的一座重要建筑,目前已知其倾斜角达到12°,你能求出斜塔与底面所成的锐角的度数吗?教师运用多媒体进行展示,引导学生求出锐角的度数。

教师总结出余角的概念:互为余角(互余):如果两个角的和是90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。

即若∠1+∠2=90°,则∠1是∠2的余角(或∠2是∠1的余角)【多媒体展示】针对问题:1.已知∠A的度数为30度,则∠A的余角为_____度.2.已知某角是其余角的2倍,则此角为________度.学生自主作答,教师订正答案。

【多媒体展示】若比萨斜塔与底面所成的最小锐角度数为78°,请问斜塔与底面所成的最大钝角的度数是多少?想一想!教师运用多媒体进行展示,引导学生求出锐角的度数。

教师总结出补角的概念:互为补角(互补):如果两个角的和是180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。

人教版七年级数学上册4.3.3余角与补角教学设计

人教版七年级数学上册4.3.3余角与补角教学设计
2.结合生活实际,找出自家的剪刀、直角三角板等物品,测量并计算其中角度的余角与补角。
"将课堂知识运用到生活中,你会发现数学其实无处不在。请同学们找一找家里的剪刀、直角三角板等物品,测量并计算它们的角度关系,感受余角与补角的实际应用。"
3.小组合作,共同探讨以下问题:在几何图形中,如何利用余角与补角的性质解决角度问题?
(二)过程与方法
1.培养学生的观察能力,让学生在实际情境中发现余角与补角的存在,理解其概念。
2.培养学生的逻辑思维能力,让学生通过分析、归纳、总结余角与补角的性质,形成系统的知识体系。
3.培养学生的动手操作能力,让学生在实际操作中掌握余角与补角的计算方法,提高解决问题的能力。
4.培养学生的团队协作能力,让学生在小组合作中学会倾听、交流、互助,共同完成学习任务。
(二)讲授新知
1.教师详细讲解余角与补角的定义,并通过图示和实际例子加深学生理解。
“余角指的是两个角的和等于180度的两个角,而补角指的是两个角的和等于90度的两个角。请看这个图示,角A和角B就是一对余角,因为它们的和等于180度;角C和角D就是一对补角,因为它们的和等于90度。”
2.引导学生总结余角与补角的性质,如:同角(等角)的余角相等,同角(等角)的补角相等。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热爱,激发学生的学习积极性。
2.培养学生勇于探究、积极思考的学习态度,让学生在解决问题的过程中体验成功的喜悦。
3.培养学生的空间观念,让学生认识到几何图形在实际生活中的应用,提高学生的应用意识。
4.培养学生遵守数学规则,严谨、踏实的科学态度,为学生今后的学习打下坚实基础。
“同学们,你们发现没有,如果一个图形中有两个角是余角或补角,它们之间有一些什么共同的特点呢?”

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《 余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4章第3节的内容,这部分内容是在学生已经掌握了角的分类、垂线的性质等基础知识的基础上进行学习的。

本节课主要让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

教材通过生动的图片和实际问题引出余角和补角的概念,让学生在解决实际问题的过程中感受数学与生活的联系。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于角的分类和垂线的性质等基础知识有一定的掌握。

但是,对于抽象的数学概念,学生的理解可能还需要通过具体的实例来辅助。

因此,在教学过程中,教师需要结合学生的实际情况,通过生活实例和直观的图形,引导学生理解余角和补角的概念,并能够运用到实际问题中。

三. 教学目标1.知识与技能目标:让学生了解余角和补角的概念,能够判断两个角之间的关系,并能够运用余角和补角解决一些实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.情感态度与价值观目标:让学生感受数学与生活的联系,增强学生对数学的兴趣。

四. 教学重难点1.教学重点:余角和补角的概念,判断两个角之间的关系。

2.教学难点:理解余角和补角的概念,能够运用到实际问题中。

五. 教学方法1.情境教学法:通过生活实例和直观的图形,引导学生理解余角和补角的概念。

2.活动教学法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。

3.启发式教学法:引导学生通过自主学习、合作学习,发现和总结余角和补角的概念和性质。

六. 教学准备1.教学素材:准备一些生活实例和图形,用于引导学生理解和运用余角和补角的概念。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的内容。

例如,展示一幅画,画中有两条直线相交,问学生这两条直线之间的角是什么关系。

人教版七年级数学上册:4.3.3余角和补角优秀教学案例

人教版七年级数学上册:4.3.3余角和补角优秀教学案例
1.将学生分成若干小组,每组选定一个研究主题,如探究余角和补角的性质;
2.各小组通过讨论、实验、观察等方法,共同完成研究任务,并展示研究成果;
3.鼓励小组成员相互评价、交流心得,培养学生的合作意识和团队精神。
(四)反思与评价
1.教师在课后及时反思教学过程,关注学生的学习效果,针对存在的问题调整教学策略;
4.小组合作:组织学生进行小组讨论,共同探究余角和补角的性质及应用;
5.总结提升:对本节课的主要内容进行总结,强调余角和补角在实际问题中的应用价值;
6.课后作业:布置适量作业,巩固学生对余角和补角的理解和运用。
五、教学反思
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对余角和补角的掌握程度。同时,关注学生在学习过程中的情感态度与价值观的培养,确保学生全面发展。
2.组织学生进行自我评价,让学生认识到自己的优点和不足,明确改进方向;
3.鼓励学生积极参与课堂评价,提出宝贵意见和建议,促进教学相长。
四、教学内容与过程
(一)导入新课
1.利用校园里的景观,如花园、篮球场等,引导学生关注角度的概念,提出问题:“你能找出校园里的一些特殊角度吗?”;
2.学生思考后,教师揭示本节课的主题:“今天我们将学习一种特殊的角——余角和补角。”
(二)讲授新知
1.教师通过多媒体展示余角和补角的定义,让学生直观地理解这两个概念;
2.讲解余角和补角的性质,如互为余角的两个角的和为90度,互为补角的两个角的和为180度;
3.举例说明如何运用余角和补角的性质解决实际问题,如在几何图形中找出所有的互为余角或补角的对。
(三)学生小组讨论
1.教师提出讨论任务:“请你们小组合作,探究余角和补角的性质,并尝试找出生活中的实例。”;

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)【学习目标】在具体的现实情境中,认识一个角的余角和补角;【重点难点】正确求出一个角的余角和补角。

【导学指导】一、知识链接思考:(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

二、自主探究1.互为余角的定义:思考:(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=2图 1 90° 1 2 图 2 1 2 A O B 图 41 2 图 3 C O DO E D C B A2.互为补角的定义:问题1:以上定义中的“互为”是什么意思?问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?3.新知应用:例1:若一个角的补角等于它的余角4倍,求这个角的度数。

例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上(1)写出∠COE 的余角,∠AOE 的补角;(2)找出图中一对相等的角,并说明理由;【课堂练习】:课本141页练习1、2、3;【要点归纳】:【拓展训练】:1、一个角的余角比它的补角的31还少 20,求这个角的度数。

2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。

【总结反思】:。

人教版七年级数学上册4.3.3余角和补角优秀教学案例

人教版七年级数学上册4.3.3余角和补角优秀教学案例
3.小组代表发言:选定小组代表进行发言,分享小组的研究成果,其他小组成员可进行补充和评价。
(四)总结归纳
1.学生总结:引导学生对自己所学知识进行总结,加深他们对余角和补角概念及求解方法的理解。
2.教师补充:教师对学生的总结进行点评和补充,确保学生对知识点的掌握。
3.总结规律:引导学生发现余角和补角的内在联系,总结规律,提高他们的数学思维能力。
2.回顾旧知识:复习与余角和补角相关的基础知识,如角度的分类、互余和互补的概念等,为新课的学习做好铺垫。
3.设疑导入:提出一个与本节课内容相关的问题,如:“如果两个角的和为90度,它们是什么关系?”引起学生的思考,激发他们的探究欲望。
(二)讲授新知
1.余角和补角的定义:通过多媒体展示生动有趣的动画,直观地展示余角和补角的概念,引导学生理解和掌握。
在案例中,我以生活实际为例,引导学生认识余角和补角,通过观察、思考、交流、探讨等环节,让学生在实践中掌握求解余角和补角的方法。同时,注重培养学生的团队协作能力和思维品质,使他们在掌握知识的同时,提高自身综合素质。
在教学过程中,我充分尊重学生的主体地位,关注学生的个体差异,引导他们主动探究、积极思考,从而激发他们的学习兴趣,提高课堂效果。此外,我还设计了一系列具有针对性的练习题,帮助学生巩固所学知识,提高解决问题的能力。
在教学过程中,我注重关注每一个学生的个体差异,引导他们主动参与课堂,发挥自己的潜能。同时,通过设置富有挑战性的问题,激发学生的思维,让他们在解决问题的过程中感受到数学的乐趣。此外,我还注重培养学生的团队协作精神,使他们学会与他人共同分析问题、探讨问题,从而提高解决问题的能力。
在教学过程中,我始终坚持以学生为本,关注学生的情感需求,尊重他们的个性。通过创设轻松、愉快的学习氛围,使学生在愉悦的情感状态下学习,从而提高他们的学习兴趣。同时,我还注重培养学生的综合素质,使他们不仅具备扎实的数学知识,还能运用所学知识解决实际问题。

人教版七年级上册数学4.3.3余角、补角的概念与性质教案

人教版七年级上册数学4.3.3余角、补角的概念与性质教案

4.3.3 余角和补角教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角.(2).掌握余角和补角的性质.2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.教学重点:认识角的互余、互补关系及其性质.教学难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备:三角板、多媒体设备.教学过程一、引入新课1.(图片引入)比萨斜塔,从数学角度来看比萨斜塔最奇特的地方在于本应于地面垂直的塔身变倾斜了,图中的∠1与∠2有什么关系?二、新授1. 在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?学生活动:独立思考,小组交流,得出结论:都是90°.板书:如果两个角的和等于90°,那么这两个角叫做互为余角,其中一个角是另一个角的余角。

2.观察图形,类比互余,得出互补的概念.如果两个角的和等于180°,那么这两个角叫做互为补角,其中一个角是另一个角的补角。

3.问题讨论问题1:以上定义中的“互为”是什么意思?问题2:若∠1+∠2+∠3 =180°,那么∠1、∠2、∠3互为补角吗?问题3:互为余角、互为补角的两个角是否一定有公共顶点?小结:互余、互补是两角之间的数量关系,只与他们的度数和有关,与位置无关。

互余、互补概念中的角是成对出现的。

三、试炼考验试炼1::余角与补角.试炼2:例1:一个角的补角是它的余角的4倍,求这个角的余角是多少度?教师活动:巡视学生完成练习的情况,并给予适当的评价.四、余角与补角的性质.1. 利用三角尺,只画一条线,画出∠1的余角同角的余角相等∵∠1+∠2=90°,∠1+∠3=90°∴∠2=∠32. 已知∠1与∠2互为余角,∠3与∠4互为余角,若∠1=∠3则∠2与∠4是什么关系?等角的余角相等∵∠1与∠2互余,∠3与∠4互余又∵∠1=∠3∴∠2=∠4 同(等)角的余角相等3. 师生互动:类比余角的性质,得出补角的性质:同(等)角的补角相等五、挑战大挑战1.如图,直线CD经过点O,且OC平分∠AOB。

人教版数学七年级上册4.3.3余角和补角优秀教学案例

人教版数学七年级上册4.3.3余角和补角优秀教学案例
3.鼓励学生进行自我评价,培养他们的自我管理能力。例如,让学生定期进行自我评价,反思自己的学习进展和问题,并制定相应的改进计划。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入余角和补角的概念。展示一幅道路上的交通标志图,让学生观察并解释直角、锐角和钝角在实际生活中的应用。引导学生思考:除了这些角之外,还有哪些角是我们需要了解的呢?
(四)总结归纳
1.引导学生进行总结归纳,巩固所学知识。例如,让学生回顾并总结余角和补角的概念、性质以及求解方法。
2.讲解求解余角和补角的方法。引导学生运用数余角和补角。
(三)学生小组讨论
1.设计小组讨论活动,鼓励学生相互交流、分享想法。例如,将学生分成小组,让他们讨论并解释余角和补角的概念,以及它们在实际问题中的应用。
2.组织小组合作项目,让学生共同解决实际问题。例如,让学生分组设计一个游戏,其中一个游戏目标是找到特定角度的余角和补角。
3.利用多媒体手段,如PPT、视频等,为学生提供丰富的学习资源。通过展示不同形状的物体,让学生观察并找出它们的余角和补角。
(二)问题导向
1.引导学生提出问题,激发他们的探究欲望。例如,鼓励学生思考:余角和补角之间有什么关系?它们在实际问题中有何作用?
2.设计具有挑战性的数学题目,让学生独立思考并解决问题。例如,给出一个实际问题:一个三角形的两个角分别是30度和60度,求第三个角的度数。引导学生运用余角和补角的知识解决问题。
(二)过程与方法
1.通过生活实例引入余角和补角的概念,让学生感受数学与生活的紧密联系。
2.采用启发式教学,引导学生主动探索、发现和解决问题。
3.设计小组讨论、互动交流等活动,激发学生的学习兴趣,提高他们的合作意识和团队精神。

人教版七年级数学上册4.3.3余角和补角方位角教学设计

人教版七年级数学上册4.3.3余角和补角方位角教学设计
2.强调方位角在实际生活中的重要性,提醒学生注意观察和运用。
3.鼓励学生在课后继续探索余角和补角的知识,为下一节课的学习打下基础。
五、作业布置
为了巩固本节课所学的余角和补角知识,以及方位角的运用,特此布置以下作业:
1.完成课本第98页的练习题第1、2、3题,要求学生在理解题意的基础上,独立完成,注意解题过程的规范性和逻辑性。
3.小组间进行交流,分享各自的学习心得和经验,促进学生之间的相互学习。
(四)课堂练习
1.设计具有层次性的练习题,让学生在课堂上巩固所学知识。
2.对学生的练习情况进行实时反馈,针对错误和困难进行个别辅导。
3.鼓励学生分享解题思路,提高他们的解题能力和表达能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结余角和补角的概念、性质以及应用。
4.强化小组合作交流,培养学生团队协作精神。在教学过程中,教师应引导学生相互讨论、共同探究,发挥集体智慧,解决学习中的问题。
5.注重情感态度的培养,激发学生学习兴趣。在教学过程中,教师应以鼓励为主,关注学生的个体差异,及时给予学生积极的评价,增强他们学习数学的信心。
6.教学方法多样化,提高课堂教学效果。结合讲授法、讨论法、演示法等多种教学方法,提高学生对知识点的理解和记忆。
2.培养学生的团队协作精神,让学生在合作交流中体验到学习的乐趣。
3.通过余角和补角在实际生活中的应用,让学生认识到数学知识的重要性,增强学习的责任感。
一、导入
1.复习上节课的知识点,引入本节课的学习内容。
2.提问:“在生活中,你们有见过余角和补角的现象吗?它们有什么作用?”
二、新课讲解
1.讲解余角和补角的概念,引导学生理解并掌握其性质。
3.持续关注学生的学习进步,为下一节课的教学做好准备。

人教版七年级数学上册:4.3.3余角和补角教学设计

人教版七年级数学上册:4.3.3余角和补角教学设计
针对以上学情分析,教师应采取有针对性的教学策略,如利用生活实例引入余角和补角的概念,激发学生兴趣;设计不同难度的问题,引导学生运用所学知识解决问题,提高学生的空间想象和逻辑思维能力;加强小组合作交流,培养学生的沟通能力和团队意识。通过因材施教,使学生在轻松愉快的氛围中掌握余角和补角的知识。
三、教学重难点和教学设想
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养良好的学习习惯和自主学习能力。
2.培养学生团队合作意识,让学生在合作交流中学会倾听、尊重他人意见,提高沟通能力。
3.通过解决实际问题,让学生体会数学在生活中的广泛应用,增强数学与现实生活的联系,提高数学素养。
4.培养学生勇于探索、积极思考的精神,树立正确的价值观,认识到数学学习的价值。
在课堂教学中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维能力,提高学生的综合素质,为学生的全面发展奠定基础。
二、学情分析
针对人教版七年级数学上册4.3.3余角和补角这一章节,学生已经掌握了角的分类、角的度量等基本知识,具备了一定的角的概念和性质基础。但在理解余角和补角的抽象概念及运用方面,可能存在一定的困难。因此,在教学过程中,教师需关注以下几点:
作业要求:
1.字迹工整,卷面整洁。
2.认真思考,独立完成。
3.提交作业时,需附上作业反思和计划。
1.教师出示一块三角板,提问:“同学们,你们知道三角板上的角有什么特点吗?”
2.学生观察后回答:“三角板上有两个锐角和一个直角。”
3.教师进一步提问:“那么,如果我们把三角板上的直角去掉,剩下的两个锐角有什么关系呢?”
4.学生通过观察和思考,发现剩下的两个锐角的和等于90度,从而引出余角的概念。

人教版数学七年级上册4.3.3《余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计

人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。

通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。

二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。

但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。

此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。

三. 教学目标1.了解余角和补角的概念,掌握它们的性质。

2.能够运用余角和补角解决一些实际问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.余角和补角的概念。

2.余角和补角的性质。

3.运用余角和补角解决实际问题。

五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。

六. 教学准备1.PPT课件。

2.相关练习题。

3.黑板、粉笔。

七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。

呈现(10分钟)1.讲解余角和补角的概念。

2.通过实例展示余角和补角的性质。

操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。

巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。

拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。

家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。

板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。

教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》

七年级(人教版)集体备课教案:4.3.3 《余角和补角》一. 教材分析《余角和补角》这一节的内容,主要出现在人教版七年级数学教科书第三章“角”的一部分。

本节内容是在学生已经掌握了角度制、角的分类等基础知识之后进行教授的,旨在让学生了解和掌握余角和补角的概念,并能够运用它们解决一些实际问题。

教材通过例题和练习,帮助学生理解和掌握余角和补角的性质和计算方法,为学生今后的数学学习打下坚实的基础。

二. 学情分析在进入七年级之前,学生已经学习了一定的数学知识,包括基本的算术、几何等。

但是,对于余角和补角这样的概念,他们可能是第一次接触,因此需要通过具体的例子和实际操作来理解和掌握。

此外,学生的学习习惯和思维方式也会影响他们对这一节内容的理解和掌握。

三. 教学目标通过本节课的学习,学生能够理解余角和补角的概念,掌握它们的性质和计算方法,并能够运用它们解决一些实际问题。

同时,通过小组合作和讨论,培养学生的合作意识和解决问题的能力。

四. 教学重难点本节课的重点是让学生理解和掌握余角和补角的概念,以及它们的性质和计算方法。

难点在于如何让学生理解和接受余角和补角这样的抽象概念,并能够灵活运用它们解决实际问题。

五. 教学方法在本节课的教学过程中,我将采用讲授法、例题解析法、小组合作法、问题解决法等教学方法。

通过讲解和示例,让学生理解和掌握余角和补角的概念;通过小组合作和讨论,培养学生的合作意识和解决问题的能力;通过问题解决,激发学生的学习兴趣和思考能力。

六. 教学准备为了保证课堂教学的顺利进行,我需要准备一些教学工具和材料,包括PPT、教科书、黑板、粉笔等。

此外,我还需要准备一些例题和练习题,以便学生在课堂上进行操练和巩固。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出余角和补角的概念。

例如,可以出一个实际问题:在平面直角坐标系中,点A(2,3)和点B(-3,2)之间的线段AB的倾斜角是多少?通过解决这个问题,让学生初步接触和理解余角和补角的概念。

七年级上册(人教版)集体备课教案:4.3.3余角和补角(合集5篇)

七年级上册(人教版)集体备课教案:4.3.3余角和补角(合集5篇)

七年级上册(人教版)集体备课教案:4.3.3余角和补角(合集5篇)第一篇:七年级上册(人教版)集体备课教案:4.3.3 余角和补角4.3.3 余角和补角教学目标:1、在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质;了解方位角,能确定具体物体的方位。

2、进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。

3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。

重点:认识角的互余、互补关系及其性质,确定方位难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质教学过程一、引入新课1、提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.2.提出问题.(1)观察方格如下图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:操作多媒体,移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、讲授新课1、余角与补角.教师活动:指导学生阅读课本有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2、巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价.3、余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1、如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE 有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2、认识方位角.提出问题:课本例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3、知识拓展提出问题:、小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1、本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2、了解方位角,学会确定物体运动的方向五、作业布置第二篇:七年级上数学教案:4.3.3余角和补角4.3.3余角和补角教学内容课本第142页至第144页.教学目标1.知识与技能(1)在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质.(2)了解方位角,能确定具体物体的方位. 2.过程与方法进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.情感态度与价值观体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益.重、难点与关键1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•并能用规范的语言描述性质是难点.3.关键:了解推理的意义和推理过程,是掌握性质的关键.教具准备三角板、量角器教学过程一、引入新课 1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°. 2.提出问题.(1)观察方格如右图中的两个角,你能猜想∠1+∠2等于多少度?(2)如果∠1=144°,∠2=36°,那么∠1+∠2=?学生活动:观察思考,小组交流,得出结论:都是180°.教师活动:移动∠2,使∠1、∠2顶点和一边重合,•引导学生观察∠1,∠2的另一条边,观察到两角的另一条边成一条直线,验证学生的结论.二、新授 1.余角与补角.教师活动:指导学生阅读课本第142页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角). 2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第143页练习.学生活动:独立完成,并由三个学生进行板书,•其余同学进行小组交流并进行小组评价.教师活动:巡视学生完成练习的情况,并给予适当的评价. 3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察的结果:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.教师活动:移动图中各角,对学生观察的结果进行验证,进一步提出问题:∠2•与∠4有什么关系?学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由,并讲解课本例1.例1.如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.学生活动:完成课本分析中的问题,并在教师指导下,用自己的语言描述余角、补角的性质.板书:等角的补角相等.师生互动:类比补角的性质,得出余角的性质.板书:等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?4(3)∠ADF与∠BDE有什么关系?为什么?学生活动:独立完成练习,并进行小组交流和自我评价.教师活动:巡视学生完成练习情况,并进行个别指导,然后进行讲评.2.认识方位角.提出问题:课本第143页例2.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.图3.4-10(1)教师活动:讲解方位角和表示方位的射线,•在学生完成题中的问题后操作画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.课本第145页习题4.3:复习巩固8、9,综合运用12、13. 2.选用课时作业设计.课时作业设计一、填空题.1.52°24′的余角是_______,补角是________.OAB2.如右图已知∠AOB,在图中画出它的余角是_______,补角是_______.3.射线OA方向是东北方向,射线OB方向是北偏西60°,则∠AOB度数是______.二、选择题.4.一个角比它的余角大25°,那么这个角的补角是().A.67.5° B.22.5° C.57.5° D.122.5° 5.和北偏西40°的射线OA组成平角AOB的射线OB是().A.南偏东40°的射线B.南偏东50°的射线 C.南偏东60°的射线 D.东南方向的射线三、解答题.6.如右图,E、D、F在同一条直线上,∠CDE=90°,∠(1)哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?1=∠2. CAB12EDF第三篇:数学北师大版七年级上册4.3.3 余角和补角4.3.3 余角和补角学习目标:1、在具体的现实情境中,认识一个角的余角和补角。

人教版七年级数学上册:4_3_3余角和补角教案

人教版七年级数学上册:4_3_3余角和补角教案

余角和补角【教学目标】1.掌握余角、补角的定义;2.掌握余角、补角的性质及应用。

【教学重点】余角、补角的性质及应用【教学难点】余角、补角的性质及应用【教学设计】一、课前设计1.预习任务(1)假如两个角的和等于90°(直角),就说这两个角互为余角;假如两个角的和等于180°(平角),就说这两个角互为补角。

(2)同角(或等角)的余角相等;同角(或等角)的补角相等。

2.预习自测(1)已知∠A=65°,则∠A 的补角等于_____度,余角等于_____度知识点:补角和余角数学思想:解题过程:解:∠A 的补角等于18065115︒-︒=︒;余角等于906525︒-︒=︒。

思路点拨:由余角、补角的定义解答。

答案:115,25︒︒(2)α∠的余角与补角之间有何数量关系?知识点:补角和余角数学思想:解题过程:解:α∠的余角+90度=α∠的补角思路点拨:由余角、补角的定义知,它们相差90度答案:α∠的余角+90度=α∠的补角(3)如下图,∠ACB=90°,∠1=∠B ,∠2=∠A .则以下说法错误的选项是( )A .∠A 和∠B 不是互为余角;B .∠1和∠2是互为余角;C .∠2与∠B 是互为余角;D .∠1与∠A 是互为余角知识点:补角和余角数学思想:解题过程:解:因为∠ACB=90°,∠1=∠B ,∠2=∠A .所以∠1+∠2=90°,∠B+∠2=90°∠1+∠A=90°故A 错误思路点拨:两个角的和为90度,这两个角互余答案:A(4)以下语句准确的有:(填序号)①两条射线组成的图形叫做角;②直线是一个平角;③若∠AOB=2∠BOC ,则射线OC 是∠AOB 的平分线;④∠AOB 和∠BOA 是同一个角;⑤若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余知识点:补角和余角数学思想:解题过程:解:具有公共端点的两条射线组成的图形叫做角,故①错误;直线没有顶点,故②错误;若∠AOB=2∠BOC ,没有说射线OC 在∠AOB 的内部,故③错误;④∠AOB 和∠BOA 是同一个角,准确;⑤若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余,错误,因为互余针对两个角来说思路点拨:根据定义解答答案:④二、课堂设计1.知识回顾(1)表达直角、平角的概念(2)画出直角、平角的图形2.问题探究(1)探究一:探究互为余角、互为补角活动①学生自主学习课本内容师问:什么叫互为余角?什么叫互为补角?学生举手抢答师问:若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余,这种说法对吗?为什么?学生举手抢答总结:假如两个角的和等于90°(直角),就说这两个角互为余角;假如两个角的和等于180°(平角),就说这两个角互为补角.互余、互补针对两个角来说,只与数量相关,与位置无关。

人教版七年级数学上册4.3.3余角和补角教学设计

人教版七年级数学上册4.3.3余角和补角教学设计
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结余角和补角的定义、性质和求解方法。
2.学生分享自己在学习过程中的收获和感悟,提出学习中遇到的问题。
3.教师针对学生的问题进行解答,强调重点和难点。
4.布置课后作业,要求学生在课后巩固所学知识,并预习下一节课的内容。
五、作业布置
为了巩固本节课所学的余角和补角知识,特布置以下作业:
(三)情感态度与价值观
1.培养学生对待数学问题的积极态度,使他们认识到数学在生活中的重要性。
2.激作意识,使他们学会与他人共同解决问题,相互学习,共同进步。
4.培养学生严谨、踏实的学术作风,使他们认识到学习数学需要勤奋和思考。
二、学情分析
例如:一个等腰三角形的底角为50度,求顶角的度数。
4.创新思维题:探讨余角和补角在几何图形中的巧妙应用,设计一道有趣的几何题目,并给出解答。
5.课后阅读:阅读教材相关内容,预习下一节课将要学习的知识,了解直角三角形的性质。
作业要求:
1.请同学们认真完成作业,保持字迹工整,以便于教师批改和反馈。
2.遇到问题及时与同学或老师沟通交流,共同解决,提高自己的解题能力。
2.自主探究,理解概念:
给学生提供丰富的学习资源,如教材、教辅、网络资料等,让他们在自主学习的基础上,通过小组讨论、师生互动等方式,掌握余角和补角的定义及其性质。
3.实践操作,巩固知识:
设计不同难度的练习题,让学生在实践中巩固所学知识。注重分层教学,针对不同学生的需求,提供适当的指导,帮助他们突破难点。
a.基础练习:求给定角的余角和补角;
b.提高练习:运用余角和补角的性质解决实际问题;
c.拓展练习:探讨余角和补角在几何图形中的应用。

人教版七年级上册数学教案设计 第四章4.3.3余角和补角(一)—— 余角和补角 教案设计

人教版七年级上册数学教案设计 第四章4.3.3余角和补角(一)—— 余角和补角  教案设计

4.3.3余角和补角(一)——余角和补角教学目标知识与技能了解余角和补角的定义和性质,并能熟练应用过程与方法经历观察、操作、推理、交流等活动,发展学生想象能力,培养学生推理能力和有条理的表达能力。

情感、态度与价值观:体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。

教学重点:理解互余、互补等概念并熟练应用教学难点:互余、互补等概念和性质教学过程:一、情景导入问题1说明一副三角板中各个角的度数。

问题2 在一个三角板中,非直角的两角有何关系?二、自学指导(6分钟),完成137页思考.1.熟读课本P1372. 就说这两个角互为余角,就说这两个角互为补角。

3.补角的性质:余角的性质:设计意图:通过学生自学,归纳出互为余角、互为补角的定义,加深对互余、互补的理解。

注意事项:(1)钝角没有余角。

(2)余角与补角只与度数有关,与位置无关。

余角与补角指两个角的关系,是成对出现的,单独一个角是不能称其为余角或补角。

三、自学检测(8分钟)1.完成138页练习。

2.如果∠1+∠2=180°,则∠1与∠2互为,若∠1与∠2互为补角,则∠1+∠2=3..如果∠1+∠2=90°,则∠1与∠2互为,若∠1与∠2互为余角,则∠1+∠2=4.如果∠1与∠2互为余角,∠3+∠4=90°,且∠1=∠4,则∠3与∠2关系是,依据是。

5.∠1+∠2=180°,∠3+∠4=180°,且∠1=∠4,则∠3与∠2关系是,依据是。

6.一个角的补角加上30°后等于这个角的余角的3倍,求这个角的余角及补角。

设计意图:(1)对基础知识要熟练运用。

(2)题6,构造方程解此类题。

教师可巡视对所发现的问题可以加以指正。

四、合作探究(10分钟)1.如果∠1与∠2互为余角,∠3与∠2互为补角,则∠1与∠3的关系是。

2.一个锐角的余角是角,一个钝角的补角是角,一个钝角的一半是角3.一个角的补角比它的余角大度。

人教版七年级上册数学学案:4.3.3余角和补角

人教版七年级上册数学学案:4.3.3余角和补角

4.3.3余角和补角【学习目标】1、在具体情境中了解余角与补角.懂得等角的余角相等,等角的补角相等.并能运用这些性质解决一些简单的实际问题;2、经历观察、操作、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;3、理解方位角的意义,掌握方位角的判别与应用.【自主学习】(阅读教材P137-138,自主完成下列题目,然后师友互查,互助完善)1、知识1:余角与补角的概念(预习课文P137,完成下列填空)⑴如果两个角的和等于(),我们就说这两个角,简称互余。

即其中一个角是另一个角的.例如:如果∠1+∠2=90°,那么∠1与∠2 ,∠1是的余角,∠2也是∠1的⑵如果两个角的和等于度 ( ),就说这两个角,简称互补。

即其中一个角是另一个角的.例如:如果∠1与∠2互补,那么∠1+∠2= ,知识点2:余角与补角的性质如果两个角相等,那么它们的余角(或补角)也。

简称:同角(等角)的余角;同角(等角)的补角。

知识3:方位角1.海上,缉私艇发现离它500海里处停着一艘可疑船只(如图),立即赶往检查.现请你确定缉私艇的航向,画出示意图.缉私艇舰长如何向总部描述缉私艇的航向呢?可疑船在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的运动方向.用表示方向:一般以正北、正南为基准,用向东或向西旋转的表示方向,表示方向的角叫做注意:1.方位角通常用“北偏东多少度”、“北偏西多少度”或者“南偏东多少度”、“南偏西多少度”来表示.2.“北偏东45度”、“北偏西45度"、“南偏东45度”、“南偏西45度”,分别称为“东北方向”、“西北方向”,“东南方向”、“西南方向”。

【尝试应用】1.填表:n(n<90°),则它的余角为,补角为;2.一个角为3.如果1290,1390∠+∠=︒∠+∠=,则32∠∠与的关系是 ,理由是 ;4. 如图,点O 在直线AB 上,∠AOC=53°17′,则∠BOC 的度数= 。

人教版数学七年级上册教案-4.3.3余角和补角

人教版数学七年级上册教案-4.3.3余角和补角
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90度,而补角是指两个角的和等于180度。它们在几何证明和计算中有着重要作用。
2.案例分析:接下来,我们来看一个具体的案例。通过分析一个直角三角形的三个角,展示余角和补角在实际中的应用,以及它们如何帮助我们解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角和补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
另外,在学生小组讨论环节,我发现有些小组的讨论并不够深入,可能是因为我对他们的引导不够到位。因此,我决定在下次的讨论中,提供更具针对性的问题和案例,引导学生进行更深入的思考和交流。
此外,我也注意到,在实践活动中有部分学生显得比较被动,可能是因为他们对实验操作不够自信。为了提高学生的参与度,我打算在接下来的课程中,多设计一些简单易懂、操作性强的实验活动,鼓励学生们积极参与,提高他们的动手能力。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学七年级上册教案-4.3.3余角和补角
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学:4.3.3《余角和补角(1)》学案(人教版七年级上)
【学习目标】在具体的现实情境中,认识一个角的余角和补角;文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。

Word 精品文档,可以编辑修改,放心下载
【重点难点】正确求出一个角的余角和补角。

【导学指导】
一、知识链接
思考:
(1) 在一副三角板中同一块三角板的两个锐角和等于多少度?
(2) 如图1,已知∠1=61°,∠2=29°,那么∠1+∠2= 。

(3) 如 图 2,已知点A 、O 、B 在一直线上 ,∠COD=90°,那么∠1+∠2= 。

二、自主探究
1.互为余角的定义:
思考:
(1) 如图3,已知∠1=62°,∠2=118°,那么 ∠1+∠2=
(2) 如图4,A 、O 、B 在同一直线上,∠1+∠2=
2
图 1 90° 1 2 图 2 1 2 1
2 C O D
O E
D C B A
2.互为补角的定义:
问题1:以上定义中的“互为”是什么意思?
问题2:若 ∠1+∠2 +∠3 =180° ,那么∠1、∠2、∠3互为补角吗?
3.新知应用:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。

例2:如图,∠AOC =∠COB =90°,∠DOE =90°,A 、O 、B 三点在一直线上
(1)写出∠COE 的余角,∠AOE 的补角;
(2)找出图中一对相等的角,并说明理由;
【课堂练习】:
课本141页练习1、2、3;
【要点归纳】:
【拓展训练】:
1、一个角的余角比它的补角的
3
1还少︒20,求这个角的度数。

2、若α∠和β∠互余,且α∠:β∠=7:2,求α∠、β∠的度数。

【总结反思】:
可以编辑的试卷(可以删除)。

相关文档
最新文档