【初一上册数学《数轴》知识点】七年级上册数学知识点
七年级上册数学基础知识点
![七年级上册数学基础知识点](https://img.taocdn.com/s3/m/20ee3ee9fbb069dc5022aaea998fcc22bcd143c2.png)
·有理数加减法法那么·——口诀记法 先定符号,再计算, 同号相加不变号;异号相加“大〞减“小〞, 符号跟着“大数〞跑; 减负加正不混淆。
一、【正负数】有理数分类: _____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
二、【数轴】 规定了 、 、 直线,叫数轴 三、【相反数】概念像2和-2、--2.5这样,只有 不同两个数叫做互为相反数。
0相反数是 。
一般地:假设a 为任一有理数,那么a 相反数为-a 相反数相关性质:1、相反数几何意义:表示互为相反数两个点〔除0外〕分别在原点O 两边,并且到原点间隔 相等。
2、互为相反数两个数,和为0。
四、【肯定值】一般地,数轴上表示数a 点与原点 叫做数a 肯定值,记作∣a ∣. 一个正数肯定值是 ; 一个负数肯定值是它 ; 0肯定值是 . 五、【有理数运算】 ·有理数加减法法那么 ·有理数乘除法法那么·求几个一样因数积运算,叫做有理数乘方。
即:a n =aa …a(有n 个a)五、【科学记数法】【近似数及有效数字】·把一个大于10数记成a ×10n 形式(其中a 是整数数位只有 一位数),叫做科学记数法.·对一个近似数,从左边第一个不是0数字起,到末位数字止, 全部数字都称为这个近似数有效数字。
一、【本章根本概念】★☆▲π 1、______和______统称整式。
①单项式:由 与 乘积..式子称为单项式。
单独 一个数或一个字母也是单项式,如a ,5。
·单项式系数:单式项里 叫做单项式 系数。
·单项式次数:单项式中 叫 做单项式次数。
②多项式:几个 和叫做多项式。
其中,每个单项式叫做多项式 ,不含字母项叫做 。
有理数【任一个有理数a 绝值】用式子表示就是:〔1〕当a 是正数〔即a >0〕时,∣a ∣= ;〔2〕当a 是负数〔即a <0〕时,∣a ∣= ; 〔3〕当a =0时,∣a ∣= . ·有理数乘除法法那么·同号得 ,异号得 ,肯定值相乘〔除〕。
【 七年级数学 上册】1.2.2《数轴》教案1
![【 七年级数学 上册】1.2.2《数轴》教案1](https://img.taocdn.com/s3/m/17e05562a22d7375a417866fb84ae45c3a35c247.png)
【七年级数学上册】1.2.2《数轴》教案1一. 教材分析《数轴》是七年级数学上册第一章第二节的内容,主要是让学生了解数轴的定义、特点和基本操作。
通过学习数轴,学生能够更好地理解实数的大小关系,提高解决问题的能力。
本节课的内容是学生学习更复杂数学知识的基础,具有重要的意义。
二. 学情分析七年级的学生已经掌握了实数的基本概念,对数学符号有一定的了解。
但他们对数轴的认识还比较模糊,需要通过实例和操作来加深理解。
此外,学生可能对数轴的应用场景感到陌生,需要教师通过实际例子来引导学生。
三. 教学目标1.知识与技能:使学生了解数轴的定义、特点和基本操作,能够运用数轴比较实数的大小。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生数形结合的思维方式。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学探究的精神。
四. 教学重难点1.数轴的定义和特点。
2.数轴上实数的大小比较。
3.数轴在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入数轴的概念,让学生感受数轴的实际意义。
2.动手操作法:让学生亲自动手画数轴,加深对数轴的理解。
3.讨论法:分组讨论数轴上的问题,培养学生的合作能力。
4.引导发现法:引导学生发现数轴的性质和规律,提高学生的思维能力。
六. 教学准备1.教具:数轴模型、实数卡片、黑板。
2.教学素材:与数轴相关的例题和练习题。
3.教学课件:数轴的图片、动画等。
七. 教学过程1.导入(5分钟)利用生活实例,如火车站在数轴上的位置,引出数轴的概念。
让学生思考:如何在数轴上表示这个实例?2.呈现(10分钟)展示数轴的图片和动画,引导学生观察数轴的定义和特点。
同时,介绍数轴上的基本操作,如正方向、原点、单位长度等。
3.操练(10分钟)让学生分组讨论,互相画出数轴,并比较实数的大小。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示与数轴相关的练习题,让学生独立完成。
教师选取部分题目进行讲解,巩固数轴的知识。
七年级上册数学知识点思维导图+考点梳理【最新版】
![七年级上册数学知识点思维导图+考点梳理【最新版】](https://img.taocdn.com/s3/m/dc06b1d810a6f524cdbf85a8.png)
七年级上册数学知识点思维导图+考点梳理有理数1.大于0的数叫做正数。
2.在正数前面加上负号“-”的数叫做负数。
3.整数和分数统称为有理数。
4.人们通常用一条直线上的点表示数,这条直线叫做数轴。
5.在直线上任取一个点表示数0,这个点叫做原点。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7. 由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
9.两个负数,绝对值大的反而小。
10.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得这个数。
11.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
12.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
13.有理数减法法则:减去一个数,等于加上这个数的相反数。
14.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
15.有理数中仍然有:乘积是1的两个数互为倒数。
16.一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
17. 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
18. 一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
19.有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
20.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
21. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数。
22.根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
人教七年级数学上第一章分知识点练习《1.2.2数轴》
![人教七年级数学上第一章分知识点练习《1.2.2数轴》](https://img.taocdn.com/s3/m/bd27592831126edb6f1a104c.png)
1.2.2数轴知识点一:认识数轴1.关于数轴,下列说法最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下列数轴表示正确的是( )3.下列说法错误的是( )A.直线就是数轴B.数轴是一条直线C.任何一个有理数都可以用数轴上的一个点来表示D.数轴上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0 知识点二:读出数轴上的点表示的有理数4.有理数a,b,c在数轴上的位置如图所示,则下列说法正确的是( )A.a,b,c都表示正数B.b,c为正数,a为负数C.a,b,c都表示负数D.b,c为负数,a为正数5.如图,在数轴上点M表示的数可能是()A.1.5 B.-1.5 C.-2.4 D.2.46.如图,数轴上的点A向左移动2个单位长度得到点B,则点B表示的数是_______.7.在下面数轴上,A,B,C,D各点分别表示什么数?知识点三:在数轴上表示有理数8.数轴上表示-4的点到原点的距离为( )A .4B .-4C .14D .-149.在数轴上,表示数-4,2.5,-12,-0.5,313,-1的点中,在原点左边的点有____个. 10.从数轴上表示-3的点出发,向右移动2个单位长度到点B ,则点B 表示的数是____,再向左移动4个单位长度到达点C ,则点C 表示的数是____.11.数轴上表示-7与-3的两个点之间的距离是____个单位长度.12.画一条数轴,在数轴上描出表示下列各数的点.112,-2,0,-3.5,4【能力训练】13.如图,数轴上的点M 和N 表示的数分别是( )A .2.5和-2.5B .-2.5和2.5C .2.5和-1.5D .1.5和-2.514.下列语句中,错误的是( )A .数轴上,原点位置的确定是任意的B .数轴上,正方向可以是从原点向右,也可以是从原点向左C .数轴上,单位长度可根据需要任意选取D .数轴上,与原点的距离等于8的点有两个15.数轴上表示-2.5与72的点之间,表示整数的点的个数是( ) A .6 B .5 C .4 D .316.如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A 表示的数为( )A .7B .3C .-3D .-217.如图,长方形ABCD 的顶点A ,B 在数轴上,CD =6,点A 对应的数为-1,则点B 所对应的数为___.18.请画出数轴,并在数轴上表示下列各数:-2,5,0,2.5,-3.5,23,-4319.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A,再向右爬了2个单位长度到达点B,然后又向左爬了10个单位长度到达点C.(1)画出数轴并标出A,B,C三点在数轴上的位置;(2)写出点A,B,C三点表示的数;(3)根据点C在数轴上的位置,点C可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?20.如图,点A表示的数是-4.(1)在数轴上标出原点O;(2)指出点B所表示的数;(3)在数轴上找一点C,它与B点的距离为2个单位长度,那么C点表示什么数?21.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是____________________;②从-2到2有5个整数,分别是___________________________;③从-3到3有7个整数,分别是_____________________________;④从-100到100有______个整数;⑤从-n到n有______个整数.(2)根据以上规律,直接写出从-3.9到3.9有____个整数,从-10.1到10.1有____个整数.(3)在单位长度是1 cm的数轴上任意画一条长度为1000 cm的线段AB,线段AB盖住的整数点最多有多少个?。
七年级上册 数学讲义《第3讲 数轴动点(二)》人教版 初一数学
![七年级上册 数学讲义《第3讲 数轴动点(二)》人教版 初一数学](https://img.taocdn.com/s3/m/a8d9100076232f60ddccda38376baf1ffd4fe353.png)
人教版·七年级上册数学讲义第3讲 数轴动点(二)疯狗问题知识导航疯狗问题的难度并不大,特征也很明显,即一个较高的速度动点(疯狗)不断在两低速动点间往返运动,两低速动点相遇时,高速度动点随之停止.在这个运动过程中,我们并不能清晰的分析出这里的运动状态,但可以通过两低速动点相遇所花费的时间来得到高速动点的运动时间,结合其速度求出它的路程.例题1点A 、B 、C 在数轴上表示的数a 、b 、c 满足:()()222240b c ++-=,且多项式32321a x y ax y xy +-+-是五次四项式.若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度,其中点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.练习1已知数轴上的点A 、B 对应的数分别为x 、y ,且()21002000x y ++-=.点P 为数轴上从原点出发的一个动点,速度为30单位长度/秒,若点A 沿数轴向右运动,速度为10单位长度/秒,点B 沿数轴向左运动,速度为20单位长度秒,点A 、B 、P 三点同时开始运动.点P 先向右运动,遇到点B 后立即掉头向左运动,遇到点A 后再立即掉头向右运动……如此往返.当A 、B 两点相距30个单位长度时,点P 立即停止运动,求此时点P 移动的路程为多少个单位长度? 挡板问题到达挡板后停止例题2已知点A 、B 在数轴上表示的数分别为a 、b ,且满足2a -与()290b -互为相反数.(1)a 值为_____,b 值为_____.(2)已知电子狗P 从点A 出发,向右匀速运动,速度为每秒1个单位长度,另一电子狗Q 从点B出发,向左匀速运动,速度为每秒3个单位长度,且Q比P先运动2秒,已知在原点O处有病毒,若电子狗遇到病毒则停止运动,未遇到病毒则继续运动.问电子狗P经过多长时间,有P、Q 两只电子狗相距70个单位长度?练习2数轴上A、B两点对应的数分别为-80、20,一电子蚂蚁P从点A出发,以每秒1个单位长度的速度向右匀速运动,目的地为B点;另一电子蚂蚁Q从点B出发,以每秒4个单位长度的速度向左匀速运动,目的地为A点.(1)运动多长时间后,P、Q两只电子蚂蚁相距20个单位长度?(2)运动多长时间后,P、Q两只电子蚂蚁相距80个单位长度?到达挡板后返回例题3如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足++=.+a b a430(1)求A、B两点之间的距离.(2)若在原点O处放一挡板,一小球甲从点A处以2个单位/秒的速度向左运动;两秒后另一个小球乙从点处以3个单位秒的速度也向左运动,左碰到挡板后(忽略球的大小,可以看作一点)乙球以4个单位/秒的速度向相反的方向运动,设甲球的运动的时间为t(秒).①分别表示甲、乙两小球到原点的距离(用含的式子表示).②求甲、乙两小球到原点的距离相等时,甲球所在位置对应的数.数轴上有A、B、C三点,分别表示有理数-26、-10、20,动点P从A出发,以每秒1个单位的速度向右移动,当P点运动到C点时运动停止设点P移动时间为t秒.(1)用含t的代数式表示P点对应的数:__________.(2)当P点运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回A点.①用含t的代数式表示Q在由A到C过程中对应的数:__________.②当t=__________时,动点P、Q到达同一位置(即相遇).③当PQ=3时,求的值.练习32019~2020学年10月湖北武汉江岸区武汉市七一华源中学初一上学期月考第24题12分已知数轴上的A、B两点分别对应数字a、b,且a、b满足()2-+-=.440a b a(1)直接写出a、b的值.(2)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运动到点C立即返回再沿数轴向左运动.当10PQ=时,求P点对应的数.例题4已知多项式26233---中,多项式的项数为a,多项式的次数为b,常数项为c,且a、25320m n m n nb、c分别是点A、B、C在数轴上对应的数.(1)写出a=_____;b=_____;c=_____.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是1、2、3,(单位/秒),当乙追上甲时,甲、乙继续前行,丙此时以原速向相反方向运动,问甲、乙、丙三个动点分别从A、B、C三点同时出发到乙、丙相距2个单位长度时所经历的时间是多少秒?总结归纳无论是遇到挡板后停止的动点问题,还是遇到挡板后返回的动点问题,其本质都是,在遇到挡板的前后,该动点的运动状态发生了改变.因此,必须以到达终点或碰到挡板的时间为界,分别表示出在不同时间段内动点的位置表达式(含t的代数式),即分段讨论,在此基础上再来研究相关点的距离关系,这样才不会漏解.同学们可以体会挡板问题和一般的动点问题的不同之处,自己归纳易错点和相应解法,这样印象更深刻,能真正理解动点问题的本质以及各题型之间的异同.练习42018~2019学年10月湖北武汉洪山区武汉市卓刀泉中学初一上学期月考第24题12分已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足()2++++-=.动点a b c2410100P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒,(1)求a、b、c的值.(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.例题52018~2019学年湖北武汉东湖高新区初一上学期期中第24题12分数轴上m,n,q所对应的点分别为点M,点N,点Q.若点Q到点M的距离表示为QM,点N到点Q的距离表示为NQ.我们有QM q m=-.=-,NQ n q(1)点A,点B,点C在数轴上分别对应的数为-4,6,c.且BC CA=,直接写出c的值_____.(2)在(1)的条件下,两只电子蚂蚁甲,乙分别从A,C两点出发向右运动,甲的速度为4个单位每秒,乙的速度为1个单位每秒.求经过几秒,点B与两只蚂蚁的距离和等于7.(3)在(1)(2)的条件下,电子蚂蚁乙运动到点B后立即以原速返回,到达自己的出发点后停止运动,电子蚂蚁甲运动至B点后也以原速返回,到达自己的出发点后又折返向B点运动,当电子蚂蚁乙停止运动时,电子蚂蚁甲随之停止运动,运动时间为多少时,两只蚂蚁相遇.练习52019~2020学年10月湖北武汉武昌区武昌首义中学初一上学期月考第24题12分如图,数轴上点A、C对应的数分别是a、c,且a、c满足()2a c++-=,点B对应的数是-3.410(1)求数a、c.(2)点A、B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间为t秒,在运动过程中,点B运动到点C处后立即以原速返回,到达自己的出发点后停止运动,点A运动至点C处后又以原速返回,到达自己的出发点后又折返向点C运动,当点B停止运动时,点A随之停止运动,求在此运动过程中,A、B两点同时到达的点在数轴上表示的数是_____(直接写出答案)挑战压轴题2017~2018学年湖北武汉江岸区武汉二中广雅中学初一上学期期中第24题如图,A、B两点在数轴上对应的数分别为-20、40,C点在A、B之间.在A,B、C三点处各放一个档板,M、N两个小球都同时从C处出发,M向数轴负方向运动,N向数轴正方向运动,碰到档板后则向反方向运动,一直如此下去(当N小球第二次碰到B档板时,两球均停止运动)(1)若两个小球的运动速度相同,当M小球第一次碰到A档板时,N小球刚好第二次碰到B档板求C点所对应的数.(2)在(1)的结论下,若M,N小球的运动速度分别为2个单位/秒,3个单位/秒,则N小球前三次碰到档板的时间依次为a,b,c秒钟,设两个球的运动时间为t秒钟.①请直接写出下列时段内小球所对应的数(用含t的代数式表示)当0t a≤≤时,N小球对应的数为_____,当a t b<≤时,N小球对应的数为_____,当b t c<≤时,N小球对应的数为_____.②当M、N两个小球的距离等于30时,求t的值.(3)移走A、B、C三处的挡板,点P从A点出发,以6个单位/秒的速度沿数轴向右运动,同时点Q从B点出发,以4个单位/秒的速度沿数轴向左运动.已知E为AP中点,点F在线段BQ上,且14QF BQ=,问出发多少秒后,点E到点F的距离是点E到原点O的距离的4倍?巩固加油站巩固12019~2020学年12月湖北武汉蔡甸区经济技术开发区第一中学初一上学期月考第24题12分如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴的正方向运动,3秒后,两点相距15个单位长度.已知动点A,B的速度之比为1:4(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动3秒时的位置.(2)若A,B两点从(1)中的位置同时按原速度向数轴负方向运动,几秒后,两动点到原点的距离相等?(3)在(2)中若B在A的右侧,A、B两点继续同时开始向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后立即返回向B点运动,遇到B点后又立即返回向点A运动……如此往返,直到点B追上点A时,点C立即停止运动.若点C一直以20单位长度秒的速度匀速运动,那么点C从开始到停止运动,行驶的路程是多少个单位?巩固2数轴上A、B两点表示的有理数为a、b,且()2350a b-++=.小蜗牛甲以1个单位长度秒的速度从点B出发向其左边6个单位长度处的食物爬去,3秒后位于点A的小蜗牛乙收到它的信号,以2个单位长度秒的速度也迅速爬向食物,小蜗牛甲到达后背着食物立即返回,与小蜗牛乙在数轴上D 点相遇,则点D表示的有理数是什么?从出发到此时,小蜗牛甲共用去多少时间?巩固3数轴上A点对应的数是-1,B点对应的数是1,一只小虫甲从点B出发沿着数轴的正方向以每秒4个单位的速度爬行至C点,再以同样速度立即返回到A点,共用了4秒钟.(1)求点C对应的数.(2)若小虫甲返回到A点后再做如下运动:第1次向右爬行3个单位,第2次向左爬行5个单位,第3次向右爬行7个单位,第4次向左爬行9个单位……依此规律爬下去,求它第10次爬行后停在点所对应的数.(3)回答下列各问:①若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,这时另一小虫乙从出发沿着数轴的负方向以每秒6个单位的速度爬行,则运动t秒后,甲、乙两只小虫的距离为_____(用含t的整式表示).②若小虫甲返回到A点后继续沿着数轴的负方向以每秒4个单位的速度爬行,同时另两只小虫乙、丙分别从点B和点C出发背向而行,乙的速度是每秒2个单位,丙的速度是每秒1个单位.假设运动t秒后,甲、乙、丙三只小虫对应的点分别是D、E、F,则32DE EF-是定值吗?如果是,请求出这个定值.巩固4如图,在数轴上每相邻两点间的距离为一个单位长度,点A、B、C、D对于的数分别是a、b、c、d,且214d a-=.(1)那么a=_____,b=_____.(2)点A以3个单位/秒的速度沿着数轴的正方向运动,1秒后点B以4个单位/秒的速度也沿着数轴的正方向运动.当点A到达D点处立刻返回,与点B在数轴的某点处相遇,求这个点对应的数.(3)如果A、B两点以(2)中的速度同时向数轴的负方向运动,点C从图上的位置出发也向数轴的负方向运动,且始终保持23AB AC=.当点C运动到-12时,点A对应的数是多少?。
初一数学上册必考知识点
![初一数学上册必考知识点](https://img.taocdn.com/s3/m/045f99da524de518964b7dbb.png)
初一数学必考的 21 个知识点,掌握好,轻松 110+!最重要的是还有答题技巧哦,一定要认真看!1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0 外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如 a 的相反数是﹣a,m+n 的相反数是﹣(m+n),这时 m+n 是一个整体,在整体前面添负号时,要用小括号。
3.绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于 0 的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母 a 表示有理数,则数 a 绝对值要由字母 a 本身的取值来确定:①当 a 是正有理数时,a 的绝对值是它本身 a;②当 a 是负有理数时,a 的绝对值是它的相反数﹣a;③当 a 是零时,a 的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)4.有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及 0 的大小,利用绝对值比较两个负数的大小。
2.有理数大小比较的法则:①正数都大于 0;②负数都小于 0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
数学《数轴》知识点七年级教案
![数学《数轴》知识点七年级教案](https://img.taocdn.com/s3/m/c74b06da6edb6f1afe001f44.png)
数学《数轴》知识点七年级教案数学《数轴》知识点七年级教案日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。
通过问题情境类比得到数轴的概念,是这节课的主要学习方法。
同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。
下面由为大家整理了关于数学《数轴》知识点七年级教案,供大家参考。
《数轴》七年级数学教案1一、教学内容分析1.2有理数1.2.2数轴。
这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。
同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。
二、学生学习情况分析(1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;(2)学生学习本节课的知识障碍。
学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;(3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。
三、设计思想从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。
教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。
直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。
人教版初一数学知识点总结
![人教版初一数学知识点总结](https://img.taocdn.com/s3/m/e4ae122db5daa58da0116c175f0e7cd1842518de.png)
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=—1⇔ a、b互为负倒数.7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
七年级数学上上册知识点总结及练习题(含答案)
![七年级数学上上册知识点总结及练习题(含答案)](https://img.taocdn.com/s3/m/0f2fef87284ac850ac02420a.png)
人教版七年级数学上册知识点及练习题第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。
【能力训练】一、选择题。
1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b <-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。
(完整版)人教版初一数学知识点总结
![(完整版)人教版初一数学知识点总结](https://img.taocdn.com/s3/m/e971da482cc58bd63186bda3.png)
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
数学七年级上册《数轴、相反数、绝对值的综合应用》专题复习
![数学七年级上册《数轴、相反数、绝对值的综合应用》专题复习](https://img.taocdn.com/s3/m/9b0c4b5ea517866fb84ae45c3b3567ec102ddc1d.png)
8.若|2x+3|+|3y+2|+|z-5|=0,求 x+y+z 的相反数.
解:因为|2x+3|+|3y+2|+|z-5|=0,
所以 2x+3=0,3y+2=0,z-5=0,
3
2
解得 x=-2,y=-3,z=5,
3 2 17 所以 x+y+z=-2-3+5= 6 ,
所以 x+y+z 的相反数为-167.
件样品中,哪些是正品,哪些是次品,哪些是废品?
解:(1)因为绝对值越小,与规定直径的偏差越小,零件越符合要求,故 第 4 件样品的大小最符合要求.
(2)因为|+0.1|=0.1< 0.18,|-0.15|=0.15< 0.18,|-0.05|= 0.05< 0.18,所以第 1,2,4 件样品是正品;因为|-0.2|=0.2,0.18 < 0.2< 0.22,所以第 3 件样品为次品;因为|+0.25|=0.25 > 0.22, 所以第 5 件样品为废品.
知能素养小专题(一) 数轴、相反数、绝 对值的综合应用
一、数轴上点数对应问题
题型 1:数轴上的整数点问题
1.在数轴任取一条长为 2 01923个单位长度的线段,则此线段在数轴上最
多能盖住的整数点的个数为
( A)
A.2 020
B.2 019
C.2 018
D.2 017
2.(夏津县期末)数轴上表示-4.5 与 2.5 之间的所有整数之和是__--77__.
【解析】当数轴逆时针环绕在圆上时,数轴上的-1,-2,-3,-4 依 次与圆上的 0,3,2,1 重合,且每 4 个数一个循环.依此规律即可求解.
5.如图,一个单位长度表示 2,观察图形,回答问题:
(1)若 B 与 D 所表示的数互为相反数,则点 D 所表示的数字为多少? (2)若 A 与 D 所表示的数互为相反数,则点 D 所表示的数字为多少? (3)若 B 与 F 所表示的数互为相反数,则点 D 所表示的数字的相反数为多 少?
七年级数学上册专题01_有理数的分类及数轴(知识点串讲)(解析版)
![七年级数学上册专题01_有理数的分类及数轴(知识点串讲)(解析版)](https://img.taocdn.com/s3/m/32129bf6f111f18582d05a69.png)
专题01 有理数的分类及数轴知识点一有理数分类有理数(概念理解)按照整数和分数的分类【注意】0既不是正数也不是负数。
按正数、负数、和零的关系分类有理数分类注意事项:1.无限不循环的小数不是有理数,比如:圆周率。
2.无限循环的小数是有理数,比如:0.6666666…3.如200%,6/3能约分成整数的数不能算做分数知识点二数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点、正方向、单位长度(重点)画数轴步骤:画直线-取原点-规定正方向-单位长度任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
✓数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数. ✓实心点表示包括本数,空心点表示不包括本数。
考查题型考查题型一 正负数在实际生活中的应用典例1.如果向东走2m 记为2m +,则向西走3m 可记为( )A .3m +B .2m +C .3m -D .2m -【答案】C【解析】详解:若向东走2m 记作+2m ,则向西走3m 记作-3m ,故选:C .变式1-1.如果+20%表示增加20%,那么﹣6%表示( )A .增加14%B .增加6%C .减少6%D .减少26% 【答案】C【解析】试题分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,所以如果+20%表示增加20%,那么﹣6%表示减少6%.故选C .变式1-2四个足球与足球规定质量偏差如下:﹣3,+5,+10,﹣20(超过为正,不足为负).质量相对最合规定的是( )A .+10B .﹣20C .﹣3D .+5【答案】C【分析】质量偏差越少越好,最符合规定的是﹣3.【详解】最符合规定的是﹣3.故选C.【点睛】本题主要考查负数的意义.变式1-3.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置( )A .在书店B .在花店C .在学校D .不在上述地方 【答案】C【分析】由题意知,可看作书店为原点,花店位于书店西边100米处,即-100米,学校位于书店东边50米处,即+50米,解答出即可.【详解】根据题意:小明从书店沿街向东走了20米,接着又向西走了–30米,即向东走了50米,而学校位于书店东边50米处,故此时小明的位置在学校.故选C .【点睛】本题考查类比点的坐标及学生解决实际问题的能力和阅读理解能力,解题的关键在于对正负坐标的理解.考查题型二有理数的分类典例2.把下列各数填入它所在的数集的括号里.﹣12,+5,﹣6.3,0,﹣1213,245,6.9,﹣7,210,0.031,﹣43,﹣10%正数集合:{…}整数集合:{…}非负数集合:{…}负分数集合:{…}.【解析】正数集合:{+5,245,6.9,210,0.031 …};整数集合:{+5,0,﹣7,210,﹣43 …};非负数集合:{+5,0,245,6.9,210,0.031 …};负分数集合:{﹣12,﹣6.3,﹣1213,﹣10% …}.【答案】故答案为{+5,245,6.9,210,0.031…};{+5,0,﹣7,210,﹣43…};{+5,0,245,6.9,210,0.031 …};{﹣12,﹣6.3,﹣1213,﹣10%…}.变式2-1.所有的正数组成正数集合,所有的负数组成负数集合,所有的整数组成整数集合,所有的分数组成分数集合,请把下列各数填入相应的集合中:-2.5,3.14,-2,+72,-0.6,0.618,0,-0.101正数集合:{ …};负数集合:{ …};分数集合:{ …};非负数集合:{ …}.【答案】3.14,+72,0.618;-2.5,-2,-0.6,-0.101,-2.5,3.14,-0.6,0.618,-0.101,3.14,+72,0.618,0.【详解】正数集合:{3.14,+72,0.618,…};负数集合:{-2.5,-2,-0.6,-0.101,…};分数集合:{-2.5,3.14,-0.6,0.618,-0.101,…};非负数集合:{3.14,+72,0.618,0,…}.变式2-2.(1)如图,下面两个圈分别表示负数集和分数集,请你把下列各数填入它所在的数集的圈里;2016,﹣15%,﹣0.618,712,﹣9,﹣23,0,3.14,﹣72(2)上图中,这两个圈的重叠部分表示什么数的集合?(3)列式并计算:在(1)的数据中,求最大的数与最小的数的和.【答案】(1)见解析;(2)负分数集合;(3)1944【详解】解:(1)根据题意如图:(2)这两个圈的重叠部分表示负分数集合;-,(3)最大数是2016,最小数是72+-=.∴最大的数与最小的数之和2016(72)1944考查题型三数轴的三要素及画法典例3.下列数轴画正确的是()A.B.C.D.【答案】C【详解】试题分析:A、没有单位长度,故错误;B、没有正方向,故错误;C、原点、正方向、单位长度都符合数轴的条件,故正确;D、数轴的左边单位长度的表示有错误.故选C.变式3-1.下列图中数轴画法不正确...的有().(1)(2)(3)(4)(5)A.2个B.3个C.4个D.5个【答案】C【详解】解:(1)没有正方向,数轴画法不正确;(2)单位不统一,数轴画法不正确;(3)缺少单位长度,数轴画法不正确;(4)单位不统一,数轴画法不正确;(5)符合数轴的定义,数轴画法正确.故选:C.变式3-2.下列各图表示数轴正确的是()A.B.C.D.【答案】C【详解】各图表示数轴正确的是:.故选C.考查题型四用数轴上的点表示有理数典例4.(2020·德州市期末)如图,在数轴上,小手遮挡住的点表示的数可能是()A.﹣1.5 B.﹣2.5 C.﹣0.5 D.0.5【答案】C【详解】解:由数轴可知小手遮挡住的点在-1和0之间,而选项中的数只有-0.5在-1和0之间,所以小手遮挡住的点表示的数可能是-0.5.故选C.变式4-1.如图,数轴上蝴蝶所在点表示的数可能为()A.3B.2C.1D.-1【答案】D【详解】解:数轴上蝴蝶所在点表示的数可能为-1,故选D.【点睛】本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.变式4-2.如图,25的倒数在数轴上表示的点位于下列两个点之间( )A.点E和点F B.点F和点G C.点F和点G D.点G和点H 【答案】D【解析】详解:25的倒数是52,∴52在G和H之间,故选D.变式4-3.若|a|=﹣a,则实数a在数轴上的对应点一定在()A.原点左侧B.原点或原点左侧C.原点右侧D.原点或原点右侧【答案】B【详解】∵|a|=-a,∴a一定是非正数,∴实数a在数轴上的对应点一定在原点或原点左侧.故选B.考查题型五利用数轴表示有理数的大小典例5.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【答案】C【解析】试题分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,变式5-1.,在数轴上位置如图所示,则,,,的大小顺序是( )A.B.C.D.【答案】D【分析】从数轴上a b的位置得出b<0<a,|b|>|a|,推出-a<0,-a>b,-b>0,-b>a,根据以上结论即可得出答案.【详解】从数轴上可以看出b<0<a,|b|>|a |,∴-a<0,-a>b,-b>0,-b>a,即b<-a<a<-b,故选D.变式5-2.(2017·厦门市期中)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【答案】D【解析】试题分析:A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,又﹣3<a<﹣2,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.故选D.变式5-3.有理数m,n在数轴上的对应点的位置如图所示,则正确的结论是( )A.m<-1B.n>3C.m<-n D.m>-n【答案】D【详解】由数轴可得,-1<m<0<2<n<3,故选项A错误,选项B错误,∴m>-n,故选项C错误,选项D正确,故选D.考查题型六数轴上的动点问题典例6.如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示-2019的点与圆周上重合的点对应的字母是()A.m B.n C.p D.q【答案】B【详解】由于圆的周长为4个单位长度,所以只需先求出此圆在数轴上环绕的距离,再用这个距离除以4,如果余数分别是0,-1,-2,-3,则分别与圆周上表示字母为m ,q ,p ,n 的点重合.2019÷4=504...3,故-2016与n 点重合. 故选B.变式6-1.在数轴上,把表示﹣4的点移动1个单位长度后,所得到的对应点表示的数为( )A .﹣2B .﹣6C .﹣3 或﹣5D .无法确定【答案】C【分析】分两种情况讨论:把表示﹣4的点向左移动1个单位长度或向右移动1个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【详解】把表示﹣4的点向左移动1个单位长度为-5,向右移动1个单位长度为-3.故选C .【点睛】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.变式6-2.如图,半径为1的圆从表示1的点开始沿着数轴向左滚动一周,圆上的点A 与表示1的点重合,滚动一周后到达点B ,点B 表示的数是( )A .﹣2πB .1﹣2πC .﹣πD .1﹣π【答案】B 【详解】解:∵直径为1个单位长度的圆从原点沿数轴向左滚动一周,∴AB 之间的距离为圆的周长=2π,A 点在数轴上表示1的点的左边.∴A 点对应的数是1﹣2π.故选B .变式6-3.已知数轴上的三点A 、B 、C ,分别表示有理数a 、1、﹣1,那么|a+1|表示为( )A .A 、B 两点间的距离B .A 、C 两点间的距离C .A 、B 两点到原点的距离之和D .A 、C 两点到原点的距离之和【答案】B 【详解】试题分析:因为1(1)a a +=--,所以1a +表示A 点与C 点之间的距离,故选B。
初一数学数轴知识点
![初一数学数轴知识点](https://img.taocdn.com/s3/m/0c07d794294ac850ad02de80d4d8d15abe2300a7.png)
初一数学数轴知识点
初一数学数轴知识点
学习是一个循序渐进的过程,需要同学们不断的学习和努力。
提供了初一上学期数学数轴知识要点,希望能帮助大家更好的复习所学的知识。
可以用一条直线上的点表示数,这条直线叫做数轴(numberaxis)。
原点(origin)、正方向(positivedirection)和单位长度(unitlength)称为数轴三要素,它们缺一不可。
【数轴与实数】
数轴上的点与实数一一对应。
【数轴的性质】
数轴上从左往右的点表示的数是从小往大的顺序,那么利用数轴可以比较数的大小。
在数轴上表示的两个数右边的`总比左边的大;正数都大于零;负数都小于零;正数大于一切负数。
另外由于数轴是一条直线,是可以向两端无限延伸的,因此没有最小的负数,也没有最大的正数。
店铺为大家提供的初一上学期数学数轴知识要点就到这里了,愿大家都能在学期努力,丰富自己,锻炼自己。
七年级数学上册2.3数轴知识点解读
![七年级数学上册2.3数轴知识点解读](https://img.taocdn.com/s3/m/4d2ecaddba1aa8114531d9c8.png)
《数轴》知识点解读知识点1 数轴(重点)1.数轴的概念画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度.规定直线上向右的方向为正方向,就得到数轴。
如下图2.数轴的画法(1)画直线、定原点:通常原点选在直线中间,若问题中负数的个数较多时,原点选靠右些;正数的个数较多时,原点选的靠左些.(2)定方向:通常取原点向右的方向为正方向.(3)定单位长度:选取适当的长度(如0.5cm)为单位长度,若在数轴上表示是0.0001和-0.0004则可取一个单位长度为0.0001;在数轴上表示3000与-4000,则可规定一个单位长度为1000.(4)标数:在数轴上依次标出1,2,3,4,-1,-2,-3,-4等各点.3.任何一个有理数都可以用数轴上的一个点来表示.注意:(1)在取原点位置和确定单位长度时,要根据题目的不同特点,灵活选取.(2)所有的有理数都可以用数轴上的点来表示,但数轴上的点不都可以表示有理数.(今后要学的无理数也可以用数轴上的点来表示)【例1】指出下图中的数轴上各点表示的数.解析读出在数轴上的点表示的有理数分两步:(1)根据点在原点的左右边确定有理数的符合;(2)根据点与原点的距离确定数值.答案 A点表示-212;B点表示-1,C点表示0;D点表示2;E点表示212.【类型突破】画出数轴,并用数轴上的点来表示下列各数:+4,-2,-4.5,113,0.答案知识点2 有理数大小的比较(重点)利用数轴可比较有理数的大小,即(1)在数轴上表示的两个数,右边的数总比左边的数大.(2)由正数、负数、0在数轴上的位置可知:正数都大于0,负数都小于0,正数大于一切负数.提示:正负数的表示方法:因为正数都大于0,反过来,大于0的数都是正数,所以可用a>0表示a是正数;反之,知道a是正数也可以表示为a>0.同理,a<0表示a是负数;反之,a是负数也可以表示为a<0.【例2】将下列各数在数轴上描出其对应点,并用“<”将它们连接起来.-312,3,-2,32,-0.5,12,1,0.解析将给出的数在数轴上表示出来,再根据数轴上两个点表示的数,右边的总比左边的大的规律来比较大小.答案在数轴上表示如下图所示.用“<”连接为:113 320.5013 222-<-<-<<<<<方法总结:比较数的大小时,利用数轴,把这些数用数轴上的点来表示,根据右边的总比左边的大比较,这种方法是数学结合思想的初步运用.【类型突破】写出所以大于132-而小于314的整数 .答案 -3,-2,-1,0,12019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图①,在边长为a 的正方形中剪去一个边长为b(b<a)的小正方形,把剩下部分拼成一个梯形(如图②),利用这两个图形的面积,可以验证的等式是( )A .a 2+b 2=(a +b)(a -b)B .(a -b)2=a 2-2ab +b 2C .(a +b)2=a 2+2ab +b 2D .a 2-b 2=(a +b)(a -b)2.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x 元/kg ,加工后的单价是y 元/kg ,由题意,可列出关于x ,y 的方程组是( )A .()()120%300110%300240y xy x =-⎧⎪--=⎨⎪⎩B .()()120%300110%300240y xy x =-⎧⎪+-=⎨⎪⎩C .()()120%300110%300240y x y x =+⎧⎪+-=⎨⎪⎩D .()()120%300110%300240y x y x =+⎧⎪--=⎨⎪⎩3.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( ) A .12B .512C .13D .1124.如图,直线AB 和CD 相交于点O ,∠AOD 和∠BOC 的和为202°,那么∠AOC 的度数为( )A .89°B .101°C .79°D .110°5.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A.5253x yx y+=⎧⎨+=⎩B.5352x yx y+=⎧⎨+=⎩C.5352x yx y+=⎧⎨=+⎩D.5=+352x yx y⎧⎨+=⎩6.下列命题是假命题的为()A.在同一平面内,不重合的两条直线不相交就平行B.若a2=b2,则a=bC.若x=y,则|x|=|y| D.同角的补角相等7.下列事件是不可能事件的是()A.投100次硬币正面都朝上B.太阳从西边升起C.一个星期有7天D.某次考试全班原来最后一名同学考试成绩为满分8.已知四边形ABCD各边长如图所示,且四边形OPEF≌四边形ABCD.则PE的长为()A.3 B.5 C.6 D.109.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.6610.如图,直线//b,下列各角中与相等的是()A.B.C.D.二、填空题题11.计算225-()=_________.12.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.13.已知关于x 的不等式组0{321x a x -≥-≥-的整数解共有5个,则a 的取值范围是 .14.若||1m m =+,则2011(41)m +=________.15.若2225x kx ++是完全平方式,则k =__________.16.如图1是长方形纸袋,将纸袋沿EF 折叠成图2,再沿BF 折叠成图3,若∠DEF=α,用α表示图3中∠CFE 的大小为 _________ .17.分解因式:ab 2﹣4ab+4a= . 三、解答题 18.阅读材料:某些代数恒等式可用一些卡片拼成的图形的面积来解释.例如,图①可以解释2222()a ab b a b ++=+,因此,我们可以利用这种方法对某些多项式进行因式分解.根据阅读材料回答下列问题:(1)如图②所表示的因式分解的恒等式是________________________.(2)现有足够多的正方形和长方形卡片(如图③),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2232a ab b ++,并利用你画的长方形的面积对2232a ab b ++进行因式分解.19.(6分)已知:如图1,AB ∥CD ,点E ,F 分别为AB ,CD 上一点.(1)在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,试探究∠AEM ,∠EMF ,∠MFC 之间有怎样的数量关系.请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明. (2)如图2,在AB ,CD 之间有两点M ,N ,连接ME ,MN ,NF ,请选择一个图形写出∠AEM ,∠EMN ,∠MNF ,∠NFC 存在的数量关系(不需证明).20.(6分)在如图所示的网格中,将△ABC 先向右平移4格得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到△A 1B 1C 1,请依次画出△A 1B 1C 1和△A 1B 1C 1.21.(6分)先化简,再求值: (22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中: 1)x =-.22.(8分)已知如图1,在ABC ∆中,AD 是BAC ∠的角平分线,AE 是BC 边上的高,30,70ABC ACB ∠=∠=.(1)求DAE ∠的度数.(2)如图2,若点F 为AD 延长线上一点,过点F 作FG BC ⊥于点G ,求AFG ∠的度数.23.(8分)某校组织七年级全体学生举行了“汉字听写”比赛,每位学生听写汉字39个,随机抽取了部分学生的听写结果,绘制成如下的图表. 组别 正确字数x 人数 A 0≤x <8 10 B 8≤x <16 15 C 16≤x <24 25 D 24≤x <32 m E32≤x <40n根据以上信息完成下列问题:(1)由统计表可知m+n= ,并补全条形统计图. (2)扇形统计图中“C 组”所对应的圆心角的度数是 .(3)已知该校七年级共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该年级本次听写比赛不合格的学生人数.24.(10分)如图,CE 平分ACD ∠,F 为CA 延长线上一点,FG CE 交AB 于点G ,100ACD ∠=,20AGF ∠=,求B 的度数.25.(10分)如图, △ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,垂足为点E.(1)求∠BAD的度数;(2)若BD=2 cm,试求DC的长度.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),利用面积相等即可解答.【详解】∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b).故选D.【点睛】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.2.D【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题. 【详解】解:由题意可得,()()120%300110%300240y x y x ⎧=+⎪⎨--=⎪⎩, 故选:D . 【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组. 3.D 【解析】 【分析】首先根据概率的定义公式,判断出m=5,n=60,即可得出P 为112. 【详解】根据概率的定义公式P(A)= m n得知,m=5,n=60 则P=560=112. 故答案为D. 【点睛】此题主要考查对概率定义的理解运用. 4.C 【解析】试题分析:根据对顶角相等及∠AOD 和∠BOC 的和为202°,即可求得结果. 由图可知∠AOD=∠BOC , 而∠AOD+∠BOC=202°, ∴∠AOD=101°,∴∠AOC=180°-∠AOD=79°, 故选C.考点:本题考查的是对顶角,邻补角点评:解答本题的关键是熟练掌握对顶角相等,邻补角之和等于180°. 5.B【解析】【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【详解】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据题意得:5352x yx y+=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.6.B【解析】【分析】根据两直线的位置关系、等式的性质,同角的补角等知识进行判断即可.【详解】解:A、在同一平面内,不重合的两条直线不相交就平行,是真命题;B、若a2=b2,则a=b或a=﹣b,是假命题;C、若x=y,则|x|=|y|,是真命题;D、同角的补角相等,是真命题;故选B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.B【解析】【分析】不可能事件就是一定不会发生的事件,依据定义即可作出判断.【详解】A、投100次硬币正面都朝上,是随机事件,故本项错误;B、太阳从西边升起,是不可能事件,本项正确;C、一个星期有7天,是必然事件,本项错误;D、某次考试全班原来最后一名同学考试成绩为满分,是随机事件,故本项错误,故选:B.【点睛】本题考查不可能事件,解题的关键是熟练掌握不可能事件的定义.8.D【解析】【详解】∵四边形OPEF≌四边形ABCD∴PE=BC=10,故选D.【点睛】本题考查全等形的性质,对应边相等,对应角相等,能正确地找到对应边是解题的关键.9.B【解析】试题分析:由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=1.故选B.考点:规律型:图形的变化类.10.C【解析】【分析】根据平行线的性质和对顶角的定义,即可解答.【详解】∵直线//b∴∠1=∠6(两直线平行,同位角相等)∴∠6=∠4(对顶角相等)故选:C.【点睛】此题考查平行线的性质,对顶角,解题关键在于掌握其性质定理.二、填空题题1152【解析】【分析】2(),再判断25-=-2525和.【详解】<因为252-=-=-()25255252【点睛】此题考查的是二次根式的性质和去绝对值.12.如果两个角互为对顶角,那么这两个角相等【解析】【分析】根据命题的形式解答即可.【详解】将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.【点睛】此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.13.-3<a≤-1【解析】【详解】∵解不等式组得:a≤x≤1,∵不等式组的整数解有5个,∴整数解为:1,1,0,-1,-1,∴-3<a≤-1.故答案为-3<a≤-1.14.1-【解析】【分析】根据条件|m|=m+1进行分析,m 的取值可分三种条件讨论,m 为正数,m 为负数,m 为0,讨论可得m 的值,代入计算即可.【详解】解:根据题意,可得m 的取值有三种,分别是:当m >0时,则||1m m =+可转换为m=m+1,此种情况不成立.当m=0时,则||1m m =+可转换为0=0+1,此种情况不成立.当m <0时,则||1m m =+可转换为-m=m+1,解得,m=12-. 将m 的值代入,则可得(4m+1)2011=[4×(12-)+1]2011=-1. 故答案为:-1.【点睛】本题考查了含绝对值符号的一元一次方程和代数式的求值.解题时,要注意采用分类讨论的数学思想. 15.5±【解析】【分析】【详解】解:∵2225x kx ++是完全平方式,可能是完全平方和,也可能是完全平方差,∴222225(5)1025x kx x x x ++=±=±+,∴210k =±,∴5k =±.故答案为:±1.【点睛】解本题时需注意,一个完全平方式可能是“两个数的完全平方和”,也可能是“两个数的完全平方差”,解题时,两种情况都要考虑,不能忽略了其中任何一种.16.180°-3α.【解析】【分析】先根据进行的性质得AD ∥BC ,则∠BFE=∠DEF=α,根据折叠的性质,把如图1中的方形纸袋沿EF 折叠成图2,则∠MEF=α,把图2沿BF 折叠成图3,则∠MFH=∠CFM ,根据平行线的性质由FH ∥MG 得到∠MFH=180°-∠FMG ,再利用三角形外角性质得∠FMG=∠MFE+∠MEF=2α,则∠MFH=180°-2α,所以∠CFM=180°-2α,然后利用∠CFE=∠CFM-∠EFM 求解.【详解】如图:在图1中,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠BFE=∠DEF=α,∵如图1中的方形纸袋沿EF 折叠成图2,∴∠MEF=α,∵图2再沿BF 折叠成图3,∴在图3中,∠MFH=∠CFM ,∵FH ∥MG ,∴∠MFH=180°-∠FMG ,∵∠FMG=∠MFE+∠MEF=α+α=2α,∴∠MFH=180°-2α,∴∠CFM=180°-2α,∴∠CFE=∠CFM-∠EFM=180°-2α-α=180°-3α.17.a (b ﹣1)1.【解析】ab 1﹣4ab+4a=a (b 1﹣4b+4)﹣﹣(提取公因式)=a (b ﹣1)1.﹣﹣(完全平方公式)故答案为a (b ﹣1)1.三、解答题18.(1)2222()a ab a a b +=+;(2)2232()(2)a ab b a b a b ++=++【解析】【分析】(1)根据面积的不同表示方法,列式可得结果;(2)根据所给式子可知有1张1号卡片,2张2号卡片,3张3号卡片,然后进行拼接,根据面积计算方法列式即可.【详解】(1)根据面积的不同表示方法可得:2222()a ab a a b +=+;(2)此题画法不唯一,如下:2232()(2)a ab b a b a b ++=++.【点睛】本题考查了因式分解的几何背景,熟知用面积的不同表示方法进行验证是解答此题的关键.19.(1)∠EMF=∠AEM+∠MFC,∠AEM+∠EMF+∠MFC=360°(2)第一图数量关系:∠EMN+∠MNF-∠AEM-∠NFC=180°.第二图数量关系:∠EMN-∠MNF+∠AEM+∠NFC=180°.【解析】试题分析:(1)分点M在EF的左侧和右侧两种情况,当点M在EF的左侧时,如图,∠EMF=∠AEM+∠MFC,过点M作MP∥AB,可得AB∥CD∥MP,根据平行线的性质可得∠4=∠3,∠1=∠2,即可证得∠EMF =∠AEM+∠MFC;当点M在EF的右侧时,类比左侧的方法即可证得∠AEM+∠EMF+∠MFC=360°;(2)类比(1)的方法作平行线,利用平行线的性质即可解决.试题解析:(1)∠EMF=∠AEM+∠MFC.证明:过点M作MP∥AB.∵AB∥CD,∴MP∥CD.∴∠4=∠3.∵MP∥AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°证明:过点M作MQ∥AB.∵AB∥CD,∴MQ∥CD.∴∠CFM+∠1=180°.∵MQ∥AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°∵∠EMF=∠1+∠2∴∠AEM+∠EMF+∠MFC=360°.(2)第一图数量关系:∠EMN +∠MNF -∠AEM -∠NFC =180°.第二图数量关系:∠EMN -∠MNF +∠AEM +∠NFC =180°.点睛:本题主要考查了平行线的性质,正确的做出辅助线,熟练运用平行线的性质是解决本题的关键. 20.见解析【解析】【分析】首先确定A 、B 、C 三点向右平移4个单位的对应点位置,然后再连接即可;利用旋转的性质得出各对应点位置,再顺次连结即可求解.【详解】如图所示:△A 1B 1C 1和△A 1B 1C 1即为所求.【点睛】本题考查了作图﹣﹣平移变换、旋转变换,关键是正确确定组成图形的关键点平移和旋转后的对应点的位置.21.12【解析】【分析】首先利用完全平方公式、平方差公式以及整式乘法进行化简,然后将x=-1代入即可求出.【详解】解:原式()()22222139310x x x x x =++--++-222242327310x x x x x =++-+++-719x =+当1x =-时,原式71912=-+=.【点睛】此题主要考查利用完全平方公式、平方差公式进行运算,熟练掌握运算法则,即可解题.22.(1)20DAE ∠=°;(2) 20AFG ∠=.【解析】【分析】(1)根据30,70ABC ACB ∠=∠=求出BAC ∠,又因为AD 是BAC ∠的角平分线可求出BAD ∠,再根据已知求出AED ∠,根据三角形内角和公式即可求解DAE ∠;(2)根据FG BC ⊥,可证得FGD AED ∠=∠,所以//FG AE ,则有AFG DAE ∠=∠.【详解】解:(1)在ABC ∆中,30,70ABC ACB ∠=∠=,180BAC ABC ACB ∴∠=-∠-∠180307080=--= AD 平分BAC ∠11804022BAD CAD BAC ∴∠=∠=∠=⨯=, 在ABD ∆中,403070ADC BAD ABD ∠=∠+∠=+=AE ∵为三角形的高,90AED ∴∠=.在AED ∆中,180DAE ADE AED ∠=-∠-∠=180709020--=.(2)90FG BC FGD ⊥∴∠=90AED ∠=FGD AED ∴∠=∠//FG AE ∴AFG DAE ∴∠=∠由(1)可知20DAE ∠=20AFG ∠=.【点睛】本题考查了角平分线性质、三角形内角和定理及平行线的性质等知识点,主要考查学生的综合运用知识的能力.23.(1)50,补全条形图见解析;(2)90°;(3)450人.【解析】【分析】(1)根据统计图表,先求总人数,可以进一步求m,再求n 的值,并补全统计图;(2)先求C 组的百分比,再算圆心角;(3)先算出样本中的不合格率,再用样本中的不合格率去估计七年级的不合格率,从而估算出不合格人数.【详解】解:(1)由表格可知,B 组有15人,B 组所占的百分比是15%,∴调查的总人数为15÷15%=100(人),则D 组人数m=100×30%=30人,E 组人数n=100×20%=20人,所以m+n=20+30=50,补全条形图如下:(2)“C 组”所对应的圆心角的度数是25÷100×360°=90°,故答案为:90°;(3)估计这所学校本次听写比赛不合格的学生人数为:900×(10%+15%+25%)=450人.【点睛】从统计图表中获取信息,结合统计表和扇形图,可以求出样本的容量,从而求出m ,n ;根据小组的百分比可以得到圆心角;用样本可以估计总体情况.解这些题关键要理解相关概念.24.30B ∠=【解析】【分析】根据角平分线的定义求出∠ACE ,再根据两直线平行,内错角相等可得∠AFG=∠ACE ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BAC,再根据邻补角的定义求出∠ACB,然后利用三角形的内角和定理列式计算即可得解.【详解】∵CE平分∠ACD,∴∠ACE=12×∠ACD=12×100°=50°,∵FG∥CE,∴∠AFG=∠ACE=50°,在△AFG中,∠BAC=∠AFG+∠AGF=50°+20°=70°,又∵∠ACB=180°−∠ACD=180°−100°=80°,∴∠B=180°−∠BAC−∠ACB=180°−70°−80°=30°.【点睛】此题考查三角形内角和定理,解题关键在于求出∠BAC.25.(1)30°;(2)1cm.【解析】【分析】(1)根据三角形内角和定理和等腰三角形的性质求出∠B=∠C=30°,根据垂直平分线的性质解答即可;(2)根据直角三角形中,30°角所对的直角边等于斜边的一半计算.【详解】解:(1)∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵DE是AB的垂直平分线,∴∠BAD=∠B=30°;(2)∵∠BAC=120°,∠BAD=30°,∴∠CAD=90°,又∠C=30°,∴CD=2AD=1.【点睛】本题考查的是线段的垂直平分线的性质,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,已知AB∥CD∥EF,∠ABC=50°,∠CEF=150°,则∠BCE的值为().A.50°B.30°C.20°D.60°2.如图,A、B、C分别是线段A1B、B1C、C1A的中点,若△A1B l C1的面积是14,那么△ABC的面积是()A.2 B.143C.3 D.723.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.54.已知不等式3x﹣a≤0的正整数解恰是1,2,3,4,那么a的取值范围是()A.a>12 B.12≤a≤15 C.12<a≤15 D.12≤a<155.不等式2x31+≥的解集在数轴上表示为A. B. C. D.6.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有多少两?设银子共有x两,列出方程为()A .4879x x +=- B .4879x x +-=C .4879x x-=+ D .4879x x -+=7.下列各组线段能构成直角三角形的一组是( ) A .30,40,50B .7,12,13C .5,9,12D .3,4,68.用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现在又有36张白铁皮.设用x 张制作盒身,y 张制作盒底可以使盒身和盒底正好配套,则所列方程组正确的( ) A .362540x y x y+=⎧⎨=⎩B .3622540x y x y +=⎧⎨⨯=⎩C .3625240x y x y +=⎧⎨=⨯⎩D .364025x y x y +=⎧⎨=⎩9.下列图案中,是轴对称图形的是( )A .B .C .D .10.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .1313x x -<⎧⎨+<⎩B .1313x x -<⎧⎨+>⎩C .1313x x ->⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩二、填空题题11.若a m =3,a n =2,则a m +n =_______;12.如图,AB ∥CD ,试再添一个条件,使∠1=∠2成立,_____、_____、_____(要求给出三个以上答案)13.如图,长方形ABCD 的周长为12,分别以BC 和CD 为边向外作两个正方形,且这两个正方形的面积和为20,则长方形ABCD 的面积是______.14.如图所示,已知点D E F 、、分别是AB BC CD 、、的中点,12DEF S ∆=厘米2,则ABC S ∆=___________平方厘米.15.若有理数a 和b 在数轴上所表示的点分别在原点的右边和左边,则2--b a b =_____.16.甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,设原来甲车间有x 名工人,原来乙车间有y 名工人,可列方程组为___________.17.如图,在围棋盘上有三枚棋子,如果黑棋①的位置用坐标表示为()0,1-,黑棋②的位置用坐标表示为()3,0-,则白棋③的位置用坐标表示为__________.三、解答题18.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下: 课外阅读时间(单位:小时) 频数(人数) 频率 0<t≤2 2 0.04 2<t≤4 3 0.06 4<t≤6 15 0.30 6<t≤8 a 0.50 t >85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?19.(6分)解不等式组()3264113x xxx①②⎧--≥⎪⎨-+>⎪⎩并将解集在数轴上表示出来.20.(6分)已知:用2辆A型车和1辆B型车载满货物一次可运货11吨;用1辆A型车和2辆B型车载满货物一次可运货13吨.根据以上信息, 解答下列问题:(1)1辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物请用含有b的式子表示a,并帮该物流公司设计租车方案;(3)在(2)的条件下,若A型车每辆需租金500元/次,B型车每辆需租金600元/次.请选出最省钱的租车方案,并求出最少租车费用.21.(6分)某综合实践小组为了了解本校学生参加课外读书活动的情况,随机抽取部分学生,调查其最喜欢的图书类别,并根据调查结果绘制成不完整的统计表与统计图,请结合图中的信息解答下列问题.学生最喜欢的图书类别人数统计表图书类别画记人数百分比文学类艺体类正 5科普类正正一11 22%其它正正14 28%合计 a 100%(1)随机抽取的样本容量a为_________________________;(2)补全扇形统计图和条形统计图;(3)已知该校有600名学生,估计全校最喜欢文学类图书的学生人数.22.(8分)小辰想用一块面积为2100cm的正方形纸片,沿着边的方向裁出一块面积为290cm的长方形纸片,使它的长宽之比为5:3. 小辰能否用这张正方形纸片裁出符合要求的纸片?若能请写出具体栽法;若不能,请说明理由.23.(8分)如图,已知四边形ABCD,AD∥BC.点P在直线CD上运动(点P和点C,D不重合,点P,A,B不在同一条直线上),若记∠DAP,∠APB,∠PBC分别为∠α,∠β,∠γ.(1)如图1,当点P在线段CD上运动时,写出∠α,∠β,∠γ之间的关系并说出理由;(2)如图2,如果点P在线段CD的延长线上运动,探究∠α,∠β,∠γ之间的关系,并说明理由.(3)如图3,BI平分∠PBC,AI交BI于点I,交BP于点K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度数.24.(10分)黄山位于安徽省南部,是世界文化与自然双重遗产,世界地质公园,国家AAAAA级旅游景区,全国文明风景旅游区示范点,中华十大名山,天下第一奇山.暑假期间,太和县某学校组织七年级学生到黄山游学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校七年级有303名学生参加这次游学活动,学校计划每辆车安排一名老师,老师也需一个座位.①现打算同时租甲、乙两种客车共8辆,请帮助学校设计租车方案.②旅行前,学校的一名老师由于特殊情况,学校只能安排7名老师,为保证所租的每辆车均有一名老师,租车方案调整为:同时租65座、45座和30座的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问学校的租车方案如何安排?25.(10分)如图,在等边ABC 中,边6AB =厘米,若动点P 从点C 开始,按C B A C →→→的路径运动,且速度为1厘米/秒,设点P 的运动时间为t 秒.(1)当3t =时,判断AP 与BC 的位置关系,并说明理由; (2)当PBC 的面积为ABC 面积的一半时,求t 的值;(3)另有一点Q ,从点C 开始,按C A B C →→→的路径运动,且速度为1.5厘米/秒,若P 、Q 两点同时出发,当P 、Q 中有一点到达终点时,另一点也停止运动.当t 为何值时,直线PQ 把ABC 的周长分成相等的两部分.参考答案一、选择题(每题只有一个答案正确) 1.C 【解析】 【分析】 【详解】解:∵AB ∥CD ∥EF ,∴∠ABC=∠BCD=50°,∠CEF+∠ECD=180°; ∴∠ECD=180°-∠CEF=30°, ∴∠BCE=∠BCD-∠ECD=20°. 故选:C . 2.A 【解析】【分析】连接AB1,BC1,CA1,根据等底等高的三角形的面积相等求出△ABB1,△A1AB1的面积,从而求出△A1BB1的面积,同理可求△B1CC1的面积,△A1AC1的面积,于是得到结论.【详解】如图,连接AB1,BC1,CA1,∵A、B分别是线段A1B,B1C的中点,∴S△ABB1=S△ABC,S△A1AB1=S△ABB1=S△ABC,∴S△A1BB1=S△A1AB1+S△ABB1=2S△ABC,同理:S△B1CC1=2S△ABC,S△A1AC1=2S△ABC,∴△A1B1C1的面积=S△A1BB1+S△B1CC1+S△A1AC1+S△ABC=7S△ABC=1.∴S△ABC=2,故选A.【点睛】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,作辅助线把三角形进行分割是解题的关键.3.A【解析】【分析】根据题意可知点A在与x轴平行的直线y=1上运动,因为点B是x轴上一动点,所以点A、B之间的距离转化为点到直线的最小距离,最小距离为1.【详解】∵点A(a,1),∴点A在与x轴平行的直线y=1上运动,∵点B是x轴上一动点,∴点B 到直线y =1的最小距离为1, 故点A 、B 之间的距离不可能小于1, 故选:A . 【点睛】此题主要考查坐标与图形,解题的关键是理解两点之间的距离的定义. 4.D 【解析】 【分析】首先确定不等式组的解集,利用含a 的式子表示,再根据整数解的个数就可以确定有哪些整数解,然后根据解的情况可以得到关于a 的不等式,从而求出a 的范围. 【详解】不等式的解集是:x≤3a , ∵不等式的正整数解恰是1,2,3,4, ∴4≤3a<5, ∴a 的取值范围是12≤a <1. 故选D . 【点睛】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定3a的范围,是解决本题的关键.解不等式时要用到不等式的基本性质. 5.C 【解析】分析:解不等式2x 312x 132x 2x 1+≥⇒≥-⇒≥-⇒≥-不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.因此不等式x 1≥-在数轴上表示正确的是C .故选C . 6.D 【解析】 【分析】设银子共有x 两,根据“如果每人分七两,则剩余四两;如果每人分九两,则还差八两”及人的数量不变,即可得出关于x 的一元一次方程. 【详解】。
人教版初中七年级数学上册《数轴》知识点训练(基础)
![人教版初中七年级数学上册《数轴》知识点训练(基础)](https://img.taocdn.com/s3/m/bfafcea05f0e7cd185253670.png)
人教版初中七年级数学上册《数轴》基础训练知识点1数轴的概念及画法1.关于数轴,下列说法最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D 规定了原点、正方向单位长度的直线2.下列是数轴的是()知识点2数镇上的点与有理数的关系3.如图,数轴上点M 表示的数可能是()A. 2.5B. 2.5C. 1.5D. 1.5--4如图,数轴上表示 2.75-的点可能是()A. B. C. D. E F G H 点点点点5.下列说法正确的是() A.同一数轴中的单位长度不需要统一B 数轴上两个不同的点可以表示同一个有理数C.任何一个有理数都可以用数轴上的一个点表示D.有些有理数不能在数轴上表示出来6.(教材P9练习T3变式)数,,a b c 对应的点在数轴上的位置如图所示,则下列说法正确的是()A.,,a b c 是负数B.,,a b c 是正数C.,a b 是负数,c 是正数D.a 是负数,,b c 是正数7.在数轴上表示数3,0,5,2,1--的点中,在原点右边的有()A. 0B. 1C. 2D. 3个个个个8.数轴上原点及原点左边的点表示()A. B. C. D. 正数负数非正数非负数9.如图,指出数轴上的点A ,B ,C 表示的数,并把,4352-,这三个数分别用点D ,E ,F 在数轴上表示出来.知识点3数轴上两点之间的距离10.在数轴上,表示+5的点在原点的_________侧,距离原点_________个单位长度;表示7-的点在原点的_________侧,距离原点_________个单位长度;这两个点之间的距离为_________个单位长度.11.【数形结合思想】如图所示,在数轴上有A ,B ,C 三点.请回答:(1)将点A 向右移动2个单位长度后,表示的有理数是__________;(2)将点B 向左移动3个单位长度后,表示的有理数是__________;(3)将点C 向左移动5个单位长度后,表示的有理数是__________.12.在数轴上表示1-的点与表示2018的点之间相隔()A.2017个单位长度B.2018个单位长度C.2019个单位长度D.2010个单位长度易错点数轴上已知到某点的距离,求点时漏解13.到原点的距离是2019个单位长度的点表示的数是()A. 2019B. 2019C. 2019D. 2020-± 【变式】数轴上点A 表示的数是2,那么与点A 相距5个单位长度的点表示的数是________.参考答案1.D2.D3.B4.D5.C6.D7.C8.C9.解:点A ,B ,C 表示的数分别是 2.5,0,4-;34,,52-这三个数分别用点D ,E ,F 在数轴上表示略.10. 5 右左 7 1211.(1)1-(2)4-(3)2-12.C13.C 【变式】73-或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【初一上册数学《数轴》知识点】七年级上册数
学知识点
1、数轴:规定了原点、正方向和单位长度的直线叫数轴。
2、画数轴的步骤:
⑴画一条直线。
⑵选取原点、正方向。
⑶规定单位长度。
⑷数轴上用短竖标出刻度。
⑸数轴下用标出数值。
3、数轴三要素:原点、正方向和单位长度
4、数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
5、数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;但数轴上的点不都表示有理数。